Chapter 112

Fire-damp and airThe violent discharge of the gas from a crevice or cutter of the coal, is called a blower; and if this be ignited, it burns like an immense blowpipe, inflaming the coal at the opposite side of the gallery. The gas evidently exists in a highly compressed and elastic state; whence it seems to loosen the texture of the coals replete with it, and renders them more easily worked. The gas is often peculiarly abundant near a great dislocation or slip of the strata; so that the fissure of the dislocation will sometimes emit a copious stream of gas for many years. It has also happened, that from certain coals, newly worked, and let fall from a height into the hold of a vessel, so much inflammable gas has been extricated that, after the hatches were secured, and the ship ready to proceed to sea, the gas has ignited with the flame of a candle, so as to scorch the seamen, to blow up the decks, and otherwise damage the vessel. In like manner, when the pillars in a mine are crushed by sudden pressure, a great discharge of gas ensues. This gas being lighter than common air, always ascends to the roof or to the rise of the galleries; and, where the dip is considerable, occupies the forehead of the mine, in a wedge form, as shown infig.853., wherearepresents the fire-damp, andbthe common air. In this case, a candle will burn without danger near the pointc, close to the floor; but if it be advanced a few feet further towards the roof, an explosion will immediately ensue; since at the line where the two elastic fluids are in contact, they mix, and form an explosive body.Air circulationWhen this gas is largely diluted with air, the workmen do not seem to feel any inconvenience from breathing the mixture for a period of many years; but on inhaling pure carburetted hydrogen, the miner instantly drops down insensible, and, if not speedily removed into fresh air, he dies.The production of these noxious gases renders ventilation a primary object in the system of mining. The most easily managed is the carbonic acid. If an air-pipe has been carried down the engine pit for the purpose of ventilation in the sinking, other pipes are connected with it, and laid along the pavement, or are attached to an angle of the mine next the roof. These pipes are prolonged with the galleries, by which means the air at the forehead is drawn up the pipes and replaced by atmospheric air, which descends by the shaft in an equable current, regulated by the draught of the furnace at the pit mouth. This circulation is continued till the miners cut through upon the second shaft, when the air-pipes become superfluous; for it is well known that the instant such communication is made, as is represented infig.854., the air spontaneously descends in the engine pitA, and, passing along the gallerya, ascends in a steady current in the second pitB. The air, in sinking throughA, has at first the atmospheric temperature, which in winter may be at or under the freezing point of water; but its temperature increases in passing down through the relatively warmer earth, and ascends in the shaftB, warmer than the atmosphere. When shafts are of unequal depths, as represented in the figure, the current of air flows pretty uniformly in one direction. If the second shaft has the same depth with the first, and the bottom and mouth of both be in the same horizontal plane, the air would sometimes remain at rest, as water would do in an inverted syphon, and at other times would circulate down one pit and up another, not always in the same direction, but sometimes up the one, and sometimes up the other, according to the variations of temperature at the surface, and the barometrical pressures, as modified by winds. There is in mines a proper heat, proportional to their depth, increasing about one degree of Fahrenheit’s scale for every 60 feet of descent.Ragglin or trumpetingThere is a simple mode of conducting air from the pit bottom to the forehead of the mine, by cutting a ragglin, or trumpeting, as it is termed, in the side of the gallery, as represented infig.855., whereAexhibits the gallery in the coal, andBthe ragglin, which is from 15 to 18 inches square. The coal itself forms three sides of the air-pipe, and the fourth is composed of thin deals applied air-tight, and nailed to small props of wood fixed between the top and bottom of the lips of the ragglin. This mode is very generally adopted in running galleries of communication, and dip-head level galleries, where carbonic acid abounds, or when from the stagnation of the air the miners’ lights burn dimly.When the ragglin or air-pipes are not made spontaneously active, the air is sometimes impelled through them by means of ventilating fanners, having their tube placed at the pit bottom, while the vanes are driven with great velocity by a wheel and pinion worked with the hand. In other cases, large bellows like those of the blacksmith, furnished with a wide nozzle, are made to act in a similar way with the fanners. But these are merely temporary expedients for small mines. A very slight circulation of air can be effected by propulsion, in comparison of what may be done by exhaustion; and hence it is better to attach the air-pipe to the valve of the bellows, than to their nozzle.Ventilation of collieries has been likewise effected on a small scale, by attaching a horizontal funnel to the top of air-pipes elevated a considerable height above the pit mouth. The funnel revolves on a pivot, and by its tail-piece places its mouth so as to receive the wind. At other times, a circulation of air is produced by placing coal-fires in iron grates, either at the bottom of an upcast pit, or suspended by a chain a few fathoms down.Ventilation of mineSuch are some of the more common methods practised in collieries of moderate depth, where carbonic acid abounds, or where there is a total stagnation of air. But in all great coal mines the aërial circulation is regulated and directed by double doors, called main or bearing doors. These are true air-valves, which intercept a current of air moving in one direction from mixing with another moving in a different direction. Such valves are placed on the main roads and passages of the galleries, and are essential to a just ventilation. Their functions are represented in the annexedfig.856., whereAshows the downcast shaft, in which the aerial current is made to descend;Bis the upcast shaft, sunk towards the rise of the coal; andC, the dip-head level. Were the mine here figured to be worked without any attention to the circulation, the air would flow down the pitA, and proceed in a direct line up the rise mine to the shaftB, in which it would ascend. The consequence would therefore be, that all the galleries and boards to the dip of the pitA, and those lying on each side of the pits, would have no circulation of air; or, in the language of the collier, would be laid dead. To obviate this result, double doors are placed in three of the galleries adjoining the pit; viz., ataandb,candd,eandf; all of which open inwards to the shaftA. By this plan, as the air is not suffered to pass directly from the shaftAto the shaftB, throughthe doorsaandb, it would have taken the next shortest direction byc dande f; but the doors in these galleries prevent this course, and compel it to proceed downwards to the dip-head levelC, where it will spread or divide, one portion pursuing a route to the right, another to the left. On arriving at the boardsgandh, it would have naturally ascended by them; but this it cannot do, by reason of the building or stopping placed atgandh. By means of such stoppings placed in the boards next the dip-head level, the air can be transported to the right hand or to the left for many miles, if necessary, providing there be a train or circle of aerial communication from the pitAto the pitB. If the boardsiandkare open, the air will ascend in them, as traced out by the arrows; and after being diffused through the workings, will again meet in a body ata, and mount the gallery to the pitB, sweeping away with it the deleterious air which it meets in its path. Without double doors on each main passage, the regular circulation of the air would be constantly liable to interruptions and derangements; thus, suppose the doorcto be removed, and onlydto remain in the left hand gallery, all the other doors being as represented, it is obvious, that whenever the doordis opened, the air, finding a more direct passage in that direction, would mount by the nearest channell, to the shaftB, and lay dead all the other parts of the work, stopping all circulation. As the passages on which the doors are placed constitute the main roads by which the miners go to and from their work, and as the corves are also constantly wheeling along all the time, were a single door, such asd, so often opened, the ventilation would be rendered precarious or languid. But the double doors obviate this inconvenience; for both men and horses, with the corves, in going to or from the pit bottomA, no sooner enter the doord, than it shuts behind them, and encloses them in the still air contained between the doorsdandc;chaving prevented the air from changing its proper course whiledwas open. Whendis again shut, the doorcmay be opened without inconvenience, to allow the men and horses to pass on to the pit bottom atA; the doordpreventing any change in the aerial circulation while the doorcis open. In returning from the pit, the same rule is observed, of shutting one of the double doors, before the other is opened.If this mode of disjoining and insulating air-courses from each other be once fairly conceived, the continuance of the separation through a working of any extent, may be easily understood.When carbonic acid gas abounds, or when the fire-damp is in very small quantity, the air may be conducted from the shaft to the dip-head level, and by placing stoppings of each room next the level, it may be carried to any distance along the dip-head levels; and the furthest room on each side being left open, the air is suffered to diffuse itself through the wastes, along the wall faces, and mount in the upcast pit, as is represented infig.842.But should the air become stagnant along the wall faces, stoppings are set up throughout the galleries, in such a way as to direct the main body of fresh air along the wall faces for the workmen, while a partial stream of air is allowed to pass through the stoppings, to prevent any accumulation of foul air in the wastes.In very deep and extensive collieries more elaborate arrangements for ventilation are introduced. Here the circulation is made active by rarefying the air at the upcast shaft, by means of a very large furnace placed either at the bottom or top of the shaft. The former position is generally preferred.Fig.834.exhibits a furnace placed at the top of the pit. When it surmounts a single pit, or a single division of the pit, the compartment intended for the upcast is made air-tight at top, by placing strong buntons or beams across it, at any suitable distance from the mouth. On these buntons a close scaffolding of plank is laid, which is well plastered or moated over with adhesive plastic clay. A little way below the scaffold, a passage is previously cut, either in a sloping direction, to connect the current of air with the furnace, or it is laid horizontally, and then communicates with the furnace by a vertical opening. If any obstacle prevent the scaffold from being erected within the pit, this can be made air-tight at top, and a brick flue carried thence along the surface to the furnace.The furnace has a size proportional to the magnitude of the ventilation, and the chimneys are either round or square, being from 50 to 100 feet high, with an inside diameter of from 5 to 9 feet at bottom, tapering upwards to a diameter of from 21⁄2feet to 5 feet. Such stalks are made 9 inches thick in the body of the building, and a little thicker at bottom, where they are lined with fire-bricks.The plan of placing the furnace at the bottom of the pit is, however, more advantageous, because the shaft through which the air ascends to the furnace at the pit mouth, is always at the ordinary temperature; so that whenever the top furnace is neglected, the circulation of air throughout the mine becomes languid, and dangerous to the workmen; whereas, when the furnace is situated at the bottom of the shaft, its sides get heated, like those of a chimney, through its total length, so that though the heat of the furnace be accidentally allowed to decline or become extinct for a little, the circulationwill still go on, the air of the upcast pit being rarefied by the heat remaining in the sides of the shaft.Extraction of smokeTo prevent the annoyance to the onsetters at the bottom, from the hot smoke, the following plan has been adopted, as shown in the wood-cut,fig.857., wherearepresents the lower part of the upcast shaft;b, the furnace, built of brick, arched at top, with its sides insulated from the solid mass of coal which surrounds it. Between the furnace wall and the coal-beds, a current of air constantly passes towards the shaft, in order to prevent the coal catching fire. From the end of the furnace a gallery is cut in a rising direction atc, which communicates with the shaft atd, about 7 or 8 fathoms from the bottom of the pit. Thus the furnace and furnace-keeper are completely disjoined from the shaft; and the pit bottom is not only free from all encumbrances, but remains comfortably cool. To obviate the inconveniences from the smoke to the banksmen in landing the coals at the pit mouth, the following plan has been contrived for the Newcastle collieries.Fig.858.represents the mouth of the pit;ais the upcast shaft, provided with a furnace at bottom;b, the downcast shaft, by which the supply of atmospheric air descends; andd, the brattice carried above the pit mouth. A little way below the settle-boards, a galleryc, is pushed, in communication with the surface from the downcast shaft, over which a brick tube or chimney is built from 60 to 80 feet high, 7 or 8 feet diameter at bottom, and 4 or 5 feet diameter at top. On the top of this chimney a deal funnel is suspended horizontally on a pivot, like a turn-cap. The vanef, made also of deal, keeps the mouth of the funnel always in the same direction with the wind. The same mechanism is mounted at the upcast shafta, only here the funnel is made to present its mouth in the wind’s eye. It is obvious from the figure, that a high wind will rather aid than check the ventilation by this plan.The principle of ventilation being thus established, the next object in opening up a colliery, and in driving all galleries whatever, is thedouble mineor doubleheadways course; on the simple but very ingenious distribution of which, the circulation of air depends at the commencement of the excavations.Double headway courseThe double headways course is represented infig.859., whereais the one heading or gallery, andbthe other; the former being immediately connected with the upcast side of the pitc, and the latter with the downcast side of the pitd. The pit itself is made completely air-tight by its division of deals from top to bottom, called the brattice wall; so that no air can pass through the brattice fromdtoc, and the intercourse betwixt the two currents of air is completely intercepted by a stopping betwixt the pit bottom and the end of the first pillar of coal; the pillars or walls of coal, markede, are called stenting walls; and the openings betwixt them, walls or thirlings. The arrows show the direction of the air. The headingsaandbare generally made about 9 feet wide, the stenting walls 6 or 8 yards thick, and are holed or thirled at such a distance as may be most suitable for the state of the air. The thirlings are 5 feet wide.When the headings are set off from the pit bottom, an aperture is left in the brattice at the end of the pillar next the pit, through which the circulation betwixt the upcast and downcast pits is carried on; but whenever the workmen cut through the first thirling No. 1., the aperture in the brattice at the pit bottom is shut; in consequence of which the air is immediately drawn by the power of the upcast shaft through that thirling as represented by the dotted arrow. Thus a direct stream of fresh air is obviously brought close to the forehead where the mines are at work. The two headingsaandbare then advanced, and as soon as the thirling No. 2. is cut through, a wall of brick and mortar, 41⁄2inches thick, is built across the thirling No. 1. This wall is termed a stopping; and being air-tight, it forces the whole circulation through the thirling No. 2. In this manner the air is always led forward, and caused to circulate always by the