Chapter 34

CHINTZ is a peculiar style of fast-printed calico, in which figures of at least five different colours are impressed upon a white or light coloured ground.

CHINTZ is a peculiar style of fast-printed calico, in which figures of at least five different colours are impressed upon a white or light coloured ground.

CHLORATE OF POTASH, commonly called oxymuriate of potash. This interesting saline compound has become the object of a pretty extensive manufacture, in consequence of its application to make matches for procuring instantaneous light, and a detonating powder for fire-arms. It may be prepared both in the humid and dry way.Having made a strong solution of purified potash, or carbonate of potash, with from two to three parts of water, we pass through it in a Woulfe’s apparatus a current of chlorine gas, till it ceases to absorb any more. Chloride of potash and chloride of potassium alone are formed as long as there is an excess of alkali in the solution; but afterwards in the further reaction of the materials, the chloride passes into the state of a chlorate, and, as such, precipitates from the solution. During the first half of the operation, that is, till the potash be about one half saturated with chlorine, as indicated by litmus paper ceasing to be darkened and beginning to be blanched, only the chloride of potassium or muriate of potash falls. The process should be interrupted at this point in order to remove the salt, to wash it, to add the washings to the liquor, and then to transmit the gas freely through the solution. As the operation advances, less muriate of potash is formed, and at length nothing but the pure chlorate is separated in crystals. When finally the bubbles of gas pass through without being sensibly absorbed, the process is known to be completed; the liquid may then be allowed to settle, and be poured off from the crystals of chlorate of potash, which are purified from the muriate by dissolving them in three times their weight of boiling water, and filtering the solution while hot. On its cooling, the chlorate will separate in pearly-looking crystalline plates. It may be rendered quite pure by a second crystallization, in which state it does not affect solution of nitrate of silver.The above potash lye usually gets a reddish tint in the course of the process in consequence of a little manganesic acid coming over with the chlorine, but it gradually loses this colour as the saturation becomes complete, when the solution turns yellow. The tubes for conveying the gas should be of large diameter, if they be plunged into the saline solution, because the crystallization which takes place in it is apt to choke them up. This inconvenience may however be obviated by attaching to the end of the glass tube, a tube of caoutchouc terminated in a small glass funnel, or simply the neck of a caoutchouc bottle with a part of its body, whose width will not be readily closed with a saline crust. The residuary lixivium may be used against another operation, or it may be evaporated down to half its bulk and set aside to crystallize, whereby some more chlorate will be obtained, mixed indeed with muriate and carbonate, from which however it may be separated by a second crystallization. In general the pure chlorate obtained does not exceed one tenth the weight of the potash employed; because in thus treating potash with chlorine, five-sixths of it are converted into muriate of potash and only one sixth into chlorate, and a part of the latter adheres to the muriate, or is lost in the mother waters of the crystallizations.The chlorate of potash may be more conveniently manufactured, like that of lime, in the dry way. St. Romer patented at Vienna the following method for that purpose in 1821:—Ten pounds of crystallised peroxide of manganese are to be finely pulverised, mixed with ten pounds of plumbago, and thirty pounds of common salt, and put into theleaden retort represented infig.287.p. 287. From the middle of the helmet-shaped lid of this vessel, a lead tube, two feet long and two inches wide, conducts to the receiver, which is a square earthen pan, hard glazed both within and without, of the same capacity with the retort. The end of the tube must be made fast to a frame at the height of six inches above the bottom of the receiver. Upon its inner sides four inches apart, brackets are to be fixed for supporting a series of laths or shelves of white wood, on which a number of little paper or paste-board boxes are to be laid. In these boxes ten pounds of the purest carbonate of potash, prepared from tartar, are to be spread. The receiver must now be covered with a lid made tight by a water lute. Twenty pounds of concentrated sulphuric acid previously diluted with sixteen pounds of water, and then cooled, are to be poured upon the mixed materials in the retort, the lid immediately secured, with the tube adjusted in the receiver. The whole must be allowed to operate spontaneously without heat for twelve hours. At the end of this time the retort is to be surrounded with a water bath and steadily heated during twelve hours, and then left to cool for six hours. The apparatus must now be opened, the cakes of chlorate of potash removed, and freed from muriate by solution and crystallization.M. Liebig proposes the following process for obtaining chlorate of potash:—Heat chloride of lime in water till it ceases to destroy vegetable colours. In this case a mixture of chloride of calcium and