Chapter 118

PRECIPITATE, is any matter separated in minute particles from the bosom of a fluid, which subsides to the bottom of the vessel in a pulverulent form.

PRECIPITATE, is any matter separated in minute particles from the bosom of a fluid, which subsides to the bottom of the vessel in a pulverulent form.

PRECIPITATION, is the actual subsidence of a precipitate.

PRECIPITATION, is the actual subsidence of a precipitate.

PRESS, HYDRAULIC. Though the explanation of the principles of this powerful machine belongs to a work upon mechanical engineering, rather than to one uponmanufactures, yet as it is often referred to in this volume, a brief description of it cannot be unacceptable to many of my readers.Hydraulic pressThe framing consists of two stout cast-iron platesa,b, which are strengthened by projecting ribs, not seen in the section,fig.909.The top or crown plateb, and the base-platea,a, are bound most firmly together by 4 cylinders of the best wrought iron,c,c, which pass up through holes near the ends of the said plates, and are fast wedged in them. The flat piecese,e, are screwed to the ends of the crown and base plates, so as to bind the columns laterally.f, is the hollow cylinder of the press, which, as well as the ramg, is made of cast iron. The upper part of the cavity of the cylinder is cast narrow, but is truly and smoothly rounded at the boring-mill, so as to fit pretty closely round a well-turned ram or piston; the under part of it is left somewhat wider in the casting. A stout cup of leather, perforated in the middle, is put upon the ram, and serves as a valve to render the neck of the cylinder perfectly water-tight, by filling up the space between it and the ram; and since the mouth of the cup is turned downwards, the greater the pressure of water upwards, the more forcibly are the edges of the leather valve pressed against the inside of the cylinder, and the tighter does the joint become. This was Bramah’s beautiful invention.Upon the top of the ram, the press-plate or table, strengthened with projecting ridges, rests, which is commonly called the follower, because it follows the ram closely in its descent. This plate has a half-round hole at each of its four corners, corresponding to the shape of the four iron columns along which it glides in its up-and-down motions of compression and relaxation.Hydraulic pumpk,k,figs.909.and910., is the framing of a force pump with a narrow barrel;iis the well for containing water to supply the pump. To spare room in the engraving, the pump is set close to the press, but it may be removed to any convenient distance by lengthening the water-pipeu, which connects the discharge of the force pump with the inside of the cylinder of the press.Fig.911.is a section of the pump and its valves. The pumpm, is of bronze; the suction-pipen, has a conical valve with a long tail; the solid piston or plungerp, is smaller than the barrel in which it plays, and passes at its top through a stuffing-boxq;ris the pressure-valve,sis the safety-valve, which, infig.910., is seen to be loaded with a weighted lever;tis the discharge-valve, for letting the water escape, from the cylinder beneath the ram, back into the well. See the winding passages infig.912.uis the tube which conveys the water from the pump into the press-cylinder. Infig.910.two centres of motion for the pump-lever are shown. By shifting the bolt into the centre nearest the pump-rod, the mechanical advantage of the workman may be doubled. Two pumps are generally mounted in one frame for one hydraulic press; the larger to give a rapid motion to the ram at the beginning, when the resistance is small; the smaller to give a slower but more powerful impulsion, when the resistance is much increased. A pressure of 500 tons may be obtained from a well-made hydraulic press with a ten-inch ram, and a two and a one inch set of pumps. SeeStearine Press.

PRESS, HYDRAULIC. Though the explanation of the principles of this powerful machine belongs to a work upon mechanical engineering, rather than to one uponmanufactures, yet as it is often referred to in this volume, a brief description of it cannot be unacceptable to many of my readers.

Hydraulic press

The framing consists of two stout cast-iron platesa,b, which are strengthened by projecting ribs, not seen in the section,fig.909.The top or crown plateb, and the base-platea,a, are bound most firmly together by 4 cylinders of the best wrought iron,c,c, which pass up through holes near the ends of the said plates, and are fast wedged in them. The flat piecese,e, are screwed to the ends of the crown and base plates, so as to bind the columns laterally.f, is the hollow cylinder of the press, which, as well as the ramg, is made of cast iron. The upper part of the cavity of the cylinder is cast narrow, but is truly and smoothly rounded at the boring-mill, so as to fit pretty closely round a well-turned ram or piston; the under part of it is left somewhat wider in the casting. A stout cup of leather, perforated in the middle, is put upon the ram, and serves as a valve to render the neck of the cylinder perfectly water-tight, by filling up the space between it and the ram; and since the mouth of the cup is turned downwards, the greater the pressure of water upwards, the more forcibly are the edges of the leather valve pressed against the inside of the cylinder, and the tighter does the joint become. This was Bramah’s beautiful invention.

Upon the top of the ram, the press-plate or table, strengthened with projecting ridges, rests, which is commonly called the follower, because it follows the ram closely in its descent. This plate has a half-round hole at each of its four corners, corresponding to the shape of the four iron columns along which it glides in its up-and-down motions of compression and relaxation.

Hydraulic pump

k,k,figs.909.and910., is the framing of a force pump with a narrow barrel;iis the well for containing water to supply the pump. To spare room in the engraving, the pump is set close to the press, but it may be removed to any convenient distance by lengthening the water-pipeu, which connects the discharge of the force pump with the inside of the cylinder of the press.Fig.911.is a section of the pump and its valves. The pumpm, is of bronze; the suction-pipen, has a conical valve with a long tail; the solid piston or plungerp, is smaller than the barrel in which it plays, and passes at its top through a stuffing-boxq;ris the pressure-valve,sis the safety-valve, which, infig.910., is seen to be loaded with a weighted lever;tis the discharge-valve, for letting the water escape, from the cylinder beneath the ram, back into the well. See the winding passages infig.912.uis the tube which conveys the water from the pump into the press-cylinder. Infig.910.two centres of motion for the pump-lever are shown. By shifting the bolt into the centre nearest the pump-rod, the mechanical advantage of the workman may be doubled. Two pumps are generally mounted in one frame for one hydraulic press; the larger to give a rapid motion to the ram at the beginning, when the resistance is small; the smaller to give a slower but more powerful impulsion, when the resistance is much increased. A pressure of 500 tons may be obtained from a well-made hydraulic press with a ten-inch ram, and a two and a one inch set of pumps. SeeStearine Press.

PRINCE’S METAL, or Prince Rupert’s metal, is a modification of brass.

PRINCE’S METAL, or Prince Rupert’s metal, is a modification of brass.

PRINTING INK. (Encre d’imprimerie, Fr.;Buchdruckerfarbe, Germ.) After reviewing the different prescriptions given by Moxon, Breton, Papillon, Lewis, those in Nicholson’s and the Messrs. Aikins’ Dictionaries, in Rees’ Cyclopædia, and in the French Printer’s Manual, Mr. Savage[43]says, that the Encyclopædia Britannica is the only work, to his knowledge, which has given a recipe by which a printing ink might be made, that could be used, though it would be of inferior quality, as acknowledged by the editor; for it specifies neither the qualities of the materials, nor their due proportions. The fine black ink made by Mr. Savage, has, he informs us, been pronounced by some of our first printers to be unrivalled; and has procured for him the large medal from the Society for the Encouragement of Arts.[43]In his work on the Preparation of Printing Ink; 8vo, London, 1832.1.Linseed oil.—Mr. S. says, that the linseed oil, however long boiled, unless set fire to, cannot be brought into a proper state for forming printing ink; and that the flame may be most readily extinguished by the application of a pretty tight tin cover to the top of the boiler, which should never be more than half full. The French prefer nut oil to linseed; but if the latter be old, it is fully as good, and much cheaper, in this country at least.2.Black rosinis an important article in the composition of good ink; as by meltingit in the oil, when that ingredient is sufficiently boiled and burnt, the two combine, and form a compound approximating to a natural balsam, like that of Canada, which is itself one of the best varnishes that can be used for printing ink.3.Soap.—This is a most important ingredient in printer’s ink, which is not even mentioned in any of the recipes prior to that in the Encyclopædia Britannica. For want of soap, ink accumulates upon the face of the types, so as completely to clog them up after comparatively few impressions have been taken; it will not wash off without alkaline lyes, and it skins over very soon in the pot. Yellow rosin soap is the best for black inks; for those of light and delicate shades, white curd soap is preferable. Too much soap is apt to render the impression irregular, and to prevent the ink from drying quickly. The proper proportion has been hit, when the ink works clean, without clogging the surface of the types.4.Lamp black.—The vegetable lamp black, sold in firkins, takes by far the most varnish, and answers for making the best ink. SeeBlack.5.Ivory blackis too heavy to be used alone as a pigment for printing ink; but it may be added with advantage by grinding a little of it upon a muller with the lamp black, for certain purposes; for instance, if an engraving on wood is required to be printed so as to produce the best possible effect.6.Indigoalone, or with an equal weight of prussian blue, added in small proportion, takes off the brown tone of certain lamp-black inks. Mr. Savage recommends a little Indian red to be ground in with the indigo and prussian blue, to give a rich tone to the black ink.7.Balsam of capivi, as sold by Mr. Allen, Plough-court, Lombard-street, mixed, by a stone and a muller, with a due proportion of soap and pigment, forms an extemporaneous ink, which the printer may employ very advantageously when he wishes to execute a job in a peculiarly neat manner. Canada balsam does not answer quite so well.After the smoke begins to rise from the boiling oil, a bit of burning paper stuck in the cleft end of a long stick, should be applied to the surface, to set it on fire, as soon as the vapour will burn; and the flame should be allowed to continue (the pot being meanwhile removed from over the fire, or the fire taken from under the pot,) till a sample of the varnish, cooled upon a pallet-knife, draws out into strings of about half an inch long between the fingers. To six quarts of linseed oil thus treated, six pounds of rosin should be gradually added, as soon as the froth of the ebullition has subsided. Whenever the rosin is dissolved, one pound and three quarters of dry brown soap, of the best quality, cut into slices, is to be introduced cautiously, for its water of combination causes a violent intumescence. Both the rosin and soap should be well stirred with the spatula. The pot is to be now set upon the fire, in order to complete the combination of all the constituents.Put next of well ground indigo and prussian blue, each 21⁄2ounces, into an earthen pan, sufficiently large to hold all the ink, along with 4 pounds of the best mineral lamp black, and 31⁄2pounds of good vegetable lamp black; then add the warm varnish by slow degrees, carefully stirring, to produce a perfect incorporation of all the ingredients. This mixture is next to be subjected to a mill, or slab and muller, till it be levigated into a smooth uniform paste.One pound of a superfine printing ink may be made by the following recipe of Mr. Savage:—Balsam of capivi, 9 oz.; lamp black, 3 oz.; indigo and prussian blue, together, p. æq. 11⁄4oz.; Indian red,3⁄4oz.; turpentine (yellow) soap, dry, 3 oz. This mixture is to be ground upon a slab, with a muller, to an impalpable smoothness. The pigments used for coloured printing inks are, carmine, lakes, vermillion, red lead, Indian red, Venetian red, chrome yellow, chrome red or orange, burntterra di Sienna, gall-stone, Roman ochre, yellow ochre, verdigris, blues and yellows mixed for greens, indigo, prussian blue, Antwerp blue, lustre, umber, sepia, browns mixed with Venetian red, &c.

PRINTING INK. (Encre d’imprimerie, Fr.;Buchdruckerfarbe, Germ.) After reviewing the different prescriptions given by Moxon, Breton, Papillon, Lewis, those in Nicholson’s and the Messrs. Aikins’ Dictionaries, in Rees’ Cyclopædia, and in the French Printer’s Manual, Mr. Savage[43]says, that the Encyclopædia Britannica is the only work, to his knowledge, which has given a recipe by which a printing ink might be made, that could be used, though it would be of inferior quality, as acknowledged by the editor; for it specifies neither the qualities of the materials, nor their due proportions. The fine black ink made by Mr. Savage, has, he informs us, been pronounced by some of our first printers to be unrivalled; and has procured for him the large medal from the Society for the Encouragement of Arts.