last-made thirling next the forehead; care being had, that whenever a new thirling is made, the last thirling through which the air was circulated, be secured with an air-tight stopping. In the woodcut, the stoppings are placed in the thirlings numbered 1, 2, 3, 4, 5, 6, and of consequence the whole circulation passes through the thirling No. 7., which lies nearest the foreheads of the headingsa,b. By inspecting the figure, we observe, that on this very simple plan, a stream of air may be circulated to any required distance, and in any direction, however tortuous. Thus, for example, if while the double headways coursea,b, is pushed forward, other double headways courses are required to be carried on at the same time on both sides of the first headway, the same general principles have only to be attended to as shown infig.860., whereais the upcast, andbthe downcast shaft. The air advances along the headingc, but cannot proceed further in that direction than the pillard, being obstructed by the double doors ate. It therefore advances in the direction of the arrows to the foreheads atf, and passing through the last thirling made there, returns to the opposite side of the double doors, ascends now the headinggto the foreheads ath, passes through the last-made thirling at that point, and descends, in the headingi, till it is interrupted by the double doors atk. The aerial current now moves along the headingl, to the foreheads atm, returns by the last-made thirling there, along the headingn, and finally goes down the headingo, and mounts by the upcast shafta, carrying with it all the noxious gases which it encountered during its circuitous journey. This wood-cut is a faithful representation of the system by which collieries of the greatest extent are worked and ventilated. In some of these, the air courses are from 30 to 40 miles long. Thus the air conducted by the medium of a shaft divided by a brattice wall only a few inches thick, after descending in the downcast in one compartment of the pit at 6 o’clock in the morning, must thence travel through a circuit of nearly 30 miles, and cannot arrive at its reascending compartment on the other side of the brattice, or pit partition, till 6 o’clock in the evening, supposing it to move all the time at the rate of 21⁄2miles per hour. Hence we see that theprimum mobileof this mighty circulation, the furnace, must be carefully looked after, since its irregularities may affect the comfort, or even the existence of hundreds of miners spread over these vast subterraneous labyrinths. On the principles just laid down, it appears, that if any number of boards be set off from any side of these galleries, either in a level, dip, or rise direction, the circulation of air may be advanced to each forehead, by an ingoing and returning current.Air circulationYet while the circulation of fresh air is thus advanced to the last-made thirling next the foreheadsf,h, andm,fig.860., and moves through the thirling which is nearest to the face of every board and room, the emission of fire-damp is frequently so abundant from the coaly strata, that the miners dare not proceed forwards more than a few feet from that aerial circulation, without hazard of being burned by the combustion of the gas at their candles. To guard against this accident, temporary shifting brattices are employed. These are formed of deal, about3⁄4of an inch thick, 3 or 4 feet broad, and 10 feet long; and are furnished with cross-bars for binding the deals together, and a few finger loops cut through them, for lifting them more expeditiously, in order to place them in a proper position. Where inflammable air abounds, a store of such brattice deals should be kept ready for emergencies.Air circulationThe mode of applying these temporary brattices, or deal partitions, is shown in the accompanying figure (fig.861.), which shows how the air circulates freely through the thirlingd,dbefore the brattices are placed. Atbandc, we see two heading boards or rooms, which are so full of inflammable air as to be unworkable. Props are now erected near the upper end of the pillare, betwixt the roof and pavement, about two feet clear of the sides of the next pillar, leaving room for the miner to pass along between the pillar side and the brattice. The brattices are then fastened with nails to the props, the lower edge of the under brattice resting on the pavement, while the upper edge of the upper is in contact with the roof. By this means any variation of the height in the bed of coal is compensated by the overlap of the brattice boards; and as these are advanced, shifting brattices are laid close to, and alongside of, the first set. The miner next sets up additional props in the same parallel line with the former, and slides the brattices forwards, to make the air circulate close to the forehead where he is working; and he regulates the distance betwixt the brattice and the forehead by the disengagement of fire-damp and the velocity of the aerial circulation. The props are shown atd d, and the brattices atf,f. By this arrangement the air is prevented from passing directly through the thirlinga, and is forced along the right-hand side of the brattice, and, sweeping over the wall face or forehead, returns by the back of the brattice, and passes through the thirlinga. It is prevented, however, from returning in its former direction by the brattice planted in the foreheadc, whereby it mounts up and accomplishes its return close to that forehead. Thus headways and boards are ventilated till another thirling is made at the upper part of the pillar. The thirlingais then closed by a brick stopping, and the brattice boards removed forward for a similar operation.Removing gasWhen blowers occur in the roof, and force the strata down, so as to produce a large vaulted excavation, the accumulated gas must be swept away; because, after filling that space, it would descend in an unmixed state under the common roof of the coal. The manner of removing it is represented infig.862., whereais the bed of coal,bthe blower,cthe excavation left by the downfall of the roof,dis a passing door, andea brattice. By this arrangement the aerial current is carried close to the roof, and constantly sweeps off or dilutes the inflammable gas of the blower, as fast as it issues. The arrows show the direction of the current; but for which, the accumulating gas would be mixed in explosive proportions with the atmospheric air, and destroy the miners.Removing gasThere is another modification of the ventilating system, where the air-courses are traversed across; that is, when one air-course is advanced at right angles to another, and must pass it in order to ventilate the workings on the further side. This is accomplished on the plan shown infig.863., whereais a main road with an air-course, over which the other air-courseb, has to pass. The sides of this air channel are built of bricks arched over so as to be air-tight, and a gallery is driven in the roof strata as shown in the figure. If an air-course, asa, be laid over with planks made air-tight, crossing and recrossing may be effected with facility. The general velocity of the air in these ventilating channels is from 3 to 4 feet per second, or about 21⁄2miles per hour, and their internal dimensions vary from 5 to 6 feet square, affording an area of from 25 to 36 square feet.Hydraulic air-pumpMr. Taylor’s hydraulic air-pump, formerly described,p. 839., deserves to be noticed among the various ingenious contrivances for ventilating mines, particularly when they are of moderate extent.ais a large wooden tub, nearly filled with water, through whose bottom the ventilating pipebpasses down into the recesses of the mine. Upon the top ofb, there is a valvee, opening upwards. Overb, the gasometer vessel is inverted ina, having a valve also opening outwards atd. When this vessel is depressed by any moving force, the air contained within it is expelled throughd; and when it is raised, it diminishes the atmospherical pressure in the pipeb, and thus draws air out of the mine into the gasometer; which cannot return on account of the valve ate, but is thrown out into the atmosphere throughdat the next descent.The general plan of distributing the air, in all cases, is to send the first of the current that descends in the downcast shaft among the horses in the stables, next among the workmen in the foreheads, after which the air, loaded with whatever mixtures it may have received, is made to traverse the old wastes. It then passes through the furnace with all the inflammable gas it has collected, ascends the upcast shaft, and is dispersed into the atmosphere. This system, styledcoursing the air, was invented by Mr. Spedding of Cumberland. According to the quantity of the fire-damp, the coursing is conducted either up one room, and returned by the next alternately, through the whole extent of the works, or it passes along 2 or 3 connected rooms, and returns by the same number.Ventilation of mineThis admirable system has received the greatest improvements from the mining engineers of the Newcastle district, and especially from Mr. Buddle of Wallsend. His plan being a most complete scale of ventilation, where the aerial current is made to sweep every corner of the workings, is shown infig.865.; in whicharepresents the downcast, andbthe upcast shaft. By pursuing the track of the arrows, we may observe that the air passes first along the two roomsc,d, having free access to each through the walls, but is hindered from entering into the adjoining rooms by the stoppings which form the air-courses. It sweeps along the wall faces of the roomsc,d, and makes a return down the roomse,f, but is not allowed to proceed further in that direction by the stoppingsg,h. It then proceeds to the foreheadsi,k, and single courses all the rooms to the foreheadsl,m; from this point it would go directly to the upcast pitb, were it not prevented by the stoppingn, which throws it again into double coursing the rooms, till it arrives ato, whence it goes directly to the furnace, and ascends the shaftb. The lines across each other represent the passing doors; and these may be substituted in any place for a passage where there is a stopping. The stoppingp, near the bottom of the downcast shaft, is termed a main stopping; because if it were removed, the whole circulation would instantly cease, and the air, instead oftraversing in the direction of the arrows, would go directly from the downcast pita, to the upcast pitb, along the galleryq. Hence every gallery and room of the workings would be laiddead, as it is termed, and be immediately filled with fire-damp, which might take fire either at the workmen’s candles, or at the furnace next the upcast shaftb. Thus also a partial stagnation in one district of the colliery, would be produced by any of the common stoppings being accidentally removed or destroyed, since the air would thereby always pursue the nearest route to the upcast pit. Main stoppings are made particularly secure, by strong additional stone buildings, and they are set up at different places, to maintain the main air courses entire in the event of an explosion; by which precautions great security is given to human life. This system of ventilation may be extended to almost any distance from the pit-bottom, provided the volume of fresh air introduced be adequate to dilute sufficiently the fire-damp, so that the mixture shall not reach the explosive point. The air, by this management, ventilates first one panel of work, and then other panels in succession, passing onwards through the barriers or panel walls, by means of galleries, as infig.843., by the principle either of single, double, or triple coursing, according to the quantity of gas in the mine.In ventilating the very thick coal of Staffordshire, though there is much inflammable air, less care is needed than in the north of England collieries, as the workings are very roomy, and the air courses of comparatively small extent. The air is conducted down one shaft, carried along the main roads, and distributed into the sides of work, as shown infig.848.A narrow gallery, termed the air-head, is carried in the upper part of the coal, in the rib walls, along one or more of the sides. In the example here figured, it is carried all round, and the air enters at the bolt-holee. Lateral openings, named spouts, are led from the air-head gallery into the side of work; and the circulating stream mixed with the gas in the workings, enters by these spouts, as represented by the arrows, and returns by the air-head atg, to the upcast pit.When the fire-damp comes off suddenly in any case, rendering the air foul and explosive at the foreheads, if no other remedy be found effectual, the working of the coal must be suspended, and a current of air sent directly from the fresh in-going stream, in order to dilute the explosive mixture, before it reaches the furnace. This is termedskailing the air; for otherwise the gas would kindle at the furnace, and flame backwards, like a train of gunpowder, through all the windings of the work, carrying devastation and death in its track. Byskailingthe air, however, time is given for running forward with water, and drowning the furnace. A cascade of water from the steam engine pumps is then allowed to fall down the pit, the power of which through a fall of 500 or 600 feet, is so great in carrying down a body of air, that it impels a sufficient current through every part of the workings. The ventilation is afterwards put into its usual train at leisure.In collieries which have been worked for a considerable time, and particularly in such as have goaves, creeps, or crushed wastes, the disengagement of the fire-damp from these recesses is much influenced by the state of atmospheric pressure. Should this be suddenly diminished, as shown by the fall of the barometer, the fire-damp suddenly expands and comes forth from its retirement, polluting the galleries of the mine with its noxious presence. But an increase of barometric pressure condenses the gases of the mine, and restrains them within their sequestered limits. It is therefore requisite that the coal-viewer should consult the barometer before inspecting the subterraneous workings of an old mine, on the Monday mornings, in order to know what precautions must be observed in his personal survey.The catastrophe of an explosion in an extensive coal-mine is horrible in the extreme. Let us imagine a mine upwards of 100 fathoms deep, with the workings extended to a great distance under the surrounding country, with machinery complete in all its parts, the mining operations under regular discipline, and railways conducted through all its ramifications; the stoppings, passing doors, brattices, and the entire economy of the mine, so arranged that every thing moves like a well regulated machine. A mine of this magnitude at full work is a scene of cheering animation, and happy industry; the sound of the hammer resounds in every quarter, and the numerous carriages, loaded or empty, passing swiftly to and fro from the wall faces to the pit bottom, enliven the gloomiest recesses. At each door a little boy, called a trapper, is stationed, to open, and shut it. Every person is at his post, displaying an alacrity and happiness pleasingly contrasted with the surrounding gloom. While things are in this merry train, it has but too frequently happened that from some unforeseen cause, the ventilation has partially stagnated, allowing a quantity of the fire-damp to accumulate in one space to the explosive pitch; or a blower has suddenly sprung forth, and the unsuspecting miner entering this fatal region with his candle, sets the whole in a blaze of burning air, which immediately suffocates and scorches to death every living creature within its sphere, while multitudes beyond the reach of the flame are dashed to pieces by the force of the explosion, rolling like thunder along the winding galleries. Sometimes the explosive flameseems to linger in one district for a few moments; then gathering strength for a giant effort, it rushes forth from its cell with the violence of a hurricane, and the speed of lightning, destroying every obstacle in its way to the upcast shaft. Its power seems to be irresistible. The stoppings are burst through, the doors are shivered into a thousand pieces; while the unfortunate miners, men, women, and boys, are swept along with an inconceivable velocity, in one body, with the horses, carriages, corves, and coals. Should a massive pillar obstruct the direct course of the aerial torrent, all these objects are dashed against it, and there prostrated or heaped up in a mass of common ruin, mutilation, and death. Others are carried directly to the shaft, and