Chapter 10

Phiz, styx, wrong, buck, flame, quid.

Phiz, styx, wrong, buck, flame, quid.

Phiz, styx, wrong, buck, flame, quid.

I gave him the following, which he agreed was "admirable sense": I certainly think the words would never have come together except in this way:

I, quartz pyx, who fling muck beds.

I, quartz pyx, who fling muck beds.

I, quartz pyx, who fling muck beds.

I long thought that no human being could say this under any circumstances. At last I happened to be reading a religious writer—as he thought himself—who threw aspersions on his opponents thick and threefold. Heyday! came into my head, this fellow flings muck beds; he must be a quartz pyx. And then I remembered that a pyx is a sacred vessel, and quartz is a hard stone, as hard as the heart of a religious foe-curser. So that the line is the motto of the ferocious sectarian, who turns his religious vessels into mudholders, for the benefit of those who will not see what he sees.

I can find no circumstances for the following, which I received from another:

Fritz! quick! land! hew gypsum box.

Fritz! quick! land! hew gypsum box.

Fritz! quick! land! hew gypsum box.

From other quarters I have the following:

Dumpy quiz! whirl back fogs next.

Dumpy quiz! whirl back fogs next.

Dumpy quiz! whirl back fogs next.

This might be said in time of haze to the queer little figure in the Dutch weather-toy, which comes out or goes in with the change in the atmosphere. Again,

Export my fund! Quiz black whigs.

Export my fund! Quiz black whigs.

Export my fund! Quiz black whigs.

This Squire Western might have said, who was always afraid of the whigs sending the sinking-fund over to Hanover. But the following is the best: it is good advice to a young man, very well expressed under the circumstances:

Get nymph; quiz sad brow; fix luck.

Get nymph; quiz sad brow; fix luck.

Get nymph; quiz sad brow; fix luck.

Which in more sober English would be, Marry; be cheerful; watch your business. There is more edification, more religion in this than in all the 666-interpretations put together.

Such things would make excellent writing copies, for they secure attention to every letter;vandjmight be placed at the end.

ON GODFREY HIGGINS.

The Celtic Druids. By Godfrey Higgins,[603]Esq. of Skellow Grange, near Doncaster. London, 1827, 4to.Anacalypsis, or an attempt to draw aside the veil of the Saitic Isis: or an inquiry into the origin of languages, nations, and religions. By Godfrey Higgins, &c..., London, 1836, 2 vols. 4to.

The Celtic Druids. By Godfrey Higgins,[603]Esq. of Skellow Grange, near Doncaster. London, 1827, 4to.

Anacalypsis, or an attempt to draw aside the veil of the Saitic Isis: or an inquiry into the origin of languages, nations, and religions. By Godfrey Higgins, &c..., London, 1836, 2 vols. 4to.

The first work had an additional preface and a new index in 1829. Possibly, in future time, will be found bound up with copies of the second work two sheets which Mr. Higgins circulated among his friends in 1831: the first a "Recapitulation," the second "Book vi. ch. 1."

The system of these works is that—

"The Buddhists of Upper India (of whom the Phenician Canaanite, Melchizedek, was a priest), who built the Pyramids, Stonehenge, Carnac, &c. will be shown to have founded all the ancient mythologies of the world, which, however varied and corrupted in recent times, were originally one, and that one founded on principles sublime, beautiful, and true."

These works contain an immense quantity of learning, very honestly put together. I presume the enormous number of facts, and the goodness of the index, to be the reasons why theAnacalypsisfound a permanent place in theoldreading-room of the British Museum, even before the change which greatly increased the number of books left free to the reader in that room.

Mr. Higgins, whom I knew well in the last six years of his life, and respected as a good, learned, and (in his own way)piousman, was thoroughly and completely the man of a system. He had that sort of mental connection with his theory that made his statements of his authorities trustworthy: for, besides perfect integrity, he had no bias towards alteration of facts: he saw his system in the way the fact was presented to him by his authority, be that what it might.

He was very sure of a fact which he got from any of his authorities: nothing could shake him. Imagine a conversation between him and an Indian officer who had paid long attention to Hindoo antiquities and their remains: a third person was present,ego qui scribo.G. H."You know that in the temples of I-forget-who the Ceres is always sculptured precisely as in Greece."Col.——, "I really do not remember it, and I have seen most of these temples."G. H."It is so, I assure you, especially at I-forget-where."Col.——, "Well, I am sure! I was encamped for six weeks at the gate of that very temple, and, except a little shooting, had nothing to do but to examine its details, which I did, day after day, and I found nothing of the kind." It was of no use at all.

Godfrey Higgins began life by exposing and conquering, at the expense of two years of his studies, some shocking abuses which existed in the York Lunatic Asylum. This was a proceeding which called much attention to the treatment of the insane, and produced much good effect. He was very resolute and energetic. The magistracy of histime had such scruples about using the severity of law to people of such station as well-to-do farmers, &c.: they would allow a great deal of resistance, and endeavor to mollify the rebels into obedience. A young farmer flatly refused to pay under an order of affiliation made upon him by Godfrey Higgins. He was duly warned; and persisted: he shortly found himself in gaol. He went there sure to conquer the Justice, and the first thing he did was to demand to see his lawyer. He was told, to his horror, that as soon as he had been cropped and prison-dressed, he might see as many lawyers as he pleased, to be looked at, laughed at, and advised that there was but one way out of the scrape. Higgins was, in his speculations, a regular counterpart of Bailly; but the celebrated Mayor of Paris had not his nerve. It was impossible to say, if their characters had been changed, whether the unfortunate crisis in which Bailly was not equal to the occasion would have led to very different results if Higgins had been in his place: but assuredly constitutional liberty would have had one chance more. There are two works of his by which he was known, apart from his paradoxes. First,An apology for the life and character of the celebrated prophet of Arabia, called Mohamed, or the Illustrious. London, 8vo. 1829. The reader will look at this writing of our English Buddhist with suspicious eye, but he will not be able to avoid confessing that the Arabian prophet has some reparation to demand at the hands of Christians. Next,Horæ Sabaticæ; or an attempt to correct certain superstitions and vulgar errors respecting the Sabbath. Second edition, with a large appendix. London, 12mo. 1833. This book was very heterodox at the time, but it has furnished material for some of the clergy of our day.