[43]In his work on the Preparation of Printing Ink; 8vo, London, 1832.

[43]In his work on the Preparation of Printing Ink; 8vo, London, 1832.

1.Linseed oil.—Mr. S. says, that the linseed oil, however long boiled, unless set fire to, cannot be brought into a proper state for forming printing ink; and that the flame may be most readily extinguished by the application of a pretty tight tin cover to the top of the boiler, which should never be more than half full. The French prefer nut oil to linseed; but if the latter be old, it is fully as good, and much cheaper, in this country at least.

2.Black rosinis an important article in the composition of good ink; as by meltingit in the oil, when that ingredient is sufficiently boiled and burnt, the two combine, and form a compound approximating to a natural balsam, like that of Canada, which is itself one of the best varnishes that can be used for printing ink.

3.Soap.—This is a most important ingredient in printer’s ink, which is not even mentioned in any of the recipes prior to that in the Encyclopædia Britannica. For want of soap, ink accumulates upon the face of the types, so as completely to clog them up after comparatively few impressions have been taken; it will not wash off without alkaline lyes, and it skins over very soon in the pot. Yellow rosin soap is the best for black inks; for those of light and delicate shades, white curd soap is preferable. Too much soap is apt to render the impression irregular, and to prevent the ink from drying quickly. The proper proportion has been hit, when the ink works clean, without clogging the surface of the types.

4.Lamp black.—The vegetable lamp black, sold in firkins, takes by far the most varnish, and answers for making the best ink. SeeBlack.

5.Ivory blackis too heavy to be used alone as a pigment for printing ink; but it may be added with advantage by grinding a little of it upon a muller with the lamp black, for certain purposes; for instance, if an engraving on wood is required to be printed so as to produce the best possible effect.

6.Indigoalone, or with an equal weight of prussian blue, added in small proportion, takes off the brown tone of certain lamp-black inks. Mr. Savage recommends a little Indian red to be ground in with the indigo and prussian blue, to give a rich tone to the black ink.

7.Balsam of capivi, as sold by Mr. Allen, Plough-court, Lombard-street, mixed, by a stone and a muller, with a due proportion of soap and pigment, forms an extemporaneous ink, which the printer may employ very advantageously when he wishes to execute a job in a peculiarly neat manner. Canada balsam does not answer quite so well.

After the smoke begins to rise from the boiling oil, a bit of burning paper stuck in the cleft end of a long stick, should be applied to the surface, to set it on fire, as soon as the vapour will burn; and the flame should be allowed to continue (the pot being meanwhile removed from over the fire, or the fire taken from under the pot,) till a sample of the varnish, cooled upon a pallet-knife, draws out into strings of about half an inch long between the fingers. To six quarts of linseed oil thus treated, six pounds of rosin should be gradually added, as soon as the froth of the ebullition has subsided. Whenever the rosin is dissolved, one pound and three quarters of dry brown soap, of the best quality, cut into slices, is to be introduced cautiously, for its water of combination causes a violent intumescence. Both the rosin and soap should be well stirred with the spatula. The pot is to be now set upon the fire, in order to complete the combination of all the constituents.

Put next of well ground indigo and prussian blue, each 21⁄2ounces, into an earthen pan, sufficiently large to hold all the ink, along with 4 pounds of the best mineral lamp black, and 31⁄2pounds of good vegetable lamp black; then add the warm varnish by slow degrees, carefully stirring, to produce a perfect incorporation of all the ingredients. This mixture is next to be subjected to a mill, or slab and muller, till it be levigated into a smooth uniform paste.

One pound of a superfine printing ink may be made by the following recipe of Mr. Savage:—Balsam of capivi, 9 oz.; lamp black, 3 oz.; indigo and prussian blue, together, p. æq. 11⁄4oz.; Indian red,3⁄4oz.; turpentine (yellow) soap, dry, 3 oz. This mixture is to be ground upon a slab, with a muller, to an impalpable smoothness. The pigments used for coloured printing inks are, carmine, lakes, vermillion, red lead, Indian red, Venetian red, chrome yellow, chrome red or orange, burntterra di Sienna, gall-stone, Roman ochre, yellow ochre, verdigris, blues and yellows mixed for greens, indigo, prussian blue, Antwerp blue, lustre, umber, sepia, browns mixed with Venetian red, &c.