are either buried there amid the wreck, or are blown up and ejected from the pit mouth. Even at this distance from the explosive den, the blast is often so powerful, that it frequently tears the brattice walls of the shaft to pieces, and blows the corves suspended in the shaft as high up into the open air as the ropes will permit. Not unfrequently, indeed, the ponderous pulley-wheels are blown from the pit-head frame, and carried to a considerable distance in the bosom of a thick cloud of coals and coal-dust brought up from the mine by the fire-damp, whose explosion shakes absolutely the superincumbent solid earth itself with a mimic earthquake. The dust of the ruins is sometimes thrown to such a height above the pit as to obscure the light of the sun. The silence which succeeds to this awful turmoil is no less formidable; for the atmospheric back-draught, rushing down the shaft, denotes the consumption of vital air in the mine, and the production of the deleterious choke-damp and azote.Though many of the miners may have escaped by their distance in the workings from the destructive blast and the fire, yet their fate may perhaps be more deplorable. They hear the explosion, and are well aware of its certain consequences. Every one anxious to secure his personal safety, strains every faculty to reach the pit-bottom. As the lights are usually extinguished by the explosion, they have to grope their way in utter darkness. Some have made most marvellous escapes, after clambering over the rubbish of fallen roofs, under which their companions are entombed; but others wandering into uncertain alleys, tremble lest they should encounter the pestilential airs. At last they feel their power, and aware that their fate is sealed, they cease to struggle with their inevitable doom; they deliberately assume the posture of repose, and fall asleep in death. Such has been too often the fate of the hardy and intelligent miners who immure themselves deep beneath the ground, and venture their lives for the comfort of their fellow-men; and such frequently is the ruinous issue of the best ordered and most prosperous mining concerns.In such circumstances the mining engineers or coal viewers have a dangerous and difficult duty to perform. The pit into which they must descend as soon as possible, is rendered unsafe by many causes; by the wrecks of loose timber torn away by the eruption, or by the unrespirable gases; by the ignition perhaps of a portion of the coal itself, or by the flame of a blower of fire-damp; either of which would produce violent and repeated explosions whenever the gas may again accumulate to the proper degree. Such a predicament is not uncommon, and it is one against which no human skill can guard. Yet even here, the sense of duty, and the hope of saving some workmen from a lingering death by wounds or suffocation, lead this intrepid class of men to descend amid the very demons of the mine.As soon as the ventilation is restored by temporary brattices, the stoppings and doors are rebuilt in a substantial manner, and the workings are resumed with the wonted activity. From an inspection offig.864.,p. 1029, it is obvious that the stability of the main stoppingp, is an important point; for which reason it is counterforted by strong walls of stone, to resist the explosive force of fire-damp.When it is known that fire exists in the wastes, either by the burning of the small coal-dust along the roads, or from the ignition of the solid coal by a blower of gas, the inspection of the mine is incomparably more hazardous, as safety cannot be insured for an instant; for if the extrication of gas be great, it rapidly accumulates, and whenever it reaches the place where the fire exists, a new explosion takes place. There have been examples of the most furious detonations occurring regularly after the interval of about an hour, and being thus repeated 36 times in less than two days, each eruption appearing at the pit mouth like the blast of a volcano. It would be madness for any one to attempt a descent in such circumstances. The only resource is to moat up the pit, and check the combustion by exclusion of atmospheric air, or to drown the workings by letting the water accumulate below ground.When fire exists in the wastes, with less apparent risk of life, water is driven upon it by portable fire-extinguishing engines, or small cannon are discharged near the burning coal, and the concussion thus produced in the air sometimes helps to extinguish the flame.Since the primary cause of these tremendous catastrophes is the accension of the explosive gases by the candle of the miner, it has been long a desideratum to procure light of such a nature as may not possess the power of kindling the fire-damp. The train of light producible from the friction of flint and steel, by a mechanism calleda steel mill, has been long known, and afforded a tolerable gleam, with which the miners were obliged to content themselves in hazardous atmospheres.It consists of a small frame of iron, mounted with a wheel and pinion, which give rapid rotation to a disk of hard steel placed upright, to whose edge a piece of flint is applied. The use of this machine entailed on the miner the expense of an attendant, called the miller, who gave him light. Nor was the light altogether safe, for occasionally the ignited shower of steel particles attained to a sufficient heat to set fire to the fire-damp.At length the attention of the scientific world was powerfully attracted to the means of lighting the miner with safety, by an awful catastrophe which happened at Felling Colliery, near Newcastle, on the 25th May, 1812. This mine was working with great vigour, under a well-regulated system of ventilation, set in action by a furnace and air-tube, placed over a rise pit in elevated ground. The depth of winning was above 100 fathoms; 25 acres of coal had been excavated, and one pit was yielding at the rate of 1700 tons per week. At 11 o’clock in the forenoon the night shift of miners was relieved by the day shift; 121 persons were in the mine, at their several stations, when, at half-past 11, the gas fired, with a most awful explosion, which alarmed all the neighbouring villages. The subterraneous fire broke forth with two heavy discharges from the dip-pit, and these were instantly followed by one from the rise-pit. A slight trembling, as from an earthquake, was felt for about half a mile round the colliery, and the noise of the explosion, though dull, was heard at from 3 to 4 miles’ distance. Immense quantities of dust and small coal accompanied these blasts, and rose high into the air, in the form of an inverted cone. The heaviest part of the ejected matter, such as corves, wood, and small coal, fell near the pits; but the dust borne away by a strong west wind fell in a continuous shower a mile and a half from the pit. In the adjoining village of Heworth it caused a darkness like that of early twilight, covering the roads where it fell so thickly that the footsteps of passengers were imprinted in it. The heads of both shaft-frames were blown off, their sides set on fire, and their pulleys shattered to pieces. The coal-dust ejected from the rise-pit into the horizontal part of the ventilating tube, was about 3 inches thick, and speedily burnt to a cinder; pieces of burning coal, driven off the solid stratum of the mine, were also blown out of this shaft. Of the 121 persons in the mine at the time of the explosion, only 32 were drawn up the pit alive, 3 of whom died a few hours after the accident. Thus no less than 92 valuable lives were instantaneously destroyed by this pestilential fire-damp. The scene of distress among the relatives at the pit mouth was indescribably sorrowful.Dr. W. Reid Clanny, of Sunderland, was the first to contrive a lamp which might burn among explosive air without communicating flame to the gas in which it was plunged. This he effected, in 1813, by means of an air-tight lamp, with a glass front, the flame of which was supported by blowing fresh air from a small pair of bellows through a stratum of water in the bottom of the lamp, while the heated air passed out through water by a recurved tube at top. By this means the air within the lamp was completely insulated from the surrounding atmosphere. This lamp was the first ever taken into a body of inflammable air in a coal-mine, at the exploding point, without setting fire to the gas around it. Dr. Clanny made another lamp upon an improved plan, by introducing into it the steam of water generated in a small vessel at the top of the lamp, heated by the flame. The chief objection to these lamps is their inconvenience in use.Various other schemes of safe-lamps were offered to the miner by ingenious mechanicians, but they have been all superseded by the admirable invention of Sir H. Davy, founded on his fine researches upon flame. The lamp of Davy was instantly tried and approved of by Mr. Buddle and the principal mining engineers of the Newcastle district. A perfect security of accident is therefore afforded to the miner in the use of a lamp which transmits its light, and is fed with air, through a cylinder of wire gauze; and this invention has the advantage of requiring no machinery, no philosophical knowledge to direct its use, and is made at a very cheap rate.In the course of a long and laborious investigation on the properties of the fire-damp, and the nature and communication of flame, Sir H. Davy ascertained that the explosions of inflammable gases were incapable of being passed through long narrow metallic tubes; and that this principle of security was still obtained by diminishing their length and diameter at the same time, and likewise diminishing their length, and increasing their number, so that a great number of small apertures would not pass an explosion, when their depth was equal to their diameter. This fact led him to trials upon sieves made of wire-gauze, or metallic plates perforated with numerous small holes; and he found it was impossible to pass explosions through them.The apertures in the gauze should never be more than 1-20th of an inch square. In the working models sent by Sir H. to the mines, there were 748 apertures in the square inch, and the wire was about the 40th of an inch diameter. The cage or cylinder of wire gauze should be made by double joinings, the gauze being folded over in such a manner as to leave no apertures. It should not be more than two inches in diameter; or in large cylinders the combustion of the fire-damp renders the top inconvenientlyhot; and a double top is always a proper precaution, fixed at a distance of about half an inch above the first top. The gauze cylinder should be fastened to the lamp by a screw of 4 or 5 turns. All joinings in the lamp should be made with hard solder; and the security depends upon the condition, that no aperture exists in the apparatus larger than in the wire gauze.The forms of the lamp and cage, and the mode of burning the wick, may be greatly diversified; but the principle which ensures their safety must be strictly attended to. SeeLamp of Davy,Safety Lamp, andVentilation.The state of the air in coal mines, from very early periods till the discovery of the safe-lamp, was judged of by the appearances exhibited by the flame of a candle; and this test must in many circumstances be still had recourse to. When there is merely a defect of atmospheric oxygen, the air being also partially vitiated by a little carbonic acid, either from choke-damp or the lungs and candles of the miners, the lights burn with a very dull flame, the tallow ceases to melt in the cup formed round the wick, till the flame flickers and expires. In this case the candle may be kept burning by slanting it more or less towards a horizontal position, which causes the tallow to melt with the edge of the flame. The candle is thus rapidly wasted, however; and therefore an oil lamp is preferable, as it continues to burn where a candle would be extinguished. The candles of the collier are generally small, with a very small wick; such being found to produce a more distinct flame than candles of a large size with a thick wick.In trying the quality of the air by the flame of a candle, the wick must be trimmed by taking off the snuff, so as to produce a clear, distinct, and steady-burning flame. When a candle thus trimmed is looked at in common air, a distinct and well-defined cone of flame is seen, of a fine sky-blue at the bottom next the wick, and thence of a bright yellow to the apex of the cone. Besides this appearance, there is another, surrounding the cone, which the brightness of the flame prevents the eye from discerning. This may be seen by placing one of the hands expanded as a screen betwixt the eyes and the candle, and at the distance of about an inch, so that the least point of the apex of the yellow flame may be seen, and no more. By this method, a top, as the miners term it, will be distinctly observed close to the apex of the yellow flame, from an eighth to a quarter of an inch in length. This top is of a yellowish-brown colour, and like a misty haze. This haze is seen not only on the top, but it extends downwards and surrounds the flame fully half way, about a twentieth of an inch in thickness; here it assumes a violet colour, which passes into a beautiful blue at the bottom next the wick. The test of the state of the air in mines, or “trying the candle,” as practised by miners, depends entirely on the appearance which this haze assumes in shape and colour at the top of the flame. In fact, this top has distinct appearances when burning in atmospheric air, carbonated air, azotized air, or fire-damp air; displaying many modifications, according to the proportions of the various admixtures.When azote or carbonic acid abounds, the top is frequently an inch or two in length, of a decided brown colour, and the flame is short and dim. When they are still more copious, the flame goes out, and the miners immediately retire.When inflammable air is imagined to exist in considerable quantity, the miner trims his candle, and advances with cautious step, holding the candle with the left hand, and screening the flame with the right; and as the fire-damp floats in the upper part of the gallery next the roof, he holds the candle as low as he can, and keeping his eye fixed on the tip, he moves forwards. If the gas be small in quantity, he may reach the forehead without observing any material change in his light. But if in his advance he perceives the tip to elongate, and take a bluish-gray colour, he is put on his guard, and steps on with much caution; and if the tip begins to spire, he drops down on one knee, and holding the candle near the pavement, gradually raises it up, and watches the change it undergoes as it approaches the roof. If the gas be copious, the flame elongates into a sharp spire, as well as the top. It is in general reckoned dangerous when the tip changes from the bluish-gray to a fine blue colour, accompanied with minute luminous points, which pass rapidly upwards through the flame and top. When the symptoms are manifestly dangerous, a sudden movement of the hands or body is liable to produce ignition by agitation of the fire-damp. The experienced miner therefore slowly and cautiously lowers his candle to the pavement, and then turning round, effects his retreat slowly, or slips up his right hand and extinguishes the flame with his finger and thumb. Should he venture too far, and approach the body of gas in an explosive condition, the tip of the candle rapidly elongates, and the whole rises in a sharp spire several inches in length; and then the whole surrounding atmosphere is in a blaze, an explosion ensues, and destructive ravage is the consequence, to an extent proportioned to the quantity of fire-damp. SeeSafety Lamp, andVentilation.Thistrying the candleis a delicate operation, requiring much practical sagacity, where the lives of so many men, and the welfare of the whole establishment, are at stake. Almost every colliery, after having been worked for some time, gives a peculiar top tothe candle; so that while in one mine liable to fire-damp an explosion will take place with a top less than an inch long, in another mine the top may be two inches high, and yet the air be considerably under the point of accension. These differences depend on several particulars. If the gas has not passed through a long course of ventilation, and is little mixed with air, it will ignite with a very short top; while on the other hand, a gas which has run through a ventilation of 20 or 30 miles may cause the production of a long top without hazard. It is hence obvious, that skilful experience, and thorough practical knowledge, are the only sure guides in these cases.