I never could quite make out whether Godfrey Higgins took that system which he traced to the Buddhists to have a Divine origin, or to be the result of good men's meditations. Himself a strong theist, and believer in a futurestate, one would suppose that he would refer auniversalreligion, spread in different forms over the whole earth from one source, directly to the universal Parent. And this I suspect he did, whether he knew it or not. The external evidence is balanced. In his preface he says:

"I cannot help smiling when I consider that the priests have objected to admit my former book,The Celtic Druids, into libraries, because it was antichristian; and it has been attacked by Deists, because it was superfluously religious. The learned Deist, the Rev. R. Taylor [already mentioned], has designated me as thereligiousMr. Higgins."

The time will come when some profound historian of literature will make himself much clearer on the point than I am.

ON POPE'S DIPPING NEEDLE.

The triumphal Chariot of Friction: or a familiar elucidation of the origin of magnetic attraction, &c. &c. By William Pope.[604]London, 1829, 4to.

The triumphal Chariot of Friction: or a familiar elucidation of the origin of magnetic attraction, &c. &c. By William Pope.[604]London, 1829, 4to.

Part of this work is on a dipping-needle of the author's construction. It must have been under the impression that a book of naval magnetism was proposed, that a great many officers, the Royal Naval Club, etc. lent their names to the subscription list. How must they have been surprised to find, right opposite to the list of subscribers, the plate presenting "the three emphatic letters, J. A. O." And how much more when they saw it set forth that if a square be inscribed in a circle, a circle within that, then a square again, &c., it is impossible to have more than fourteen circles, let the first circle be as large as you please. From this the seven attributes of God are unfolded; and further, that all matter wasmoral, until Luciferchurnedit intophysical"as far as the third circle in Deity": this Lucifer, called Leviathan in Job, being thus the moving cause ofchaos. I shall say no more, except that the friction of the air is the cause of magnetism.

Remarks on the Architecture, Sculpture, and Zodiac of Palmyra; with a Key to the Inscriptions. By B. Prescot.[605]London, 1830, 8vo.

Remarks on the Architecture, Sculpture, and Zodiac of Palmyra; with a Key to the Inscriptions. By B. Prescot.[605]London, 1830, 8vo.

Mr. Prescot gives the signs of the zodiac a Hebrew origin.

THE JACOTOT METHOD.

Epitomé de mathématiques. Par F. Jacotot,[606]Avocat. 3ième edition, Paris, 1830, 8vo. (pp. 18).Méthode Jacotot. Choix de propositions mathématiques. Par P. Y. Séprés.[607]2nde édition. Paris, 1830, 8vo. (pp. 82).

Epitomé de mathématiques. Par F. Jacotot,[606]Avocat. 3ième edition, Paris, 1830, 8vo. (pp. 18).

Méthode Jacotot. Choix de propositions mathématiques. Par P. Y. Séprés.[607]2nde édition. Paris, 1830, 8vo. (pp. 82).

Of Jacotot's method, which had some vogue in Paris, the principle wasTout est dans tout,[608]and the processApprendre quelque chose, et à y rapporter tout le reste.[609]The first tract has a proposition in conic sections and its preliminaries: the second has twenty exercises, of which the first is finding the greatest common measure of two numbers, and the last is the motion of a point on a surface, acted on by given forces. This is topped up with the problem of sound in a tube, and a slice of Laplace's theory of the tides. All to be studied until known by heart, and all the rest will come, or at least join on easily when it comes. There is much truth in the assertion that new knowledgehooks on easily to a little of the old, thoroughly mastered. The day is coming when it will be found out that crammed erudition, got up for examinations, does not cast out any hooks for more.

Lettre à MM. les Membres de l'Académie Royale des Sciences, contenant un développement de la réfutation du système de la gravitation universelle, qui leur a été présentée le 30 août, 1830. Par Félix Passot.[610]Paris, 1830, 8vo.

Lettre à MM. les Membres de l'Académie Royale des Sciences, contenant un développement de la réfutation du système de la gravitation universelle, qui leur a été présentée le 30 août, 1830. Par Félix Passot.[610]Paris, 1830, 8vo.

Works of this sort are less common in France than in England. In France there is only the Academy of Sciences to go to: in England there is a reading public out of the Royal Society, &c.

A DISCOURSE ON PROBABILITY.

About 1830 was published, in theLibrary of Useful Knowledge, the tract onProbability, the joint work of the late Sir John Lubbock[611]and Mr. Drinkwater (Bethune).[612]It is one of the best elementary openings of the subject. A binder put my name on the outside (the work was anonymous) and the consequence was that nothing could drive out of people's heads that it was written by me. I do not know how many denials I have made, from a passage in one of my own works to a letter in theTimes: and I am not sure that I have succeeded in establishing the truth, even now. I accordingly note the fact once more. But as a book has no right here unless it contain a paradox—or thing counter to general opinion or practice—I will produce two small ones. Sir John Lubbock, with whom lay the executive arrangement, had a strong objection to the last word in "Theory of Probabilities," he maintained that the singularprobability, should be used; and I hold him quite right.

The second case was this: My friend Sir J. L., with a large cluster of intellectual qualities, and another of social qualities, had one point of character which I will not call bad and cannot call good; he never used a slang expression. To such a length did he carry his dislike, that he could not bearheadandtail, even in a work on games of chance: so he usedobverseandreverse. I stared when I first saw this: but, to my delight, I found that the force of circumstances beat him at last. He was obliged to take an example from the race-course, and the name of one of the horses wasBessy Bedlam! And he did not put her down asElizabeth Bethlehem, but forced himself to follow the jockeys.

[Almanach Romain sur la Loterie Royale de France, ou les Etrennes nécessaires aux Actionnaires et Receveurs de la dite Loterie. Par M. Menut de St.-Mesmin. Paris, 1830. 12mo.

[Almanach Romain sur la Loterie Royale de France, ou les Etrennes nécessaires aux Actionnaires et Receveurs de la dite Loterie. Par M. Menut de St.-Mesmin. Paris, 1830. 12mo.