chlorate of potash is obtained. This is to be dissolved in hot water, and to the solution concentrated by evaporation, chloride of potassium is to be added, and then suffered to cool. After cooling, a quantity of crystals of chlorate of potash is obtained, which are to be redissolved and crystallized again to purify them. M. Liebig considers that this will be a cheap process for obtaining chlorate of potash. From 12 ounces of chloride of lime, of so bad a quality that it left 65 per cent. of insoluble matter, he obtained an ounce of chlorate of potash.The only difficulty to overcome in this process is, from the chloride of lime not being so easily decomposed by heat as is generally supposed; a solution of it may be kept boiling for an hour without losing its bleaching power. The best method is to form a thin paste with chloride of lime and water, and then to evaporate it to dryness. If it be required to prepare it by passing chlorine into cream of lime, it is advantageous to keep it very hot.The chlorate of potash which separates from the solution by crystallization, has not the form of scales which it usually possesses, but is prismatic: whether this is occasioned by some admixture has not been ascertained; but on re-crystallizing, it is obtained in the usual form.The solution ought not merely to be left to cool, in order to procure crystals, for the crystallization is far from being terminated even after complete cooling; crystals continue to be deposited for 3 or 4 days.The following modification of the process for making chlorate of potash is that of M. Vée. A solution of chloride of lime marking 18° or 20° Baumé, is to be set upon the fire in a lead or cast iron pot, and when it begins to get hot, there is to be dissolved in it, a quantity of chloride of potassium sufficient to raise the hydrometer 3 or 4 degrees. It must be then concentrated as quickly as possible till it marks 30° or 31°, taking care that it does not boil over by the sudden extrication of oxygen. The concentrated liquor is set aside to crystallize in a cool place; where a deposit of chlorate of potash forms, mixed with chloride of potassium. The mother waters being evaporated to the density of 36°, afford another crop of crystals, after which they may be thrown away.The salts obtained at the first crystallization are to be re-dissolved, and the solution being brought to 15° or 16° is to be filtered, when it will afford upon cooling pure chlorate of potash.Chlorate or oxymuriate of potash has a cooling, somewhat unpleasant and nitrous taste. It does not bleach. At 60° F. 100 parts of water dissolve six parts of it, and at its boiling point or 220°, sixty parts. When heated to dull ignition in a glass retort it gives out 39·15 per cent. of its weight of oxygen, and becomes thereby chloride of potassium. When strongly triturated in a mortar it crackles, throws out sparks, and becomes luminous. It deflagrates upon red-hot cinders like nitre: when triturated along with sulphur, or phosphorus, it detonates with great violence, not without danger to the hands of the operator, if they be not protected by a thick glove. Similar detonations may be produced with cinnabar or vermillion, sulphuret of potassium, sugar, volatile oils, &c.; but they can be effected only by the smart blow of a heated hammer and anvil. A mixture of sugar or starch with chlorate of potash is readily inflamed by a drop of sulphuric acid, and this experiment is the basis of the preparation of the oxygenated matches, as they have been commonly called. The following formula forms a good paste for tipping the said matches, made of narrow slips of either wood or card. Thirty parts of the chlorate in fine powder are to be mixed gently with a spatula upon paper with ten parts of flowers of sulphur well levigated, eight of sugar, five of gum arabic, and enough of vermillion to give the whole a rose tint. We begin by mixing tenderly togetherthe sugar, the gum, and the salt previously pulverised; we then add as much water as shall reduce the mixture to a thin paste, and lastly introduce the sulphur; after which all must be well incorporated. The points of the matches, either previously tipped with sulphur or not, are to be dipped in that paste, so as to get coated with a little of it, and are lastly laid in a warm place till they become thoroughly dry. To kindle one of them, it must be touched with strong sulphuric acid, which for this purpose is usually kept in a small well-stoppered phial, and thickened with amianthus. Aspen is reckoned the best wood for matches.Of late years a detonating priming for fire-arms has been much used with the percussion locks. The simplest formula for making it is to take ten parts of gunpowder, to lixiviate it with water, and to mix the residuum, while moist, with five parts and a quarter of chlorate of potash, reduced to an extremely fine powder. The paste may be made pretty thin, for the salt is sparingly soluble in the cold water, and it mixes best when tolerably fluid. This powder when dry is dangerous to handle, being very apt to explode. But this danger is guarded against by letting fall a drop of the paste into each copper percussion cap, and leaving it to dry there. In the detonation of this powder, besides muriate of potash, there are generated a little sulphate of potash and chlorine gas, which rust the metal very fast. For which reason fulminate of mercury is now preferred by many sportsmen as a detonating powder. SeeFulminate.