PRINTING MACHINE. (Typographie mécanique, Fr.;Druckmaschine, Germ.) In reviewing those great eras of national industry, when the productive arts, after a long period of irksome vassalage, have suddenly achieved some new conquest over the inertia of matter, the contemplative mind cannot fail to be struck with the insignificant part which the academical philosopher has generally played in such memorable events.Engrossed with barren syllogisms, or equational theorems, often little better than truisms in disguise, he nevertheless believes in the perfection of his attainments, and disdains to soil his hands with those handicraft operations at which all improvements in the arts must necessarily begin. He does not deem manufacture worthy of his regard, till it has worked out its own grandeur and independence with patient labour and consummate skill. In this spirit the men of speculative science neglected for 60 years the steam engine of Newcomen, till the artisan Watt transformed it into an automatic prodigy; they have never deigned to illustrate by dynamical investigations the factory mechanismsof Arkwright, yet nothing in the whole compass of art deserves it so well; and though perfectly aware that revolvency is the leading law in the system of the universe, they have never thought of showing the workman that this was also the true principle of every automatic machine.These remarks seem to be peculiarly applicable to book-printing, an art invented for the honour of learning and the glory of the learned, though they have done nothing for its advancement; yet by the overruling bounty of Providence it has eventually served as the great teacher and guardian of the whole family of man.It has been justly observed by Mr. Cowper, in his ingenious lecture,[44]that no improvement had been introduced in this important art, from its invention till the year 1798, a period of nearly 350 years. In Dr. Dibdin’s interesting account of printing, in the Bibliographical Decameron, may be seen representations of the early printing-presses, which exactly resemble the wooden presses in use at the present day. A new era has, however, now arrived, when the demands for prompt circulation of political intelligence require powers of printing newspapers beyond the reach of the most expeditious hand presswork.[44]On the recent improvements in printing, first delivered at the Royal Institution, February 22, 1828.For the first essential modification of the old press, the world is indebted to the late Earl Stanhope.[45]His press is formed of iron, without any wood; the table upon which the form of types is laid, as well as the platen or surface which immediately gives the impression, is of cast iron, made perfectly level; the platen being large enough to print a whole sheet at one pull. The compression is applied by a beautiful combination of levers, which give motion to the screw, cause the platen to descend with progressively increasing force till it reaches the type, when the power approaches the maximum; upon the infinite lever principle, the power being applied to straighten an obtuse-angled jointed lever. This press, however, like all its flat-faced predecessors, does not act by a continuous, but a reciprocating motion, and can hardly be made automatic; nor does it much exceed the old presses in productiveness, since it can turn off only 250 impressions per hour.[45]Lord Stanhope is the only man of learning whose name figures in the annals of typography.Nicholson’s for arched type.Nicholson’s for common type.Nicholson’s for arched type.Nicholson’s for common type.The first person who publicly projected a self-acting printing-press, was Mr. William Nicholson, the able editor of the Philosophical Journal, who obtained a patent in 1790-1, for imposing types upon a cylindrical surface; this disposition of types, plates, and blocks, being a new invention (seefig.913.); 2, for applying the ink upon the surface of the types, &c., by causing the surface of a cylinder smeared with the colouring-matter to roll over them; or else causing the types to apply themselves to the said cylinder. For the purpose of spreading the ink evenly over this cylinder, he proposed to apply three or more distributing rollers longitudinally against the inking cylinder, so that they might be turned by the motion of the latter. 3. “I perform,” he says, “all my impressions by the actionof a cylinder, or cylindrical surface; that is, I cause the paper to pass between two cylinders, one of which has the form of types attached to it, and forming part of its surface; and the other is faced with cloth, and serves to press the paper so as to take off an impression of the colour previously applied; or otherwise I cause the form of types, previously coloured, to pass in close and successive contact with the paper wrapped round a cylinder with woollen.” (Seefigs.913.and914.)[46][46]The black parts in these little diagrams,913-922, indicate the inking apparatus; the diagonal lines, the cylinders upon which the paper to be printed is applied; the perpendicular lines, the plates or types; and the arrows show the track pursued by the sheet of paper.In this description Mr. Nicholson indicates pretty plainly the principal parts of modern printing machines; and had he paid the same attention to any one part of his invention which he fruitlessly bestowed upon attempts to attach types to a cylinder, or had he bethought himself of curving stereotype plates, which were then beginning to be talked of, he would in all probability have realized a working apparatus, instead of scheming merely ideal plans.The first operative printing machine was undoubtedly contrived by, and constructed under the direction of, M. König, a clockmaker from Saxony, who, so early as the year 1804, was occupied in improving printing-presses. Having failed to interest the continental printers in his views, he came to London soon after that period, and submitted his plans to Mr. T. Bensley, our celebrated printer, and to Mr. R. Taylor, now one of the editors of the Philosophical Magazine.These gentlemen afforded Mr. König and his assistant Bauer, a German mechanic, liberal pecuniary support. In 1811, he obtained a patent for a method of working a common hand-press by power; but after much expense and labour he was glad to renounce the scheme. He then turned his mind to the use of a cylinder for communicating the pressure, instead of a flat plate; and he finally succeeded, sometime before the 28th November 1814, in completing his printing automaton; for on that day the editors of the Times informed their readers that they were perusing for the first time a newspaper printed by steam-impelled machinery; it is a day, therefore, which will be ever memorable in the annals of typography.König’s single, for one side of the sheet.In that machine the form of type was made to traverse horizontally under the pressure cylinder, with which the sheet of paper was held in close embrace by means of a series of endless tapes. The ink was placed in a cylindrical box, from which it was extruded by means of a powerful screw, depressing a well-fitted piston; it then fell between two iron rollers, and was by their rotation transferred to several other subjacent rollers, which had not only a motion round their axes, but an alternating traverse motion (endwise). This system of equalizing rollers terminated in two which applied the ink to the types. (Seefig.915). This plan of inking evidently involved a rather complex mechanism, was hence difficult to manage, and sometimes required two hours to get into good working trim. It has been superseded by a happy invention of Mr. Cowper, to be presently described.In order to obtain a great many impressions rapidly from the same form, a paper-conducting cylinder (one embraced by the paper) was mounted upon each side of the inking apparatus, the form being made to traverse under both of them. This double-action machine threw off 1100 impressions per hour when first finished; and by a subsequent improvement, no less than 1800.König’s double, for both sides of the sheet.Mr. König’s next feat was the construction of a machine for printing both sides of the newspaper at each complete traverse of the forms. This resembled two single machines, placed with their cylinders towards each other, at a distance of two or three feet; the sheet was conveyed from one paper cylinder to another, as before, by means of tapes; the track of the sheet exactly resembled the letter S laid horizontally, thus,Horizontal S; and the sheet was turned over or reversed in the course of its passage. At the first paper cylinder it received the impression from the first form, and at the second it received it from the second form; whereby the machine could print 750 sheets of book letter-press on both sides in an hour. This new register apparatus was erected for Mr. T. Bensley, in the year 1815, being the only machine made by Mr. König for printing upon both sides. Seefig.916.Donkin and Bacon’s for type.Messrs. Donkin and Bacon had for some years previous to this date been busily engaged with printing machines, and had indeed, in 1813, obtained a patent for an apparatus, in which the types were placed upon the sides of a revolving prism; the ink was applied by a roller, which rose and fell with the eccentricities of the prismatic surface, and the sheet was wrapped upon another prism fashioned so as to coincide with the eccentricities of the type prism. One such machine was erected for the University of Cambridge. (Seefig.917.) It was a beautiful specimen of ingenious contrivance and good workmanship. Though it was found to be too complicated for common operatives, and defective in the mechanism of the inking process; yet it exhibited for the first time the elastic inking rollers, composed of glue combined with treacle, which alone constitute one of the finest inventions of modern typography. In König’s machine the rollers were of metal covered with leather, and never answered their purpose very well.Before proceeding further, I may state that the above elastic composition, which resembles caoutchouc not a little, but is not so firm, is made by dissolving with heat, in two pounds of ordinary treacle, one pound of good glue, previously soaked during a night in cold water.Cowper’s single, for curved stereotype.Cowper’s double, for both sides of the sheet.Cowper’s single, for curved stereotype.Cowper’s double, for both sides of the sheet.In the year 1815, Mr. Cowper turned his scientific and inventive mind to the subject of printing machines, and has since, in co-operation with his partner, Mr. Applegath, carried them to an unlooked-for degree of perfection. In 1815 Mr. Cowper obtained a patent for curving stereotype plates, for the purpose of fixing them on a cylinderSeveral machines so mounted, capable of printing 1000 sheets per hour upon both sides, are at work at the present day; twelve machines on this principle having been made for the Directors of the Bank of England a short time previous to their re-issuing gold. Seefigs.918.and919.It deserves to be remarked here, that the same object seems to have occupied the attention of Nicholson, Donkin, Bacon, and Cowper; viz., the revolution, of the form of types. Nicholson sought to effect this by giving to the shank of a type a shape like the stone of an arch; Donkin and Bacon by attaching types to the sides of a revolving prism; and Cowper, more successfully, by curving a stereotype plate. (Seefig.918.) In these machines Mr. Cowper places two paper cylinders side by side, and against each of them a cylinder for holding the plates; each of these four cylinders is about two feet in diameter. Upon the surface of the stereotype-plate cylinder, four or five inking rollers of about three inches in diameter are placed; they are kept in their position by a frame at each end of the said cylinder, and the axles of the rollers rest in vertical slots of the frame, whereby having perfect freedom of motion, they act by their gravity alone, and require no adjustment.The frame which supports the inking rollers, called the waving-frame, is attached by hinges to the general framework of the machine; the edge of the stereotype-plate cylinder is indented, and rubs against the waving-frame, causing it to vibrate to and fro, and consequently to carry the inking rollers with it, so as to give them an unceasing traverse movement. These rollers distribute the ink over three-fourths of the surface of the cylinder, the other quarter being occupied by the curved stereotype plates. The ink is contained in a trough, which stands parallel to the said cylinder, and is formed by a metal roller revolving against the edge of a plate of iron; in its revolution it gets covered with a thin film of ink, which is conveyed to the plate-cylinder by a distributing roller vibrating between both. The ink is diffused upon the plate cylinder as before described; the plates in passing under the inking rollers become charged with the coloured varnish; and as the cylinder continues to revolve, the plates come into contact with a sheet of paper on the first paper cylinder, which is then carried by means of tapes to the second paper cylinder, where it receives an impression upon its opposite side from the plates upon the second cylinder.Thus the printing of the sheet is completed. Though the above machine be applicable only to stereotype plates, it has been of general importance, because it formed the foundation of the future success of Messrs. Cowper and Applegath’s printing machinery, by showing them the best method of serving out, distributing, and applying the coloured varnish to the types.In order to adapt this method of inking to a flat type-form machine, it was merely requisite to do the same thing upon an extended flat surface or table, which had been performed upon an extended cylindrical surface. Accordingly, Messrs. Cowper and Applegath constructed a machine for printing both sides of the sheet from type, including the inking apparatus, and the mode of conveying the sheet from the one paper cylinder to the other, by means of drums and tapes. It is highly creditable to the scientific judgment of these patentees, that in new modelling the printing machine, they dispensed with forty wheels, which existed in Mr. König’s apparatus, when Mr. Bensley requested them to apply their improvements to it.Cowper’s inking table and roller.The distinctive advantages of these machines, and which have not hitherto been equalled, are the uniform distribution of the ink, the equality as well as delicacy with which it is laid upon the types, the diminution in its expenditure, amounting to one half upon a given quantity of letter-press, and the facility with which the whole mechanism is managed. The band inking-roller, and distributing-table, now so common in every printing-office in Europe and America, is the invention of Mr. Cowper, and was specified in his patent. The vast superiority of the inking apparatus in his machines, over the balls used of old, induced him to apply it forthwith to the common press, and most successfully for the public; but with little or no profit to the inventor, as the plan was unceremoniously infringed throughout the kingdom, by such a multitude of printers, whether rich or poor, as to render all attempts at reclaiming his rights by prosecution hopeless. Seefig.920.Applegath and Cowper’s single.Applegath and Cowper’s double.Applegath and Cowper’s single.Applegath and Cowper’s double.To construct a printing machine which shall throw off two sides at a time with exact register, that is, with the second side placed precisely upon the back of thefirst, is a very difficult problem, which was first practically solved by Messrs. Applegath and Cowper. It is comparatively easy to make a machine which shall print the one side of a sheet of paper first, and then the other side, by the removal of one form, and the introduction of another; and thus far did Mr. König advance. A correct register requires the sheet, after it has received its first impression from one cylinder, to travel round the peripheries of the cylinders and drums, at such a rate as to meet the types of the second side at the exact point which will ensure this side falling with geometrical nicety upon the back of the first. For this purpose, the cylinders and drums must revolve at the very same speed as the carriage underneath; hence the least incorrectness in the workmanship will produce such defective typography as will not be endured in book-printing at the present day, though it may be tolerated in newspapers. An equable distribution of the ink is of no less importance to beautiful letter-press. Seefigs.921.922.The machines represented infigs.923,924,925, are different forms of those which have been patented by Messrs. Applegath and Cowper. That shown infigs.923.and925.prints both sides of the sheet during its passage, and is capable of throwing off nearly 1000 finished sheets per hour. The moistened quires of blank paper being piled upon a tableA, the boy, who stands on the adjoining platform, takes up one sheet after another, and lays them upon the feederB, which has several linen girths passing across its surface, and round a pulley at each end of the feeder; so that whenever the pulleys begin to revolve, the motion of the girths carries forward the sheet, and delivers it over the entering rollerE, where it is embraced between two series of endless tapes, that pass round a series of tension rollers. These tapes are so placed as to fall partly between, and partly exterior to, the pages of the printing; whereby they remain in close contact with the sheet of paper on both of its sides during its progress through the machine. The paper is thus conducted from the first printing cylinderF, to the second cylinderG, without having the truth of its register impaired, so that the coincidence of the two pages is perfect. These two great cylinders, or drums, are made of cast iron, turned perfectly true upon a self-acting lathe;[47]they are clothed in these parts, corresponding to the typographic impression, with fine woollen cloth, calledblanketsby the pressmen, and revolve upon powerful shafts which rest in brass bearings of the strong framing of the machine. These bearings, or plummer blocks, are susceptible of any degree of adjustment, by set screws. The drumsHandIare made of wood; they serve to conduct the sheet evenly from the one printing cylinder to the other.[47]I have witnessed with much pleasure the turning of these great cylinders in Messrs. Cowper’s factory at Manchester.Printing pressPrinting pressPrinting pressFig. 925 enlarged(351 kB)One series of tapes commences at the upper part of the entering drumE, proceeds in contact with the right-hand side and under surface of the printing cylinderF, passesnext over the carrier-drumH, and under the carrier-drumI; then encompassing the left-hand side and under portion of the printing drumG, it passes in contact with the small tension rollersa,b,c,d,fig.925., and finally arrives at the rollerE, which may be called the commencement of the one series of endless tapes. The other series may be supposed to commence at the rollerh; it has an equal number of tapes, and corresponds with the former in being placed upon the cylinders so that the sheets of paper may be held securely between them. This second series descends from the rollerh,fig.925., to the entering drumE, where it meets and coincides with the first series in such a way that both sets of tapes proceed togetherunderthe printing cylinderF,overH,underI, androundG, until they arrive at the rolleri,fig.923., where they separate, after having continued in contact, except at the places where the sheets of paper are held between them. The tapes descend from the rolleri, to a roller atk, and, after passing in contact with rollers atl,m,n, they finally arrive at the rollerh, where they were supposed to commence. Hence two series of tapes act invariably in contact, without the least mutual interference, as may be seen by inspection of thefigs.923,924,925.The various cylinders and drums revolve very truly by means of a system of toothed wheels and pinions mounted at their ends. Two horizontal forms of types are laid at a certain distance apart upon the long carriageM, adjoining to each of which there is a flat metallic plate, or inking table, in the same plane. The common carriage, bearing its two forms of type and two inking tables, is moved backwards and forwards, from one end of the printing machine to the other, upon rollers attached to the frame-work, and in its traverse brings the types into contact with the sheet of paper clasped by the tapes round the surfaces of the printing cylinders. This alternate movement of the carriage is produced by a pinion working alternately into the opposite sides of a rack under the table. The pinion is driven by the bevel wheelsK.The mechanism for supplying the ink, and distributing it over the forms, is one of the most ingenious and valuable inventions belonging to this incomparable machine, and is so nicely adjusted, that a single grain of the pigment may suffice for printing one side of a sheet. Two similar sets of inking apparatus are provided; one at each end of the machine, adapted to ink its own form of type. The metal rollerL, called theductorroller, as it draws out the supply of ink, has a slow rotatory motion communicated to it by a catgut cord, which passes round a small pulley upon the end of the shaft of the printing cylinderG. A horizontal plate of metal, with a straight-ground edge, is adjusted by set screws, so as to stand nearly in contact with the ductor roller. This plate has an upright ledge behind, converting it into a sort of trough or magazine, ready to impart a coating of ink to the roller, as it revolves over the table. Another roller, covered with elastic composition (seesuprà), called the vibrating roller, is made to travel between the ductor roller and the inking table; the vibrating roller, as it rises, touches the ductor roller for an instant, abstracts a film of ink from it, and then descends to transfer it to the table. There are 3 or 4 small rollers of distribution, placed somewhat diagonally across the table atM, (inclined only 2 inches from a parallel to the end of the frame,) furnished with long slender axles, resting in vertical slots, whereby they are left at liberty to revolve and to traverse at the same time; by which compound movement they are enabled to efface all inequality in the surface of the varnish, or to effect a perfectdistribution of the ink along the table. The table thus evenly smeared, being made to pass under the 3 or 4 proper inking rollersN,fig.924., imparts to them an uniformfilm of ink, to be immediately transferred by them to the types. Hence each time that the forms make a complete traverse to and fro, which is requisite for the printing of every sheet, they are touched no less than eight times by the inking rollers. Both the distributing and inking rollers turn in slots, which permit them to rise and fall so as to bear with their whole weight upon the inking table and the form, whereby they never stand in need of any adjustment by screws, but are always ready for work when dropped into their respective places.Motion is given to the whole system of apparatus by a strap from a steam engine going round a pulley placed at the end of the axle at the back of the frame; one steam-horse power being adequate to drive two double printing machines; while a single machine may be driven by the power of two men acting upon a fly-wheel. In Messrs. Clowes’ establishment, in Stamford-street, two five-horse engines actuate nineteen of the above described machines.The operation of printing is performed as follows:—Seefig.926.The sheets being carefully laid, one by one, upon the linen girths, at the feederB, the rollersCandDare made to move, by means of a segment wheel, through a portion of a revolution. This movement carries on the sheet of paper sufficiently to introduce it between the two series of endless tapes at the point where they meet each other upon the entering drumE. As soon as the sheet is fairly embraced between the tapes, the rollersCandDare drawn back, by the operation of a weight, to their original position, so as to be ready to introduce another sheet into the machine. The sheet, advancing between the endless tapes, applies itself to the blanket upon the printing cylinderF, and as it revolves meets the first form of types, and receives their impression; after being thus printed on one side, it is carried, overHand underI, to the blanket upon the printing cylinderG, where it is placed in an inverted position; the printed side being now in contact with the blanket, and the white side being outwards, meets the second form of types at the proper instant, so as to receive the second impression, and get completely printed. The perfect sheet, on arriving at the pointi, where the two series of tapes separate, is tossed out by centrifugal force into the hands of a boy.Arrangement of printing pressThe diagram,fig.926.shows the arrangement of the tapes, agreeably to the preceding description; the feederB, with the rollersCandD, is seen to have an independent endless girth.Diagram of printing pressThe diagram,fig.927.explains the structure of the great machine contrived by Messrs. Applegath and Cowper for printing theTimesnewspaper. Here there are four places to lay on the sheets, and four to take them off; consequently, the assistance of eight lads is required.P,P,P,P, are the four piles of paper;F,F,F,F, are the four feeding-boards;E,E,E,E, are the four entering drums, upon which the sheets are introduced between the tapest,t,t,t, whence they are conducted to thefour printing cylinders 1, 2, 3, 4;Tis the form of type;I,I, are two inking tables, of which one is placed at each end of the form. The inking apparatus is similar to that above described, with the addition of two central inking rollersR, which likewise receive their ink from the inking tables. The printing cylinders 1, 2, 3, 4, are made to rise and fall about half an inch; the first and third simultaneously, as also the second and fourth. The form of type, in passing fromAtoB, prints sheets at 1 and 3; in returning fromBtoA, it prints sheets at 4 and 2; while the cylinder alternately falls to give the impression, and rises to permit the form to pass untouched.Each of the lines markedt, consists of two endless tapes, which run in contact at the parts shown, but separate at the entering drumsE, and at the taking off partso,o,o,o. The return of the tapes to the entering drum is omitted in the diagram, to avoid confusion of the lines.The sheets of paper being laid upon their respective feeding-boards, with the fore edges just in contact with the entering drum, a small roller, called the drop-down roller, falls, at proper intervals, down upon the edges of the sheets; the drum and the roller being then removed, instantly carry on the sheet, between the tapest, downwards to the printing cylinder, and thence upwards too,o,o,o, where the tapes are parted, and the sheet falls into the hands of the attendant boy. This noble mechanism is so perfectly equipped, that it is generally in full work within four minutes after the form is brought into the machine-room. The speed of König’s machine, by which theTimeswas formerly printed, was such as to turn out 1800 papers per hour; that of Applegath and Cowper throws off 4200 per hour, and it has been daily in use during eight years.

