Chapter 21

BRANDY. The name given in this country to ardent spirits distilled from wine, and possessed of a peculiar taste and flavour, due to a minute portion of a peculiar volatile oil. Each variety of alcohol has an aroma characteristic of the fermented substance from which it is procured; whether it be the grape, cherries, sugar-cane, rice, corn, or potatoes; and it may be distinguished even as procured from different growths of the vine. The brandies of Languedoc, Bordeaux, Armagnac, Cognac, Aunis,Saintonge, Rochelle, Orleans, Barcelona, Naples, &c. being each readily recognisable by an experienced dealer.Aubergier showed, by experiments, that the disagreeable taste of the spirits distilled from themarcof the grape is owing to an essential oil contained in the skin of the grape; and found that the oil, when insulated, is so energetic that a few drops are sufficient to taint a pipe of 600 litres of fine-flavoured spirit.The most celebrated of the French brandies, those of Cognac and Armagnac, are slightly rectified to only from 0·935 to 0·922; they contain more than half their weight of water, and come over therefore highly charged with the fragrant essential oil of the husk of the grape. When, to save expense of carriage, the spirit is rectified to a much higher degree, the dealer, on receiving it at Paris, reduces it to the market proof by the addition of a little highly-flavoured weak brandy and water; but he cannot in this way produce so finely-flavoured a spirit, as the weaker product of distillation of the Cognac wine. If the best Cognac brandy be carefully distilled at a low heat, and the strong spirit be diluted with water, it will be found to have suffered much in its flavour.Genuine French brandy evinces an acid reaction with litmus paper, owing to a minute portion of vinegar; it contains besides some acetic ether, and, when long kept in oak casks, a little astringent matter. The following formula may be proposed for converting a silent or flavourless corn spirit, into a factitious brandy. Dilute the pure alcohol to the proof pitch, add to every hundred pounds weight of it from half a pound to a pound of argol (crude winestone) dissolved in water, a little acetic ether, and French-wine vinegar, some bruised French plums, and flavour-stuff from Cognac; then distil the mixture with a gentle fire, in an alembic furnished with an agitator.The spirit which comes over may be coloured with nicely burned sugar (caramel) to the desired tint, and roughened in taste with a few drops of tincture of catechu or oak-bark.The above recipe will afford a spirit free from the deleterious drugs too often used to disguise and increase the intoxicating power of British brandies; one which may be reckoned as wholesome as alcohol, in any shape, can ever be.

BRANDY. The name given in this country to ardent spirits distilled from wine, and possessed of a peculiar taste and flavour, due to a minute portion of a peculiar volatile oil. Each variety of alcohol has an aroma characteristic of the fermented substance from which it is procured; whether it be the grape, cherries, sugar-cane, rice, corn, or potatoes; and it may be distinguished even as procured from different growths of the vine. The brandies of Languedoc, Bordeaux, Armagnac, Cognac, Aunis,Saintonge, Rochelle, Orleans, Barcelona, Naples, &c. being each readily recognisable by an experienced dealer.

Aubergier showed, by experiments, that the disagreeable taste of the spirits distilled from themarcof the grape is owing to an essential oil contained in the skin of the grape; and found that the oil, when insulated, is so energetic that a few drops are sufficient to taint a pipe of 600 litres of fine-flavoured spirit.

The most celebrated of the French brandies, those of Cognac and Armagnac, are slightly rectified to only from 0·935 to 0·922; they contain more than half their weight of water, and come over therefore highly charged with the fragrant essential oil of the husk of the grape. When, to save expense of carriage, the spirit is rectified to a much higher degree, the dealer, on receiving it at Paris, reduces it to the market proof by the addition of a little highly-flavoured weak brandy and water; but he cannot in this way produce so finely-flavoured a spirit, as the weaker product of distillation of the Cognac wine. If the best Cognac brandy be carefully distilled at a low heat, and the strong spirit be diluted with water, it will be found to have suffered much in its flavour.

Genuine French brandy evinces an acid reaction with litmus paper, owing to a minute portion of vinegar; it contains besides some acetic ether, and, when long kept in oak casks, a little astringent matter. The following formula may be proposed for converting a silent or flavourless corn spirit, into a factitious brandy. Dilute the pure alcohol to the proof pitch, add to every hundred pounds weight of it from half a pound to a pound of argol (crude winestone) dissolved in water, a little acetic ether, and French-wine vinegar, some bruised French plums, and flavour-stuff from Cognac; then distil the mixture with a gentle fire, in an alembic furnished with an agitator.

The spirit which comes over may be coloured with nicely burned sugar (caramel) to the desired tint, and roughened in taste with a few drops of tincture of catechu or oak-bark.

The above recipe will afford a spirit free from the deleterious drugs too often used to disguise and increase the intoxicating power of British brandies; one which may be reckoned as wholesome as alcohol, in any shape, can ever be.