CHLORATE OF POTASH, commonly called oxymuriate of potash. This interesting saline compound has become the object of a pretty extensive manufacture, in consequence of its application to make matches for procuring instantaneous light, and a detonating powder for fire-arms. It may be prepared both in the humid and dry way.

Having made a strong solution of purified potash, or carbonate of potash, with from two to three parts of water, we pass through it in a Woulfe’s apparatus a current of chlorine gas, till it ceases to absorb any more. Chloride of potash and chloride of potassium alone are formed as long as there is an excess of alkali in the solution; but afterwards in the further reaction of the materials, the chloride passes into the state of a chlorate, and, as such, precipitates from the solution. During the first half of the operation, that is, till the potash be about one half saturated with chlorine, as indicated by litmus paper ceasing to be darkened and beginning to be blanched, only the chloride of potassium or muriate of potash falls. The process should be interrupted at this point in order to remove the salt, to wash it, to add the washings to the liquor, and then to transmit the gas freely through the solution. As the operation advances, less muriate of potash is formed, and at length nothing but the pure chlorate is separated in crystals. When finally the bubbles of gas pass through without being sensibly absorbed, the process is known to be completed; the liquid may then be allowed to settle, and be poured off from the crystals of chlorate of potash, which are purified from the muriate by dissolving them in three times their weight of boiling water, and filtering the solution while hot. On its cooling, the chlorate will separate in pearly-looking crystalline plates. It may be rendered quite pure by a second crystallization, in which state it does not affect solution of nitrate of silver.

The above potash lye usually gets a reddish tint in the course of the process in consequence of a little manganesic acid coming over with the chlorine, but it gradually loses this colour as the saturation becomes complete, when the solution turns yellow. The tubes for conveying the gas should be of large diameter, if they be plunged into the saline solution, because the crystallization which takes place in it is apt to choke them up. This inconvenience may however be obviated by attaching to the end of the glass tube, a tube of caoutchouc terminated in a small glass funnel, or simply the neck of a caoutchouc bottle with a part of its body, whose width will not be readily closed with a saline crust. The residuary lixivium may be used against another operation, or it may be evaporated down to half its bulk and set aside to crystallize, whereby some more chlorate will be obtained, mixed indeed with muriate and carbonate, from which however it may be separated by a second crystallization. In general the pure chlorate obtained does not exceed one tenth the weight of the potash employed; because in thus treating potash with chlorine, five-sixths of it are converted into muriate of potash and only one sixth into chlorate, and a part of the latter adheres to the muriate, or is lost in the mother waters of the crystallizations.

The chlorate of potash may be more conveniently manufactured, like that of lime, in the dry way. St. Romer patented at Vienna the following method for that purpose in 1821:—Ten pounds of crystallised peroxide of manganese are to be finely pulverised, mixed with ten pounds of plumbago, and thirty pounds of common salt, and put into theleaden retort represented infig.287.p. 287. From the middle of the helmet-shaped lid of this vessel, a lead tube, two feet long and two inches wide, conducts to the receiver, which is a square earthen pan, hard glazed both within and without, of the same capacity with the retort. The end of the tube must be made fast to a frame at the height of six inches above the bottom of the receiver. Upon its inner sides four inches apart, brackets are to be fixed for supporting a series of laths or shelves of white wood, on which a number of little paper or paste-board boxes are to be laid. In these boxes ten pounds of the purest carbonate of potash, prepared from tartar, are to be spread. The receiver must now be covered with a lid made tight by a water lute. Twenty pounds of concentrated sulphuric acid previously diluted with sixteen pounds of water, and then cooled, are to be poured upon the mixed materials in the retort, the lid immediately secured, with the tube adjusted in the receiver. The whole must be allowed to operate spontaneously without heat for twelve hours. At the end of this time the retort is to be surrounded with a water bath and steadily heated during twelve hours, and then left to cool for six hours. The apparatus must now be opened, the cakes of chlorate of potash removed, and freed from muriate by solution and crystallization.

M. Liebig proposes the following process for obtaining chlorate of potash:—

Heat chloride of lime in water till it ceases to destroy vegetable colours. In this case a mixture of chloride of calcium and chlorate of potash is obtained. This is to be dissolved in hot water, and to the solution concentrated by evaporation, chloride of potassium is to be added, and then suffered to cool. After cooling, a quantity of crystals of chlorate of potash is obtained, which are to be redissolved and crystallized again to purify them. M. Liebig considers that this will be a cheap process for obtaining chlorate of potash. From 12 ounces of chloride of lime, of so bad a quality that it left 65 per cent. of insoluble matter, he obtained an ounce of chlorate of potash.

The only difficulty to overcome in this process is, from the chloride of lime not being so easily decomposed by heat as is generally supposed; a solution of it may be kept boiling for an hour without losing its bleaching power. The best method is to form a thin paste with chloride of lime and water, and then to evaporate it to dryness. If it be required to prepare it by passing chlorine into cream of lime, it is advantageous to keep it very hot.

The chlorate of potash which separates from the solution by crystallization, has not the form of scales which it usually possesses, but is prismatic: whether this is occasioned by some admixture has not been ascertained; but on re-crystallizing, it is obtained in the usual form.