This book contains all the drawings of the French lottery (two or three, each month) from 1758 to 1830. It is intended for those who thought they could predict the future drawings from the past: and various sets ofsympatheticnumbers are given to help them. The principle is, that anything which has not happened for a long time must be soon to come. Atrouge et noir, for example, when the red has won five times running, sagacious gamblers stake on the black, for they think the turn which must come at last is nearer than it was. So it is: but observation would have shown that if a large number of those cases had been registered which show a run of five for the red, the next game would just as often have made the run into six as have turned in favor of the black. But the gambling reasoner is incorrigible: if he would but take to squaring the circle, what a load of misery would be saved. A writer of 1823, who appeared to be thoroughly acquainted with the gambling of Paris and London, says that the gamesters byprofession are haunted by a secret foreboding of their future destruction, and seem as if they said to the banker at the table, as the gladiators said to the emperor,Morituri te salutant.[613]

In the French lottery, five numbers out of ninety were drawn at a time. Any person, in any part of the country, might stake any sum upon any event he pleased, as that 27 should be drawn; that 42 and 81 should be drawn; that 42 and 81 should be drawn, and 42 first; and so on up to aquine déterminé, if he chose, which is betting on five given numbers in a given order. Thus, in July, 1821, one of the drawings was

8   46   16   64   13.

8   46   16   64   13.

8   46   16   64   13.

A gambler had actually predicted the five numbers (but not their order), and won 131,350 francs on a trifling stake. M. Menut seems to insinuate that the hint what numbers to choose was given at his own office. Another won 20,852 francs on the quaterne, 8, 16, 46, 64, in this very drawing. These gains, of course, were widely advertised: of the multitudes who lost nothing was said. The enormous number of those who played is proved to all who have studied chances arithmetically by the numbers of simple quaternes which were gained: in 1822, fourteen; in 1823, six; in 1824, sixteen; in 1825, nine, &c.

The paradoxes of what is called chance, or hazard, might themselves make a small volume. All the world understands that there is a long run, a general average; but great part of the world is surprised that this general average should be computed and predicted. There are many remarkable cases of verification; and one of them relates to the quadrature of the circle. I give some account of this and another. Throw a penny time after time untilheadarrives, which it will do before long: let this be called aset. Accordingly, H is the smallest set, TH the next smallest, then TTH, &c. For abbreviation, let a set in which seventailsoccur beforeheadturns up be T7H. In an immense number of trials of sets, about half will be H; about a quarter TH; about an eighth, T2H. Buffon[614]tried 2,048 sets; and several have followed him. It will tend to illustrate the principle if I give all the results; namely, that many trials will with moral certainty show an approach—and the greater the greater the number of trials—to that average which sober reasoning predicts. In the first column is the most likely number of the theory: the next column gives Buffon's result; the three next are results obtained from trial by correspondents of mine. In each case the number of trials is 2,048.

In very many trials, then, we may depend upon something like the predicted average. Conversely, from many trials we may form a guess at what the average will be. Thus, in Buffon's experiment the 2,048 first throws of the sets gaveheadin 1,061 cases: we have a right to infer that in the long run something like 1,061 out of 2,048 is the proportion of heads, even before we know the reasons for the equality of chance, which tell us that 1,024 out of 2,048 is the real truth. I now come to the way in which such considerations have led to a mode in which mere pitch-and-toss has given a more accurate approach to the quadrature of the circle than has been reached by some of my paradoxers. What would my friend[615]in No. 14 have said to this? The method is as follows: Suppose a planked floor of the usual kind, with thin visible seams between the planks. Let there be a thin straight rod, or wire, not so long as the breadth of the plank. This rod, being tossed up at hazard, will either fall quite clear of the seams, or will lay across one seam. Now Buffon, and after him Laplace, proved the following: That in the long run the fraction of the whole number of trials in which a seam is intersected will be the fraction which twice the length of the rod is of the circumference of the circle having the breadth of a plank for its diameter. In 1855 Mr.AmbroseSmith, of Aberdeen, made 3,204 trials with a rod three-fifths of the distance between the planks: there were 1,213 clear intersections, and 11 contacts on which it was difficult to decide. Divide these contacts equally, and we have 1,218½ to 3,204 for the ratio of 6 to 5π, presuming that the greatness of the number of trials gives something near to the final average, or result in the long run: this givesπ= 3.1553. If all the 11 contacts had been treated as intersections, the result would have beenπ= 3.1412, exceedingly near. A pupil of mine made 600 trials with a rod of the length between the seams, and gotπ= 3.137.

This method will hardly be believed until it has been repeated so often that "there never could have been any doubt about it."

The first experiment strongly illustrates a truth of the theory, well confirmed by practice: whatever can happen will happen if we make trials enough. Who would undertake to throw tail eight times running? Nevertheless, in the 8,192 sets tail 8 times running occurred 17 times; 9 times running, 9 times; 10 times running, twice; 11 times and 13 times, each once; and 15 times twice.]

ON CURIOSITIES OFπ.

1830. The celebrated interminable fraction 3.14159..., which the mathematician callsπ, is the ratio of the circumference to the diameter. But it is thousands of things besides. It is constantly turning up in mathematics: and if arithmetic and algebra had been studied without geometry,πmust have come in somehow, though at what stage or under what name must have depended upon the casualties of algebraical invention. This will readily be seen when it is stated thatπis nothing but four times the series

1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 + ...

1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 + ...

1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 + ...

ad infinitum.[616]It would be wonderful if so simple a serieshad but one kind of occurrence. As it is, our trigonometry being founded on the circle,πfirst appears as the ratio stated. If, for instance, a deep study of probable fluctuation from average had preceded,πmight have emerged as a number perfectly indispensable in such problems as: What is the chance of the number of aces lying between a million +xand a million -x, when six million of throws are made with a die? I have not gone into any detail of all those cases in which the paradoxer finds out, by his unassisted acumen, that results of mathematical investigationcannot be: in fact, this discovery is only an accompaniment, though a necessary one, of his paradoxical statement of that whichmust be. Logicians are beginning to see that the notion ofhorseis inseparably connected with that ofnon-horse: that the first without the second would be no notion at all. And it is clear that the positive affirmation of that which contradicts mathematical demonstration cannot but be accompanied by a declaration, mostly overtly made, that demonstration is false. If the mathematician were interested in punishing this indiscretion, he could make his denier ridiculous by inventing asserted results which would completely take him in.