BRASS. (Laiton,cuivre jaune, Fr.;Messing, Germ.) An alloy of copper and zinc. It was formerly manufactured by cementing granulated copper, calledbean-shot, or copper clippings, with calcined calamine (native carbonate of zinc) and charcoal, in a crucible, and exposing them to bright ignition. Three parts of copper were used for three of calamine and two of charcoal. The zinc reduced to the metallic state by the agency of the charcoal, combined with the copper, into an alloy which formed, on cooling, a lump at the bottom of the crucible. Several of these, being remelted and cast into moulds, constituted ingots of brass for the market. James Emerson obtained a patent, in 1781, for making brass by the direct fusion of its two metallic elements, and it is now usually manufactured in this way.It appears that the best proportion of the constituents to form fine brass is one prime equivalent of copper = 631⁄2+ one of zinc = 32·3; or very nearly 2 parts of copper to 1 of zinc. The bright gold coloured alloy, called Prince’s, or Prince Rupert’s metal, in this country, consists apparently of two primes of zinc to one of copper, or of nearly equal parts of each. Brass, or hard solder, consists of two parts of brass and one of zinc melted together, to which a little tin is occasionally added; but when the solder must be very strong, as for brass tubes that are to undergo drawing, two thirds of a part of zinc are used for two parts of brass. Mosaic gold, according to the specification of Parker and Hamilton’s patent consists of 100 parts of copper, and from 52 to 55 of zinc; which is no atomic proportion. Bath metal is said to consist of 32 parts of brass and 9 parts of zinc.The button manufacturers of Birmingham make theirplatinwith 8 parts of brass and 5 of zinc; but their cheap buttons with an alloy of copper, tin, zinc, and lead.Red brass, the Tombak of some, (not of the Chinese, for this is white copper,) consists of more copper and less zinc than go to the composition of brass; being from 21⁄2to 8 or 10 of the former to 1 of the latter. At the famous brass works of Hegermühl, to be presently described, 11 parts of copper are alloyed with 2 of zinc into a red brass, from which plates are made that are afterwards rolled into sheets. From such an alloy the Dutch foil, as it is called, is manufactured at Nürnberg; Pinchbeck, Similor, Mannheim gold, are merely different names of alloy similar to Prince’s metal. The last consists of 3 of copper and 1 of zinc, separately melted, and suddenly incorporated by stirring.—Wiegleb.In the process of alloying two metals of such different fusibilities as copper and zinc, a considerable waste of the latter metal by the combustion, to which it is so prone, might be expected; but, in reality, their mutual affinities seem to prevent the loss, in a great measure, by the speedy absorption of the zinc into the substance of the copper. Indeed, copper plates and rods are oftenbrassedexternally by exposure, at a high temperature, to the fumes of zinc, and afterwards laminated or drawn. The spuriousgold wire of Lyons is made from such rods. Copper vessels may be superficially converted into brass by boiling them in dilute muriatic acid, containing some winestone and zinc amalgam.The first step in making brass is to plunge slips of copper into melted zinc till an alloy of somewhat difficult fusion be formed, to raise the heat, and add the remaining proportion of the copper.The brass of the first fusion is broken to pieces, and melted with a fresh quantity of zinc, to obtain the finished brass. Each melting takes about 8 or 9 hours. The metal is now cast into plates, about 40 inches long by 26 inches broad, and from one third to one half inch thick. The moulds are, in this case also, slabs of granite mounted in an iron frame. Granite appears to be preferred to every thing else as a mould, because it preserves the heat long, and by the asperities of its surface, it keeps hold of the clay lute applied to secure the joinings.The cast plates are most usually rolled into sheets. For this purpose they are cut into ribands of various breadths, commonly about 61⁄2inches. The cylinders of the brass rolling-press are generally 46 inches long, and 18 inches in diameter. The ribands are first of all passed cold through the cylinders; but the brass soon becomes too hard to laminate. It is then annealed in a furnace, and, after cooling, is passed afresh through a rolling press. After paring off the chipped edges, the sheets are laminated two at a time: and if they are to be made very thin, even eight plates are passed through together. The brass in these operations must be annealed 7 or 8 times before the sheet arrives at the required thinness. These successive heatings are very expensive; and hence they have led the manufacturers to try various plans of economy. The annealing furnaces are of two forms according to the size of the sheets of brass. The smaller are about 12 feet long, with a fire place at each end, and about 13 inches wide. The arch of the furnace has a cylindrical shape, whose axis is parallel to its small side. The hearth is horizontal, and is made of bricks set on edge. In the front of the furnace there is a large door, which is raised by a lever, or chain, and counterweight, and slides in a frame between two cheeks of cast iron. This furnace has, in general, no chimney, except a vent slightly raised above the door, to prevent the workmen being incommoded by the smoke. Sometimes the arch is perforated with a number of holes. The sheets of brass are placed above each other, but separated by parings, to allow the hot air to circulate among them, the lowest sheet resting upon two bars of cast iron placed lengthwise.The large furnaces are usually 32 feet long, by 61⁄2feet wide, in the body, and 3 feet at the hearth. A grate, 13 inches broad, extends along each side of the hearth, through its whole length, and is divided from it by a small wall, 2 or 3 inches high. The vault of the furnace has a small curvature, and is pierced with 6 or 8 openings, which allow the smoke to pass off into a low bell-chimney above. At each end of the furnace there is a cast-iron door, which slides up and down in an iron frame, and is poised by a counterweight. On the hearth there is a kind of railway, composed of two iron bars, on the grooves of which the carriage moves with its loads of sheets of brass.These sheets, being often 24 feet long, could not be easily moved in and out of the furnace; but as brass laminates well in the cold state, they are all introduced and moved out together. With this view, an iron carriage is framed with four bars, which rest on four wheels. Upon this carriage, of a length nearly equal to that of the furnace, the sheets are laid, with brass parings between them. The carriage is then raised by a crane to a level with the furnace, and entered upon the grooved bars which lie upon the hearth. That no heat may be lost, two carriages are provided, the one being ready to put in as the other is taken out; the furnace is meanwhile uniformly kept hot. This method, however convenient for moving the sheets in and out, wastes a good deal of fuel in heating the iron carriage.The principal places in which brass is manufactured on the great scale in England, are Bristol, Birmingham, and Holywell, in North Wales.The French writers affirm, that a brass, containing 2per cent.of lead, works more freely in the turning lathe, but does not hammer so well as the mere alloy of copper and zinc.At the brass manufactory of Hegermühl, upon the Finon canal near Potsdam, the following are the materials of one charge; 41 pounds of old brass, 55 pounds refined copper (gahrkupfer) granulated; and 24 pounds of zinc. This mixture, weighing 120 pounds, is distributed into four crucibles, and fused in a wind furnace with pitcoal fuel. The waste varies from 21⁄2to 4 pounds upon the whole.Brass furnaceFig.159.represents the furnace as it was formerly worked there with charcoal;a, the laboratory in which the crucibles were placed. It was walled with fire bricks. The foundations and the filling-in walls were formed of stone rubbish, as being bad conductors of heat; sand and ashes may be also used;b, cast-iron circular grating plates pierced with12 holes (seefig.160.), over them a sole of loam,c, is beat down, and perforated with holes corresponding to those in the iron discs;d, the ash-pit;e, thebock, a draught flue which conducts the air requisite to the combustion, from a sunk tunnel, in communication with several melting furnaces. The terrace or crown of the furnace,f, lies on a level with the foundry floor,h h, and is shut with a tile of fire-clay,g, which may be moved in any direction by means of hooks and eyes in its binding iron ring.Fig.161.the tongs for putting in and taking out the charges, as viewed from above and from the side.Modern brass furnacesFigs.162,163.represent the furnaces constructed more recently for the use of pitcoal fuel;fig.162.being an upright section, andfig.163.the ground plan. In this furnace