BARBERRY. The root of this plant contains a yellow colouring matter, which is soluble in water and alcohol, and is rendered brown by alkalis. The solution is employed in the manufacture of Morocco leather.
BARBERRY. The root of this plant contains a yellow colouring matter, which is soluble in water and alcohol, and is rendered brown by alkalis. The solution is employed in the manufacture of Morocco leather.
BARILLA. A crude soda, procured by the incineration of thesalsola soda, a plant cultivated for this purpose in Spain, Sicily, Sardinia, &c. Good barilla usually contains, according to my analysis, 20 per cent. of real alkali, associated with muriates and sulphates, chiefly of soda, some lime, and alumina, with very little sulphur. Caustic lyes made from it, are used in the finishing process of the hard soap manufacture. 125,068 cwts. were imported in 1835, of which only 5,807 were exported. The duty is 2s.per cwt. Of the above quantity, 64,174 came from Spain and the Balearic islands, 39,943 from the Canaries, and 20,432 from Italy and the Italian islands.
BARILLA. A crude soda, procured by the incineration of thesalsola soda, a plant cultivated for this purpose in Spain, Sicily, Sardinia, &c. Good barilla usually contains, according to my analysis, 20 per cent. of real alkali, associated with muriates and sulphates, chiefly of soda, some lime, and alumina, with very little sulphur. Caustic lyes made from it, are used in the finishing process of the hard soap manufacture. 125,068 cwts. were imported in 1835, of which only 5,807 were exported. The duty is 2s.per cwt. Of the above quantity, 64,174 came from Spain and the Balearic islands, 39,943 from the Canaries, and 20,432 from Italy and the Italian islands.
BARIUM, the metallic basis of Baryta.
BARIUM, the metallic basis of Baryta.
BARK OF OAK, for tanning. Unfortunately, the Tables of Revenue published by the Board of Trade, mix up this bark and the dyeing barks together, and give the sum of the whole for 1835, at 826,566 cwts., of which only 2,264 were re-exported. The duty is 1d.per cwt. from British possessions, and 8d.from other parts.
BARK OF OAK, for tanning. Unfortunately, the Tables of Revenue published by the Board of Trade, mix up this bark and the dyeing barks together, and give the sum of the whole for 1835, at 826,566 cwts., of which only 2,264 were re-exported. The duty is 1d.per cwt. from British possessions, and 8d.from other parts.
BARLEY (Orge, Fr.Gerste, Germ.) English barley is that with two-rowed ears, or thehordeum vulgare distichonof the botanists; the Scotch beer or bigg, is thehordeum vulgare hexastichon. The latter has two rows of ears, but 3 corns come from the same point, so that it seems to be six-eared. The grains of bigg are smaller than those of barley, and the husks thinner. The specific gravity of English barley varies from 1·25 to 1·33; of bigg from 1·227 to 1·265; the weight of the husk of barley is1⁄6, that of bigg2⁄9. 1000 parts of barley flour contain, according to Einhof, 720 of starch, 56 sugar, 50 mucilage, 36·6 gluten, 12·3 vegetable albumen, 100 water, 2·5 phosphate of lime, 68 fibrous or ligneous matter. Sp. gravity of barley, is 1·235 by my trials.
BARLEY (Orge, Fr.Gerste, Germ.) English barley is that with two-rowed ears, or thehordeum vulgare distichonof the botanists; the Scotch beer or bigg, is thehordeum vulgare hexastichon. The latter has two rows of ears, but 3 corns come from the same point, so that it seems to be six-eared. The grains of bigg are smaller than those of barley, and the husks thinner. The specific gravity of English barley varies from 1·25 to 1·33; of bigg from 1·227 to 1·265; the weight of the husk of barley is1⁄6, that of bigg2⁄9. 1000 parts of barley flour contain, according to Einhof, 720 of starch, 56 sugar, 50 mucilage, 36·6 gluten, 12·3 vegetable albumen, 100 water, 2·5 phosphate of lime, 68 fibrous or ligneous matter. Sp. gravity of barley, is 1·235 by my trials.
BARM. The yeasty top of fermenting beer. SeeBeer,Distillation,Fermentation.
BARM. The yeasty top of fermenting beer. SeeBeer,Distillation,Fermentation.