More than thirty years ago I had a friend, now long gone, who was a mathematician, but not of the higher branches: he was,inter alia, thoroughly up in all that relates to mortality, life assurance, &c. One day, explaining to him how it should be ascertained what the chance is of the survivors of a large number of persons now alive lying between given limits of number at the end of a certain time, I came, of course upon the introduction ofπ, which I could only describe as the ratio of the circumference of a circle to its diameter. "Oh, my dear friend! that must be a delusion; what can the circle have to do with the numbers alive at the end of a given time?"—"I cannot demonstrate it to you; but it is demonstrated."—"Oh! stuff! I think you can prove anything with your differential calculus: figment,depend upon it." I said no more; but, a few days afterwards, I went to him and very gravely told him that I had discovered the law of human mortality in the Carlisle Table, of which he thought very highly. I told him that the law was involved in this circumstance. Take the table of expectation of life, choose any age, take its expectation and make the nearest integer a new age, do the same with that, and so on; begin at what age you like, you are sure to end at the place where the age past is equal, or most nearly equal, to the expectation to come. "You don't mean that this always happens?"—"Try it." He did try, again and again; and found it as I said. "This is, indeed, a curious thing; thisisa discovery." I might have sent him about trumpeting the law of life: but I contented myself with informing him that the same thing would happen with any table whatsoever in which the first column goes up and the second goes down; and that if a proficient in the higher mathematics chose to palm a figment upon him, he could do without the circle:à corsaire, corsaire et demi,[617]the French proverb says. "Oh!" it was remarked, "I see, this was Milne!"[618]It wasnotMilne: I remember well showing the formula to him some time afterwards. He raised no difficulty aboutπ; he knew the forms of Laplace's results, and he was much interested. Besides, Milne never said stuff! and figment! And he would not have been taken in: he would have quietly tried it with the Northampton and all the other tables, and would have got at the truth.

EUCLID WITHOUT AXIOMS.

The first book of Euclid's Elements. With alterations and familiar notes. Being an attempt to get rid of axioms altogether; and to establish the theory of parallel lines, without the introduction of any principle not common to other parts of the elements. By a member of the University of Cambridge. Third edition. In usum serenissimæ filiolæ. London, 1830.

The first book of Euclid's Elements. With alterations and familiar notes. Being an attempt to get rid of axioms altogether; and to establish the theory of parallel lines, without the introduction of any principle not common to other parts of the elements. By a member of the University of Cambridge. Third edition. In usum serenissimæ filiolæ. London, 1830.

The author was Lieut. Col. (now General) Perronet Thompson,[619]the author of the "Catechism on the Corn Laws." I reviewed the fourth edition—which had the name of "Geometry without Axioms," 1833—in the quarterlyJournal of Educationfor January, 1834. Col. Thompson, who then was a contributor to—if not editor of—theWestminster Review, replied in an article the authorship of which could not be mistaken.

Some more attempts upon the problem, by the same author, will be found in the sequel. They are all of acute and legitimate speculation; but they do not conquer the difficulty in the manner demanded by the conditions of the problem. The paradox of parallels does not contribute much to my pages: its cases are to be found for the most part in geometrical systems, or in notes to them. Most of them consist in the proposal of additional postulates; some are attempts to do without any new postulate. Gen. Perronet Thompson, whose paradoxes are always constructed on much study of previous writers, has collected in the work above named, a budget of attempts, the heads of which are in thePennyandEnglish Cyclopædias, at "Parallels." He has given thirty instances, selected from what he had found.[620]

Lagrange,[621]in one of the later years of his life, imagined that he had overcome the difficulty. He went so far as to write a paper, which he took with him to the Institute, and began to read it. But in the first paragraph something struck him which he had not observed: he mutteredIl faut que j'y songe encore,[622]and put the paper in his pocket.

THE LUNAR CAUSTIC JOKE.

The following paragraph appeared in theMorning Post, May 4, 1831:

"We understand that although, owing to circumstances with which the public are not concerned, Mr. Goulburn[623]declined becoming a candidate for University honors, that his scientific attainments are far from inconsiderable. He is well known to be the author of an essay in the Philosophical Transactions on the accurate rectification of a circular arc, and of an investigation of the equation of a lunar caustic—a problem likely to become of great use in nautical astronomy."

This hoax—which would probably have succeeded with any journal—was palmed upon theMorning Post, which supported Mr. Goulburn, by some Cambridge wags who supported Mr. Lubbock, the other candidate for the University of Cambridge. Putting on the usual concealment, I may say that I always suspected Dr-nkw-t-r B-th-n-[624]of having a share in the matter. The skill of the hoax lies in avoiding the words "quadrature of the circle," which all know, and speaking of "the accurate rectification of a circular arc," which all do not know for its synonyme. TheMorning Postnext day gave a reproof to hoaxers in general, without referring to any particular case. It must be added, that although there arecausticsin mathematics, there is nolunarcaustic.

So far as Mr. Goulburn was concerned, the above was poetic justice. He was the minister who, in old time, told a deputation from the Astronomical Society that the Government "did not care twopence for all the science in the country." There may be some still alive who remember this: I heard it from more than one of those who were present, and are now gone. Matters are much changed. I was thirty years in office at the Astronomical Society; and, to my certain knowledge, every Government of that period, Whig and Tory, showed itself ready to help with influence when wanted, and with money whenever there was an answer for the House of Commons. The following correction subsequently appeared. Referring to the hoax about Mr. Goulburn, Messrs. C. H. and Thompson Cooper[625]have corrected an error, by stating that the election which gave rise to the hoax was that in which Messrs. Goulburnand Yates Peel[626]defeated Lord Palmerston[627]and Mr. Cavendish.[628]They add that Mr. Gunning, the well-known Esquire Bedell of the University, attributed the hoax to the late Rev. R. Sheepshanks, to whom, they state, are also attributed certain clever fictitious biographies—of public men, as I understand it—which were palmed upon the editor of theCambridge Chronicle, who never suspected their genuineness to the day of his death. Being in most confidential intercourse with Mr. Sheepshanks,[629]both at the time and all the rest of his life (twenty-five years), and never heard him allude to any such things—which were not in his line, though he had satirical power of quite anotherkind—I feel satisfied he had nothing to do with them. I may add that others, his nearest friends, and also members of his family, never heard him allude to these hoaxes as their author, and disbelieve his authorship as much as I do myself. I say this not as imputing any blame to the true author, such hoaxes being fair election jokes in all time, but merely to put the saddle off the wrong horse, and to give one more instance of the insecurity of imputed authorship. Had Mr. Sheepshanks ever told me that he had perpetrated the hoax, I should have had no hesitation in giving it to him. I consider all clever election squibs, free from bitterness and personal imputation, as giving the multitude good channels for the vent of feelings which but for them would certainly find bad ones.