the crucibles are not surrounded with the fuel, but they receive the requisite melting heat from the flame proceeding from the grate upon which it is burned. The crucibles stand upon 7 binding arches,a, which unite in the middle at the key-stoneb,fig.163.Between the arches are spaces through which the flame rises from the gratec.dis the fire-door;e, a sliding tile or damper for regulating or shutting off the air-draught;fan inclined plane, for carrying off the cinders that fall through the grate, along the draught tunnelg, so that the air in entering below may not be heated by them.The crucibles are 16 inches deep, 91⁄2wide at the mouth, 61⁄2at the bottom; with a thickness in the sides of 1 inch and 11⁄2below; they stand from 40 to 50 meltings. The old brass, which fills their whole capacity, is first put in and melted down; the crucibles are now taken out, and are charged with the half of the zinc in pieces of from 1 to 3 cubic inches in size, covered over with coal ashes; then one half of the copper charge is introduced, again coal-dust; and thus the layers of zinc and copper are distributed alternately with coal-ashes betwixt them, till the whole charge gets finally fused. Over all, a thicker layer of carbonaceous matter is laid, to prevent oxidizement of the brass. Eight crucibles filled in this way are put into the furnace between the 11 holes of the grate shelf; and over them two empty crucibles are laid to be heated for the casting operation. In from 31⁄2to 4 hours the brass is ready to be poured out. Fifteen English bushels of coals are consumed in one operation; of which six are used at the introduction of the crucibles, and four gradually afterwards.When sheet brass is to be made the following process is pursued:—An empty crucible, called acaster(giesser), is taken out of the furnace through the crown with a pair of tongs, and is kept red hot by placing it in a hollow hearth (mundal), surrounded with burning coals; into this crucible the contents of four of the melting pots are poured; the dross being raked out with an iron scraper. As soon as the melting pot is emptied, it is immediately re-charged in the manner above described, and replaced in the furnace. The surface of the melted brass in thecasteris swept with the stump of a broom, then stirred about with the iron rake, to bring up any light foreign matter to the surface, which is then skimmed with a little scraper; the crucible is now seized with the casting tongs, and emptied in the following way:—Casting mouldThe mould orformfor casting sheet brass consists of two slabs of granite,a a,figs.164,165.They are 51⁄2feet long; 3 feet broad, 1 foot thick, and, for greater security, girt with iron bands,b b, 2 inches broad, 11⁄2thick, and joined at the four corners with bolts and nuts. The mould rests upon an oaken block,c, 31⁄2feet long, 21⁄6broad, and 11⁄4thick, which is suspended at each end upon gudgeons, in bearing blocks, placed under the foundery floor,d d, in the casting pit,e e. This is lined with bricks; and is 63⁄4feet long, 51⁄2broad, and 2 deep; upon the two long side walls of the pit, the bearing blocks are laid, which support the gudgeons. The swing-blocks are 10 inches long, 18 inches broad, 15 inches thick, and are somewhat rounded upon their back edge, so that the casting frame may slope a little to the horizon. To these blocks two cross wooden arms,f f, are mortised, upon which the under slab rests, freely, but so as to project about 5 inchesbackwards over the block, to secure an equipoise in the act of casting.g gare bars, placed at both of the long sides, and one of the ends, between the slabs, to determine the thickness of the brass-plate. Upon the other slab the gatehis fastened, a sheet of iron 6 inches broad, which has nearly the shape of a parallel trapezium (lozenge), and slopes a little towards the horizon. It serves for setting the casting pot upon in the act of pouring out, and renders its emptying more convenient. That gate (steinmaul) is coated with a mixture of loam and hair. The upper slab is secured to the under one in its slanting position by anarmouror binding. This consists of the tension bars of wood,i k l m, of the iron barsn, (3 to 31⁄2inches broad, 11⁄2inch thick, see the top view,fig.165.) of a rod with holes and pins at its upper end, and of the iron screw spindleo. The mode in which these parts act may be understood from inspection of the figure. In order to lift the upper slab from the under one, which is effected by turning it round its edge, a chain is employed, suspending two others, connected with the slab. The former passes over a pulley, and may be pulled up and down by means of a wheel and axle, or with the aid of a counterweight. Upon each of the two long sides of the slab there are two iron rings, to which the ends of the chains may be hooked. The casting faces of the slab must be coated with a layer of finely ground loam; the thinner the better.When calamine is employed,1⁄2cwt. of copper,3⁄4cwt. of calamine, and1⁄3the volume of both of charcoal mixed, are put into 7 crucibles, and exposed to heat during 11 or 12 hours; the product being from 70 to 72 lbs. of brass.Brass-plate rolling.—At Hegermühl there are two re-heating or annealing furnaces, one larger, 18 feet long, and another smaller, 81⁄2; the hot chamber is separated from the fire place by iron beams, in such a way that the brass castings are played upon by the flames on both their sides. After each passage through the laminating press (rolls) they are heated anew, then cooled and laminated afresh, till they have reached the proper length. The plates are besmeared with grease before rolling.FurnaceFig.166.shows the ground plan of the furnace and its railway;fig.167.the cross section; andfig.168.the section lengthwise;a a, the iron way bars or rails upon the floor of thefoundry, for enabling the wheels of the waggon-frame to move readily backwards and forwards;b b, the two grates;c c, the ash pits;d d, the fire beams;e e e, vents in the roof of the hot chamberf;g g, two plates for shutting the hot chamber;h, the flue;i, the chimney. After the rolling, the sheets covered with a black oxide of copper, are plunged into a mother water of the alum works for a few minutes, then washed in clean water, and lastly, smeared with oil and scraped with a blunt knife.In rough brass and brass wares, no less than 16,240 cwts. were manufactured in the Prussian States in the year 1832.For musical purposes, the brass wire made in Berlin, has acquired great and merited celebrity; but that of Birmingham is now preferred even by foreigners.Brass Colour, for staining glass, is prepared by exposing for several days thin plates of brass upon tiles in theleeror annealing arch of the glass-house, till it be oxidized into a black powder, aggregated in lumps. This being pulverized and sifted, is to be again well calcined for several days more, till no particles remain in the metallic state; when it will form a fine powder of a russet brown colour. A third calcination must now be given, with a carefully regulated heat; its quality being tested from time to time by fusion with some glass. If it makes the glass swell, and intumesce, it is properly prepared; if not, it must be still farther calcined. Such a powder communicates to glass, greens of various tints, passing into turquoise.When thin narrow strips of brass are stratified with sulphur in a crucible, and calcined at a red heat, they become friable, and may be reduced to powder. This being sifted and exposed upon tiles in a reverberatory furnace for ten or twelve days, becomes fit for use, and is capable of imparting a calcedony, red or yellow tinge to glass by fusion, according to the mode and proportion of using it.The glass-makers’ red colour may be prepared by exposing small plates of brass to a moderate heat in a reverberatory furnace, till they are thoroughly calcined, when the substance becomes pulverulent, and assumes a red colour. It is then ready for immediate use.Brass Colour, as employed by the colourmen to imitate brass, is of two tints, the red or bronze, and the yellow like gilt brass. Copper filings mixed with red ochre or bole, constitute the former; a powdered brass imported from Germany is used for the latter. Both must be worked up with varnish after being dried with heat, and then spread with a flat camel-hair brush evenly upon the surface of the object. The best varnish is composed of 20 ounces of spirits of wine, 2 ounces of shellac, and 2 ounces of sandarach, properly dissolved. SeeVarnish. Only so much of the brass powder and varnish should be mixed at a time as is wanted for immediate use.Brass Foil.Dutch leaf, calledKnitterorRauschgoldin Germany, is made from a very thin sheet brass, beat out under a hammer worked by water power, which gives 300 or 400 strokes per minute; from 40 to 80 leaves being laid over each other. By this treatment it acquires its characteristic solidity and lustre. See above, the process for converting the copper superficially into brass by the fumes of zinc.