BARYTA or BARYTES, one of the simple earths. It may be obtained most easily by dissolving the native carbonate of barytes (Witherite) in nitric acid, evaporating the neutral nitrate till crystals be formed, draining and then calcining these in a covered platina crucible, at a bright red heat. A less pure baryta may be obtained by igniting strongly a mixture of the carbonate and charcoal, both in fine powder and moistened. It is a grayish white earthy looking substance, fusible only at the jet of the oxy-hydrogen blowpipe, has a sharp caustic taste, corrodes the tongue and all animal matter, is poisonous even in small quantities, has a very powerful alkaline reaction; a specific gravity of 4·0; becomes hot, and slakes violently when sprinkled with water, falling into a fine white powder, called the hydrate of baryta, which contains 101⁄2per cent. of water, and dissolves in 10 parts of boiling water. This solution lets fall abundant columnar crystals of hydrate of baryta as it cools; but it still retains one twentieth its weight of baryta, and is called baryta water. The above crystals contain 61 per cent. of water, of which, by drying, they lose 50 parts. This hydrate may be fused at a red heat without losing any more water. Of all the bases, baryta has the strongest affinity for sulphuric acid, and is hence employed either in the state of the above water, or in that of one of its neutral salts, as the nitrate or muriate, to detect the presence, and determine the quantity of that acid present in any soluble compound. Its prime equivalent, according to Berzelius, is 956,880, oxygen being 100; or 76,676, hydrogen being 1,000. Native sulphate of baryta, or heavy spar, is fraudulently used to adulterate white lead by the English dealers to a shameful extent.
BARYTA or BARYTES, one of the simple earths. It may be obtained most easily by dissolving the native carbonate of barytes (Witherite) in nitric acid, evaporating the neutral nitrate till crystals be formed, draining and then calcining these in a covered platina crucible, at a bright red heat. A less pure baryta may be obtained by igniting strongly a mixture of the carbonate and charcoal, both in fine powder and moistened. It is a grayish white earthy looking substance, fusible only at the jet of the oxy-hydrogen blowpipe, has a sharp caustic taste, corrodes the tongue and all animal matter, is poisonous even in small quantities, has a very powerful alkaline reaction; a specific gravity of 4·0; becomes hot, and slakes violently when sprinkled with water, falling into a fine white powder, called the hydrate of baryta, which contains 101⁄2per cent. of water, and dissolves in 10 parts of boiling water. This solution lets fall abundant columnar crystals of hydrate of baryta as it cools; but it still retains one twentieth its weight of baryta, and is called baryta water. The above crystals contain 61 per cent. of water, of which, by drying, they lose 50 parts. This hydrate may be fused at a red heat without losing any more water. Of all the bases, baryta has the strongest affinity for sulphuric acid, and is hence employed either in the state of the above water, or in that of one of its neutral salts, as the nitrate or muriate, to detect the presence, and determine the quantity of that acid present in any soluble compound. Its prime equivalent, according to Berzelius, is 956,880, oxygen being 100; or 76,676, hydrogen being 1,000. Native sulphate of baryta, or heavy spar, is fraudulently used to adulterate white lead by the English dealers to a shameful extent.
BASSORINE. A constituent part of a species of gum which comes from Bassora, as also of gum tragacanth, and of some gum resins. It is semi-transparent, difficult to pulverise, swells considerably in cold or boiling water, and forms a thick mucilage without dissolving. Treated with ten times its weight of nitric acid, it affords nearly 23 per cent. of its weight of mucic acid, being much more than is obtainable from gum arabic or cherry-tree gum. Bassorine is very soluble in water slightly acidulated withnitric or muriatic acid. This principle is procured by soaking gum Bassora in a great quantity of cold water, and in removing, by a filter, all the soluble parts.
BASSORINE. A constituent part of a species of gum which comes from Bassora, as also of gum tragacanth, and of some gum resins. It is semi-transparent, difficult to pulverise, swells considerably in cold or boiling water, and forms a thick mucilage without dissolving. Treated with ten times its weight of nitric acid, it affords nearly 23 per cent. of its weight of mucic acid, being much more than is obtainable from gum arabic or cherry-tree gum. Bassorine is very soluble in water slightly acidulated withnitric or muriatic acid. This principle is procured by soaking gum Bassora in a great quantity of cold water, and in removing, by a filter, all the soluble parts.