[But I now suspect that Mr. Babbage[630]had some hand in the hoax. He gives it in his "Passages, &c." and is evidently writing from memory, for he gives the wrong year. But he has given the paragraph, though not accurately, yet with such a recollection of the points as brings suspicion of the authorship upon him, perhaps in conjunction with D. B.[631]Both were on Cavendish's committee. Mr. Babbage adds, that "late one evening a cab drove up in hot haste to the office of theMorning Post, delivered the copy as coming from Mr. Goulburn's committee, and at the same time ordered fifty extra copies of thePostto be sent next morning to their committee-room." I think the man—the only one I ever heard of—who knew all about the cab and the extra copies must have known more.]

ON M. DEMONVILLE.

Demonville.—A Frenchman's Christian name is his own secret, unless there be two of the surname. M. Demonville is a very good instance of the difference between aFrench and English discoverer. In England there is a public to listen to discoveries in mathematical subjects made without mathematics: a public which will hear, and wonder, and think it possible that the pretensions of the discoverer have some foundation. The unnoticed man may possibly be right: and the old country-town reputation which I once heard of, attaching to a man who "had written a book about the signs of the zodiac which all the philosophers in London could not answer," is fame as far as it goes. Accordingly, we have plenty of discoverers who, even in astronomy, pronounce the learned in error because of mathematics. In France, beyond the sphere of influence of the Academy of Sciences, there is no one to cast a thought upon the matter: all who take the least interest repose entire faith in the Institute. Hence the French discoverer turns all his thoughts to the Institute, and looks for his only hearing in that quarter. He therefore throws no slur upon the means of knowledge, but would say, with M. Demonville: "A l'égard de M. Poisson,[632]j'envie loyalement la millième partie de ses connaissances mathématiques, pour prouver mon systême d'astronomie aux plus incrédules."[633]This system is that the only bodies of our system are the earth, the sun, and the moon; all the others being illusions, caused by reflection of the sun and moon from the ice of the polar regions. In mathematics, addition and subtraction are for men; multiplication and division, which are in truth creation and destruction, are prerogatives of deity. Butnothingmultiplied bynothingisone. M. Demonville obtained an introduction to William the Fourth, who desired the opinion of the Royal Society upon his system: theanswer was very brief. The King was quite right; so was the Society: the fault lay with those who advised His Majesty on a matter they knew nothing about. The writings of M. Demonville in my possession are as follows.[634]The dates—which were only on covers torn off in binding—were about 1831-34:

Petit cours d'astronomie[635]followed bySur l'unité mathématique.—Principes de la physique de la création implicitement admis dans la notice sur le tonnerre par M. Arago.—Question de longitude sur mer.[636]—Vrai système du monde[637](pp. 92). Same title, four pages, small type. Same title, four pages, addressed to the British Association. Same title, four pages, addressed to M. Mathieu. Same title, four pages, on M. Bouvard's report.—Résumé de la physique de la création; troisième partie du vrai système du monde.[638]

PARSEY'S PARADOX.

The quadrature of the circle discovered, by Arthur Parsey,[639]author of the 'art of miniature painting.' Submitted to the consideration of the Royal Society, on whose protection the author humbly throws himself. London, 1832, 8vo.

The quadrature of the circle discovered, by Arthur Parsey,[639]author of the 'art of miniature painting.' Submitted to the consideration of the Royal Society, on whose protection the author humbly throws himself. London, 1832, 8vo.

Mr. Parsey was an artist, who also made himself conspicuous by a new view of perspective. Seeing that the sides of a tower, for instance, would appear to meet in a point if the tower were high enough, he thought that these sides ought to slope to one another in the picture. On thistheory he published a small work, of which I have not the title, with a Grecian temple in the frontispiece, stated, if I remember rightly, to be the first picture which had ever been drawn in true perspective. Of course the building looked very Egyptian, with its sloping sides. The answer to his notion is easy enough. What is called the picture is not the picture from which the mind takes its perception; that picture is on the retina. Theintermediatepicture, as it may be called—the human artist's work—is itself seen perspectively. If the tower were so high that the sides, though parallel, appeared to meet in a point, the picture must also be so high that thepicture-sides, though parallel, would appear to meet in a point. I never saw this answer given, though I have seen and heard the remarks of artists on Mr. Parsey's work. I am inclined to think it is commonly supposed that the artist's picture is the representation which comes before the mind: this is not true; we might as well say the same of the object itself. In July 1831, reading an article on squaring the circle, and finding that there was a difficulty, he set to work, got a light denied to all mathematicians in—some would say through—a crack, and advertised in theTimesthat he had done the trick. He then prepared this work, in which, those who read it will see how, he showed that 3.14159... should be 3.0625. He might have found out his error bysteppinga draughtsman's circle with the compasses.

Perspective has not had many paradoxes. The only other one I remember is that of a writer on perspective, whose name I forget, and whose four pages I do not possess. He circulated remarks on my notes on the subject, published in theAthenæum, in which he denies that the stereographic projection is a case of perspective, the reason being that the whole hemisphere makes too large a picture for the eye conveniently to grasp at once. That is to say, it is no perspective because there is too much perspective.

ON A COUPLE OF GEOMETRIES.

Principles of Geometry familiarly illustrated. By the Rev. W. Ritchie,[640]LL.D. London, 1833, 12mo.A new Exposition of the system of Euclid's Elements, being an attempt to establish his work on a different basis. By Alfred Day,[641]LL.D. London, 1839, 12mo.

Principles of Geometry familiarly illustrated. By the Rev. W. Ritchie,[640]LL.D. London, 1833, 12mo.

A new Exposition of the system of Euclid's Elements, being an attempt to establish his work on a different basis. By Alfred Day,[641]LL.D. London, 1839, 12mo.