BRASS. (Laiton,cuivre jaune, Fr.;Messing, Germ.) An alloy of copper and zinc. It was formerly manufactured by cementing granulated copper, calledbean-shot, or copper clippings, with calcined calamine (native carbonate of zinc) and charcoal, in a crucible, and exposing them to bright ignition. Three parts of copper were used for three of calamine and two of charcoal. The zinc reduced to the metallic state by the agency of the charcoal, combined with the copper, into an alloy which formed, on cooling, a lump at the bottom of the crucible. Several of these, being remelted and cast into moulds, constituted ingots of brass for the market. James Emerson obtained a patent, in 1781, for making brass by the direct fusion of its two metallic elements, and it is now usually manufactured in this way.

It appears that the best proportion of the constituents to form fine brass is one prime equivalent of copper = 631⁄2+ one of zinc = 32·3; or very nearly 2 parts of copper to 1 of zinc. The bright gold coloured alloy, called Prince’s, or Prince Rupert’s metal, in this country, consists apparently of two primes of zinc to one of copper, or of nearly equal parts of each. Brass, or hard solder, consists of two parts of brass and one of zinc melted together, to which a little tin is occasionally added; but when the solder must be very strong, as for brass tubes that are to undergo drawing, two thirds of a part of zinc are used for two parts of brass. Mosaic gold, according to the specification of Parker and Hamilton’s patent consists of 100 parts of copper, and from 52 to 55 of zinc; which is no atomic proportion. Bath metal is said to consist of 32 parts of brass and 9 parts of zinc.

The button manufacturers of Birmingham make theirplatinwith 8 parts of brass and 5 of zinc; but their cheap buttons with an alloy of copper, tin, zinc, and lead.

Red brass, the Tombak of some, (not of the Chinese, for this is white copper,) consists of more copper and less zinc than go to the composition of brass; being from 21⁄2to 8 or 10 of the former to 1 of the latter. At the famous brass works of Hegermühl, to be presently described, 11 parts of copper are alloyed with 2 of zinc into a red brass, from which plates are made that are afterwards rolled into sheets. From such an alloy the Dutch foil, as it is called, is manufactured at Nürnberg; Pinchbeck, Similor, Mannheim gold, are merely different names of alloy similar to Prince’s metal. The last consists of 3 of copper and 1 of zinc, separately melted, and suddenly incorporated by stirring.—Wiegleb.

In the process of alloying two metals of such different fusibilities as copper and zinc, a considerable waste of the latter metal by the combustion, to which it is so prone, might be expected; but, in reality, their mutual affinities seem to prevent the loss, in a great measure, by the speedy absorption of the zinc into the substance of the copper. Indeed, copper plates and rods are oftenbrassedexternally by exposure, at a high temperature, to the fumes of zinc, and afterwards laminated or drawn. The spuriousgold wire of Lyons is made from such rods. Copper vessels may be superficially converted into brass by boiling them in dilute muriatic acid, containing some winestone and zinc amalgam.

The first step in making brass is to plunge slips of copper into melted zinc till an alloy of somewhat difficult fusion be formed, to raise the heat, and add the remaining proportion of the copper.

The brass of the first fusion is broken to pieces, and melted with a fresh quantity of zinc, to obtain the finished brass. Each melting takes about 8 or 9 hours. The metal is now cast into plates, about 40 inches long by 26 inches broad, and from one third to one half inch thick. The moulds are, in this case also, slabs of granite mounted in an iron frame. Granite appears to be preferred to every thing else as a mould, because it preserves the heat long, and by the asperities of its surface, it keeps hold of the clay lute applied to secure the joinings.

The cast plates are most usually rolled into sheets. For this purpose they are cut into ribands of various breadths, commonly about 61⁄2inches. The cylinders of the brass rolling-press are generally 46 inches long, and 18 inches in diameter. The ribands are first of all passed cold through the cylinders; but the brass soon becomes too hard to laminate. It is then annealed in a furnace, and, after cooling, is passed afresh through a rolling press. After paring off the chipped edges, the sheets are laminated two at a time: and if they are to be made very thin, even eight plates are passed through together. The brass in these operations must be annealed 7 or 8 times before the sheet arrives at the required thinness. These successive heatings are very expensive; and hence they have led the manufacturers to try various plans of economy. The annealing furnaces are of two forms according to the size of the sheets of brass. The smaller are about 12 feet long, with a fire place at each end, and about 13 inches wide. The arch of the furnace has a cylindrical shape, whose axis is parallel to its small side. The hearth is horizontal, and is made of bricks set on edge. In the front of the furnace there is a large door, which is raised by a lever, or chain, and counterweight, and slides in a frame between two cheeks of cast iron. This furnace has, in general, no chimney, except a vent slightly raised above the door, to prevent the workmen being incommoded by the smoke. Sometimes the arch is perforated with a number of holes. The sheets of brass are placed above each other, but separated by parings, to allow the hot air to circulate among them, the lowest sheet resting upon two bars of cast iron placed lengthwise.

The large furnaces are usually 32 feet long, by 61⁄2feet wide, in the body, and 3 feet at the hearth. A grate, 13 inches broad, extends along each side of the hearth, through its whole length, and is divided from it by a small wall, 2 or 3 inches high. The vault of the furnace has a small curvature, and is pierced with 6 or 8 openings, which allow the smoke to pass off into a low bell-chimney above. At each end of the furnace there is a cast-iron door, which slides up and down in an iron frame, and is poised by a counterweight. On the hearth there is a kind of railway, composed of two iron bars, on the grooves of which the carriage moves with its loads of sheets of brass.

These sheets, being often 24 feet long, could not be easily moved in and out of the furnace; but as brass laminates well in the cold state, they are all introduced and moved out together. With this view, an iron carriage is framed with four bars, which rest on four wheels. Upon this carriage, of a length nearly equal to that of the furnace, the sheets are laid, with brass parings between them. The carriage is then raised by a crane to a level with the furnace, and entered upon the grooved bars which lie upon the hearth. That no heat may be lost, two carriages are provided, the one being ready to put in as the other is taken out; the furnace is meanwhile uniformly kept hot. This method, however convenient for moving the sheets in and out, wastes a good deal of fuel in heating the iron carriage.

The principal places in which brass is manufactured on the great scale in England, are Bristol, Birmingham, and Holywell, in North Wales.

The French writers affirm, that a brass, containing 2per cent.of lead, works more freely in the turning lathe, but does not hammer so well as the mere alloy of copper and zinc.