The solution ought not merely to be left to cool, in order to procure crystals, for the crystallization is far from being terminated even after complete cooling; crystals continue to be deposited for 3 or 4 days.

The following modification of the process for making chlorate of potash is that of M. Vée. A solution of chloride of lime marking 18° or 20° Baumé, is to be set upon the fire in a lead or cast iron pot, and when it begins to get hot, there is to be dissolved in it, a quantity of chloride of potassium sufficient to raise the hydrometer 3 or 4 degrees. It must be then concentrated as quickly as possible till it marks 30° or 31°, taking care that it does not boil over by the sudden extrication of oxygen. The concentrated liquor is set aside to crystallize in a cool place; where a deposit of chlorate of potash forms, mixed with chloride of potassium. The mother waters being evaporated to the density of 36°, afford another crop of crystals, after which they may be thrown away.

The salts obtained at the first crystallization are to be re-dissolved, and the solution being brought to 15° or 16° is to be filtered, when it will afford upon cooling pure chlorate of potash.

Chlorate or oxymuriate of potash has a cooling, somewhat unpleasant and nitrous taste. It does not bleach. At 60° F. 100 parts of water dissolve six parts of it, and at its boiling point or 220°, sixty parts. When heated to dull ignition in a glass retort it gives out 39·15 per cent. of its weight of oxygen, and becomes thereby chloride of potassium. When strongly triturated in a mortar it crackles, throws out sparks, and becomes luminous. It deflagrates upon red-hot cinders like nitre: when triturated along with sulphur, or phosphorus, it detonates with great violence, not without danger to the hands of the operator, if they be not protected by a thick glove. Similar detonations may be produced with cinnabar or vermillion, sulphuret of potassium, sugar, volatile oils, &c.; but they can be effected only by the smart blow of a heated hammer and anvil. A mixture of sugar or starch with chlorate of potash is readily inflamed by a drop of sulphuric acid, and this experiment is the basis of the preparation of the oxygenated matches, as they have been commonly called. The following formula forms a good paste for tipping the said matches, made of narrow slips of either wood or card. Thirty parts of the chlorate in fine powder are to be mixed gently with a spatula upon paper with ten parts of flowers of sulphur well levigated, eight of sugar, five of gum arabic, and enough of vermillion to give the whole a rose tint. We begin by mixing tenderly togetherthe sugar, the gum, and the salt previously pulverised; we then add as much water as shall reduce the mixture to a thin paste, and lastly introduce the sulphur; after which all must be well incorporated. The points of the matches, either previously tipped with sulphur or not, are to be dipped in that paste, so as to get coated with a little of it, and are lastly laid in a warm place till they become thoroughly dry. To kindle one of them, it must be touched with strong sulphuric acid, which for this purpose is usually kept in a small well-stoppered phial, and thickened with amianthus. Aspen is reckoned the best wood for matches.

Of late years a detonating priming for fire-arms has been much used with the percussion locks. The simplest formula for making it is to take ten parts of gunpowder, to lixiviate it with water, and to mix the residuum, while moist, with five parts and a quarter of chlorate of potash, reduced to an extremely fine powder. The paste may be made pretty thin, for the salt is sparingly soluble in the cold water, and it mixes best when tolerably fluid. This powder when dry is dangerous to handle, being very apt to explode. But this danger is guarded against by letting fall a drop of the paste into each copper percussion cap, and leaving it to dry there. In the detonation of this powder, besides muriate of potash, there are generated a little sulphate of potash and chlorine gas, which rust the metal very fast. For which reason fulminate of mercury is now preferred by many sportsmen as a detonating powder. SeeFulminate.

CHLORATES, compounds of chloric acid with the salifiable bases. The only acid belonging to this class of any manufacturing importance is the following:

CHLORATES, compounds of chloric acid with the salifiable bases. The only acid belonging to this class of any manufacturing importance is the following:

CHLORIC ACID; the acid constituent of the preceding salt; it consists of one equivalent prime of chlorine = 35·476, + 5 of oxygen, = 40·065; of which the sum 75·535 is the prime equivalent of the acid.

CHLORIC ACID; the acid constituent of the preceding salt; it consists of one equivalent prime of chlorine = 35·476, + 5 of oxygen, = 40·065; of which the sum 75·535 is the prime equivalent of the acid.