Fire-damp and air

The violent discharge of the gas from a crevice or cutter of the coal, is called a blower; and if this be ignited, it burns like an immense blowpipe, inflaming the coal at the opposite side of the gallery. The gas evidently exists in a highly compressed and elastic state; whence it seems to loosen the texture of the coals replete with it, and renders them more easily worked. The gas is often peculiarly abundant near a great dislocation or slip of the strata; so that the fissure of the dislocation will sometimes emit a copious stream of gas for many years. It has also happened, that from certain coals, newly worked, and let fall from a height into the hold of a vessel, so much inflammable gas has been extricated that, after the hatches were secured, and the ship ready to proceed to sea, the gas has ignited with the flame of a candle, so as to scorch the seamen, to blow up the decks, and otherwise damage the vessel. In like manner, when the pillars in a mine are crushed by sudden pressure, a great discharge of gas ensues. This gas being lighter than common air, always ascends to the roof or to the rise of the galleries; and, where the dip is considerable, occupies the forehead of the mine, in a wedge form, as shown infig.853., wherearepresents the fire-damp, andbthe common air. In this case, a candle will burn without danger near the pointc, close to the floor; but if it be advanced a few feet further towards the roof, an explosion will immediately ensue; since at the line where the two elastic fluids are in contact, they mix, and form an explosive body.