BATHS. (Bains, Fr.Baden, Germ.) Warm baths have lately come into very general use, and they are justly considered as indispensably necessary in all modern houses of any magnitude, as also in club-houses, hotels, and hospitals. But the mode of constructing these baths, and of obtaining the necessary supplies of hot and cold water, does not appear to have undergone an improvement equal to the extension of their employment.The several points in regard to warm baths, are,The materials of which they are constructed.Their situation.The supply of cold water.The supply of hot water.Minor comforts and conveniences.1. As to the materials of which they are constructed.—Of these the best are slabs of polished marble, properly bedded with good water-tight cement, in a seasoned wooden case, and neatly and carefully united at their respective edges. These, when originally well constructed, form a durable, pleasant, and agreeable-looking bath; but the expense is often objectionable, and, in upper chambers, the weight may prove inconvenient. If of white or veined marble, they are also apt to get yellow or discoloured by frequent use, and cannot easily be cleansed; so that large Dutch tiles, as they are called, or square pieces of white earthenware, are sometimes substituted; which, however, are difficultly kept water-tight; so that, upon the whole, marble is preferable.Where there are reasons for excluding marble, copper or tinned iron plate is the usual material resorted to. The former is most expensive in the outfit, but far more durable than the latter, which is, moreover, liable to leakage at the joints, unless most carefully made. Either the one or the other should be well covered outside and inside, with several coats of paint, which may then be marbled, or otherwise ornamented.Wooden tubs, square or oblong, and oval, are sometimes used for warm baths; and are cheap and convenient, but neither elegant nor cleanly. The wood always contracts a mouldy smell; and the difficulty and nuisance of keeping them water-tight, and preventing shrinkage, are such as to exclude them from all except extemporaneous application.2. As to the situation of the bath, or the part of the house in which it is to be placed.—In hotels, and club-houses, this is a question easily determined: several baths are usually here required, and each should have annexed to it, a properly warmed dressing-room. Whether they are up stairs or down stairs, is a question of convenience, but the basement story, in which they are sometimes placed, should always be avoided; there is a coldness and dampness belonging to it, in almost all weathers, which is neither agreeable nor salubrious.In hospitals, there should be at least two or three baths on each side of the house, (the men’s and women’s), and the supply of hot water should be ready at a moment’s notice. The rooms in which the baths are placed should be light and comparatively large and airy; and such conveniences for getting into and out of the bath should be adopted, as the sick are well known to require. The dimensions of these baths should also be larger than usual.In private houses, the fittest places for warm baths are dressing-rooms annexed to the principal bed-rooms; or, where such convenience cannot be obtained, a separate bath-room, connected with the dressing-room, and always upon the bed-room floor. All newly-built houses should be properly arranged for this purpose, and due attention should be paid to the warming of the bath-room, which ought also to be properly ventilated. A temperature of 70° may be easily kept up in it, and sufficient ventilation is absolutely requisite, to prevent the deposition of moisture upon the walls and furniture.The objection which formerly prevailed, in respect to the difficulty of obtaining adequate supplies of water, in the upper rooms, has been entirely obviated, by having cisterns at or near the top of the house; and we would just hint that these should be so contrived, as to be placed out of the reach of frost; a provision of the utmost importance in every point of view, and very easily effected in a newly-built house, though it unfortunately happens, that architects usually regard these matters as trifles, and treat them with neglect, as indeed they do the warming and ventilation of buildings generally.3. The supply of water of proper quality and quantity, is a very important point, as connected with the present subject. The water should be soft, clean, and pure; and as free as possible from all substances mechanically suspended in it. In many cases, it answers to dig a well for the exclusive supply of a large house with water. In mostparts of London this may effectually be accomplished, at a comparatively moderate expense; and, if the well be deep enough, the water will be abundant, soft, and pellucid. The labour of forcing it by a pump to the top of the house, is the only drawback; this, however, is very easily done by a horse-engine, or there are people enough about town, glad to undertake it at a shilling a day. I am led to these remarks by observing the filthy state of the water usually supplied, at very extravagant rates, by the water companies. It often partakes more of the appearance of pea-soup than of the pure element; fills our cisterns and pipes with mud and dirt, and, even when cleared by subsidence, is extremely unpalatable. It deposits its nastiness in the pipes connected with warm