CHLORINE; the most energetic of the undecompounded bodies, or chemical elements as they are usually called, exists, under ordinary circumstances, as a greenish yellow gas, but, when exposed to a pressure of 4 atmospheres, it becomes a yellow transparent liquid. In the first state, its density compared to air, reckoned 1·000, is 2·47; in the second, its density compared to water, 1·000, is 1·33. No degree of cold, hitherto tried, has liquefied the gas when dry. It is obtained by putting into a glass retort a mixture of 3 parts of common salt, with 2 parts of peroxide of manganese, and pouring upon it 2 parts of sulphuric acid diluted with its own weight of water; or, more conveniently, by pouring moderately strong muriatic acid upon peroxide of manganese in a retort; and in either case applying the gentle heat of a spirit lamp or a water bath, while the beak of the retort is plunged under brine upon the shelf of the pneumatic trough. The gas issues, and may be received in the usual way into inverted glass jars, or phials; but the first which comes over being mixed with the air of the retort, must be rejected. It has a peculiar smell, and irritates the nostrils most violently when inhaled, as also the windpipe and lungs. It is eminently noxious to animal life, and, if breathed in its undiluted state, would prove instantly fatal. It supports the combustion of many bodies, and indeed spontaneously burns several without their being previously kindled. The resulting combinations are called chlorides, and act most important parts in many manufacturing processes.Water absorbs, at the ordinary temperature of the atmosphere, about double its volume of chlorine, and acquires the colour, smell, and taste of the gas, as well as its power of destroying or bleaching vegetable colours. When this aqueous chlorine is cooled to 36° F. dark yellow crystalline plates appear in it of the hydrate of chlorine, which are composed in 100 parts of 27·7 chlorine, and 72·3 water. If these crystals be heated to about 45° they liquefy, and the gas flies off.Chlorine has a powerful affinity for hydrogen, not only combining with it rapidly in the gaseous, but seizing it in many of its liquid and solid combinations, as in volatile oils, which it inflames, and in yellow wax, cotton, and flax, which it whitens. The compound of chlorine and hydrogen gases is muriatic acid gas. Manganese, when mixed with liquid muriatic acid, as in the above process, abstracts the hydrogen, and lets the chlorine gas go free. When chlorine is passed into water, it decomposes some of it, seizes its hydrogen to form a little muriatic acid, and enables its oxygen to unite either with the chlorine, into chlorous acid, or with the remaining water, and to constitute oxygenated water. Hence, aqueous chlorine, exposed to the sunbeam, continually evolves oxygen, and, ere long, becomes muriatic acid.This watery compound acts in a powerful way upon coloured vegetable fibres, extracting their hydrogen or colouring element by the twofold affinities of the chlorine and oxygen for it.Hence chlorine, as a bleaching agent, requires to be tempered by the quiescent affinity of some alkaline base, potash or lime. Malaria, or morbific and putrescent miasmata, consist chiefly of hydrogenous matter as their basis, and are best counteracted by chlorine, where it can be conveniently applied.Chlorides of Potash, Soda, and Lime.—These are the most important preparationsthrough which chlorine exercises its peculiar powers upon the objects of manufactures. When a weak solution of caustic potash or soda is saturated with chlorine, it affords a bleaching liquor which is still used by some bleachers and calico-printers for their most delicate processes; but the price of the alkalis has led to the disuse of these chlorides as a general means, and has occasioned an extensive employment of chloride of lime. Upon the manufacture of this interesting compound I made an elaborate series of experiments several years ago, and published the results in the 13th volume of Brande’s Journal, for April 1822. I have no reason to suppose, from any thing that has been published since, that the processes there described have been essentially improved, or that any errors, either theoretical or practical, of any moment, exist in that memoir. I shall therefore first present my readers with a brief abstract of it, and then make such observations as subsequent inquiries suggest.In the researches which I made, at many different times, upon the nature of the chloride of lime, I generally sought to combine the information flowing from both synthesis and analysis; that is, I first converted a known portion of hydrate of lime into bleaching-powder, and then subjected this chloride to analysis.Two hundred grains of the atomic proto-hydrate of pure lime were put into a glass globe, which was kept cold by immersion in a body of water at 50°. A stream of chlorine, after being washed in water of the same temperature in another glass globe, connected to the former by a long narrow glass tube, was passed over the calcareous hydrate. The globe with the lime was detached from the rest of the apparatus from time to time, that the process might be suspended as soon as the augmentation of weight ceased. This happened when the 200 grains of hydrate, containing 151·9 of lime, had absorbed 130 grains of chlorine. By one analytical experiment it was found, that dilute muriatic acid expelled from 50 grains of the chloride, 20 grains of chlorine, or 40 per cent.; and by another, from 40 grains, 16·25 of gas, which is 40·6 per cent. From the residuum of the first 39·7 grains of carbonate of lime were obtained by carbonate of