At the brass manufactory of Hegermühl, upon the Finon canal near Potsdam, the following are the materials of one charge; 41 pounds of old brass, 55 pounds refined copper (gahrkupfer) granulated; and 24 pounds of zinc. This mixture, weighing 120 pounds, is distributed into four crucibles, and fused in a wind furnace with pitcoal fuel. The waste varies from 21⁄2to 4 pounds upon the whole.

Brass furnace

Fig.159.represents the furnace as it was formerly worked there with charcoal;a, the laboratory in which the crucibles were placed. It was walled with fire bricks. The foundations and the filling-in walls were formed of stone rubbish, as being bad conductors of heat; sand and ashes may be also used;b, cast-iron circular grating plates pierced with12 holes (seefig.160.), over them a sole of loam,c, is beat down, and perforated with holes corresponding to those in the iron discs;d, the ash-pit;e, thebock, a draught flue which conducts the air requisite to the combustion, from a sunk tunnel, in communication with several melting furnaces. The terrace or crown of the furnace,f, lies on a level with the foundry floor,h h, and is shut with a tile of fire-clay,g, which may be moved in any direction by means of hooks and eyes in its binding iron ring.Fig.161.the tongs for putting in and taking out the charges, as viewed from above and from the side.

Modern brass furnaces

Figs.162,163.represent the furnaces constructed more recently for the use of pitcoal fuel;fig.162.being an upright section, andfig.163.the ground plan. In this furnace the crucibles are not surrounded with the fuel, but they receive the requisite melting heat from the flame proceeding from the grate upon which it is burned. The crucibles stand upon 7 binding arches,a, which unite in the middle at the key-stoneb,fig.163.Between the arches are spaces through which the flame rises from the gratec.dis the fire-door;e, a sliding tile or damper for regulating or shutting off the air-draught;fan inclined plane, for carrying off the cinders that fall through the grate, along the draught tunnelg, so that the air in entering below may not be heated by them.

The crucibles are 16 inches deep, 91⁄2wide at the mouth, 61⁄2at the bottom; with a thickness in the sides of 1 inch and 11⁄2below; they stand from 40 to 50 meltings. The old brass, which fills their whole capacity, is first put in and melted down; the crucibles are now taken out, and are charged with the half of the zinc in pieces of from 1 to 3 cubic inches in size, covered over with coal ashes; then one half of the copper charge is introduced, again coal-dust; and thus the layers of zinc and copper are distributed alternately with coal-ashes betwixt them, till the whole charge gets finally fused. Over all, a thicker layer of carbonaceous matter is laid, to prevent oxidizement of the brass. Eight crucibles filled in this way are put into the furnace between the 11 holes of the grate shelf; and over them two empty crucibles are laid to be heated for the casting operation. In from 31⁄2to 4 hours the brass is ready to be poured out. Fifteen English bushels of coals are consumed in one operation; of which six are used at the introduction of the crucibles, and four gradually afterwards.

When sheet brass is to be made the following process is pursued:—

An empty crucible, called acaster(giesser), is taken out of the furnace through the crown with a pair of tongs, and is kept red hot by placing it in a hollow hearth (mundal), surrounded with burning coals; into this crucible the contents of four of the melting pots are poured; the dross being raked out with an iron scraper. As soon as the melting pot is emptied, it is immediately re-charged in the manner above described, and replaced in the furnace. The surface of the melted brass in thecasteris swept with the stump of a broom, then stirred about with the iron rake, to bring up any light foreign matter to the surface, which is then skimmed with a little scraper; the crucible is now seized with the casting tongs, and emptied in the following way:—

Casting mould

The mould orformfor casting sheet brass consists of two slabs of granite,a a,figs.164,165.They are 51⁄2feet long; 3 feet broad, 1 foot thick, and, for greater security, girt with iron bands,b b, 2 inches broad, 11⁄2thick, and joined at the four corners with bolts and nuts. The mould rests upon an oaken block,c, 31⁄2feet long, 21⁄6broad, and 11⁄4thick, which is suspended at each end upon gudgeons, in bearing blocks, placed under the foundery floor,d d, in the casting pit,e e. This is lined with bricks; and is 63⁄4feet long, 51⁄2broad, and 2 deep; upon the two long side walls of the pit, the bearing blocks are laid, which support the gudgeons. The swing-blocks are 10 inches long, 18 inches broad, 15 inches thick, and are somewhat rounded upon their back edge, so that the casting frame may slope a little to the horizon. To these blocks two cross wooden arms,f f, are mortised, upon which the under slab rests, freely, but so as to project about 5 inchesbackwards over the block, to secure an equipoise in the act of casting.g gare bars, placed at both of the long sides, and one of the ends, between the slabs, to determine the thickness of the brass-plate. Upon the other slab the gatehis fastened, a sheet of iron 6 inches broad, which has nearly the shape of a parallel trapezium (lozenge), and slopes a little towards the horizon. It serves for setting the casting pot upon in the act of pouring out, and renders its emptying more convenient. That gate (steinmaul) is coated with a mixture of loam and hair. The upper slab is secured to the under one in its slanting position by anarmouror binding. This consists of the tension bars of wood,i k l m, of the iron barsn, (3 to 31⁄2inches broad, 11⁄2inch thick, see the top view,fig.165.) of a rod with holes and pins at its upper end, and of the iron screw spindleo. The mode in which these parts act may be understood from inspection of the figure. In order to lift the upper slab from the under one, which is effected by turning it round its edge, a chain is employed, suspending two others, connected with the slab. The former passes over a pulley, and may be pulled up and down by means of a wheel and axle, or with the aid of a counterweight. Upon each of the two long sides of the slab there are two iron rings, to which the ends of the chains may be hooked. The casting faces of the slab must be coated with a layer of finely ground loam; the thinner the better.

When calamine is employed,1⁄2cwt. of copper,3⁄4cwt. of calamine, and1⁄3the volume of both of charcoal mixed, are put into 7 crucibles, and exposed to heat during 11 or 12 hours; the product being from 70 to 72 lbs. of brass.

Brass-plate rolling.—At Hegermühl there are two re-heating or annealing furnaces, one larger, 18 feet long, and another smaller, 81⁄2; the hot chamber is separated from the fire place by iron beams, in such a way that the brass castings are played upon by the flames on both their sides. After each passage through the laminating press (rolls) they are heated anew, then cooled and laminated afresh, till they have reached the proper length. The plates are besmeared with grease before rolling.

Furnace

Fig.166.shows the ground plan of the furnace and its railway;fig.167.the cross section; andfig.168.the section lengthwise;a a, the iron way bars or rails upon the floor of thefoundry, for enabling the wheels of the waggon-frame to move readily backwards and forwards;b b, the two grates;c c, the ash pits;d d, the fire beams;e e e, vents in the roof of the hot chamberf;g g, two plates for shutting the hot chamber;h, the flue;i, the chimney. After the rolling, the sheets covered with a black oxide of copper, are plunged into a mother water of the alum works for a few minutes, then washed in clean water, and lastly, smeared with oil and scraped with a blunt knife.