PRINTING MACHINE. (Typographie mécanique, Fr.;Druckmaschine, Germ.) In reviewing those great eras of national industry, when the productive arts, after a long period of irksome vassalage, have suddenly achieved some new conquest over the inertia of matter, the contemplative mind cannot fail to be struck with the insignificant part which the academical philosopher has generally played in such memorable events.

Engrossed with barren syllogisms, or equational theorems, often little better than truisms in disguise, he nevertheless believes in the perfection of his attainments, and disdains to soil his hands with those handicraft operations at which all improvements in the arts must necessarily begin. He does not deem manufacture worthy of his regard, till it has worked out its own grandeur and independence with patient labour and consummate skill. In this spirit the men of speculative science neglected for 60 years the steam engine of Newcomen, till the artisan Watt transformed it into an automatic prodigy; they have never deigned to illustrate by dynamical investigations the factory mechanismsof Arkwright, yet nothing in the whole compass of art deserves it so well; and though perfectly aware that revolvency is the leading law in the system of the universe, they have never thought of showing the workman that this was also the true principle of every automatic machine.

These remarks seem to be peculiarly applicable to book-printing, an art invented for the honour of learning and the glory of the learned, though they have done nothing for its advancement; yet by the overruling bounty of Providence it has eventually served as the great teacher and guardian of the whole family of man.

It has been justly observed by Mr. Cowper, in his ingenious lecture,[44]that no improvement had been introduced in this important art, from its invention till the year 1798, a period of nearly 350 years. In Dr. Dibdin’s interesting account of printing, in the Bibliographical Decameron, may be seen representations of the early printing-presses, which exactly resemble the wooden presses in use at the present day. A new era has, however, now arrived, when the demands for prompt circulation of political intelligence require powers of printing newspapers beyond the reach of the most expeditious hand presswork.

[44]On the recent improvements in printing, first delivered at the Royal Institution, February 22, 1828.

[44]On the recent improvements in printing, first delivered at the Royal Institution, February 22, 1828.

For the first essential modification of the old press, the world is indebted to the late Earl Stanhope.[45]His press is formed of iron, without any wood; the table upon which the form of types is laid, as well as the platen or surface which immediately gives the impression, is of cast iron, made perfectly level; the platen being large enough to print a whole sheet at one pull. The compression is applied by a beautiful combination of levers, which give motion to the screw, cause the platen to descend with progressively increasing force till it reaches the type, when the power approaches the maximum; upon the infinite lever principle, the power being applied to straighten an obtuse-angled jointed lever. This press, however, like all its flat-faced predecessors, does not act by a continuous, but a reciprocating motion, and can hardly be made automatic; nor does it much exceed the old presses in productiveness, since it can turn off only 250 impressions per hour.

[45]Lord Stanhope is the only man of learning whose name figures in the annals of typography.

[45]Lord Stanhope is the only man of learning whose name figures in the annals of typography.

Nicholson’s for arched type.Nicholson’s for common type.

Nicholson’s for arched type.

Nicholson’s for arched type.

Nicholson’s for common type.

Nicholson’s for common type.

Nicholson’s for arched type.Nicholson’s for common type.

Nicholson’s for arched type.

Nicholson’s for arched type.

Nicholson’s for common type.

Nicholson’s for common type.

The first person who publicly projected a self-acting printing-press, was Mr. William Nicholson, the able editor of the Philosophical Journal, who obtained a patent in 1790-1, for imposing types upon a cylindrical surface; this disposition of types, plates, and blocks, being a new invention (seefig.913.); 2, for applying the ink upon the surface of the types, &c., by causing the surface of a cylinder smeared with the colouring-matter to roll over them; or else causing the types to apply themselves to the said cylinder. For the purpose of spreading the ink evenly over this cylinder, he proposed to apply three or more distributing rollers longitudinally against the inking cylinder, so that they might be turned by the motion of the latter. 3. “I perform,” he says, “all my impressions by the actionof a cylinder, or cylindrical surface; that is, I cause the paper to pass between two cylinders, one of which has the form of types attached to it, and forming part of its surface; and the other is faced with cloth, and serves to press the paper so as to take off an impression of the colour previously applied; or otherwise I cause the form of types, previously coloured, to pass in close and successive contact with the paper wrapped round a cylinder with woollen.” (Seefigs.913.and914.)[46]

[46]The black parts in these little diagrams,913-922, indicate the inking apparatus; the diagonal lines, the cylinders upon which the paper to be printed is applied; the perpendicular lines, the plates or types; and the arrows show the track pursued by the sheet of paper.

[46]The black parts in these little diagrams,913-922, indicate the inking apparatus; the diagonal lines, the cylinders upon which the paper to be printed is applied; the perpendicular lines, the plates or types; and the arrows show the track pursued by the sheet of paper.

In this description Mr. Nicholson indicates pretty plainly the principal parts of modern printing machines; and had he paid the same attention to any one part of his invention which he fruitlessly bestowed upon attempts to attach types to a cylinder, or had he bethought himself of curving stereotype plates, which were then beginning to be talked of, he would in all probability have realized a working apparatus, instead of scheming merely ideal plans.

The first operative printing machine was undoubtedly contrived by, and constructed under the direction of, M. König, a clockmaker from Saxony, who, so early as the year 1804, was occupied in improving printing-presses. Having failed to interest the continental printers in his views, he came to London soon after that period, and submitted his plans to Mr. T. Bensley, our celebrated printer, and to Mr. R. Taylor, now one of the editors of the Philosophical Magazine.

These gentlemen afforded Mr. König and his assistant Bauer, a German mechanic, liberal pecuniary support. In 1811, he obtained a patent for a method of working a common hand-press by power; but after much expense and labour he was glad to renounce the scheme. He then turned his mind to the use of a cylinder for communicating the pressure, instead of a flat plate; and he finally succeeded, sometime before the 28th November 1814, in completing his printing automaton; for on that day the editors of the Times informed their readers that they were perusing for the first time a newspaper printed by steam-impelled machinery; it is a day, therefore, which will be ever memorable in the annals of typography.

König’s single, for one side of the sheet.

König’s single, for one side of the sheet.

In that machine the form of type was made to traverse horizontally under the pressure cylinder, with which the sheet of paper was held in close embrace by means of a series of endless tapes. The ink was placed in a cylindrical box, from which it was extruded by means of a powerful screw, depressing a well-fitted piston; it then fell between two iron rollers, and was by their rotation transferred to several other subjacent rollers, which had not only a motion round their axes, but an alternating traverse motion (endwise). This system of equalizing rollers terminated in two which applied the ink to the types. (Seefig.915). This plan of inking evidently involved a rather complex mechanism, was hence difficult to manage, and sometimes required two hours to get into good working trim. It has been superseded by a happy invention of Mr. Cowper, to be presently described.

In order to obtain a great many impressions rapidly from the same form, a paper-conducting cylinder (one embraced by the paper) was mounted upon each side of the inking apparatus, the form being made to traverse under both of them. This double-action machine threw off 1100 impressions per hour when first finished; and by a subsequent improvement, no less than 1800.

König’s double, for both sides of the sheet.

König’s double, for both sides of the sheet.

Mr. König’s next feat was the construction of a machine for printing both sides of the newspaper at each complete traverse of the forms. This resembled two single machines, placed with their cylinders towards each other, at a distance of two or three feet; the sheet was conveyed from one paper cylinder to another, as before, by means of tapes; the track of the sheet exactly resembled the letter S laid horizontally, thus,Horizontal S; and the sheet was turned over or reversed in the course of its passage. At the first paper cylinder it received the impression from the first form, and at the second it received it from the second form; whereby the machine could print 750 sheets of book letter-press on both sides in an hour. This new register apparatus was erected for Mr. T. Bensley, in the year 1815, being the only machine made by Mr. König for printing upon both sides. Seefig.916.

Donkin and Bacon’s for type.

Donkin and Bacon’s for type.

Messrs. Donkin and Bacon had for some years previous to this date been busily engaged with printing machines, and had indeed, in 1813, obtained a patent for an apparatus, in which the types were placed upon the sides of a revolving prism; the ink was applied by a roller, which rose and fell with the eccentricities of the prismatic surface, and the sheet was wrapped upon another prism fashioned so as to coincide with the eccentricities of the type prism. One such machine was erected for the University of Cambridge. (Seefig.917.) It was a beautiful specimen of ingenious contrivance and good workmanship. Though it was found to be too complicated for common operatives, and defective in the mechanism of the inking process; yet it exhibited for the first time the elastic inking rollers, composed of glue combined with treacle, which alone constitute one of the finest inventions of modern typography. In König’s machine the rollers were of metal covered with leather, and never answered their purpose very well.

Before proceeding further, I may state that the above elastic composition, which resembles caoutchouc not a little, but is not so firm, is made by dissolving with heat, in two pounds of ordinary treacle, one pound of good glue, previously soaked during a night in cold water.

Cowper’s single, for curved stereotype.Cowper’s double, for both sides of the sheet.

Cowper’s single, for curved stereotype.

Cowper’s single, for curved stereotype.

Cowper’s double, for both sides of the sheet.

Cowper’s double, for both sides of the sheet.

Cowper’s single, for curved stereotype.Cowper’s double, for both sides of the sheet.

Cowper’s single, for curved stereotype.

Cowper’s single, for curved stereotype.

Cowper’s double, for both sides of the sheet.

Cowper’s double, for both sides of the sheet.

In the year 1815, Mr. Cowper turned his scientific and inventive mind to the subject of printing machines, and has since, in co-operation with his partner, Mr. Applegath, carried them to an unlooked-for degree of perfection. In 1815 Mr. Cowper obtained a patent for curving stereotype plates, for the purpose of fixing them on a cylinderSeveral machines so mounted, capable of printing 1000 sheets per hour upon both sides, are at work at the present day; twelve machines on this principle having been made for the Directors of the Bank of England a short time previous to their re-issuing gold. Seefigs.918.and919.