baths, and throws down a slippery deposit upon the bottom of the vessel itself to such an extent, as often to preclude its being used, at least as a luxury, which a clear and clean bath really is. This inconvenience may, in some measure, be avoided, by suffering the water to throw down its extraneous matters upon the bottom of the cistern, and drawing our supplies from pipes a little above it; there will, however, always be more or less deposit in the pipes themselves; and every time the water runs into the cistern, the grouts are stirred up, and diffused through its mass: this, from some cause or other, has lately become an intolerable nuisance; and he who reflects upon the miscellaneous contents of Thames water, will not have his appetite sharpened by a draught of the Grand Junction beverage, nor feel reanimated and refreshed by bathing in a compound so heterogeneous and unsavoury.4. and 5. In public bathing establishments, where numerous and constant baths are required, the simplest and most effective means of obtaining hot water for their supply consists in drawing it directly into the baths from a large boiler, placed somewhere above their level. This boiler should be supplied with proper feeding-pipes and gauges; and, above all things, its dimensions should be ample; it should be of wrought iron or copper, except where sea water is used, in which case the latter metal is sometimes objectionable. The hot water should enter the bath by a pipe at least an inch and a half in diameter; and the cold water by one of the same dimension, or somewhat larger, so that the bath may not be long in filling. The relative proportions of the hot and cold water are, of course, to be adjusted by a thermometer, and every bath should have a two-inch waste-pipe, opening about two inches from the top of the bath, and suffering the excess of water freely to run off; so that when a person is immersed in the bath, or when the supplies of water are accidentally left open, there may be no danger of an overflow.Where there is a laundry in the upper story of the house, or other convenient place for erecting a copper and its appurtenances, a plan similar to the above may often be conveniently adopted in private houses, for the supply of a bath upon the principal bed-room floor. An attempt is sometimes made to place boilers behind the fires of dressing-rooms, or otherwise to erect them in the room itself, for the purpose of supplying warm water; but this plan is always objectionable, from the complexity of the means by which the supply of water is furnished to the boiler, and often dangerous from the flues becoming choaked with soot, and taking fire. Steam is also apt, in such cases, to escape in quantities into the room; so that it becomes necessary to search for other methods of heating the bath; one or two of the least objectionable of which I shall describe.1. A contrivance of some ingenuity consists in suffering the water for the supply of the bath to flow from a cistern above it, through a leaden pipe of about one inch diameter, which is conducted into the kitchen or other convenient place where a large boiler for the supply of hot water is required. The bath-pipe is immersed in this boiler, in which it makes many convolutions, and, again emerging, ascends to the bath. The operation is simply this:—the cold water passing through the convolutions of that part of the pipe which is immersed in the boiling water, receives there sufficient heat for the purpose required, and is delivered in that state by the ascending pipe into the bath, which is also supplied with cold water and waste-pipes as usual. The pipe may be of lead, as far as the descending and ascending parts are concerned, but the portion forming the worm, or convolutions immersed in the boiler should be copper, in order that the water within it may receive heat without impediment.This plan is economical only where a large boiler is constantly kept at work in the lower part of the house; otherwise, the trouble and expense of heating such a boiler, for the mere purpose of the bath, render it unavailable. The worm-pipe is also apt to become furred, upon the outside, by the deposition of the earthy impurities of the water in which it is immersed; it then becomes a bad conductor of heat, is cleansed with difficulty, and the plan is rendered ineffective. This system, however, has been adopted, in some particular cases, with satisfaction.2. A much more simple, economical, and independent mode of heating a warm bath, by a fire placed at a distance from it, is the following, which is found to answer perfectly in private houses, as well as upon a more extended scale in large establishments.It is certainly open to some objections, but these are overbalanced by its advantages. A waggon-shaped boiler, holding about six gallons of water, is properly placed over a small furnace, in any convenient and safe part of the house, as the kitchen, scullery, servants’ hall, or wash-house. The bath itself, of the usual dimensions and construction, is placed where it is wanted, with a due supply of cold water from above. Two pipes issue from within an inch of the bottom of the bath at its opposite extremities; one at the head of the bath, about one inch, and the other at the foot, an inch and one eighth in diameter. These tubes descend to the boiler, the smaller one entering it at the bottom, and the larger one issuing from its top.Under