ammonia; from that of the second, 36·6 of ignited muriate of lime. The whole results are therefore as follows:—Synthesis.1stAnalysis.2dAnalysis.Mean.Chlorine39·3940·0040·6240·31Lime46·0044·7446·0745·50Water14·6015·2613·3114·28100·00100·00100·00100·00Though the heat generated by the action of the dilute acid had carried off in the analytical experiments a small portion of moisture with the chlorine, yet their accordance with the synthetic experiment is sufficiently good to confirm the general results. The above powder appears to have been a pure chloride, without any mixture of muriate. But it exhibits no atomic constitution in its proportions.To 200 grains of that hydrate of lime 30 grains of water being added, the powder was subjected to a stream of chlorine in the above way, till saturation took place. Its increase of weight was 150 grains.It ought to be remarked, that in this and the preceding experiment, there was no appreciable pneumatic pressure employed to aid the condensation of the chlorine. In the last case, we see that the addition of 30 grains of water has enabled the lime to absorb 20 grains more of chlorine, being altogether a quantity of gas nearly equal to that of the dry lime. Thus, an atom of lime seems associated with7⁄9of an atom of chlorine. Analysis by muriatic acid confirmed this composition. It gaveChlorine39·5= 51·8 cubic inches.Lime39·9Water20·6100·0A great variety of apparatus has been at different times contrived for favouring the combination of chlorine with the slacked lime for the purposes of commerce. One of the most ingenious forms, is that of a cylinder, or barrel, furnished with narrow wooden shelves within, and suspended on a hollow axis by which the chlorine was admitted, and round which the barrel was made to revolve. By this mode of agitation, the lime-dust being exposed on the most extensive surface, was speedily impregnated with the gas to the requisite degree. Such a mechanism I saw at MM. Oberkampf and Widmer’s celebratedfabrique de toiles peintes, at Jouy, in 1816. But this is a costly refinement, inadmissible on the largest scale of British manufacture. The simplest, and, in my opinion, the best construction for subjecting lime-powder to chlorine, is a large chamber8 or 9 feet high, built of siliceous sandstone, having the joints of the masonry secured with a cement composed of pitch, resin, and dry gypsum in equal parts. A door is fitted into it at one end, which can be made air-tight by strips of cloth and clay lute. A window on each side enables the operator to judge how the impregnation goes on by the colour of the air, and also gives light for making the arrangements within at the commencement of the process. As water lutes are incomparably superior to all others where the pneumatic pressure is small, I would recommend a large valve or door on this principle to be made in the roof, and two tunnels of considerable width at the bottom of each side wall. The three covers could be simultaneously lifted off by cords passing over a pulley, without the necessity of the workman approaching the deleterious gas, when the apartment is to be opened. A great number of wooden shelves, or rather trays, 8 or 10 feet long, 2 feet broad, and 1 inch deep, are provided to receive the riddled slacked lime, containing generally about 2 atoms of lime to 3 of water. These shelves are piled one over another in the chamber, to the height of 5 or 6 feet, cross bars below each keeping them about an inch asunder, that the gas may have free room to circulate over the surface of the calcareous hydrate.The alembics for generating the chlorine, which are usually nearly spherical, are in some cases made entirely of lead, in others of two hemispheres, joined together in the middle, the upper hemisphere being lead, the under one cast-iron. The first kind of alembic is enclosed for two-thirds from its bottom, in a leaden or iron case, the interval of two inches between the two being destined to receive steam from an adjoining boiler. Those which consist below of cast-iron, have their bottom directly exposed to a very gentle fire; round the outer edge of the iron hemisphere a groove is cast, into which the under edge of the leaden hemisphere fits, the joint being rendered air-tight by Roman or patent cement. In this leaden dome there are four apertures, each secured by a water-lute. The first opening is about 10 or 12 inches square, and is shut with a leaden valve, with incurvated edges, that fit into the water channel at the margin of the hole. It is destined for the admission of a workman to rectify any derangement in the apparatus of rotation, or to detach hard concretions of salt from the bottom.The second aperture is in the centre of the top. Here a tube of lead is fixed, which descends nearly to the bottom, and down through which the vertical axis passes. To its lower end the cross bars of iron, or of wood, sheathed with lead, are attached, by whose revolution the materials receive the proper agitation for mixing the dense manganese with the sulphuric acid and salt. The motion is communicated either by the hand of a workman applied from time to time to a winch at top, or it is given by connecting the axis with wheel work, impelled by a stream of water or a steam-engine. The third opening admits the syphon-formed funnel, through which the sulphuric acid is introduced; and the fourth is the orifice of the eduction-pipe.Manufacturers differ much from each other in the proportion of their materials for generating chlorine. In general, 10 cwt. of salt are mixed with from 10 to 14 cwt. of manganese, to which mixture, after its introduction into the alembic, from 12 to 14 cwt. of