These works belong to a small class which have the peculiarity of insisting that in the general propositions of geometry a proposition gives its converse: that "Every B is A" follows from "Every A is B." Dr. Ritchie says, "If it be proved that the equality of two of the angles of a triangle dependsessentiallyupon the equality of the opposite sides, it follows that the equality of opposite sides dependsessentiallyon the equality of the angles." Dr. Day puts it as follows:

"That the converses of Euclid, so called, where no particular limitation is specified or implied in the leading proposition, more than in the converse, must be necessarily true; for as by the nature of the reasoning the leading proposition must be universally true, should the converse be not so, it cannot be so universally, but has at least all the exceptions conveyed in the leading proposition, and the case is therefore unadapted to geometric reasoning; or, what is the same thing, by the very nature of geometric reasoning, the particular exceptions to the extended converse must be identical with some one or other of the cases under the universal affirmative proposition with which we set forth, which is absurd."

On this I cannot help transferring to my reader the words of the Pacha when he orders the bastinado,—May it do you good! A rational study of logic is much wanted to show many mathematicians, of all degrees of proficiency, that there is nothing in thereasoningof mathematics which differs from other reasoning. Dr. Day repeated his argument inA Treatise on Proportion, London, 1840, 8vo. Dr. Ritchie was a very clear-headed man. He published, in 1818, a work on arithmetic, with rational explanations. This was too early for such an improvement, and nearly the whole of his excellent work was sold as waste paper. His elementary introduction to the Differential Calculus was drawn up while he was learning the subject late in life. Books of this sort are often very effective on points of difficulty.

NEWTON AGAIN OBLITERATED.

Letter to the Royal Astronomical Society in refutation of Mistaken Notions held in common, by the Society, and by all the Newtonian philosophers. By Capt. Forman,[642]R.N. Shepton-Mallet, 1833, 8vo.

Letter to the Royal Astronomical Society in refutation of Mistaken Notions held in common, by the Society, and by all the Newtonian philosophers. By Capt. Forman,[642]R.N. Shepton-Mallet, 1833, 8vo.

Capt. Forman wrote against the whole system of gravitation, and got no notice. He then wrote to Lord Brougham, Sir J. Herschel, and others I suppose, desiring them to procure notice of his books in the reviews: this not being acceded to, he wrote (in print) to Lord John Russell[643]to complain of their "dishonest" conduct. He then sent a manuscript letter to the Astronomical Society, inviting controversy: he was answered by a recommendation to studydynamics. The above pamphlet was the consequence, in which, calling the Council of the Society "craven dunghill cocks," he set them right about their doctrines. From all I can learn, the life of a worthy man and a creditable officer was completely embittered by his want of power to see that no person is bound in reason to enter into controversy with every one who chooses to invite him to the field. This mistake is not peculiar to philosophers, whether of orthodoxy or paradoxy; a majority of educated persons imply, by their modes of proceeding, that no one has a right to any opinion which he is not prepared to defend against all comers.

David and Goliath, or an attempt to prove that the Newtonian system of Astronomy is directly opposed to the Scriptures. By Wm. Lauder,[644]Sen., Mere, Wilts. Mere, 1833, 12mo.

David and Goliath, or an attempt to prove that the Newtonian system of Astronomy is directly opposed to the Scriptures. By Wm. Lauder,[644]Sen., Mere, Wilts. Mere, 1833, 12mo.

Newton is Goliath; Mr. Lauder is David. David took five pebbles; Mr. Lauder takes five arguments. He expects opposition; for Paul and Jesus both met with it.

Mr. Lauder, in his comparison, seems to put himself in the divinely inspired class. This would not be a fair inference in every case; but we know not what to think when we remember that a tolerable number of cyclometers have attributed their knowledge to direct revelation. The works of this class are very scarce; I can only mention one or two from Montucla.[645]Alphonso Cano de Molina,[646]in the last century, upset all Euclid, and squared the circle upon the ruins; he found a follower, Janson, who translated him from Spanish into Latin. He declared that he believed in Euclid, until God, who humbles the proud, taught him better. One Paul Yvon, called from his estate de la Leu, a merchant at Rochelle, supported by his book-keeper, M. Pujos, and aScotchman, John Dunbar, solved the problem by divine grace, in a manner which was to convert all Jews, Infidels, etc. There seem to have been editions of his work in 1619 and 1628, and a controversial "Examen" in 1630, by Robert Sara. There was a noted discussion, in which Mydorge,[647]Hardy,[648]and others took part against de la Leu. I cannot find this name either in Lipenius[649]or Murhard,[650]and I should not have known the dates if it had not been for one of the keenest bibliographers of any time, my friend Prince Balthasar Boncompagni,[651]who is trying to find copies of the works, and has managed to find copies of the titles. In 1750, Henry Sullamar, an Englishman, squared the circle by the number of the Beast: he published a pamphlet every two or three years; but I cannot find any mention of him in English works.[652]In France, in 1753, M. de Causans,[653]of the Guards, cut a circular piece of turf, squared it, anddeduced original sin and the Trinity. He found out that the circle was equal to the square in which it is inscribed; and he offered a reward for detection of any error, and actually deposited 10,000 francs as earnest of 300,000. But the courts would not allow any one to recover.

SIR JOHN HERSCHEL.

1834. In this year Sir John Herschel[654]set up his telescope at Feldhausen, Cape of Good Hope. He did much for astronomy, but not much for theBudget of Paradoxes. He gives me, however, the following story. He showed a resident a remarkable blood-red star, and some little time after he heard of a sermon preached in those parts in which it was asserted that the statements of the Bible must be true, for that Sir J. H. had seen in his telescope "the very place where wicked people go."

But red is not always the color. Sir J. Herschel has in his possession a letter written to his father, Sir W. H.,[655]dated April 3, 1787, and signed "Eliza Cumyns," begging to know if any of the stars beindigoin color, "because, if there be, I think it may be deemed a strong conjectural illustration of the expression, so often used by our Saviour in the Holy Gospels, that 'the disobedient shall be cast into outer darkness'; for as the Almighty Being can doubtless confine any of his creatures, whether corporeal or spiritual, to what part of his creation He pleases, if therefore any of the stars (which are beyond all doubt so many suns to other systems) be of so dark a color as that above mentioned, they may be calculated to give the most insufferable heat to those dolorous systems dependent upon them (and to reprobate spirits placed there), without one ray of cheerful light; and may therefore be the scenes of future punishments." This letter is addressed to Dr. Heirschel at Slow. Some have placed the infernal regions inside the earth, butothers have filled this internal cavity—for cavity they will have—with refulgent light, and made it the abode of the blessed. It is difficult to build without knowing the number to be provided for. A friend of mine heard the following (part) dialogue between two strong Scotch Calvinists: "Noo! hoo manny d'ye thank there are of the alact on the arth at this moment?—Eh! mabbee a doozen—Hoot! mon! nae so mony as thot!"