these circumstances, supposing the pipes and boiler every where perfectly tight, when the bath is filled, the water will descend into and expel the air from the boiler, and completely fill it. Now, upon making a gentle fire under the boiler, an ascending current of warm water will necessarily pass upwards through the larger pipe which issues from its top, and cold water will descend by the pipe which enters at the bottom; and thus, by the establishment of currents, the whole mass of water in the bath will become heated to the desired point; or, if above it, the temperature may easily be lowered by the admixture of cold water.The advantages of this form of bath are numerous. The shorter the pipes of communication the better, but they may extend forty or fifty feet without any inconvenience beyond that of expense; so that there is no obstacle to the bath being near the bed-room while the boiler is on the basement story. There is but little time required for heating the bath; the water in which may, if requisite, be raised to about 100° in about half an hour from the time of lighting the fire. The consumption of fuel is also trifling.The following are the chief disadvantages attendant upon this plan, and the means of obviating them:—It is necessary, when the water has acquired its proper temperature, to withdraw the fire from the boiler, or not to use the bath immediately, as it may go on acquiring some heat from the boiler, so that we may become inconveniently hot in the bath. When, therefore, this bath is used, we may proceed as follows:—heat the water in it an hour before it is wanted, to about 100°, and then extinguish the fire. The water will retain its temperature, or nearly so, for three or four hours, especially if the bath be shut up with a cover; so that when about to use it, cold water may be admitted till the temperature is lowered to the required point, and thus all the above inconveniences are avoided.Another disadvantage of this bath arises from too fierce a fire being made under the boiler, so as to occasion the water to boil within it, a circumstance which ought always to be carefully avoided. In that case, the steam rising in the upper part of the boiler, and into the top pipe, condenses there, and occasions violent concussions, the noise of which often alarms the whole house, and leads to apprehensions of explosion, which, however, is very unlikely to occur; but the concussions thus produced injure the pipes, and may render them leaky: so that in regard to these, and all other baths, &c., we may remark, that the pipes should pass up and down in such parts of the house as will not be injured if some leakage takes place; and under the bath itself should be a sufficiently large leaden tray with a waste-pipe, to receive and carry off any accidental drippings, which might injure the ceilings of the rooms below. In all newly-built houses, two or three flues should be left in proper places for the passage of ascending and descending water-pipes; and these flues should in some way receive at their lower part a little warm air in winter, to prevent the pipes freezing: the same attention should also be paid to the situation of the cisterns of water in houses, which should be kept within the house, and always supplied with a very ample waste-pipe, to prevent the danger of overflow. Cisterns thus properly placed, and carefully constructed, should be supplied from the water-mains by pipes kept under ground, till they enter the house, and not carried across the area, or immediately under the pavement, where they are liable to freeze.3. Baths are sometimes heated by steam, which has several advantages: it may either be condensed directly into the water of the bath, or, if the bath be of copper or tinned iron, it may be conducted into a casing upon its outside, usually called a jacket; in the latter case there must be a proper vent for the condensed water, and for the escape of air and waste steam. Steam is also sometimes passed through a serpentine pipe, placed at the bottom of the bath. But none of these methods are to be recommended for adoption in private houses, and are only advisable in hospitals, or establishments where steam boilers are worked for other purposes than the mere heating of baths.Many copper and tin baths have been lately constructed in London, with a little furnace attached to one end, and surrounded with a case or jacket, into which the water flows and circulates backwards and forwards till the whole mass in the bath gets heated to the due degree. One of the best of these is that constructed by Mr. Benham,of Wigmore Street. The bath must be placed near the fire-grate, and the smoke-pipe of the attached furnace be conducted up the chimney a certain way to secure a sufficient draught to maintain combustion. The above bath, well managed, heats the water from 50° to 98° in about 20 or 25 minutes, as I have experimentally proved. When the proper temperature is attained, the fire must of course be extinguished.
BATHS. (Bains, Fr.Baden, Germ.) Warm baths have lately come into very general use, and they are justly considered as indispensably necessary in all modern houses of any magnitude, as also in club-houses, hotels, and hospitals. But the mode of constructing these baths, and of obtaining the necessary supplies of hot and cold water, does not appear to have undergone an improvement equal to the extension of their employment.