Air circulation

When this gas is largely diluted with air, the workmen do not seem to feel any inconvenience from breathing the mixture for a period of many years; but on inhaling pure carburetted hydrogen, the miner instantly drops down insensible, and, if not speedily removed into fresh air, he dies.The production of these noxious gases renders ventilation a primary object in the system of mining. The most easily managed is the carbonic acid. If an air-pipe has been carried down the engine pit for the purpose of ventilation in the sinking, other pipes are connected with it, and laid along the pavement, or are attached to an angle of the mine next the roof. These pipes are prolonged with the galleries, by which means the air at the forehead is drawn up the pipes and replaced by atmospheric air, which descends by the shaft in an equable current, regulated by the draught of the furnace at the pit mouth. This circulation is continued till the miners cut through upon the second shaft, when the air-pipes become superfluous; for it is well known that the instant such communication is made, as is represented infig.854., the air spontaneously descends in the engine pitA, and, passing along the gallerya, ascends in a steady current in the second pitB. The air, in sinking throughA, has at first the atmospheric temperature, which in winter may be at or under the freezing point of water; but its temperature increases in passing down through the relatively warmer earth, and ascends in the shaftB, warmer than the atmosphere. When shafts are of unequal depths, as represented in the figure, the current of air flows pretty uniformly in one direction. If the second shaft has the same depth with the first, and the bottom and mouth of both be in the same horizontal plane, the air would sometimes remain at rest, as water would do in an inverted syphon, and at other times would circulate down one pit and up another, not always in the same direction, but sometimes up the one, and sometimes up the other, according to the variations of temperature at the surface, and the barometrical pressures, as modified by winds. There is in mines a proper heat, proportional to their depth, increasing about one degree of Fahrenheit’s scale for every 60 feet of descent.

Ragglin or trumpeting

There is a simple mode of conducting air from the pit bottom to the forehead of the mine, by cutting a ragglin, or trumpeting, as it is termed, in the side of the gallery, as represented infig.855., whereAexhibits the gallery in the coal, andBthe ragglin, which is from 15 to 18 inches square. The coal itself forms three sides of the air-pipe, and the fourth is composed of thin deals applied air-tight, and nailed to small props of wood fixed between the top and bottom of the lips of the ragglin. This mode is very generally adopted in running galleries of communication, and dip-head level galleries, where carbonic acid abounds, or when from the stagnation of the air the miners’ lights burn dimly.

When the ragglin or air-pipes are not made spontaneously active, the air is sometimes impelled through them by means of ventilating fanners, having their tube placed at the pit bottom, while the vanes are driven with great velocity by a wheel and pinion worked with the hand. In other cases, large bellows like those of the blacksmith, furnished with a wide nozzle, are made to act in a similar way with the fanners. But these are merely temporary expedients for small mines. A very slight circulation of air can be effected by propulsion, in comparison of what may be done by exhaustion; and hence it is better to attach the air-pipe to the valve of the bellows, than to their nozzle.

Ventilation of collieries has been likewise effected on a small scale, by attaching a horizontal funnel to the top of air-pipes elevated a considerable height above the pit mouth. The funnel revolves on a pivot, and by its tail-piece places its mouth so as to receive the wind. At other times, a circulation of air is produced by placing coal-fires in iron grates, either at the bottom of an upcast pit, or suspended by a chain a few fathoms down.

Ventilation of mine

Such are some of the more common methods practised in collieries of moderate depth, where carbonic acid abounds, or where there is a total stagnation of air. But in all great coal mines the aërial circulation is regulated and directed by double doors, called main or bearing doors. These are true air-valves, which intercept a current of air moving in one direction from mixing with another moving in a different direction. Such valves are placed on the main roads and passages of the galleries, and are essential to a just ventilation. Their functions are represented in the annexedfig.856., whereAshows the downcast shaft, in which the aerial current is made to descend;Bis the upcast shaft, sunk towards the rise of the coal; andC, the dip-head level. Were the mine here figured to be worked without any attention to the circulation, the air would flow down the pitA, and proceed in a direct line up the rise mine to the shaftB, in which it would ascend. The consequence would therefore be, that all the galleries and boards to the dip of the pitA, and those lying on each side of the pits, would have no circulation of air; or, in the language of the collier, would be laid dead. To obviate this result, double doors are placed in three of the galleries adjoining the pit; viz., ataandb,candd,eandf; all of which open inwards to the shaftA. By this plan, as the air is not suffered to pass directly from the shaftAto the shaftB, throughthe doorsaandb, it would have taken the next shortest direction byc dande f; but the doors in these galleries prevent this course, and compel it to proceed downwards to the dip-head levelC, where it will spread or divide, one portion pursuing a route to the right, another to the left. On arriving at the boardsgandh, it would have naturally ascended by them; but this it cannot do, by reason of the building or stopping placed atgandh. By means of such stoppings placed in the boards next the dip-head level, the air can be transported to the right hand or to the left for many miles, if necessary, providing there be a train or circle of aerial communication from the pitAto the pitB. If the boardsiandkare open, the air will ascend in them, as traced out by the arrows; and after being diffused through the workings, will again meet in a body ata, and mount the gallery to the pitB, sweeping away with it the deleterious air which it meets in its path. Without double doors on each main passage, the regular circulation of the air would be constantly liable to interruptions and derangements; thus, suppose the doorcto be removed, and onlydto remain in the left hand gallery, all the other doors being as represented, it is obvious, that whenever the doordis opened, the air, finding a more direct passage in that direction, would mount by the nearest channell, to the shaftB, and lay dead all the other parts of the work, stopping all circulation. As the passages on which the doors are placed constitute the main roads by which the miners go to and from their work, and as the corves are also constantly wheeling along all the time, were a single door, such asd, so often opened, the ventilation would be rendered precarious or languid. But the double doors obviate this inconvenience; for both men and horses, with the corves, in going to or from the pit bottomA, no sooner enter the doord, than it shuts behind them, and encloses them in the still air contained between the doorsdandc;chaving prevented the air from changing its proper course whiledwas open. Whendis again shut, the doorcmay be opened without inconvenience, to allow the men and horses to pass on to the pit bottom atA; the doordpreventing any change in the aerial circulation while the doorcis open. In returning from the pit, the same rule is observed, of shutting one of the double doors, before the other is opened.

If this mode of disjoining and insulating air-courses from each other be once fairly conceived, the continuance of the separation through a working of any extent, may be easily understood.

When carbonic acid gas abounds, or when the fire-damp is in very small quantity, the air may be conducted from the shaft to the dip-head level, and by placing stoppings of each room next the level, it may be carried to any distance along the dip-head levels; and the furthest room on each side being left open, the air is suffered to diffuse itself through the wastes, along the wall faces, and mount in the upcast pit, as is represented infig.842.But should the air become stagnant along the wall faces, stoppings are set up throughout the galleries, in such a way as to direct the main body of fresh air along the wall faces for the workmen, while a partial stream of air is allowed to pass through the stoppings, to prevent any accumulation of foul air in the wastes.

In very deep and extensive collieries more elaborate arrangements for ventilation are introduced. Here the circulation is made active by rarefying the air at the upcast shaft, by means of a very large furnace placed either at the bottom or top of the shaft. The former position is generally preferred.Fig.834.exhibits a furnace placed at the top of the pit. When it surmounts a single pit, or a single division of the pit, the compartment intended for the upcast is made air-tight at top, by placing strong buntons or beams across it, at any suitable distance from the mouth. On these buntons a close scaffolding of plank is laid, which is well plastered or moated over with adhesive plastic clay. A little way below the scaffold, a passage is previously cut, either in a sloping direction, to connect the current of air with the furnace, or it is laid horizontally, and then communicates with the furnace by a vertical opening. If any obstacle prevent the scaffold from being erected within the pit, this can be made air-tight at top, and a brick flue carried thence along the surface to the furnace.

The furnace has a size proportional to the magnitude of the ventilation, and the chimneys are either round or square, being from 50 to 100 feet high, with an inside diameter of from 5 to 9 feet at bottom, tapering upwards to a diameter of from 21⁄2feet to 5 feet. Such stalks are made 9 inches thick in the body of the building, and a little thicker at bottom, where they are lined with fire-bricks.

The plan of placing the furnace at the bottom of the pit is, however, more advantageous, because the shaft through which the air ascends to the furnace at the pit mouth, is always at the ordinary temperature; so that whenever the top furnace is neglected, the circulation of air throughout the mine becomes languid, and dangerous to the workmen; whereas, when the furnace is situated at the bottom of the shaft, its sides get heated, like those of a chimney, through its total length, so that though the heat of the furnace be accidentally allowed to decline or become extinct for a little, the circulationwill still go on, the air of the upcast pit being rarefied by the heat remaining in the sides of the shaft.