It deserves to be remarked here, that the same object seems to have occupied the attention of Nicholson, Donkin, Bacon, and Cowper; viz., the revolution, of the form of types. Nicholson sought to effect this by giving to the shank of a type a shape like the stone of an arch; Donkin and Bacon by attaching types to the sides of a revolving prism; and Cowper, more successfully, by curving a stereotype plate. (Seefig.918.) In these machines Mr. Cowper places two paper cylinders side by side, and against each of them a cylinder for holding the plates; each of these four cylinders is about two feet in diameter. Upon the surface of the stereotype-plate cylinder, four or five inking rollers of about three inches in diameter are placed; they are kept in their position by a frame at each end of the said cylinder, and the axles of the rollers rest in vertical slots of the frame, whereby having perfect freedom of motion, they act by their gravity alone, and require no adjustment.

The frame which supports the inking rollers, called the waving-frame, is attached by hinges to the general framework of the machine; the edge of the stereotype-plate cylinder is indented, and rubs against the waving-frame, causing it to vibrate to and fro, and consequently to carry the inking rollers with it, so as to give them an unceasing traverse movement. These rollers distribute the ink over three-fourths of the surface of the cylinder, the other quarter being occupied by the curved stereotype plates. The ink is contained in a trough, which stands parallel to the said cylinder, and is formed by a metal roller revolving against the edge of a plate of iron; in its revolution it gets covered with a thin film of ink, which is conveyed to the plate-cylinder by a distributing roller vibrating between both. The ink is diffused upon the plate cylinder as before described; the plates in passing under the inking rollers become charged with the coloured varnish; and as the cylinder continues to revolve, the plates come into contact with a sheet of paper on the first paper cylinder, which is then carried by means of tapes to the second paper cylinder, where it receives an impression upon its opposite side from the plates upon the second cylinder.

Thus the printing of the sheet is completed. Though the above machine be applicable only to stereotype plates, it has been of general importance, because it formed the foundation of the future success of Messrs. Cowper and Applegath’s printing machinery, by showing them the best method of serving out, distributing, and applying the coloured varnish to the types.

In order to adapt this method of inking to a flat type-form machine, it was merely requisite to do the same thing upon an extended flat surface or table, which had been performed upon an extended cylindrical surface. Accordingly, Messrs. Cowper and Applegath constructed a machine for printing both sides of the sheet from type, including the inking apparatus, and the mode of conveying the sheet from the one paper cylinder to the other, by means of drums and tapes. It is highly creditable to the scientific judgment of these patentees, that in new modelling the printing machine, they dispensed with forty wheels, which existed in Mr. König’s apparatus, when Mr. Bensley requested them to apply their improvements to it.

Cowper’s inking table and roller.

Cowper’s inking table and roller.

The distinctive advantages of these machines, and which have not hitherto been equalled, are the uniform distribution of the ink, the equality as well as delicacy with which it is laid upon the types, the diminution in its expenditure, amounting to one half upon a given quantity of letter-press, and the facility with which the whole mechanism is managed. The band inking-roller, and distributing-table, now so common in every printing-office in Europe and America, is the invention of Mr. Cowper, and was specified in his patent. The vast superiority of the inking apparatus in his machines, over the balls used of old, induced him to apply it forthwith to the common press, and most successfully for the public; but with little or no profit to the inventor, as the plan was unceremoniously infringed throughout the kingdom, by such a multitude of printers, whether rich or poor, as to render all attempts at reclaiming his rights by prosecution hopeless. Seefig.920.

Applegath and Cowper’s single.Applegath and Cowper’s double.

Applegath and Cowper’s single.

Applegath and Cowper’s single.

Applegath and Cowper’s double.

Applegath and Cowper’s double.

Applegath and Cowper’s single.Applegath and Cowper’s double.

Applegath and Cowper’s single.

Applegath and Cowper’s single.

Applegath and Cowper’s double.

Applegath and Cowper’s double.

To construct a printing machine which shall throw off two sides at a time with exact register, that is, with the second side placed precisely upon the back of thefirst, is a very difficult problem, which was first practically solved by Messrs. Applegath and Cowper. It is comparatively easy to make a machine which shall print the one side of a sheet of paper first, and then the other side, by the removal of one form, and the introduction of another; and thus far did Mr. König advance. A correct register requires the sheet, after it has received its first impression from one cylinder, to travel round the peripheries of the cylinders and drums, at such a rate as to meet the types of the second side at the exact point which will ensure this side falling with geometrical nicety upon the back of the first. For this purpose, the cylinders and drums must revolve at the very same speed as the carriage underneath; hence the least incorrectness in the workmanship will produce such defective typography as will not be endured in book-printing at the present day, though it may be tolerated in newspapers. An equable distribution of the ink is of no less importance to beautiful letter-press. Seefigs.921.922.

The machines represented infigs.923,924,925, are different forms of those which have been patented by Messrs. Applegath and Cowper. That shown infigs.923.and925.prints both sides of the sheet during its passage, and is capable of throwing off nearly 1000 finished sheets per hour. The moistened quires of blank paper being piled upon a tableA, the boy, who stands on the adjoining platform, takes up one sheet after another, and lays them upon the feederB, which has several linen girths passing across its surface, and round a pulley at each end of the feeder; so that whenever the pulleys begin to revolve, the motion of the girths carries forward the sheet, and delivers it over the entering rollerE, where it is embraced between two series of endless tapes, that pass round a series of tension rollers. These tapes are so placed as to fall partly between, and partly exterior to, the pages of the printing; whereby they remain in close contact with the sheet of paper on both of its sides during its progress through the machine. The paper is thus conducted from the first printing cylinderF, to the second cylinderG, without having the truth of its register impaired, so that the coincidence of the two pages is perfect. These two great cylinders, or drums, are made of cast iron, turned perfectly true upon a self-acting lathe;[47]they are clothed in these parts, corresponding to the typographic impression, with fine woollen cloth, calledblanketsby the pressmen, and revolve upon powerful shafts which rest in brass bearings of the strong framing of the machine. These bearings, or plummer blocks, are susceptible of any degree of adjustment, by set screws. The drumsHandIare made of wood; they serve to conduct the sheet evenly from the one printing cylinder to the other.

[47]I have witnessed with much pleasure the turning of these great cylinders in Messrs. Cowper’s factory at Manchester.

[47]I have witnessed with much pleasure the turning of these great cylinders in Messrs. Cowper’s factory at Manchester.

Printing press

Printing press

Printing pressFig. 925 enlarged(351 kB)

Fig. 925 enlarged(351 kB)

One series of tapes commences at the upper part of the entering drumE, proceeds in contact with the right-hand side and under surface of the printing cylinderF, passesnext over the carrier-drumH, and under the carrier-drumI; then encompassing the left-hand side and under portion of the printing drumG, it passes in contact with the small tension rollersa,b,c,d,fig.925., and finally arrives at the rollerE, which may be called the commencement of the one series of endless tapes. The other series may be supposed to commence at the rollerh; it has an equal number of tapes, and corresponds with the former in being placed upon the cylinders so that the sheets of paper may be held securely between them. This second series descends from the rollerh,fig.925., to the entering drumE, where it meets and coincides with the first series in such a way that both sets of tapes proceed togetherunderthe printing cylinderF,overH,underI, androundG, until they arrive at the rolleri,fig.923., where they separate, after having continued in contact, except at the places where the sheets of paper are held between them. The tapes descend from the rolleri, to a roller atk, and, after passing in contact with rollers atl,m,n, they finally arrive at the rollerh, where they were supposed to commence. Hence two series of tapes act invariably in contact, without the least mutual interference, as may be seen by inspection of thefigs.923,924,925.

The various cylinders and drums revolve very truly by means of a system of toothed wheels and pinions mounted at their ends. Two horizontal forms of types are laid at a certain distance apart upon the long carriageM, adjoining to each of which there is a flat metallic plate, or inking table, in the same plane. The common carriage, bearing its two forms of type and two inking tables, is moved backwards and forwards, from one end of the printing machine to the other, upon rollers attached to the frame-work, and in its traverse brings the types into contact with the sheet of paper clasped by the tapes round the surfaces of the printing cylinders. This alternate movement of the carriage is produced by a pinion working alternately into the opposite sides of a rack under the table. The pinion is driven by the bevel wheelsK.

The mechanism for supplying the ink, and distributing it over the forms, is one of the most ingenious and valuable inventions belonging to this incomparable machine, and is so nicely adjusted, that a single grain of the pigment may suffice for printing one side of a sheet. Two similar sets of inking apparatus are provided; one at each end of the machine, adapted to ink its own form of type. The metal rollerL, called theductorroller, as it draws out the supply of ink, has a slow rotatory motion communicated to it by a catgut cord, which passes round a small pulley upon the end of the shaft of the printing cylinderG. A horizontal plate of metal, with a straight-ground edge, is adjusted by set screws, so as to stand nearly in contact with the ductor roller. This plate has an upright ledge behind, converting it into a sort of trough or magazine, ready to impart a coating of ink to the roller, as it revolves over the table. Another roller, covered with elastic composition (seesuprà), called the vibrating roller, is made to travel between the ductor roller and the inking table; the vibrating roller, as it rises, touches the ductor roller for an instant, abstracts a film of ink from it, and then descends to transfer it to the table. There are 3 or 4 small rollers of distribution, placed somewhat diagonally across the table atM, (inclined only 2 inches from a parallel to the end of the frame,) furnished with long slender axles, resting in vertical slots, whereby they are left at liberty to revolve and to traverse at the same time; by which compound movement they are enabled to efface all inequality in the surface of the varnish, or to effect a perfectdistribution of the ink along the table. The table thus evenly smeared, being made to pass under the 3 or 4 proper inking rollersN,fig.924., imparts to them an uniformfilm of ink, to be immediately transferred by them to the types. Hence each time that the forms make a complete traverse to and fro, which is requisite for the printing of every sheet, they are touched no less than eight times by the inking rollers. Both the distributing and inking rollers turn in slots, which permit them to rise and fall so as to bear with their whole weight upon the inking table and the form, whereby they never stand in need of any adjustment by screws, but are always ready for work when dropped into their respective places.

Motion is given to the whole system of apparatus by a strap from a steam engine going round a pulley placed at the end of the axle at the back of the frame; one steam-horse power being adequate to drive two double printing machines; while a single machine may be driven by the power of two men acting upon a fly-wheel. In Messrs. Clowes’ establishment, in Stamford-street, two five-horse engines actuate nineteen of the above described machines.

The operation of printing is performed as follows:—Seefig.926.

The sheets being carefully laid, one by one, upon the linen girths, at the feederB, the rollersCandDare made to move, by means of a segment wheel, through a portion of a revolution. This movement carries on the sheet of paper sufficiently to introduce it between the two series of endless tapes at the point where they meet each other upon the entering drumE. As soon as the sheet is fairly embraced between the tapes, the rollersCandDare drawn back, by the operation of a weight, to their original position, so as to be ready to introduce another sheet into the machine. The sheet, advancing between the endless tapes, applies itself to the blanket upon the printing cylinderF, and as it revolves meets the first form of types, and receives their impression; after being thus printed on one side, it is carried, overHand underI, to the blanket upon the printing cylinderG, where it is placed in an inverted position; the printed side being now in contact with the blanket, and the white side being outwards, meets the second form of types at the proper instant, so as to receive the second impression, and get completely printed. The perfect sheet, on arriving at the pointi, where the two series of tapes separate, is tossed out by centrifugal force into the hands of a boy.

Arrangement of printing press

The diagram,fig.926.shows the arrangement of the tapes, agreeably to the preceding description; the feederB, with the rollersCandD, is seen to have an independent endless girth.