The several points in regard to warm baths, are,
1. As to the materials of which they are constructed.—Of these the best are slabs of polished marble, properly bedded with good water-tight cement, in a seasoned wooden case, and neatly and carefully united at their respective edges. These, when originally well constructed, form a durable, pleasant, and agreeable-looking bath; but the expense is often objectionable, and, in upper chambers, the weight may prove inconvenient. If of white or veined marble, they are also apt to get yellow or discoloured by frequent use, and cannot easily be cleansed; so that large Dutch tiles, as they are called, or square pieces of white earthenware, are sometimes substituted; which, however, are difficultly kept water-tight; so that, upon the whole, marble is preferable.
Where there are reasons for excluding marble, copper or tinned iron plate is the usual material resorted to. The former is most expensive in the outfit, but far more durable than the latter, which is, moreover, liable to leakage at the joints, unless most carefully made. Either the one or the other should be well covered outside and inside, with several coats of paint, which may then be marbled, or otherwise ornamented.
Wooden tubs, square or oblong, and oval, are sometimes used for warm baths; and are cheap and convenient, but neither elegant nor cleanly. The wood always contracts a mouldy smell; and the difficulty and nuisance of keeping them water-tight, and preventing shrinkage, are such as to exclude them from all except extemporaneous application.
2. As to the situation of the bath, or the part of the house in which it is to be placed.—In hotels, and club-houses, this is a question easily determined: several baths are usually here required, and each should have annexed to it, a properly warmed dressing-room. Whether they are up stairs or down stairs, is a question of convenience, but the basement story, in which they are sometimes placed, should always be avoided; there is a coldness and dampness belonging to it, in almost all weathers, which is neither agreeable nor salubrious.
In hospitals, there should be at least two or three baths on each side of the house, (the men’s and women’s), and the supply of hot water should be ready at a moment’s notice. The rooms in which the baths are placed should be light and comparatively large and airy; and such conveniences for getting into and out of the bath should be adopted, as the sick are well known to require. The dimensions of these baths should also be larger than usual.
In private houses, the fittest places for warm baths are dressing-rooms annexed to the principal bed-rooms; or, where such convenience cannot be obtained, a separate bath-room, connected with the dressing-room, and always upon the bed-room floor. All newly-built houses should be properly arranged for this purpose, and due attention should be paid to the warming of the bath-room, which ought also to be properly ventilated. A temperature of 70° may be easily kept up in it, and sufficient ventilation is absolutely requisite, to prevent the deposition of moisture upon the walls and furniture.
The objection which formerly prevailed, in respect to the difficulty of obtaining adequate supplies of water, in the upper rooms, has been entirely obviated, by having cisterns at or near the top of the house; and we would just hint that these should be so contrived, as to be placed out of the reach of frost; a provision of the utmost importance in every point of view, and very easily effected in a newly-built house, though it unfortunately happens, that architects usually regard these matters as trifles, and treat them with neglect, as indeed they do the warming and ventilation of buildings generally.
3. The supply of water of proper quality and quantity, is a very important point, as connected with the present subject. The water should be soft, clean, and pure; and as free as possible from all substances mechanically suspended in it. In many cases, it answers to dig a well for the exclusive supply of a large house with water. In mostparts of London this may effectually be accomplished, at a comparatively moderate expense; and, if the well be deep enough, the water will be abundant, soft, and pellucid. The labour of forcing it by a pump to the top of the house, is the only drawback; this, however, is very easily done by a horse-engine, or there are people enough about town, glad to undertake it at a shilling a day. I am led to these remarks by observing the filthy state of the water usually supplied, at very extravagant rates, by the water companies. It often partakes more of the appearance of pea-soup than of the pure element; fills our cisterns and pipes with mud and dirt, and, even when cleared by subsidence, is extremely unpalatable. It deposits its nastiness in the pipes connected with warm baths, and throws down a slippery deposit upon the bottom of the vessel itself to such an extent, as often to preclude its being used, at least as a luxury, which a clear and clean bath really is. This inconvenience may, in some measure, be avoided, by suffering the water to throw down its extraneous matters upon the bottom of the cistern, and drawing our supplies from pipes a little above it; there will, however, always be more or less deposit in the pipes themselves; and every time the water runs into the cistern, the grouts are stirred up, and diffused through its mass: this, from some cause or other, has lately become an intolerable nuisance; and he who reflects upon the miscellaneous contents of Thames water, will not have his appetite sharpened by a draught of the Grand Junction beverage, nor feel reanimated and refreshed by bathing in a compound so heterogeneous and unsavoury.