Extraction of smoke

To prevent the annoyance to the onsetters at the bottom, from the hot smoke, the following plan has been adopted, as shown in the wood-cut,fig.857., wherearepresents the lower part of the upcast shaft;b, the furnace, built of brick, arched at top, with its sides insulated from the solid mass of coal which surrounds it. Between the furnace wall and the coal-beds, a current of air constantly passes towards the shaft, in order to prevent the coal catching fire. From the end of the furnace a gallery is cut in a rising direction atc, which communicates with the shaft atd, about 7 or 8 fathoms from the bottom of the pit. Thus the furnace and furnace-keeper are completely disjoined from the shaft; and the pit bottom is not only free from all encumbrances, but remains comfortably cool. To obviate the inconveniences from the smoke to the banksmen in landing the coals at the pit mouth, the following plan has been contrived for the Newcastle collieries.Fig.858.represents the mouth of the pit;ais the upcast shaft, provided with a furnace at bottom;b, the downcast shaft, by which the supply of atmospheric air descends; andd, the brattice carried above the pit mouth. A little way below the settle-boards, a galleryc, is pushed, in communication with the surface from the downcast shaft, over which a brick tube or chimney is built from 60 to 80 feet high, 7 or 8 feet diameter at bottom, and 4 or 5 feet diameter at top. On the top of this chimney a deal funnel is suspended horizontally on a pivot, like a turn-cap. The vanef, made also of deal, keeps the mouth of the funnel always in the same direction with the wind. The same mechanism is mounted at the upcast shafta, only here the funnel is made to present its mouth in the wind’s eye. It is obvious from the figure, that a high wind will rather aid than check the ventilation by this plan.

The principle of ventilation being thus established, the next object in opening up a colliery, and in driving all galleries whatever, is thedouble mineor doubleheadways course; on the simple but very ingenious distribution of which, the circulation of air depends at the commencement of the excavations.

Double headway course

The double headways course is represented infig.859., whereais the one heading or gallery, andbthe other; the former being immediately connected with the upcast side of the pitc, and the latter with the downcast side of the pitd. The pit itself is made completely air-tight by its division of deals from top to bottom, called the brattice wall; so that no air can pass through the brattice fromdtoc, and the intercourse betwixt the two currents of air is completely intercepted by a stopping betwixt the pit bottom and the end of the first pillar of coal; the pillars or walls of coal, markede, are called stenting walls; and the openings betwixt them, walls or thirlings. The arrows show the direction of the air. The headingsaandbare generally made about 9 feet wide, the stenting walls 6 or 8 yards thick, and are holed or thirled at such a distance as may be most suitable for the state of the air. The thirlings are 5 feet wide.

When the headings are set off from the pit bottom, an aperture is left in the brattice at the end of the pillar next the pit, through which the circulation betwixt the upcast and downcast pits is carried on; but whenever the workmen cut through the first thirling No. 1., the aperture in the brattice at the pit bottom is shut; in consequence of which the air is immediately drawn by the power of the upcast shaft through that thirling as represented by the dotted arrow. Thus a direct stream of fresh air is obviously brought close to the forehead where the mines are at work. The two headingsaandbare then advanced, and as soon as the thirling No. 2. is cut through, a wall of brick and mortar, 41⁄2inches thick, is built across the thirling No. 1. This wall is termed a stopping; and being air-tight, it forces the whole circulation through the thirling No. 2. In this manner the air is always led forward, and caused to circulate always by the last-made thirling next the forehead; care being had, that whenever a new thirling is made, the last thirling through which the air was circulated, be secured with an air-tight stopping. In the woodcut, the stoppings are placed in the thirlings numbered 1, 2, 3, 4, 5, 6, and of consequence the whole circulation passes through the thirling No. 7., which lies nearest the foreheads of the headingsa,b. By inspecting the figure, we observe, that on this very simple plan, a stream of air may be circulated to any required distance, and in any direction, however tortuous. Thus, for example, if while the double headways coursea,b, is pushed forward, other double headways courses are required to be carried on at the same time on both sides of the first headway, the same general principles have only to be attended to as shown infig.860., whereais the upcast, andbthe downcast shaft. The air advances along the headingc, but cannot proceed further in that direction than the pillard, being obstructed by the double doors ate. It therefore advances in the direction of the arrows to the foreheads atf, and passing through the last thirling made there, returns to the opposite side of the double doors, ascends now the headinggto the foreheads ath, passes through the last-made thirling at that point, and descends, in the headingi, till it is interrupted by the double doors atk. The aerial current now moves along the headingl, to the foreheads atm, returns by the last-made thirling there, along the headingn, and finally goes down the headingo, and mounts by the upcast shafta, carrying with it all the noxious gases which it encountered during its circuitous journey. This wood-cut is a faithful representation of the system by which collieries of the greatest extent are worked and ventilated. In some of these, the air courses are from 30 to 40 miles long. Thus the air conducted by the medium of a shaft divided by a brattice wall only a few inches thick, after descending in the downcast in one compartment of the pit at 6 o’clock in the morning, must thence travel through a circuit of nearly 30 miles, and cannot arrive at its reascending compartment on the other side of the brattice, or pit partition, till 6 o’clock in the evening, supposing it to move all the time at the rate of 21⁄2miles per hour. Hence we see that theprimum mobileof this mighty circulation, the furnace, must be carefully looked after, since its irregularities may affect the comfort, or even the existence of hundreds of miners spread over these vast subterraneous labyrinths. On the principles just laid down, it appears, that if any number of boards be set off from any side of these galleries, either in a level, dip, or rise direction, the circulation of air may be advanced to each forehead, by an ingoing and returning current.

Air circulation

Yet while the circulation of fresh air is thus advanced to the last-made thirling next the foreheadsf,h, andm,fig.860., and moves through the thirling which is nearest to the face of every board and room, the emission of fire-damp is frequently so abundant from the coaly strata, that the miners dare not proceed forwards more than a few feet from that aerial circulation, without hazard of being burned by the combustion of the gas at their candles. To guard against this accident, temporary shifting brattices are employed. These are formed of deal, about3⁄4of an inch thick, 3 or 4 feet broad, and 10 feet long; and are furnished with cross-bars for binding the deals together, and a few finger loops cut through them, for lifting them more expeditiously, in order to place them in a proper position. Where inflammable air abounds, a store of such brattice deals should be kept ready for emergencies.

Air circulation

The mode of applying these temporary brattices, or deal partitions, is shown in the accompanying figure (fig.861.), which shows how the air circulates freely through the thirlingd,dbefore the brattices are placed. Atbandc, we see two heading boards or rooms, which are so full of inflammable air as to be unworkable. Props are now erected near the upper end of the pillare, betwixt the roof and pavement, about two feet clear of the sides of the next pillar, leaving room for the miner to pass along between the pillar side and the brattice. The brattices are then fastened with nails to the props, the lower edge of the under brattice resting on the pavement, while the upper edge of the upper is in contact with the roof. By this means any variation of the height in the bed of coal is compensated by the overlap of the brattice boards; and as these are advanced, shifting brattices are laid close to, and alongside of, the first set. The miner next sets up additional props in the same parallel line with the former, and slides the brattices forwards, to make the air circulate close to the forehead where he is working; and he regulates the distance betwixt the brattice and the forehead by the disengagement of fire-damp and the velocity of the aerial circulation. The props are shown atd d, and the brattices atf,f. By this arrangement the air is prevented from passing directly through the thirlinga, and is forced along the right-hand side of the brattice, and, sweeping over the wall face or forehead, returns by the back of the brattice, and passes through the thirlinga. It is prevented, however, from returning in its former direction by the brattice planted in the foreheadc, whereby it mounts up and accomplishes its return close to that forehead. Thus headways and boards are ventilated till another thirling is made at the upper part of the pillar. The thirlingais then closed by a brick stopping, and the brattice boards removed forward for a similar operation.

Removing gas

When blowers occur in the roof, and force the strata down, so as to produce a large vaulted excavation, the accumulated gas must be swept away; because, after filling that space, it would descend in an unmixed state under the common roof of the coal. The manner of removing it is represented infig.862., whereais the bed of coal,bthe blower,cthe excavation left by the downfall of the roof,dis a passing door, andea brattice. By this arrangement the aerial current is carried close to the roof, and constantly sweeps off or dilutes the inflammable gas of the blower, as fast as it issues. The arrows show the direction of the current; but for which, the accumulating gas would be mixed in explosive proportions with the atmospheric air, and destroy the miners.

Removing gas

There is another modification of the ventilating system, where the air-courses are traversed across; that is, when one air-course is advanced at right angles to another, and must pass it in order to ventilate the workings on the further side. This is accomplished on the plan shown infig.863., whereais a main road with an air-course, over which the other air-courseb, has to pass. The sides of this air channel are built of bricks arched over so as to be air-tight, and a gallery is driven in the roof strata as shown in the figure. If an air-course, asa, be laid over with planks made air-tight, crossing and recrossing may be effected with facility. The general velocity of the air in these ventilating channels is from 3 to 4 feet per second, or about 21⁄2miles per hour, and their internal dimensions vary from 5 to 6 feet square, affording an area of from 25 to 36 square feet.

Hydraulic air-pump

Mr. Taylor’s hydraulic air-pump, formerly described,p. 839., deserves to be noticed among the various ingenious contrivances for ventilating mines, particularly when they are of moderate extent.ais a large wooden tub, nearly filled with water, through whose bottom the ventilating pipebpasses down into the recesses of the mine. Upon the top ofb, there is a valvee, opening upwards. Overb, the gasometer vessel is inverted ina, having a valve also opening outwards atd. When this vessel is depressed by any moving force, the air contained within it is expelled throughd; and when it is raised, it diminishes the atmospherical pressure in the pipeb, and thus draws air out of the mine into the gasometer; which cannot return on account of the valve ate, but is thrown out into the atmosphere throughdat the next descent.