sulphuric acid are added in successive portions. That quantity of oil of vitriol must, however, be previously diluted with water, till its specific gravity becomes about 1·6. But, indeed, this dilution is seldom actually made, for the manufacturer of bleaching-powder almost always prepares his own sulphuric acid for the purpose, and therefore carries its concentration no higher in the leaden boilers than the density of 1·65, which from my table of sulphuric acid, indicates1⁄4th of its weight of water, and therefore1⁄3d more of such acid must be used.The fourth aperture, I have said, admits the eduction pipe. This pipe is afterwards conveyed into a leaden chest or cylinder, in which all the other eduction pipes also terminate. They are connected with it simply by water-lutes, having a hydrostatic pressure of 2 or 3 inches. In this generaldiversoriumthe chlorine is washed from adhering muriatic acid, by passing through a little water, in which each tube is immersed, and from this the gas is let off by a pretty large leaden tube, into the combination room. It usually enters in the top of the ceiling, whence it diffuses its heavy gas equally round.Four days are required, at the ordinary rate of working, for making good marketable bleaching-powder. A more rapid formation would merely endanger an elevation of temperature, productive of muriate of lime, at the expense of the bleaching quality. But skilful manufacturers use here an alternating process. They pile up, first of all, the wooden trays only in alternate shelves in each column. At the end of two days the distillation is intermitted, and the chamber is laid open. After two hours the workman enters, to introduce the alternate trays covered with fresh hydrate of lime, and at the same time rakes up thoroughly the half-formed chloride in the others. The door is then secured, and the chamber, after being filled for two days more with chlorine, is again opened, to allow the first set of trays to be removed, and to be replaced by others, containing fresh hydrate, as before. Thus the process is conducted in regular alternation;thus, to my knowledge, very superior bleaching-powder is manufactured, and thus the chlorine may be suffered to enter in a pretty uniform stream. But for this judicious plan, as the hydrate advances in impregnation, its faculty of absorption becoming diminished, it would be requisite to diminish proportionately the evolution of chlorine, or to allow the excess to escape to the great loss of the proprietor, and, what is of more consequence, to the great detriment of the health of the workmen.The manufacturer generally reckons on obtaining from one ton of rock-salt, employed as above, a ton and a half of good bleaching-powder. But the following analysis of the operation will show that he ought to obtain two tons.When a mixture of sulphuric acid, common salt, and black oxide of manganese are the ingredients used, as by the manufacturer of bleaching-powder, the absolute proportions are, upon the oxygen scale of equivalents:—1atom muriate of soda7·529·70100·01atom peroxide of manganese5·521·7873·32atoms oil of vitriol 1·84612·2548·52163·325·25100·00And the products ought to be:—Chlorine disengaged1atom.4·517·82Sulphate of soda1—9·035·64Proto-sulphate of manganese1—9·537·62Water2—2·258·9225·25100·00These proportions are, however, very different from those employed, by many, nay I believe by all manufacturers; and they ought to be so, on account of the impurity of their oxide of manganese. Yet making allowance for this, I am afraid that many of them commit great errors in the relative quantities of their materials.From the preceding computation, it is evident that 1 ton of salt with 1 ton of the above native oxide of manganese properly treated, would yield 0·59 of a ton of chlorine, which would impregnate 1·41 tons of slaked lime, producing 2 tons of bleaching-powder, stronger than the average of the commercial specimens; or allowing for a little loss, which is unavoidable, would afford 2 tons of ordinary powder, with a little more slaked lime.Chlorine retortFig.287.represents a retort of lead, well adapted to the evolution of chlorine from the mixture of salt, manganese, and sulphuric acid, or from manganese and muriatic acid. The interior vessel is cast in lead, and it has round its bottom part a cast-iron steam case. The salt and manganese are introduced by the apertureC, and the sulphuric acid by the syphon funnelF. The contact of these three substances is continually renewed by the agitator or stirrerB, which consists of wrought or cast iron sheathed with lead.eis the gas discharge pipe. The residuums are drawn off by the bottom discharge pipeG. The heating case receives its steam by the pipeh.The chlorine gasfig.288.is conveyed from the retortBinto the chamberI, by the tubeE E E. This chamber is divided into four compartments, to receive the gas disengaged from four retorts, like the above. The bottom of it is covered with a stratum three or four inches thick of quicklime, newly slaked and sifted, which is stirred about fromtime to time, by the rakesL L L L. When the saturation is sufficient, the chloride of lime is taken out by the doorsK K K K. The size of this apparatus allows 2 cwt. of manganese, and its equivalent quantity of salt and sulphuric acid, or of muriatic acid, to be introduced at once into the retort.Dis the handle of the agitator.The same form of retort will suit perfectly well to prepare chlorine for making liquid chloride of lime, which is preferred by many bleachers and calico-printers who have conveniences for preparing it themselves. The most concentrated solutions of the dry chloride of lime do not mark more