In rough brass and brass wares, no less than 16,240 cwts. were manufactured in the Prussian States in the year 1832.

For musical purposes, the brass wire made in Berlin, has acquired great and merited celebrity; but that of Birmingham is now preferred even by foreigners.

Brass Colour, for staining glass, is prepared by exposing for several days thin plates of brass upon tiles in theleeror annealing arch of the glass-house, till it be oxidized into a black powder, aggregated in lumps. This being pulverized and sifted, is to be again well calcined for several days more, till no particles remain in the metallic state; when it will form a fine powder of a russet brown colour. A third calcination must now be given, with a carefully regulated heat; its quality being tested from time to time by fusion with some glass. If it makes the glass swell, and intumesce, it is properly prepared; if not, it must be still farther calcined. Such a powder communicates to glass, greens of various tints, passing into turquoise.

When thin narrow strips of brass are stratified with sulphur in a crucible, and calcined at a red heat, they become friable, and may be reduced to powder. This being sifted and exposed upon tiles in a reverberatory furnace for ten or twelve days, becomes fit for use, and is capable of imparting a calcedony, red or yellow tinge to glass by fusion, according to the mode and proportion of using it.

The glass-makers’ red colour may be prepared by exposing small plates of brass to a moderate heat in a reverberatory furnace, till they are thoroughly calcined, when the substance becomes pulverulent, and assumes a red colour. It is then ready for immediate use.

Brass Colour, as employed by the colourmen to imitate brass, is of two tints, the red or bronze, and the yellow like gilt brass. Copper filings mixed with red ochre or bole, constitute the former; a powdered brass imported from Germany is used for the latter. Both must be worked up with varnish after being dried with heat, and then spread with a flat camel-hair brush evenly upon the surface of the object. The best varnish is composed of 20 ounces of spirits of wine, 2 ounces of shellac, and 2 ounces of sandarach, properly dissolved. SeeVarnish. Only so much of the brass powder and varnish should be mixed at a time as is wanted for immediate use.

Brass Foil.Dutch leaf, calledKnitterorRauschgoldin Germany, is made from a very thin sheet brass, beat out under a hammer worked by water power, which gives 300 or 400 strokes per minute; from 40 to 80 leaves being laid over each other. By this treatment it acquires its characteristic solidity and lustre. See above, the process for converting the copper superficially into brass by the fumes of zinc.

BRAZING. (Braser, Fr.;Messing-lothung, Germ.) The soldering together of edges of iron, copper, brass, &c., with an alloy consisting of brass and zinc, sometimes with a little tin or silver. The surfaces to be thus united must be filed perfectly bright, and not be soiled with the fingers or in any other way. The granular or nearly pulverulent alloy is usually wetted with a paste of ground borax and water, applied in this state, dried, and then exposed carefully to bright ignition at a clear forge fire. Some workmen enclose the part to be soldered in a clay lute, but others prefer leaving it uncovered, that they may see when the solder has flowed freely, and entered into all the seams.

BRAZING. (Braser, Fr.;Messing-lothung, Germ.) The soldering together of edges of iron, copper, brass, &c., with an alloy consisting of brass and zinc, sometimes with a little tin or silver. The surfaces to be thus united must be filed perfectly bright, and not be soiled with the fingers or in any other way. The granular or nearly pulverulent alloy is usually wetted with a paste of ground borax and water, applied in this state, dried, and then exposed carefully to bright ignition at a clear forge fire. Some workmen enclose the part to be soldered in a clay lute, but others prefer leaving it uncovered, that they may see when the solder has flowed freely, and entered into all the seams.