The general plan of distributing the air, in all cases, is to send the first of the current that descends in the downcast shaft among the horses in the stables, next among the workmen in the foreheads, after which the air, loaded with whatever mixtures it may have received, is made to traverse the old wastes. It then passes through the furnace with all the inflammable gas it has collected, ascends the upcast shaft, and is dispersed into the atmosphere. This system, styledcoursing the air, was invented by Mr. Spedding of Cumberland. According to the quantity of the fire-damp, the coursing is conducted either up one room, and returned by the next alternately, through the whole extent of the works, or it passes along 2 or 3 connected rooms, and returns by the same number.

Ventilation of mine

This admirable system has received the greatest improvements from the mining engineers of the Newcastle district, and especially from Mr. Buddle of Wallsend. His plan being a most complete scale of ventilation, where the aerial current is made to sweep every corner of the workings, is shown infig.865.; in whicharepresents the downcast, andbthe upcast shaft. By pursuing the track of the arrows, we may observe that the air passes first along the two roomsc,d, having free access to each through the walls, but is hindered from entering into the adjoining rooms by the stoppings which form the air-courses. It sweeps along the wall faces of the roomsc,d, and makes a return down the roomse,f, but is not allowed to proceed further in that direction by the stoppingsg,h. It then proceeds to the foreheadsi,k, and single courses all the rooms to the foreheadsl,m; from this point it would go directly to the upcast pitb, were it not prevented by the stoppingn, which throws it again into double coursing the rooms, till it arrives ato, whence it goes directly to the furnace, and ascends the shaftb. The lines across each other represent the passing doors; and these may be substituted in any place for a passage where there is a stopping. The stoppingp, near the bottom of the downcast shaft, is termed a main stopping; because if it were removed, the whole circulation would instantly cease, and the air, instead oftraversing in the direction of the arrows, would go directly from the downcast pita, to the upcast pitb, along the galleryq. Hence every gallery and room of the workings would be laiddead, as it is termed, and be immediately filled with fire-damp, which might take fire either at the workmen’s candles, or at the furnace next the upcast shaftb. Thus also a partial stagnation in one district of the colliery, would be produced by any of the common stoppings being accidentally removed or destroyed, since the air would thereby always pursue the nearest route to the upcast pit. Main stoppings are made particularly secure, by strong additional stone buildings, and they are set up at different places, to maintain the main air courses entire in the event of an explosion; by which precautions great security is given to human life. This system of ventilation may be extended to almost any distance from the pit-bottom, provided the volume of fresh air introduced be adequate to dilute sufficiently the fire-damp, so that the mixture shall not reach the explosive point. The air, by this management, ventilates first one panel of work, and then other panels in succession, passing onwards through the barriers or panel walls, by means of galleries, as infig.843., by the principle either of single, double, or triple coursing, according to the quantity of gas in the mine.

In ventilating the very thick coal of Staffordshire, though there is much inflammable air, less care is needed than in the north of England collieries, as the workings are very roomy, and the air courses of comparatively small extent. The air is conducted down one shaft, carried along the main roads, and distributed into the sides of work, as shown infig.848.A narrow gallery, termed the air-head, is carried in the upper part of the coal, in the rib walls, along one or more of the sides. In the example here figured, it is carried all round, and the air enters at the bolt-holee. Lateral openings, named spouts, are led from the air-head gallery into the side of work; and the circulating stream mixed with the gas in the workings, enters by these spouts, as represented by the arrows, and returns by the air-head atg, to the upcast pit.

When the fire-damp comes off suddenly in any case, rendering the air foul and explosive at the foreheads, if no other remedy be found effectual, the working of the coal must be suspended, and a current of air sent directly from the fresh in-going stream, in order to dilute the explosive mixture, before it reaches the furnace. This is termedskailing the air; for otherwise the gas would kindle at the furnace, and flame backwards, like a train of gunpowder, through all the windings of the work, carrying devastation and death in its track. Byskailingthe air, however, time is given for running forward with water, and drowning the furnace. A cascade of water from the steam engine pumps is then allowed to fall down the pit, the power of which through a fall of 500 or 600 feet, is so great in carrying down a body of air, that it impels a sufficient current through every part of the workings. The ventilation is afterwards put into its usual train at leisure.

In collieries which have been worked for a considerable time, and particularly in such as have goaves, creeps, or crushed wastes, the disengagement of the fire-damp from these recesses is much influenced by the state of atmospheric pressure. Should this be suddenly diminished, as shown by the fall of the barometer, the fire-damp suddenly expands and comes forth from its retirement, polluting the galleries of the mine with its noxious presence. But an increase of barometric pressure condenses the gases of the mine, and restrains them within their sequestered limits. It is therefore requisite that the coal-viewer should consult the barometer before inspecting the subterraneous workings of an old mine, on the Monday mornings, in order to know what precautions must be observed in his personal survey.

The catastrophe of an explosion in an extensive coal-mine is horrible in the extreme. Let us imagine a mine upwards of 100 fathoms deep, with the workings extended to a great distance under the surrounding country, with machinery complete in all its parts, the mining operations under regular discipline, and railways conducted through all its ramifications; the stoppings, passing doors, brattices, and the entire economy of the mine, so arranged that every thing moves like a well regulated machine. A mine of this magnitude at full work is a scene of cheering animation, and happy industry; the sound of the hammer resounds in every quarter, and the numerous carriages, loaded or empty, passing swiftly to and fro from the wall faces to the pit bottom, enliven the gloomiest recesses. At each door a little boy, called a trapper, is stationed, to open, and shut it. Every person is at his post, displaying an alacrity and happiness pleasingly contrasted with the surrounding gloom. While things are in this merry train, it has but too frequently happened that from some unforeseen cause, the ventilation has partially stagnated, allowing a quantity of the fire-damp to accumulate in one space to the explosive pitch; or a blower has suddenly sprung forth, and the unsuspecting miner entering this fatal region with his candle, sets the whole in a blaze of burning air, which immediately suffocates and scorches to death every living creature within its sphere, while multitudes beyond the reach of the flame are dashed to pieces by the force of the explosion, rolling like thunder along the winding galleries. Sometimes the explosive flameseems to linger in one district for a few moments; then gathering strength for a giant effort, it rushes forth from its cell with the violence of a hurricane, and the speed of lightning, destroying every obstacle in its way to the upcast shaft. Its power seems to be irresistible. The stoppings are burst through, the doors are shivered into a thousand pieces; while the unfortunate miners, men, women, and boys, are swept along with an inconceivable velocity, in one body, with the horses, carriages, corves, and coals. Should a massive pillar obstruct the direct course of the aerial torrent, all these objects are dashed against it, and there prostrated or heaped up in a mass of common ruin, mutilation, and death. Others are carried directly to the shaft, and are either buried there amid the wreck, or are blown up and ejected from the pit mouth. Even at this distance from the explosive den, the blast is often so powerful, that it frequently tears the brattice walls of the shaft to pieces, and blows the corves suspended in the shaft as high up into the open air as the ropes will permit. Not unfrequently, indeed, the ponderous pulley-wheels are blown from the pit-head frame, and carried to a considerable distance in the bosom of a thick cloud of coals and coal-dust brought up from the mine by the fire-damp, whose explosion shakes absolutely the superincumbent solid earth itself with a mimic earthquake. The dust of the ruins is sometimes thrown to such a height above the pit as to obscure the light of the sun. The silence which succeeds to this awful turmoil is no less formidable; for the atmospheric back-draught, rushing down the shaft, denotes the consumption of vital air in the mine, and the production of the deleterious choke-damp and azote.

Though many of the miners may have escaped by their distance in the workings from the destructive blast and the fire, yet their fate may perhaps be more deplorable. They hear the explosion, and are well aware of its certain consequences. Every one anxious to secure his personal safety, strains every faculty to reach the pit-bottom. As the lights are usually extinguished by the explosion, they have to grope their way in utter darkness. Some have made most marvellous escapes, after clambering over the rubbish of fallen roofs, under which their companions are entombed; but others wandering into uncertain alleys, tremble lest they should encounter the pestilential airs. At last they feel their power, and aware that their fate is sealed, they cease to struggle with their inevitable doom; they deliberately assume the posture of repose, and fall asleep in death. Such has been too often the fate of the hardy and intelligent miners who immure themselves deep beneath the ground, and venture their lives for the comfort of their fellow-men; and such frequently is the ruinous issue of the best ordered and most prosperous mining concerns.

In such circumstances the mining engineers or coal viewers have a dangerous and difficult duty to perform. The pit into which they must descend as soon as possible, is rendered unsafe by many causes; by the wrecks of loose timber torn away by the eruption, or by the unrespirable gases; by the ignition perhaps of a portion of the coal itself, or by the flame of a blower of fire-damp; either of which would produce violent and repeated explosions whenever the gas may again accumulate to the proper degree. Such a predicament is not uncommon, and it is one against which no human skill can guard. Yet even here, the sense of duty, and the hope of saving some workmen from a lingering death by wounds or suffocation, lead this intrepid class of men to descend amid the very demons of the mine.

As soon as the ventilation is restored by temporary brattices, the stoppings and doors are rebuilt in a substantial manner, and the workings are resumed with the wonted activity. From an inspection offig.864.,p. 1029, it is obvious that the stability of the main stoppingp, is an important point; for which reason it is counterforted by strong walls of stone, to resist the explosive force of fire-damp.

When it is known that fire exists in the wastes, either by the burning of the small coal-dust along the roads, or from the ignition of the solid coal by a blower of gas, the inspection of the mine is incomparably more hazardous, as safety cannot be insured for an instant; for if the extrication of gas be great, it rapidly accumulates, and whenever it reaches the place where the fire exists, a new explosion takes place. There have been examples of the most furious detonations occurring regularly after the interval of about an hour, and being thus repeated 36 times in less than two days, each eruption appearing at the pit mouth like the blast of a volcano. It would be madness for any one to attempt a descent in such circumstances. The only resource is to moat up the pit, and check the combustion by exclusion of atmospheric air, or to drown the workings by letting the water accumulate below ground.