Diagram of printing press

The diagram,fig.927.explains the structure of the great machine contrived by Messrs. Applegath and Cowper for printing theTimesnewspaper. Here there are four places to lay on the sheets, and four to take them off; consequently, the assistance of eight lads is required.P,P,P,P, are the four piles of paper;F,F,F,F, are the four feeding-boards;E,E,E,E, are the four entering drums, upon which the sheets are introduced between the tapest,t,t,t, whence they are conducted to thefour printing cylinders 1, 2, 3, 4;Tis the form of type;I,I, are two inking tables, of which one is placed at each end of the form. The inking apparatus is similar to that above described, with the addition of two central inking rollersR, which likewise receive their ink from the inking tables. The printing cylinders 1, 2, 3, 4, are made to rise and fall about half an inch; the first and third simultaneously, as also the second and fourth. The form of type, in passing fromAtoB, prints sheets at 1 and 3; in returning fromBtoA, it prints sheets at 4 and 2; while the cylinder alternately falls to give the impression, and rises to permit the form to pass untouched.

Each of the lines markedt, consists of two endless tapes, which run in contact at the parts shown, but separate at the entering drumsE, and at the taking off partso,o,o,o. The return of the tapes to the entering drum is omitted in the diagram, to avoid confusion of the lines.

The sheets of paper being laid upon their respective feeding-boards, with the fore edges just in contact with the entering drum, a small roller, called the drop-down roller, falls, at proper intervals, down upon the edges of the sheets; the drum and the roller being then removed, instantly carry on the sheet, between the tapest, downwards to the printing cylinder, and thence upwards too,o,o,o, where the tapes are parted, and the sheet falls into the hands of the attendant boy. This noble mechanism is so perfectly equipped, that it is generally in full work within four minutes after the form is brought into the machine-room. The speed of König’s machine, by which theTimeswas formerly printed, was such as to turn out 1800 papers per hour; that of Applegath and Cowper throws off 4200 per hour, and it has been daily in use during eight years.

PRUSSIAN BLUE, and PRUSSIATE OF POTASH, are two important articles of chemical manufacture, which must be considered together. The first is called by English chemists,Ferrocyanodide of iron, theCyanure ferroso-ferriqueof Berzelius;Eisenblausaures eisenoxyd, oreisencyanür+eisencyanid, Germ.; the second is calledFerrocyanodide of potassium, theCyanure ferroso-potassiqueof Berzelius;Eisencyanür-kalium,cyaneisen+cyankalium, orBlausaures eisenoxydul-kali, Germ.Prussian blue (Berliner-blau, Germ.), is a chemical compound of iron and cyanogen. When organic matters abounding in nitrogen, as dried blood, horns, hair, skins, or hoofs of animals, are triturated along with potash in a strongly ignited iron pot, a dark gray mass is obtained, that affords to water the liquor originally calledlixivium sanguinis, or blood-lye, which, by evaporation, yields lemon-coloured crystals in large rectangular tables, bevelled at the edges. This salt is called in commerce, prussiate of potash, and has for its ultimate constituents, potassium, iron, oxygen, and hydrogen, (the latter two in such proportions as to form water), and the peculiar compoundCyanogen, theblaustoffof the Germans.These crystals consist, in 100 parts, of potassium 37·02, iron 12·82, cyanogen 37·40, water 12·76; or, cyanide of potassium 61·96, cyanide of iron 25·28, and water 12·76. They may be represented also by the following composition: 44·58 of potassa, 38·82 of hydrocyanic or prussic acid, and 16·60 of oxide of iron, in 100 parts; but the first appears to be their true chemical constitution. Dry ferrocyanodide of potassium, is a compound of, one atom of cyanide of iron, 54 = (28 + 26), and 2 atoms of cyanide of potassium, 132, = (26 × 2+40 × 2); the sum being 186; hydrogen being 1·0 in the scale of equivalents. The crystals of prussiate of potash are nearly transparent, soft, of a sweetish saline and somewhat bitterish taste, soluble in 4 parts of water at 52° F., and in 1 part of boiling water, but insoluble in alcohol. They are permanent in the air at ordinary temperatures, but in a moderately warm stove-room they part with 123⁄4per cent. of water, without losing their form or coherence, and become thereby a white friable anhydrous ferrocyanodide of potassium, consisting of 42·44 potassium, 42·87 cyanogen, and 14·69 iron, in 100 parts.This salt is an excellent reagent for distinguishing metals from each other, as the followingTableof the precipitates which it throws down from their saline solutions will show:—Metallic solutions.Colour of precipitate.Antimonywhite.Bismuthwhite.Cadmiumwhite, a little yellowish.Cerium (protoxide)white, soluble in acids.Cobaltgreen, soon turning reddish-gray.Copper (protoxide)white, changing to red.CoDo.r(peroxide)brown-red.Iron (protoxide)white, rapidly turning blue.IDo. (peroxide)dark blue.Leadwhite, with a yellowish cast.Manganese (protoxide)white, turning quickly peach or blood-red.Manganese (deutoxide)greenish-gray.Mercury (protoxide)white.MeDo.ry(peroxide)white, turning blue.Molybdenumdark brown.Nickel (oxide)white, turning greenish.Palladium (protoxide)green (gelatinous).Silverwhite, turning brown in the light.Tantalumyellow, dark burned colour.Tin (protoxide)white, (gelatinous).Do. (peroxide)yellow,perdo.Uraniumred-brown.Zincwhite.No precipitations ensue with solutions of the alkaline or earthy salts, except that of yttria, which is white; nor with those of gold, platinum, rhodium, iridium, osmium, (in concentrated solutions,) tellurium, chromium, tungstenium. All the precipitates by the ferrocyanodide of iron, are double compounds of cyanide of iron with cyanide of the metal thrown down, which is produced by the reciprocal decomposition of the cyanide of potassium and the peculiar metallic oxide present in the solution. The precipitate from the sulphate of copper has a fine brown colour, and has been used as a pigment; but it is somewhat transparent, and therefore does not cover well. The precipitate from the peroxide salts of iron is a very intense prussian blue, called on the continent, Paris blue. It may be regarded as a compound of prussiate of protoxide and prussiate of peroxide of iron; or as a double cyanide of the protoxide and peroxide of iron, as the denominationcyanure ferroso-ferriquedenotes. In numbers, its composition may be therefore stated thus: prussic or hydrocyanic acid, 48·48; protoxide of iron, 20·73; peroxide of iron, 30·79; or cyanogen, 46·71; iron, 37·36; water, 15·93; which represent its constitution when it is formed by precipitation with the prussiate of potash or a salt of iron that contains no protoxide. If the iron be but partially peroxidized in the salt, it will afford a precipitate, at first pale blue, which turns dark blue in the air, consisting of a mixture of prussiate of protoxide and prussiate of peroxide. In fact, the white cyanide of iron (the prussiate of the pure protoxide), when exposed to the air in a moist condition, becomes, as above stated, dark blue; yet the new combination formed in this case through absorption of oxygen, is essentially different from that resulting from the precipitation by the peroxide of iron, since it contains an excess of the peroxide in addition to the usual two cyanides of iron. It has been therefore calledbasicprussian blue, and, from its dissolving in pure water,solubleprussian blue.Both kinds of prussian blue agree in being void of taste and smell, in attracting humidity from the air when they are artificially dried, and being decomposed at a heat above 348° F. The neutral or insoluble prussian blue is not affected by alcohol; the basic, when dissolved in water, is not precipitated by that liquid. Neither is acted upon by dilute acids; but they form with concentrated sulphuric acid a white pasty mass, from which they are again reproduced by the action of cold water. They are decomposed by strong sulphuric acid at a boiling heat, and by strong nitric acid at common temperatures; but they are hardly affected by the muriatic. They become green with chlorine, but resume their blue colour when treated with disoxidizing reagents. When prussian blue is digested in warm water along with potash, soda, or lime, peroxide of iron is separated, and a ferroprussiate of potash, soda, or lime remains in solution. If the prussian blue has been previously purified by boiling in dilute muriatic acid, and washing with water, it will afford by this treatment a solution of ferrocyanodide of potassium, from which by evaporation this salt may be obtained in its purest crystalline state. When the powdered prussian blue is diffused in boiling water, and digested with red oxide of mercury, it parts with all its oxide of iron, and forms a solution of bi-cyanodide, improperly called prussiate of mercury; consisting of 79·33 mercury, and 20·67 cyanogen; or, upon the hydrogen equivalent scale, of 200 mercury, and 52 = (26 × 2) cyanogen. When this salt is gently ignited, it affords gaseous cyanogen. Hydrocyanic or prussic acid, which consists of 1 atom of cyanogen = 26, + 1 of hydrogen = 1, is prepared by distilling the mercurial bi-cyanide in a glass retort with the saturating quantity of dilute muriatic acid. Prussic acid may also be obtained by precipitating the mercury by sulphuretted hydrogen gas from the solution of its cyanide; as also by distilling the ferrocyanide of potassium along with dilute sulphuric acid. Prussic acid is a very volatile light fluid, eminently poisonous, and is spontaneously decomposed by keeping, especially when somewhat concentrated.Having expounded the chemical constitution of prussian blue and prussiate of potash, I shall now treat of theirmanufacture upon the commercial scale.1.Of blood-lye, the phlogisticated alkali of Scheele. Among the animal substances used for the preparation of this lixivium, blood deserves the preference, where it can be had cheap enough. It must be evaporated to perfect dryness, reduced to powder, and sifted.Hoofs, parings of horns, hides, old woollen rags, and other animal offals, are, however, generally had recourse to, as condensing most azotized matter in the smallest bulk. Dried funguses have been also prescribed. These animal matters may either be first carbonized in cast-iron cylinders, as for the manufacture ofsal ammoniac(which see), and the residual charcoal may be then taken for making the ferroprussiate; or the dry animal matters may be directly employed. The latter process is apt to be exceedingly offensive to the workmen and neighbourhood, from the nauseous vapours that are exhaled in it. Eight pounds of horn (hoofs), or ten pounds of dry blood, afford upon an average one pound of charcoal. This must be mixed well with good pearlash, (freed previously from most of the sulphate of potassa, with which it is always contaminated,) either in the dry way, or by soaking the bruised charcoal with a strong solution of the alkali; the proportion being one part of carbonate of potassa to from 11⁄2to 2 parts of charcoal, or to about eight parts of hard animal matter. Gautier has proposed to calcine three parts of dry blood with one of nitre; with what advantage to the manufacturer, I cannot discover.Calcination potThe pot for calcining the mixture of animal and alkaline matter is egg-shaped as represented ata,fig.928, and is considerably narrowed at the necke, to facilitate the closing of the mouth with a lidi. It is made of cast iron, about two inches thick in the belly and bottom; this strength being requisite because the chemical action of the materials wears the metal fast away. It should be built into the furnace in a direction sloping downwards, (more than is shown in the figure,) and have a strong knobb, projecting from its bottom to support it upon the back wall, while its shoulder is embraced at the armsc,c, by the brickwork in front. The interior of the furnace is so formed as to leave but a space of a few inches round the pot, in order to make the flame play closely over its whole surface. The fire-doorf, and the draught-holez, of the ash-pit, are placed in the posterior part of the furnace, in order that the workmen may not be incommoded by the heat. The smoke vento, issues through the arched tophof the furnace, towards the front, and is thence led backwards by a flue to the main chimney of the factory.dis an iron or stone shelf, inserted before the mouth of the pot, to prevent loss in shovelling out the semi-liquid paste. The pot may be half filled with the materials.The calcining process is different, according as the animal substances are fresh or carbonized. In the first case, the pot must remain open, to allow of diligent stirring of its contents, with a slightly bent flat iron bar or scoop, and of introducing more of the mixture as the intumescence subsides, during a period of five or six hours, till the nauseous vapours cease to rise, till the flame becomes smaller and brighter, and till a smell of ammonia be perceived. At this time, the heat should be increased, the mouth of the pot should be shut, and opened only once every half hour, for the purpose of working the mass with the iron paddle. When on opening the mouth of the pot, and stirring the pasty mixture, no more flame rises, the process is finished.If the animal ingredients are employed in a carbonized state, the pot must be shut as soon as its contents are brought to ignition by a briskly urged fire, and opened for a few seconds only every quarter of an hour, during the action of stirring. At first, a body of flame bursts forth every time that the lid is removed; but by degrees this ceases, and the mixture soon agglomerates, and then softens into a paste. Though the fire be steadily kept up, the flame becomes less and less each time that the pot is opened; and when it ceases, the process is at an end. The operation, with a mass of 50 pounds of charcoal and 50 pounds of purified pearlash, lasts about 12 hours, the first time that the furnace is kindled; but when the pot has been previously brought to a state of ignition, it takes only 7 or 8 hours. In a well-appointed factory, the fire should be invariably maintained at the proper pitch, and the pots should be worked with relays of operatives.The molten mass is now to be scooped out with an appropriate iron shovel, having a long shank, and caused to cool in small portions, as quickly as possible; but not by throwing it into water, as has sometimes been prescribed; for in this way a good deal of the cyanogen is converted into ammonia. If it be heaped up and kept hot in contact with air, some of the ferrocyanide is also decomposed, with diminution of the product. The crude mass is to be then put into a pan with cold water, dissolved by the application of a moderate heat, and filtered through cloths. The charcoal which remains upon the filter possesses the properties of decolouring syrups, vinegars, &c., and of destroying smells in a pre-eminent degree. It may also serve, when mixed with fresh animal coal, for another calcining operation.As the iron requisite for the formation of the ferrocyanide is in general derived from the sides of the pot, this is apt to wear out into holes, especially at its under side, where the heat is greatest. In this event, it may be taken out of the furnace, patched up with iron-rust cement, and re-inserted with the sound side undermost. The erosion of the pot may be obviated in some measure by mixing iron borings or cinder (hammerschlag) with the other materials, to the amount of one or two hundredths of the potash.The above lixivium is not a solution of pure ferroprussiate; it contains not a little cyanide of potassium, which in the course of the process had not absorbed the proper dose of iron to form a ferrocyanide; it contains also more or less carbonate of potash, with phosphate, sulphate, hydrogenated sulphuret, muriate, and sulpho-cyanide of the same base, as well as phosphate of lime; substances derived partly from the impure potash, and partly from the incinerated animal matters. Formerly that very complex impure solution was employed directly for the precipitation of prussian blue; but now, in all well regulated works, it is converted by evaporation and cooling into crystallized ferroprussiate of potash. The mother-water is again evaporated and crystallized, whereby a somewhat inferior ferroprussiate is obtained. Before evaporating the lye, however, it is advisable to add as much solution of green sulphate of iron to it, as will re-dissolve the white precipitate of cyanide of iron which first falls, and thereby convert the cyanide of potassium, which is present in the liquor, into ferrocyanide of potassium. The commercial prussiate of potash may be rendered chemically pure by making its crystals effloresce in a stove, fusing them with a gentle heat in a glass retort, dissolving the mass in water, neutralizing any carbonate and cyanide of potash that may be present with acetic acid, then precipitating the ferroprussiate of potash by the addition of a sufficient quantity of alcohol, and finally crystallizing the precipitated salt twice over in water. The sulphate of potassa may be decomposed by acetate of baryta, and the resulting acetate of potassa removed by alcohol.2.The precipitation of prussian blue.—Green sulphate of iron is always employed by the manufacturer, on account of its cheapness, for mixing with solution of the ferroprussiate, in forming prussian blue, though the red sulphate, nitrate, or muriate of iron would afford a much richer blue pigment. Whatever salt of iron be preferred, should be carefully freed from any cupreous impregnation, as this would give the pure blue a dirty brownish cast. The green sulphate of iron is the most advantageous precipitant, on account of its affording protoxide, to convert into ferrocyanide any cyanide of potassium that may happen to be present in the uncrystallized lixivium. The carbonate of potash in that lixivium might be saturated with sulphuric acid before adding the solution of sulphate of iron; but it is more commonly done by adding a certain portion of alum; in which case, alumina falls along with the prussian blue; and though it renders it somewhat paler, yet it proportionally increases its weight; whilst the acid of the alum saturates the carbonate of potash, and prevents its throwing down iron-oxide, to degrade by its brown-red tint the tone of the blue. For every pound of pearlash used in the calcination, from two to three pounds of alum are employed in the precipitation. When a rich blue is wished for, the free alkali in the prussian lye may be partly saturated with sulphuric acid, before adding the mingled solutions of copperas and alum. One part of the sulphate of iron is generally allowed for 15 or 20 parts of dried blood, and 2 or 3 of horn-shavings or hoofs. But the proportion will depend very much upon the manipulations; which, if skilfully conducted, will produce more of the cyanides of iron, and require more copperas to neutralize them. The mixed solutions of alum and copperas should be progressively added to the lye as long as they produce any precipitate. This is not at first a fine blue, but a greenish gray, in consequence of the admixture of some white cyanide of iron; it becomes gradually blue by the absorption of oxygen from the air, which is favoured by agitation of the liquor. Whenever the colour seems to be as beautiful as it is likely to become, the liquor is to be run off by a spigot or cock from the bottom of the precipitation vats, into flat cisterns, to settle. The clear supernatant fluid, which is chiefly a solution of sulphate of potash, is then drawn off by a syphon; more water is run on with agitation to wash it, which after settling is again drawn off; and whenever the washings become tasteless, the sediment is thrown upon filter sieves, and exposed to dry, first in the air of a stove, but finally upon slabs of chalk or Paris plaster. But for several purposes, prussian blue may be best employed in the fresh pasty state, as it then spreads more evenly over paper and other surfaces.A good article is known by the following tests: it feels light in the hand, adheres to the tongue, has a dark lively blue colour, and gives a smooth deep trace; it should not effervesce with acids, as when adulterated with chalk; nor become pasty with boiling water, as when adulterated with starch. The Paris blue, prepared without alum, with a peroxide salt of iron, displays, when rubbed, a copper-red lustre, like indigo. Prussian blue, degraded in its colour by an admixture of free oxide of iron, may be improvedby digestion in dilute sulphuric or muriatic acid, washing, and drying. Its relative richness in the real ferroprussiate of iron may be estimated by the quantity of potash or soda which a given quantity of it requires to destroy its blue colour.Sulphuretted hydrogen passed through prussian blue diffused in water, whitens it; while prussic acid is eliminated, sulphur is thrown down, and the sesquicyanide of iron is converted into the single cyanide. Iron and tin operate in the same way. When prussian blue is made with two atoms of ferrocyanide of potassium, instead of one, it becomes soluble in water.For the mode of applying this pigment in dyeing, seeCalico-printing.Sesquiferrocyanate of potash, is prepared by passing chlorine gas through a solution of ferrocyanide of potassium, till it becomes red, and ceases to precipitate the peroxide salts of iron. The liquor yields, by evaporation, prismatic crystals, of a ruby-red transparency. They are soluble in 38 parts of water, and consist of 40·42 parts of sesquicyanide of iron, and 59·58 of cyanide of potassium. The solution of this salt precipitates the following metals, as stated in the table:—Bismuthpale yellow.Cadmiumyellow.Cobaltdark brown red.Copper (protoxide)red brown.CoDo.r(peroxide)yellow green.Iron, protoxide salts ofblue.Manganesebrown.Mercury (protoxide)red brown.Mercury (peroxide)yellow.Molybdenumred brown.Nickelyellow green.Silverred brown.Tin (protoxide)white.Uraniumred brown.Zincorange yellow.