4. and 5. In public bathing establishments, where numerous and constant baths are required, the simplest and most effective means of obtaining hot water for their supply consists in drawing it directly into the baths from a large boiler, placed somewhere above their level. This boiler should be supplied with proper feeding-pipes and gauges; and, above all things, its dimensions should be ample; it should be of wrought iron or copper, except where sea water is used, in which case the latter metal is sometimes objectionable. The hot water should enter the bath by a pipe at least an inch and a half in diameter; and the cold water by one of the same dimension, or somewhat larger, so that the bath may not be long in filling. The relative proportions of the hot and cold water are, of course, to be adjusted by a thermometer, and every bath should have a two-inch waste-pipe, opening about two inches from the top of the bath, and suffering the excess of water freely to run off; so that when a person is immersed in the bath, or when the supplies of water are accidentally left open, there may be no danger of an overflow.
Where there is a laundry in the upper story of the house, or other convenient place for erecting a copper and its appurtenances, a plan similar to the above may often be conveniently adopted in private houses, for the supply of a bath upon the principal bed-room floor. An attempt is sometimes made to place boilers behind the fires of dressing-rooms, or otherwise to erect them in the room itself, for the purpose of supplying warm water; but this plan is always objectionable, from the complexity of the means by which the supply of water is furnished to the boiler, and often dangerous from the flues becoming choaked with soot, and taking fire. Steam is also apt, in such cases, to escape in quantities into the room; so that it becomes necessary to search for other methods of heating the bath; one or two of the least objectionable of which I shall describe.
1. A contrivance of some ingenuity consists in suffering the water for the supply of the bath to flow from a cistern above it, through a leaden pipe of about one inch diameter, which is conducted into the kitchen or other convenient place where a large boiler for the supply of hot water is required. The bath-pipe is immersed in this boiler, in which it makes many convolutions, and, again emerging, ascends to the bath. The operation is simply this:—the cold water passing through the convolutions of that part of the pipe which is immersed in the boiling water, receives there sufficient heat for the purpose required, and is delivered in that state by the ascending pipe into the bath, which is also supplied with cold water and waste-pipes as usual. The pipe may be of lead, as far as the descending and ascending parts are concerned, but the portion forming the worm, or convolutions immersed in the boiler should be copper, in order that the water within it may receive heat without impediment.
This plan is economical only where a large boiler is constantly kept at work in the lower part of the house; otherwise, the trouble and expense of heating such a boiler, for the mere purpose of the bath, render it unavailable. The worm-pipe is also apt to become furred, upon the outside, by the deposition of the earthy impurities of the water in which it is immersed; it then becomes a bad conductor of heat, is cleansed with difficulty, and the plan is rendered ineffective. This system, however, has been adopted, in some particular cases, with satisfaction.
2. A much more simple, economical, and independent mode of heating a warm bath, by a fire placed at a distance from it, is the following, which is found to answer perfectly in private houses, as well as upon a more extended scale in large establishments.It is certainly open to some objections, but these are overbalanced by its advantages. A waggon-shaped boiler, holding about six gallons of water, is properly placed over a small furnace, in any convenient and safe part of the house, as the kitchen, scullery, servants’ hall, or wash-house. The bath itself, of the usual dimensions and construction, is placed where it is wanted, with a due supply of cold water from above. Two pipes issue from within an inch of the bottom of the bath at its opposite extremities; one at the head of the bath, about one inch, and the other at the foot, an inch and one eighth in diameter. These tubes descend to the boiler, the smaller one entering it at the bottom, and the larger one issuing from its top.