When fire exists in the wastes, with less apparent risk of life, water is driven upon it by portable fire-extinguishing engines, or small cannon are discharged near the burning coal, and the concussion thus produced in the air sometimes helps to extinguish the flame.

Since the primary cause of these tremendous catastrophes is the accension of the explosive gases by the candle of the miner, it has been long a desideratum to procure light of such a nature as may not possess the power of kindling the fire-damp. The train of light producible from the friction of flint and steel, by a mechanism calleda steel mill, has been long known, and afforded a tolerable gleam, with which the miners were obliged to content themselves in hazardous atmospheres.

It consists of a small frame of iron, mounted with a wheel and pinion, which give rapid rotation to a disk of hard steel placed upright, to whose edge a piece of flint is applied. The use of this machine entailed on the miner the expense of an attendant, called the miller, who gave him light. Nor was the light altogether safe, for occasionally the ignited shower of steel particles attained to a sufficient heat to set fire to the fire-damp.

At length the attention of the scientific world was powerfully attracted to the means of lighting the miner with safety, by an awful catastrophe which happened at Felling Colliery, near Newcastle, on the 25th May, 1812. This mine was working with great vigour, under a well-regulated system of ventilation, set in action by a furnace and air-tube, placed over a rise pit in elevated ground. The depth of winning was above 100 fathoms; 25 acres of coal had been excavated, and one pit was yielding at the rate of 1700 tons per week. At 11 o’clock in the forenoon the night shift of miners was relieved by the day shift; 121 persons were in the mine, at their several stations, when, at half-past 11, the gas fired, with a most awful explosion, which alarmed all the neighbouring villages. The subterraneous fire broke forth with two heavy discharges from the dip-pit, and these were instantly followed by one from the rise-pit. A slight trembling, as from an earthquake, was felt for about half a mile round the colliery, and the noise of the explosion, though dull, was heard at from 3 to 4 miles’ distance. Immense quantities of dust and small coal accompanied these blasts, and rose high into the air, in the form of an inverted cone. The heaviest part of the ejected matter, such as corves, wood, and small coal, fell near the pits; but the dust borne away by a strong west wind fell in a continuous shower a mile and a half from the pit. In the adjoining village of Heworth it caused a darkness like that of early twilight, covering the roads where it fell so thickly that the footsteps of passengers were imprinted in it. The heads of both shaft-frames were blown off, their sides set on fire, and their pulleys shattered to pieces. The coal-dust ejected from the rise-pit into the horizontal part of the ventilating tube, was about 3 inches thick, and speedily burnt to a cinder; pieces of burning coal, driven off the solid stratum of the mine, were also blown out of this shaft. Of the 121 persons in the mine at the time of the explosion, only 32 were drawn up the pit alive, 3 of whom died a few hours after the accident. Thus no less than 92 valuable lives were instantaneously destroyed by this pestilential fire-damp. The scene of distress among the relatives at the pit mouth was indescribably sorrowful.

Dr. W. Reid Clanny, of Sunderland, was the first to contrive a lamp which might burn among explosive air without communicating flame to the gas in which it was plunged. This he effected, in 1813, by means of an air-tight lamp, with a glass front, the flame of which was supported by blowing fresh air from a small pair of bellows through a stratum of water in the bottom of the lamp, while the heated air passed out through water by a recurved tube at top. By this means the air within the lamp was completely insulated from the surrounding atmosphere. This lamp was the first ever taken into a body of inflammable air in a coal-mine, at the exploding point, without setting fire to the gas around it. Dr. Clanny made another lamp upon an improved plan, by introducing into it the steam of water generated in a small vessel at the top of the lamp, heated by the flame. The chief objection to these lamps is their inconvenience in use.

Various other schemes of safe-lamps were offered to the miner by ingenious mechanicians, but they have been all superseded by the admirable invention of Sir H. Davy, founded on his fine researches upon flame. The lamp of Davy was instantly tried and approved of by Mr. Buddle and the principal mining engineers of the Newcastle district. A perfect security of accident is therefore afforded to the miner in the use of a lamp which transmits its light, and is fed with air, through a cylinder of wire gauze; and this invention has the advantage of requiring no machinery, no philosophical knowledge to direct its use, and is made at a very cheap rate.

In the course of a long and laborious investigation on the properties of the fire-damp, and the nature and communication of flame, Sir H. Davy ascertained that the explosions of inflammable gases were incapable of being passed through long narrow metallic tubes; and that this principle of security was still obtained by diminishing their length and diameter at the same time, and likewise diminishing their length, and increasing their number, so that a great number of small apertures would not pass an explosion, when their depth was equal to their diameter. This fact led him to trials upon sieves made of wire-gauze, or metallic plates perforated with numerous small holes; and he found it was impossible to pass explosions through them.

The apertures in the gauze should never be more than 1-20th of an inch square. In the working models sent by Sir H. to the mines, there were 748 apertures in the square inch, and the wire was about the 40th of an inch diameter. The cage or cylinder of wire gauze should be made by double joinings, the gauze being folded over in such a manner as to leave no apertures. It should not be more than two inches in diameter; or in large cylinders the combustion of the fire-damp renders the top inconvenientlyhot; and a double top is always a proper precaution, fixed at a distance of about half an inch above the first top. The gauze cylinder should be fastened to the lamp by a screw of 4 or 5 turns. All joinings in the lamp should be made with hard solder; and the security depends upon the condition, that no aperture exists in the apparatus larger than in the wire gauze.

The forms of the lamp and cage, and the mode of burning the wick, may be greatly diversified; but the principle which ensures their safety must be strictly attended to. SeeLamp of Davy,Safety Lamp, andVentilation.

The state of the air in coal mines, from very early periods till the discovery of the safe-lamp, was judged of by the appearances exhibited by the flame of a candle; and this test must in many circumstances be still had recourse to. When there is merely a defect of atmospheric oxygen, the air being also partially vitiated by a little carbonic acid, either from choke-damp or the lungs and candles of the miners, the lights burn with a very dull flame, the tallow ceases to melt in the cup formed round the wick, till the flame flickers and expires. In this case the candle may be kept burning by slanting it more or less towards a horizontal position, which causes the tallow to melt with the edge of the flame. The candle is thus rapidly wasted, however; and therefore an oil lamp is preferable, as it continues to burn where a candle would be extinguished. The candles of the collier are generally small, with a very small wick; such being found to produce a more distinct flame than candles of a large size with a thick wick.

In trying the quality of the air by the flame of a candle, the wick must be trimmed by taking off the snuff, so as to produce a clear, distinct, and steady-burning flame. When a candle thus trimmed is looked at in common air, a distinct and well-defined cone of flame is seen, of a fine sky-blue at the bottom next the wick, and thence of a bright yellow to the apex of the cone. Besides this appearance, there is another, surrounding the cone, which the brightness of the flame prevents the eye from discerning. This may be seen by placing one of the hands expanded as a screen betwixt the eyes and the candle, and at the distance of about an inch, so that the least point of the apex of the yellow flame may be seen, and no more. By this method, a top, as the miners term it, will be distinctly observed close to the apex of the yellow flame, from an eighth to a quarter of an inch in length. This top is of a yellowish-brown colour, and like a misty haze. This haze is seen not only on the top, but it extends downwards and surrounds the flame fully half way, about a twentieth of an inch in thickness; here it assumes a violet colour, which passes into a beautiful blue at the bottom next the wick. The test of the state of the air in mines, or “trying the candle,” as practised by miners, depends entirely on the appearance which this haze assumes in shape and colour at the top of the flame. In fact, this top has distinct appearances when burning in atmospheric air, carbonated air, azotized air, or fire-damp air; displaying many modifications, according to the proportions of the various admixtures.

When azote or carbonic acid abounds, the top is frequently an inch or two in length, of a decided brown colour, and the flame is short and dim. When they are still more copious, the flame goes out, and the miners immediately retire.

When inflammable air is imagined to exist in considerable quantity, the miner trims his candle, and advances with cautious step, holding the candle with the left hand, and screening the flame with the right; and as the fire-damp floats in the upper part of the gallery next the roof, he holds the candle as low as he can, and keeping his eye fixed on the tip, he moves forwards. If the gas be small in quantity, he may reach the forehead without observing any material change in his light. But if in his advance he perceives the tip to elongate, and take a bluish-gray colour, he is put on his guard, and steps on with much caution; and if the tip begins to spire, he drops down on one knee, and holding the candle near the pavement, gradually raises it up, and watches the change it undergoes as it approaches the roof. If the gas be copious, the flame elongates into a sharp spire, as well as the top. It is in general reckoned dangerous when the tip changes from the bluish-gray to a fine blue colour, accompanied with minute luminous points, which pass rapidly upwards through the flame and top. When the symptoms are manifestly dangerous, a sudden movement of the hands or body is liable to produce ignition by agitation of the fire-damp. The experienced miner therefore slowly and cautiously lowers his candle to the pavement, and then turning round, effects his retreat slowly, or slips up his right hand and extinguishes the flame with his finger and thumb. Should he venture too far, and approach the body of gas in an explosive condition, the tip of the candle rapidly elongates, and the whole rises in a sharp spire several inches in length; and then the whole surrounding atmosphere is in a blaze, an explosion ensues, and destructive ravage is the consequence, to an extent proportioned to the quantity of fire-damp. SeeSafety Lamp, andVentilation.

Thistrying the candleis a delicate operation, requiring much practical sagacity, where the lives of so many men, and the welfare of the whole establishment, are at stake. Almost every colliery, after having been worked for some time, gives a peculiar top tothe candle; so that while in one mine liable to fire-damp an explosion will take place with a top less than an inch long, in another mine the top may be two inches high, and yet the air be considerably under the point of accension. These differences depend on several particulars. If the gas has not passed through a long course of ventilation, and is little mixed with air, it will ignite with a very short top; while on the other hand, a gas which has run through a ventilation of 20 or 30 miles may cause the production of a long top without hazard. It is hence obvious, that skilful experience, and thorough practical knowledge, are the only sure guides in these cases.


Back to IndexNext