PRUSSIAN BLUE, and PRUSSIATE OF POTASH, are two important articles of chemical manufacture, which must be considered together. The first is called by English chemists,Ferrocyanodide of iron, theCyanure ferroso-ferriqueof Berzelius;Eisenblausaures eisenoxyd, oreisencyanür+eisencyanid, Germ.; the second is calledFerrocyanodide of potassium, theCyanure ferroso-potassiqueof Berzelius;Eisencyanür-kalium,cyaneisen+cyankalium, orBlausaures eisenoxydul-kali, Germ.

Prussian blue (Berliner-blau, Germ.), is a chemical compound of iron and cyanogen. When organic matters abounding in nitrogen, as dried blood, horns, hair, skins, or hoofs of animals, are triturated along with potash in a strongly ignited iron pot, a dark gray mass is obtained, that affords to water the liquor originally calledlixivium sanguinis, or blood-lye, which, by evaporation, yields lemon-coloured crystals in large rectangular tables, bevelled at the edges. This salt is called in commerce, prussiate of potash, and has for its ultimate constituents, potassium, iron, oxygen, and hydrogen, (the latter two in such proportions as to form water), and the peculiar compoundCyanogen, theblaustoffof the Germans.

These crystals consist, in 100 parts, of potassium 37·02, iron 12·82, cyanogen 37·40, water 12·76; or, cyanide of potassium 61·96, cyanide of iron 25·28, and water 12·76. They may be represented also by the following composition: 44·58 of potassa, 38·82 of hydrocyanic or prussic acid, and 16·60 of oxide of iron, in 100 parts; but the first appears to be their true chemical constitution. Dry ferrocyanodide of potassium, is a compound of, one atom of cyanide of iron, 54 = (28 + 26), and 2 atoms of cyanide of potassium, 132, = (26 × 2+40 × 2); the sum being 186; hydrogen being 1·0 in the scale of equivalents. The crystals of prussiate of potash are nearly transparent, soft, of a sweetish saline and somewhat bitterish taste, soluble in 4 parts of water at 52° F., and in 1 part of boiling water, but insoluble in alcohol. They are permanent in the air at ordinary temperatures, but in a moderately warm stove-room they part with 123⁄4per cent. of water, without losing their form or coherence, and become thereby a white friable anhydrous ferrocyanodide of potassium, consisting of 42·44 potassium, 42·87 cyanogen, and 14·69 iron, in 100 parts.

This salt is an excellent reagent for distinguishing metals from each other, as the followingTableof the precipitates which it throws down from their saline solutions will show:—

No precipitations ensue with solutions of the alkaline or earthy salts, except that of yttria, which is white; nor with those of gold, platinum, rhodium, iridium, osmium, (in concentrated solutions,) tellurium, chromium, tungstenium. All the precipitates by the ferrocyanodide of iron, are double compounds of cyanide of iron with cyanide of the metal thrown down, which is produced by the reciprocal decomposition of the cyanide of potassium and the peculiar metallic oxide present in the solution. The precipitate from the sulphate of copper has a fine brown colour, and has been used as a pigment; but it is somewhat transparent, and therefore does not cover well. The precipitate from the peroxide salts of iron is a very intense prussian blue, called on the continent, Paris blue. It may be regarded as a compound of prussiate of protoxide and prussiate of peroxide of iron; or as a double cyanide of the protoxide and peroxide of iron, as the denominationcyanure ferroso-ferriquedenotes. In numbers, its composition may be therefore stated thus: prussic or hydrocyanic acid, 48·48; protoxide of iron, 20·73; peroxide of iron, 30·79; or cyanogen, 46·71; iron, 37·36; water, 15·93; which represent its constitution when it is formed by precipitation with the prussiate of potash or a salt of iron that contains no protoxide. If the iron be but partially peroxidized in the salt, it will afford a precipitate, at first pale blue, which turns dark blue in the air, consisting of a mixture of prussiate of protoxide and prussiate of peroxide. In fact, the white cyanide of iron (the prussiate of the pure protoxide), when exposed to the air in a moist condition, becomes, as above stated, dark blue; yet the new combination formed in this case through absorption of oxygen, is essentially different from that resulting from the precipitation by the peroxide of iron, since it contains an excess of the peroxide in addition to the usual two cyanides of iron. It has been therefore calledbasicprussian blue, and, from its dissolving in pure water,solubleprussian blue.