BRAZIL-WOOD. (Bois de Fernambouc, Fr.;Brasilienholz, Germ.) This dye-wood derives its name from the part of America whence it was first imported. It has also the names Fernambuca, wood of Saint Martha, and of Sapan, according to the places which produce it. Linnæus distinguishes the tree which furnishes the Brazil wood by the name ofCæsalpinia crista. It commonly grows in dry places among rocks. Its trunk is very large, crooked, and full of knots. It is very hard, susceptible of a fine polish, and sinks in water. It is pale when newly cleft, but becomes red on exposure to the air.It has different shades of red and orange. Its goodness is determined particularly by its density. When chewed, a saccharine taste is perceived. It may be distinguished from red saunders wood, as the latter does not yield its colour to water.Boiling water extracts the whole colouring matter of Brazil-wood. If the ebullition be long enough continued, it assumes a fine red colour. The residuum appears black. In this case, an alkali may still extract much colouring matter. The solution in alcohol or ammonia is still deeper than the preceding.The decoction of Brazil-wood, called juice of Brazil, is observed to be less fit for dyeing when recent, than when old or even fermented. By age it takes a yellowish-redcolour. For making this decoction, Hellot recommends to use the hardest water; but it should be remarked, that this water deepens the colour in proportion to the earthy salts which it contains. After boiling this wood reduced to chips, or, what is preferable, to powder, for three hours, this first decoction is poured into a cask. Fresh water is poured on the wood, which is then made to boil for three hours, and mixed with the former. When Brazil-wood is employed in a dyeing bath, it is proper to enclose it in a thin linen bag, as well as all the dye woods in general.Wool immersed in the juice of Brazil takes but a feeble tint, which is speedily destroyed. It must receive some preparations.The wool is to be boiled in a solution of alum, to which a fourth or even less of tartar is added, for a larger proportion of tartar would make the colour yellowish. The wool is kept impregnated with it for at least eight days, in a cool place. After this, it is dyed in the Brazil juice with a slight boiling. But the first colouring particles that are deposited, afford a less beautiful colour; hence it is proper to pass a coarser stuff previously through the bath. In this manner a lively red is procured, which resists pretty well the action of the air.Brazil-wood is made use of for dyeing silk what is called false crimson, to distinguish it from the crimson made by means of cochineal, which is much more permanent.The silk should be boiled at the rate of 20 parts of soap per cent., and then alumed. The aluming need not be so strong as for the fine crimson. The silk is refreshed at the river, and passed through a bath more or less charged with Brazil juice, according to the shade to be given. When water free from earthy salts is employed, the colour is too red to imitate crimson; this quality is given it by passing the silk through a slight alkaline solution, or by adding a little alkali to the bath. It might, indeed, be washed in a hard water till it had taken the desired shade.To make deeper false crimsons of a dark red, juice of logwood is put into the Brazil bath after the silk has been impregnated with it. A little alkali may be added, according to the shade that is wanted.To imitate poppy or flame colour, an annotto ground is given to the silk, deeper even than when it is dyed with carthamus. It is washed, alumed, and dyed with juice of Brazil, to which a little soap water is usually added.The colouring particles of Brazil wood are easily affected, and made yellow by the action of acids.They thus become permanent colours. But what distinguishes them from madder and kermes, and approximates them to cochineal, is their reappearing in their natural colour, when they are thrown down in a state of combination with alumina, or with oxide of tin. These two combinations seem to be the fittest for rendering them durable. It is requisite, therefore, to inquire what circumstances are best calculated to promote the formation of these combinations, according to the nature of the stuff.The astringent principle, likewise, seems to contribute to the permanence of the colouring matter of Brazil wood; but it deepens its hue, and can only be employed for light shades.The colouring particles of Brazil wood are very sensible to the action of alkalies which give them a purple hue; and there are several processes in which the alkalies, either fixed or volatile, are used for forming violets and purples. But the colours obtained by these methods, which may be easily varied according to the purpose, are perishable, and possess but a transient bloom. The alkalies appear not to injure the colours derived from madder, but they accelerate the destruction of most other colours.In England and Holland the dye-woods are reduced to powder by means of mills erected for the purpose.The bright fugitive red, called fancy red, is given to cotton by Nicaragua, or peachwood, a cheap kind of Brazil wood.The cotton being scoured and bleached, is boiled with sumach. It is then impregnated with a solution of tin (at 5° Baumé, according to Vitalis). It should now be washed slightly in a weak bath of the dyeing wood, and lastly, worked in a somewhat stale infusion of the peach or Brazil wood. When the temperature of this is lukewarm, the dye is said to take better. Sometimes two successive immersions in the bath are given. It is now wrung out, aired, washed in water, and dried.M. Vitalis says, that his solution of tin is prepared with two ounces of tin and a pound of aqua regia made with two parts of nitric acid at 24° Baumé, and three parts of muriatic acid at 22°.For a rose colour, the cotton is alumed as usual, and washed from the alum. It then gets the tin mordant, and is again washed. It is now turned through the dye-bath, an operation which is repeated if necessary.For purple a little alum is added to the Brazil bath.1. For amaranth, the cotton is strongly galled, dried, and washed.2. It is passed through the black cask (tonneau noir), seeBlack Dye, till it has taken a strong grey shade.3. It receives a bath of lime water.4. Mordant of tin.5. Dyeing in the Brazil wood bath.6. The two last operations are repeated.Dingler has endeavoured to separate the colouring matter of the different sorts of Brazil wood, so as to obtain the same tint from the coarser as from the best Pernambuco. His process consists in treating the wood with hot water or steam, in concentrating the decoction so as to obtain 14 or 15 pounds of it from 4 pounds of wood, allowing it to cool, and pouring into it two pounds of skim milk; agitating, then boiling for a few minutes, and filtering. The dun colouring matters are precipitated by the coagulation of the caseous substance. For dyeing, the decoctions must be diluted with water; for printing they must be concentrated, so that 4 pounds of wood shall furnish only 5 or 6 pounds of decoction, and the liquor may be thickened in the ordinary way. These decoctions may be employed immediately, as by this treatment they have acquired the same property as they otherwise could get only by being long kept. A slight fermentation is said to improve the colour of these decoctions; some ground wood is put into the decoction to favour this process.As gelatine produces no precipitate with these decoctions, they consequently contain no tannin. Gall-nuts, however, sumach, the bark of birch or alder, render the colour of Brazil wood more durable, upon alumed linen and cotton goods, but the shade is a little darker.In dyeing wool with Pernambuco, the temperature of the bath should never be above 150° Fahr., since higher heats impair the colour.According to Dingler and Kurrer, bright and fast scarlet reds may be obtained upon wool, by preparing a decoction of 50 pounds of Brazil wood in three successive boils, and setting the decoction aside for 3 or 4 weeks in a cool place; 100 pounds of the wool are then alumed in a bath of 22 pounds of alum and 11 pounds of tartar, and afterwards rinsed in cold water. Meanwhile we fill two-thirds with water, a copper containing 30 pails, and heated to the temperature of 150° or 160° F. We pour in 3 pailfuls of the decoction, heat to the same point again, and introduce 30 pounds of wool, which does not take a scarlet, but rather a crimson tint. This being removed, 2 pails of decoction are put in, and 30 pounds of wool which becomes scarlet, but not so fine as at the third dip. If the dyer strengthens the colour a little at the first dip, a little more at the second, and adds at the third and fourth the quantity of decoction merely necessary, he will obtain an uniform scarlet tint. With 50 pounds of Pernambuco 1000 pounds of wool may be dyed scarlet in this way, and with the deposits another 100 may be dyed of a tile colour. An addition of weld renders the colour faster but less brilliant.Karkutsch says the dye may be improved by adding some ox-gall to the bath.In dyeing cotton the tannin and gallic acid are two necessary mordants, and the colour is particularly bright and durable, when the cloth has been prepared with the oily process of Turkey red.It is said that stale urine heightens the colour of the Brazil dye when the ground wood is moistened with it.The quantity of Brazil or Nicaragua wood imported into the United Kingdom in 1835, was 6,242 tons, whereof 1,811 were exported; of Brazilietto 230 tons. The duty upon the first article is 5s.per ton.

BRAZIL-WOOD. (Bois de Fernambouc, Fr.;Brasilienholz, Germ.) This dye-wood derives its name from the part of America whence it was first imported. It has also the names Fernambuca, wood of Saint Martha, and of Sapan, according to the places which produce it. Linnæus distinguishes the tree which furnishes the Brazil wood by the name ofCæsalpinia crista. It commonly grows in dry places among rocks. Its trunk is very large, crooked, and full of knots. It is very hard, susceptible of a fine polish, and sinks in water. It is pale when newly cleft, but becomes red on exposure to the air.

It has different shades of red and orange. Its goodness is determined particularly by its density. When chewed, a saccharine taste is perceived. It may be distinguished from red saunders wood, as the latter does not yield its colour to water.

Boiling water extracts the whole colouring matter of Brazil-wood. If the ebullition be long enough continued, it assumes a fine red colour. The residuum appears black. In this case, an alkali may still extract much colouring matter. The solution in alcohol or ammonia is still deeper than the preceding.

The decoction of Brazil-wood, called juice of Brazil, is observed to be less fit for dyeing when recent, than when old or even fermented. By age it takes a yellowish-redcolour. For making this decoction, Hellot recommends to use the hardest water; but it should be remarked, that this water deepens the colour in proportion to the earthy salts which it contains. After boiling this wood reduced to chips, or, what is preferable, to powder, for three hours, this first decoction is poured into a cask. Fresh water is poured on the wood, which is then made to boil for three hours, and mixed with the former. When Brazil-wood is employed in a dyeing bath, it is proper to enclose it in a thin linen bag, as well as all the dye woods in general.