Under these circumstances, supposing the pipes and boiler every where perfectly tight, when the bath is filled, the water will descend into and expel the air from the boiler, and completely fill it. Now, upon making a gentle fire under the boiler, an ascending current of warm water will necessarily pass upwards through the larger pipe which issues from its top, and cold water will descend by the pipe which enters at the bottom; and thus, by the establishment of currents, the whole mass of water in the bath will become heated to the desired point; or, if above it, the temperature may easily be lowered by the admixture of cold water.
The advantages of this form of bath are numerous. The shorter the pipes of communication the better, but they may extend forty or fifty feet without any inconvenience beyond that of expense; so that there is no obstacle to the bath being near the bed-room while the boiler is on the basement story. There is but little time required for heating the bath; the water in which may, if requisite, be raised to about 100° in about half an hour from the time of lighting the fire. The consumption of fuel is also trifling.
The following are the chief disadvantages attendant upon this plan, and the means of obviating them:—
It is necessary, when the water has acquired its proper temperature, to withdraw the fire from the boiler, or not to use the bath immediately, as it may go on acquiring some heat from the boiler, so that we may become inconveniently hot in the bath. When, therefore, this bath is used, we may proceed as follows:—heat the water in it an hour before it is wanted, to about 100°, and then extinguish the fire. The water will retain its temperature, or nearly so, for three or four hours, especially if the bath be shut up with a cover; so that when about to use it, cold water may be admitted till the temperature is lowered to the required point, and thus all the above inconveniences are avoided.
Another disadvantage of this bath arises from too fierce a fire being made under the boiler, so as to occasion the water to boil within it, a circumstance which ought always to be carefully avoided. In that case, the steam rising in the upper part of the boiler, and into the top pipe, condenses there, and occasions violent concussions, the noise of which often alarms the whole house, and leads to apprehensions of explosion, which, however, is very unlikely to occur; but the concussions thus produced injure the pipes, and may render them leaky: so that in regard to these, and all other baths, &c., we may remark, that the pipes should pass up and down in such parts of the house as will not be injured if some leakage takes place; and under the bath itself should be a sufficiently large leaden tray with a waste-pipe, to receive and carry off any accidental drippings, which might injure the ceilings of the rooms below. In all newly-built houses, two or three flues should be left in proper places for the passage of ascending and descending water-pipes; and these flues should in some way receive at their lower part a little warm air in winter, to prevent the pipes freezing: the same attention should also be paid to the situation of the cisterns of water in houses, which should be kept within the house, and always supplied with a very ample waste-pipe, to prevent the danger of overflow. Cisterns thus properly placed, and carefully constructed, should be supplied from the water-mains by pipes kept under ground, till they enter the house, and not carried across the area, or immediately under the pavement, where they are liable to freeze.
3. Baths are sometimes heated by steam, which has several advantages: it may either be condensed directly into the water of the bath, or, if the bath be of copper or tinned iron, it may be conducted into a casing upon its outside, usually called a jacket; in the latter case there must be a proper vent for the condensed water, and for the escape of air and waste steam. Steam is also sometimes passed through a serpentine pipe, placed at the bottom of the bath. But none of these methods are to be recommended for adoption in private houses, and are only advisable in hospitals, or establishments where steam boilers are worked for other purposes than the mere heating of baths.
Many copper and tin baths have been lately constructed in London, with a little furnace attached to one end, and surrounded with a case or jacket, into which the water flows and circulates backwards and forwards till the whole mass in the bath gets heated to the due degree. One of the best of these is that constructed by Mr. Benham,of Wigmore Street. The bath must be placed near the fire-grate, and the smoke-pipe of the attached furnace be conducted up the chimney a certain way to secure a sufficient draught to maintain combustion. The above bath, well managed, heats the water from 50° to 98° in about 20 or 25 minutes, as I have experimentally proved. When the proper temperature is attained, the fire must of course be extinguished.
BDELLIUM. A gum resin, produced by an unknown plant which grows in Persia and Arabia. It comes to us in yellowish or reddish pieces, smells faintly, like myrrh, and consists of 59 resin, 9·2 gum, 30·6 bassorine, and 1·2 ethereous oil.
BDELLIUM. A gum resin, produced by an unknown plant which grows in Persia and Arabia. It comes to us in yellowish or reddish pieces, smells faintly, like myrrh, and consists of 59 resin, 9·2 gum, 30·6 bassorine, and 1·2 ethereous oil.