Both kinds of prussian blue agree in being void of taste and smell, in attracting humidity from the air when they are artificially dried, and being decomposed at a heat above 348° F. The neutral or insoluble prussian blue is not affected by alcohol; the basic, when dissolved in water, is not precipitated by that liquid. Neither is acted upon by dilute acids; but they form with concentrated sulphuric acid a white pasty mass, from which they are again reproduced by the action of cold water. They are decomposed by strong sulphuric acid at a boiling heat, and by strong nitric acid at common temperatures; but they are hardly affected by the muriatic. They become green with chlorine, but resume their blue colour when treated with disoxidizing reagents. When prussian blue is digested in warm water along with potash, soda, or lime, peroxide of iron is separated, and a ferroprussiate of potash, soda, or lime remains in solution. If the prussian blue has been previously purified by boiling in dilute muriatic acid, and washing with water, it will afford by this treatment a solution of ferrocyanodide of potassium, from which by evaporation this salt may be obtained in its purest crystalline state. When the powdered prussian blue is diffused in boiling water, and digested with red oxide of mercury, it parts with all its oxide of iron, and forms a solution of bi-cyanodide, improperly called prussiate of mercury; consisting of 79·33 mercury, and 20·67 cyanogen; or, upon the hydrogen equivalent scale, of 200 mercury, and 52 = (26 × 2) cyanogen. When this salt is gently ignited, it affords gaseous cyanogen. Hydrocyanic or prussic acid, which consists of 1 atom of cyanogen = 26, + 1 of hydrogen = 1, is prepared by distilling the mercurial bi-cyanide in a glass retort with the saturating quantity of dilute muriatic acid. Prussic acid may also be obtained by precipitating the mercury by sulphuretted hydrogen gas from the solution of its cyanide; as also by distilling the ferrocyanide of potassium along with dilute sulphuric acid. Prussic acid is a very volatile light fluid, eminently poisonous, and is spontaneously decomposed by keeping, especially when somewhat concentrated.

Having expounded the chemical constitution of prussian blue and prussiate of potash, I shall now treat of theirmanufacture upon the commercial scale.

1.Of blood-lye, the phlogisticated alkali of Scheele. Among the animal substances used for the preparation of this lixivium, blood deserves the preference, where it can be had cheap enough. It must be evaporated to perfect dryness, reduced to powder, and sifted.Hoofs, parings of horns, hides, old woollen rags, and other animal offals, are, however, generally had recourse to, as condensing most azotized matter in the smallest bulk. Dried funguses have been also prescribed. These animal matters may either be first carbonized in cast-iron cylinders, as for the manufacture ofsal ammoniac(which see), and the residual charcoal may be then taken for making the ferroprussiate; or the dry animal matters may be directly employed. The latter process is apt to be exceedingly offensive to the workmen and neighbourhood, from the nauseous vapours that are exhaled in it. Eight pounds of horn (hoofs), or ten pounds of dry blood, afford upon an average one pound of charcoal. This must be mixed well with good pearlash, (freed previously from most of the sulphate of potassa, with which it is always contaminated,) either in the dry way, or by soaking the bruised charcoal with a strong solution of the alkali; the proportion being one part of carbonate of potassa to from 11⁄2to 2 parts of charcoal, or to about eight parts of hard animal matter. Gautier has proposed to calcine three parts of dry blood with one of nitre; with what advantage to the manufacturer, I cannot discover.

Calcination pot

The pot for calcining the mixture of animal and alkaline matter is egg-shaped as represented ata,fig.928, and is considerably narrowed at the necke, to facilitate the closing of the mouth with a lidi. It is made of cast iron, about two inches thick in the belly and bottom; this strength being requisite because the chemical action of the materials wears the metal fast away. It should be built into the furnace in a direction sloping downwards, (more than is shown in the figure,) and have a strong knobb, projecting from its bottom to support it upon the back wall, while its shoulder is embraced at the armsc,c, by the brickwork in front. The interior of the furnace is so formed as to leave but a space of a few inches round the pot, in order to make the flame play closely over its whole surface. The fire-doorf, and the draught-holez, of the ash-pit, are placed in the posterior part of the furnace, in order that the workmen may not be incommoded by the heat. The smoke vento, issues through the arched tophof the furnace, towards the front, and is thence led backwards by a flue to the main chimney of the factory.dis an iron or stone shelf, inserted before the mouth of the pot, to prevent loss in shovelling out the semi-liquid paste. The pot may be half filled with the materials.

The calcining process is different, according as the animal substances are fresh or carbonized. In the first case, the pot must remain open, to allow of diligent stirring of its contents, with a slightly bent flat iron bar or scoop, and of introducing more of the mixture as the intumescence subsides, during a period of five or six hours, till the nauseous vapours cease to rise, till the flame becomes smaller and brighter, and till a smell of ammonia be perceived. At this time, the heat should be increased, the mouth of the pot should be shut, and opened only once every half hour, for the purpose of working the mass with the iron paddle. When on opening the mouth of the pot, and stirring the pasty mixture, no more flame rises, the process is finished.

If the animal ingredients are employed in a carbonized state, the pot must be shut as soon as its contents are brought to ignition by a briskly urged fire, and opened for a few seconds only every quarter of an hour, during the action of stirring. At first, a body of flame bursts forth every time that the lid is removed; but by degrees this ceases, and the mixture soon agglomerates, and then softens into a paste. Though the fire be steadily kept up, the flame becomes less and less each time that the pot is opened; and when it ceases, the process is at an end. The operation, with a mass of 50 pounds of charcoal and 50 pounds of purified pearlash, lasts about 12 hours, the first time that the furnace is kindled; but when the pot has been previously brought to a state of ignition, it takes only 7 or 8 hours. In a well-appointed factory, the fire should be invariably maintained at the proper pitch, and the pots should be worked with relays of operatives.

The molten mass is now to be scooped out with an appropriate iron shovel, having a long shank, and caused to cool in small portions, as quickly as possible; but not by throwing it into water, as has sometimes been prescribed; for in this way a good deal of the cyanogen is converted into ammonia. If it be heaped up and kept hot in contact with air, some of the ferrocyanide is also decomposed, with diminution of the product. The crude mass is to be then put into a pan with cold water, dissolved by the application of a moderate heat, and filtered through cloths. The charcoal which remains upon the filter possesses the properties of decolouring syrups, vinegars, &c., and of destroying smells in a pre-eminent degree. It may also serve, when mixed with fresh animal coal, for another calcining operation.

As the iron requisite for the formation of the ferrocyanide is in general derived from the sides of the pot, this is apt to wear out into holes, especially at its under side, where the heat is greatest. In this event, it may be taken out of the furnace, patched up with iron-rust cement, and re-inserted with the sound side undermost. The erosion of the pot may be obviated in some measure by mixing iron borings or cinder (hammerschlag) with the other materials, to the amount of one or two hundredths of the potash.

The above lixivium is not a solution of pure ferroprussiate; it contains not a little cyanide of potassium, which in the course of the process had not absorbed the proper dose of iron to form a ferrocyanide; it contains also more or less carbonate of potash, with phosphate, sulphate, hydrogenated sulphuret, muriate, and sulpho-cyanide of the same base, as well as phosphate of lime; substances derived partly from the impure potash, and partly from the incinerated animal matters. Formerly that very complex impure solution was employed directly for the precipitation of prussian blue; but now, in all well regulated works, it is converted by evaporation and cooling into crystallized ferroprussiate of potash. The mother-water is again evaporated and crystallized, whereby a somewhat inferior ferroprussiate is obtained. Before evaporating the lye, however, it is advisable to add as much solution of green sulphate of iron to it, as will re-dissolve the white precipitate of cyanide of iron which first falls, and thereby convert the cyanide of potassium, which is present in the liquor, into ferrocyanide of potassium. The commercial prussiate of potash may be rendered chemically pure by making its crystals effloresce in a stove, fusing them with a gentle heat in a glass retort, dissolving the mass in water, neutralizing any carbonate and cyanide of potash that may be present with acetic acid, then precipitating the ferroprussiate of potash by the addition of a sufficient quantity of alcohol, and finally crystallizing the precipitated salt twice over in water. The sulphate of potassa may be decomposed by acetate of baryta, and the resulting acetate of potassa removed by alcohol.

2.The precipitation of prussian blue.—Green sulphate of iron is always employed by the manufacturer, on account of its cheapness, for mixing with solution of the ferroprussiate, in forming prussian blue, though the red sulphate, nitrate, or muriate of iron would afford a much richer blue pigment. Whatever salt of iron be preferred, should be carefully freed from any cupreous impregnation, as this would give the pure blue a dirty brownish cast. The green sulphate of iron is the most advantageous precipitant, on account of its affording protoxide, to convert into ferrocyanide any cyanide of potassium that may happen to be present in the uncrystallized lixivium. The carbonate of potash in that lixivium might be saturated with sulphuric acid before adding the solution of sulphate of iron; but it is more commonly done by adding a certain portion of alum; in which case, alumina falls along with the prussian blue; and though it renders it somewhat paler, yet it proportionally increases its weight; whilst the acid of the alum saturates the carbonate of potash, and prevents its throwing down iron-oxide, to degrade by its brown-red tint the tone of the blue. For every pound of pearlash used in the calcination, from two to three pounds of alum are employed in the precipitation. When a rich blue is wished for, the free alkali in the prussian lye may be partly saturated with sulphuric acid, before adding the mingled solutions of copperas and alum. One part of the sulphate of iron is generally allowed for 15 or 20 parts of dried blood, and 2 or 3 of horn-shavings or hoofs. But the proportion will depend very much upon the manipulations; which, if skilfully conducted, will produce more of the cyanides of iron, and require more copperas to neutralize them. The mixed solutions of alum and copperas should be progressively added to the lye as long as they produce any precipitate. This is not at first a fine blue, but a greenish gray, in consequence of the admixture of some white cyanide of iron; it becomes gradually blue by the absorption of oxygen from the air, which is favoured by agitation of the liquor. Whenever the colour seems to be as beautiful as it is likely to become, the liquor is to be run off by a spigot or cock from the bottom of the precipitation vats, into flat cisterns, to settle. The clear supernatant fluid, which is chiefly a solution of sulphate of potash, is then drawn off by a syphon; more water is run on with agitation to wash it, which after settling is again drawn off; and whenever the washings become tasteless, the sediment is thrown upon filter sieves, and exposed to dry, first in the air of a stove, but finally upon slabs of chalk or Paris plaster. But for several purposes, prussian blue may be best employed in the fresh pasty state, as it then spreads more evenly over paper and other surfaces.

A good article is known by the following tests: it feels light in the hand, adheres to the tongue, has a dark lively blue colour, and gives a smooth deep trace; it should not effervesce with acids, as when adulterated with chalk; nor become pasty with boiling water, as when adulterated with starch. The Paris blue, prepared without alum, with a peroxide salt of iron, displays, when rubbed, a copper-red lustre, like indigo. Prussian blue, degraded in its colour by an admixture of free oxide of iron, may be improvedby digestion in dilute sulphuric or muriatic acid, washing, and drying. Its relative richness in the real ferroprussiate of iron may be estimated by the quantity of potash or soda which a given quantity of it requires to destroy its blue colour.

Sulphuretted hydrogen passed through prussian blue diffused in water, whitens it; while prussic acid is eliminated, sulphur is thrown down, and the sesquicyanide of iron is converted into the single cyanide. Iron and tin operate in the same way. When prussian blue is made with two atoms of ferrocyanide of potassium, instead of one, it becomes soluble in water.

For the mode of applying this pigment in dyeing, seeCalico-printing.

Sesquiferrocyanate of potash, is prepared by passing chlorine gas through a solution of ferrocyanide of potassium, till it becomes red, and ceases to precipitate the peroxide salts of iron. The liquor yields, by evaporation, prismatic crystals, of a ruby-red transparency. They are soluble in 38 parts of water, and consist of 40·42 parts of sesquicyanide of iron, and 59·58 of cyanide of potassium. The solution of this salt precipitates the following metals, as stated in the table:—


Back to IndexNext