THE NAUTICAL ALMANAC.

1834. From 1769 to 1834 theNautical Almanacwas published on a plan which gradually fell behind what was wanted. In 1834 the new series began, under a new superintendent (Lieut. W. S. Stratford).[656]There had been a long scientific controversy, which would not be generally intelligible. To set some of the points before the reader, I reprint a cutting which I have by me. It is from the NauticalMagazine, but I did hear that some had an idea that it was in the NauticalAlmanacitself. It certainly was not, and I feel satisfied the Lords of the Admiralty would not have permitted the insertion; they are never in advance of their age. The Almanac for 1834 was published in July 1833.

The New Nautical Almanac—Extract from the 'Primum Mobile,' and 'Milky Way Gazette.' Communicated byAerolith.

The New Nautical Almanac—Extract from the 'Primum Mobile,' and 'Milky Way Gazette.' Communicated byAerolith.

A meeting of the different bodies composing the Solar System was this day held at the Dragon's Tail, for the purpose of taking into consideration the alterations and amendments introduced into the New Nautical Almanac. The honorable luminaries had been individually summonedby fast-sailing comets, and there was a remarkably full attendance. Among the visitors weobservedseveral nebulæ, and almost all the stars whose proper motions would admit of their being present.

TheSunwas unanimously called to the focus. The small planets took the oaths, and their places, after a short discussion, in which it was decided that the places should be those of the Almanac itself, with leave reserved to move for corrections.

Petitions were presented fromαandδUrsæ Minoris, complaining of being put on daily duty, and praying for an increase of salary.—Laid on the plane of the ecliptic.

The trustees of the eccentricity[657]and inclination funds reported a balance of .00001 in the former, and a deficit of 0".009 in the latter. This announcement caused considerable surprise, and a committee was moved for, to ascertain which of the bodies had more or less than his share. After some discussion, in which the small planets offered to consent to a reduction, if necessary, the motion was carried.

TheFocal Bodythen rose to address the meeting. He remarked that the subject on which they were assembled was one of great importance to the routes and revolutions of the heavenly bodies. For himself, though a private arrangement between two of his honourable neighbours (here he looked hard at the Earth and Venus) had prevented his hitherto paying that close attention to the predictions of the Nautical Almanac which he declared he always had wished to do; yet he felt consoled by knowing that the conductors of that work had every disposition to take his peculiar circumstances into consideration. He declared that he had never passed the wires of a transit without deeply feeling his inability to adapt himself to the present state of his theory; a feeling which he was afraid had sometimes caused a slight tremor in his limb. Beforehe sat down, he expressed a hope that honourable luminaries would refrain as much as possible from eclipsing each other, or causing mutualperturbations. Indeed, he should be very sorry to see any interruption of the harmony of the spheres. (Applause.)

The several articles of the New Nautical Almanac were then read over without any comment; only we observed that Saturn shook his ring at every novelty, and Jupiter gave his belt a hitch, and winked at the satellites at page 21 of each month.

TheMoonrose to propose a resolution. No one, he said, would be surprised at his bringing this matter forward in the way he did, when it was considered in how complete and satisfactory a manner his motions were now represented. He must own he had trembled when the Lords of the Admiralty dissolved the Board of Longitude, but his tranquillity was more than reestablished by the adoption of the new system. He did not know but that any little assistance he could give in Nautical Astronomy was becoming of less and less value every day, owing to the improvement of chronometers. But there was one thing, of which nothing could deprive him—he meant the regulation of the tides. And, perhaps, when his attention was not occupied by more than the latter, he should be able to introduce a little more regularity into the phenomena. (Here the honourable luminary gave a sort of modest libration, which convulsed the meeting with laughter.) They might laugh at his natural infirmity if they pleased, but he could assure them it arose only from the necessity he was under, when young, of watching the motions of his worthy primary. He then moved a resolution highly laudatory of the alterations which appeared in the New Nautical Almanac.

TheEarthrose, to second the motion. His honourable satellite had fully expressed his opinions on the subject. He joined his honourable friend in the focus in wishing to pay every attention to the Nautical Almanac, but,really, when so important an alteration had taken place in his magnetic pole[658](hear) and there might, for aught he knew, be a successful attempt to reach his pole of rotation, he thought he could not answer for the preservation of the precession in its present state. (Here the hon. luminary, scratching his side, exclaimed, as he sat down, "More steamboats—confound 'em!")

An honourable satellite (whose name we could not learn) proposed that the resolution should be immediately despatched, corrected for refraction, when he was called to order by the Focal Body, who reminded him that it was contrary to the moving orders of the system to take cognizance of what passed inside the atmosphere of any planet.

SaturnandPallasrose together. (Cries of "New member!" and the former gave way.) The latter, in a long and eloquent speech, praised the liberality with which he and his colleagues had at length been relieved from astronomical disqualifications. He thought that it was contrary to the spirit of the laws of gravitation to exclude any planet from office on account of the eccentricity or inclination of his orbit. Honourable luminaries need not talk of the want of convergency of his series. What had they to do with any private arrangements between him and the general equations of the system? (Murmurs from the opposition.) So long as he obeyed the laws of motion, to which he had that day taken a solemn oath, he would ask, were old planets, which were now so well known that nobody trusted them, to....

TheFocal Bodysaid he was sorry to break the continuity of the proceedings, but he thought that remarks upon character, with a negative sign, would introducedifferences of too high an order. The honourable luminary must eliminate the expression which he had brought out, in finite terms, and use smaller inequalities in future. (Hear, hear.)

Pallasexplained, that he was far from meaning to reflect upon the orbital character of any planet present. He only meant to protest against being judged by any laws but those of gravitation, and the differential calculus: he thought it most unjust that astronomers should prevent the small planets from being observed, and then reproach them with the imperfections of the tables, which were the result of their own narrow-minded policy. (Cheers.)