Wool immersed in the juice of Brazil takes but a feeble tint, which is speedily destroyed. It must receive some preparations.

The wool is to be boiled in a solution of alum, to which a fourth or even less of tartar is added, for a larger proportion of tartar would make the colour yellowish. The wool is kept impregnated with it for at least eight days, in a cool place. After this, it is dyed in the Brazil juice with a slight boiling. But the first colouring particles that are deposited, afford a less beautiful colour; hence it is proper to pass a coarser stuff previously through the bath. In this manner a lively red is procured, which resists pretty well the action of the air.

Brazil-wood is made use of for dyeing silk what is called false crimson, to distinguish it from the crimson made by means of cochineal, which is much more permanent.

The silk should be boiled at the rate of 20 parts of soap per cent., and then alumed. The aluming need not be so strong as for the fine crimson. The silk is refreshed at the river, and passed through a bath more or less charged with Brazil juice, according to the shade to be given. When water free from earthy salts is employed, the colour is too red to imitate crimson; this quality is given it by passing the silk through a slight alkaline solution, or by adding a little alkali to the bath. It might, indeed, be washed in a hard water till it had taken the desired shade.

To make deeper false crimsons of a dark red, juice of logwood is put into the Brazil bath after the silk has been impregnated with it. A little alkali may be added, according to the shade that is wanted.

To imitate poppy or flame colour, an annotto ground is given to the silk, deeper even than when it is dyed with carthamus. It is washed, alumed, and dyed with juice of Brazil, to which a little soap water is usually added.

The colouring particles of Brazil wood are easily affected, and made yellow by the action of acids.

They thus become permanent colours. But what distinguishes them from madder and kermes, and approximates them to cochineal, is their reappearing in their natural colour, when they are thrown down in a state of combination with alumina, or with oxide of tin. These two combinations seem to be the fittest for rendering them durable. It is requisite, therefore, to inquire what circumstances are best calculated to promote the formation of these combinations, according to the nature of the stuff.

The astringent principle, likewise, seems to contribute to the permanence of the colouring matter of Brazil wood; but it deepens its hue, and can only be employed for light shades.

The colouring particles of Brazil wood are very sensible to the action of alkalies which give them a purple hue; and there are several processes in which the alkalies, either fixed or volatile, are used for forming violets and purples. But the colours obtained by these methods, which may be easily varied according to the purpose, are perishable, and possess but a transient bloom. The alkalies appear not to injure the colours derived from madder, but they accelerate the destruction of most other colours.

In England and Holland the dye-woods are reduced to powder by means of mills erected for the purpose.

The bright fugitive red, called fancy red, is given to cotton by Nicaragua, or peachwood, a cheap kind of Brazil wood.

The cotton being scoured and bleached, is boiled with sumach. It is then impregnated with a solution of tin (at 5° Baumé, according to Vitalis). It should now be washed slightly in a weak bath of the dyeing wood, and lastly, worked in a somewhat stale infusion of the peach or Brazil wood. When the temperature of this is lukewarm, the dye is said to take better. Sometimes two successive immersions in the bath are given. It is now wrung out, aired, washed in water, and dried.

M. Vitalis says, that his solution of tin is prepared with two ounces of tin and a pound of aqua regia made with two parts of nitric acid at 24° Baumé, and three parts of muriatic acid at 22°.

For a rose colour, the cotton is alumed as usual, and washed from the alum. It then gets the tin mordant, and is again washed. It is now turned through the dye-bath, an operation which is repeated if necessary.

For purple a little alum is added to the Brazil bath.

1. For amaranth, the cotton is strongly galled, dried, and washed.

2. It is passed through the black cask (tonneau noir), seeBlack Dye, till it has taken a strong grey shade.

3. It receives a bath of lime water.

4. Mordant of tin.

5. Dyeing in the Brazil wood bath.

6. The two last operations are repeated.

Dingler has endeavoured to separate the colouring matter of the different sorts of Brazil wood, so as to obtain the same tint from the coarser as from the best Pernambuco. His process consists in treating the wood with hot water or steam, in concentrating the decoction so as to obtain 14 or 15 pounds of it from 4 pounds of wood, allowing it to cool, and pouring into it two pounds of skim milk; agitating, then boiling for a few minutes, and filtering. The dun colouring matters are precipitated by the coagulation of the caseous substance. For dyeing, the decoctions must be diluted with water; for printing they must be concentrated, so that 4 pounds of wood shall furnish only 5 or 6 pounds of decoction, and the liquor may be thickened in the ordinary way. These decoctions may be employed immediately, as by this treatment they have acquired the same property as they otherwise could get only by being long kept. A slight fermentation is said to improve the colour of these decoctions; some ground wood is put into the decoction to favour this process.

As gelatine produces no precipitate with these decoctions, they consequently contain no tannin. Gall-nuts, however, sumach, the bark of birch or alder, render the colour of Brazil wood more durable, upon alumed linen and cotton goods, but the shade is a little darker.

In dyeing wool with Pernambuco, the temperature of the bath should never be above 150° Fahr., since higher heats impair the colour.

According to Dingler and Kurrer, bright and fast scarlet reds may be obtained upon wool, by preparing a decoction of 50 pounds of Brazil wood in three successive boils, and setting the decoction aside for 3 or 4 weeks in a cool place; 100 pounds of the wool are then alumed in a bath of 22 pounds of alum and 11 pounds of tartar, and afterwards rinsed in cold water. Meanwhile we fill two-thirds with water, a copper containing 30 pails, and heated to the temperature of 150° or 160° F. We pour in 3 pailfuls of the decoction, heat to the same point again, and introduce 30 pounds of wool, which does not take a scarlet, but rather a crimson tint. This being removed, 2 pails of decoction are put in, and 30 pounds of wool which becomes scarlet, but not so fine as at the third dip. If the dyer strengthens the colour a little at the first dip, a little more at the second, and adds at the third and fourth the quantity of decoction merely necessary, he will obtain an uniform scarlet tint. With 50 pounds of Pernambuco 1000 pounds of wool may be dyed scarlet in this way, and with the deposits another 100 may be dyed of a tile colour. An addition of weld renders the colour faster but less brilliant.

Karkutsch says the dye may be improved by adding some ox-gall to the bath.

In dyeing cotton the tannin and gallic acid are two necessary mordants, and the colour is particularly bright and durable, when the cloth has been prepared with the oily process of Turkey red.

It is said that stale urine heightens the colour of the Brazil dye when the ground wood is moistened with it.

The quantity of Brazil or Nicaragua wood imported into the United Kingdom in 1835, was 6,242 tons, whereof 1,811 were exported; of Brazilietto 230 tons. The duty upon the first article is 5s.per ton.


Back to IndexNext