Saturnthought that, as an old planet, he had not been treated with due respect. (Hear, from his satellites.) He had long foretold the wreck of the system from the friends of innovation. Why, he might ask, were his satellites to be excluded, when small planets, trumpery comets, which could not keep their mean distances (cries of oh! oh!), double stars, with graphical approximations, and such obscure riff-raff of the heavens (great uproar) found room enough. So help him Arithmetic, nothing could come of it, but a stoppage of all revolution. His hon. friend in the focus might smile, for he would be a gainer by such an event; but as for him (Saturn), he had something to lose, and hon. luminaries well knew that, whatever they might thinkunderan atmosphere,aboveit continual revolution was the only way of preventing perpetual anarchy. As to the hon. luminary who had risen before him, he was not surprised at his remarks, for he had invariably observed that he and his colleagues allowed themselvestoo much latitude. The stability of the system required that they should be brought down, and he, for one, would exert all his powers of attraction to accomplish that end. If other bodies would cordially unite with him, particularly his noble friend next him, than whom no luminary possessed greater weight—

Jupiterrose to order. He conceived his noble friendhad no right to allude to him in that manner, and was much surprised at his proposal, considering the matters which remained in dispute between them. In the present state of affairs, he would take care never to be in conjunction with his hon. neighbour one moment longer than he could help. (Cries of "Order, order, no long inequalities," during which he sat down.)

Saturnproceeded to say, that he did not know till then that a planet with a ring could affront one who had only a belt, by proposing mutual co-operation. He would now come to the subject under discussion. He should think meanly of his hon. colleagues if they consented to bestow their approbation upon a mere astronomical production. Had they forgotten that they once were considered the arbiters of fate, and the prognosticators of man's destiny? What had lost them that proud position? Was it not the infernal march of intellect, which, after having turned the earth topsy-turvy, was now disturbing the very universe? For himself (others might do as they pleased), but he stuck to the venerable Partridge,[659]and the Stationers' Company, and trusted that they would outlive infidels and anarchists, whether of Astronomical or Diffusion of Knowledge Societies. (Cries of oh! oh!)

Marssaid he had been told, for he must confess he had not seen the work, that the places of the planets were given for Sundays. This, he must be allowed to say, was an indecorum he had not expected; and he was convinced the Lords of the Admiralty had given no orders to that effect. He hoped this point would be considered in the measure which had been introduced in another place, and that someone would move that the prohibition against travelling on Sundays extend to the heavenly as well as earthly bodies.

Several of the stars here declared, that they had been much annoyed by being observed on Sunday evenings, during the hours of divine service.

The room was then cleared for a division, but we are unable to state what took place. Several comets-at-arms were sent for, and we heard rumors of a personal collision having taken place between two luminaries in opposition. We were afterwards told that the resolution was carried by a majority, and the luminaries elongated at 2 h. 15 m. 33,41 s. sidereal time.

* * * It is reported, but we hope without foundation, that Saturn, and several other discontented planets, have accepted an invitation from Sirius to join his system, on the most liberal appointments. We believe the report to have originated in nothing more than the discovery of the annual parallax of Sirius from the orbit of Saturn; but we may safely assure our readers that no steps have as yet been taken to open any communication.

We are also happy to state, that there is no truth in the rumor of the laws of gravitation being about to be repealed. We have traced this report, and find it originated with a gentleman living near Bath (Captain Forman, R.N),[660]whose name we forbear to mention.

A great excitement has been observed among the nebulæ, visible to the earth's southern hemisphere, particularly among those which have not yet been discovered from thence. We are at a loss to conjecture the cause, but we shall not fail to report to our readers the news of any movement which may take place. (Sir J. Herschel's visit. He could just see this before he went out.)

WOODLEY'S DIVINE SYSTEM.

A Treatise on the Divine System of the Universe, by Captain Woodley, R.N.,[661]and as demonstrated by his Universal Time-piece, and universal method of determining a ship's longitude by the apparent true place of the moon; with an introduction refuting the solar system of Copernicus, the Newtonian philosophy, and mathematics. 1834.[662]8vo.Description of the Universal Time-piece. (4pp. 12mo.)

A Treatise on the Divine System of the Universe, by Captain Woodley, R.N.,[661]and as demonstrated by his Universal Time-piece, and universal method of determining a ship's longitude by the apparent true place of the moon; with an introduction refuting the solar system of Copernicus, the Newtonian philosophy, and mathematics. 1834.[662]8vo.

Description of the Universal Time-piece. (4pp. 12mo.)

I think this divine system was published several years before, and was republished with an introduction in 1834.[663]Capt. Woodley was very sure that the earth does not move: he pointed out to me, in a conversation I had with him, something—I forget what—in the motion of the Great Bear, visible to any eye, which could not possibly be if the earth moved. He was exceedingly ignorant, as the following quotation from his account of the usual opinion will show:

"The north pole of the Earth's axis deserts, they say, the north star or pole of the Heavens, at the rate of 1° in 71¾ years.... The fact is, nothing can be more certain than that the Stars have not changed their latitudes or declinationsone degreein the last 71¾ years."

This is a strong specimen of a class of men by whom all accessible persons who have made any name in science are hunted. It is a pity that they cannot be admitted into scientific societies, and allowed fairly to state their cases, and stand quiet cross-examination, being kept in their answers very close to the questions, and the answers written down. I am perfectly satisfied that if one meeting in the year were devoted to the hearing of those who chose to come forward on such conditions, much good would be done. But I strongly suspect few would come forwardat first, and none in a little while: and I have had some experience of the method I recommend, privately tried. Capt. Woodley was proposed, a little after 1834, as a Fellow of the Astronomical Society; and, not caring whether he moved the sun or the earth, or both—I could not have stoodneither—I signed the proposal. I always had a sneaking kindness for paradoxers, such a one, perhaps, as Petit André had for hislambs, as he called them. There was so little feeling against his opinions, that he only failed by a fraction of a ball. Had I myself voted, he would have been elected; but being engaged in conversation, and not having heard the slightest objection to him, I did not think it worth while to cross the room for the purpose. I regretted this at the time, but had I known how ignorant he was I should not have supported him. Probably those who voted against him knew more of his book than I did.


Back to IndexNext