than 6° B. (sp. grav. 1·04), and discolour only 50 volumes of Gay Lussac’s solution of indigo, whilst the chloride made in the humid way marks from 8° to 9° B. (about 1·060), and discolours 80 volumes of the same solution.In the chloride of lime apparatus, most generally used by the skilful calico-printers of Mulhausen, the mixture of muriatic acid and manganese is put into glass globes, with long necks, heated upon a sand-bath. The chlorine is conveyed by glass tubes into a cylindrical stone cistern, containing milk of lime. The furnace of the sand baths is made of cast iron, and has brick partitions, to give each retort its own fire. The smoke of all these fires goes off by a flue into sheet iron pipes. The cistern is made of siliceous sandstone. Its cover is of wood, coated with a resinous cement; and it fits at its edges into grooves cut in the stone. A wheel serves to agitate the liquid continually; its paddles being kept at two inches distance from the sides of the cistern. The milk of lime is introduced by a funnel, and the chloride is drawn off by a discharge pipe. I think the lead retort and agitator used in this country greatly preferable to the experimental laboratory plan described above. In all such apparatus we should avoid giving any pressure to the tubes or vessels, and should not therefore dip the extremities of the gas pipes beneath the surface of the liquid, but rather facilitate the combination of the chlorine and the lime, by enlarging the surfaces of contact and by agitating. Intermediate vessels containing water, or the chemical cascade of M. Clement, are very useful for absorbing any muriatic acid which may be disengaged along with the chlorine, and thereby preventing the needless formation of muriate of lime in the chambers or cisterns of impregnation.When the solution of the chloride of lime is mixed with hydrate of lime, it bears, without decomposing, a pretty high temperature, provided it be not too long continued; it may even, in certain cases, be raised to near the boiling point without suffering a marked loss of its discolouring power; but when the chloride is deprived of that excess of lime, it is decomposed in a short time, even at a heat of 110° F.When chlorine is admitted to milk of lime, it infallibly produces some muriate of lime; but the quantity is kept at aminimumby constantly presenting an excess of lime to the gas with the agitator, and by keeping the temperature as low as possible. Hence the influx of gas should not be so rapid as to generate much heat. An automatic agitator, moved by steam or water power, is therefore much better than one driven by the hand of the operator, who is apt to intermit his labours. If the liquor becomes hot at the end of the process, it should be immediately drawn off into large stone bottles, and cooled. The rose-colour, which sometimes supervenes, is due to a minute quantity of manganese. The strongest liquid chloride of lime that can be prepared will not discolour more than 80 times its volume of Gay Lussac’s indigo test.On acting upon cotton cloth with a concentrated solution of chloride of lime, at from 110° to 120° F., pure carbonic acid gas is disengaged, and the texture of the cloth is injured. Here the hydrogen of the water and the cotton being seized by the chlorine, the liberated oxygen combines with the carbon to form carbonic acid. In the discharge troughs where printed calicoes are passed through strong solutions of chloride of lime, stalactitic crusts of carbonate of lime come to be formed in this way.Thechlorometreof Gay Lussac consists of a test solution of indigo and a graduated tube. One part of the best indigo, passed through a silk sieve, is to be dissolved in nine parts of concentrated sulphuric acid, by the aid of a water-bath heat applied for six hours. The sulphate of indigo is now to be diffused through such a body of water that one volume of chlorine gas shall discolour exactly ten times its volume of this dilute solution. The test liquor should be protected from the agency of light.Mr. Crum, of Thorniebank, near Glasgow, has lately modified Dr. Dalton’s copperas test for chloride of lime, and made it convenient to the practical man. The Doctor justly considered that the more chlorine any bleaching powder contains, the more of the green sulphate of iron will it convert into the red sulphate, so that we have only to add successive portions of the chloride to a given weight of the dissolved copperas, and note the point at which all the iron gets peroxidized. SeeBleaching.ChlorometerBesides the method of analysis already quoted from my memoir on the manufacture of the chloride of lime, another occurred to me long ago, which I often practised as an easy and expeditious test. Chlorine decomposes ammonia. If therefore water of ammonia, faintly tinged with litmus, be added slowly to a solution of a given weight ofchloride of lime, the colour will continue to disappear till the chlorine be all neutralized by the reaction of the hydrogen of the ammonia. The quantity of liquid ammonia of a certain strength requisite to neutralize in this way, a certain volume, say, one cubic inch, or a thousand grain measures of chlorine gas, may be assumed as the standard of such a chlorometer. As chlorine or chloride of lime, when mixed with water of ammonia, causes the disengagement of azote, the quantity of this gas evolved may also be made the foundation of an accurate and convenient chlorometer. The two substances should be mixed over mercury, in agraduated syphon tube. The shut endAand the open endBare both graduated to one scale; for example, to hundredths of a cubic inch, or to grain or 10 grain measures. The tube is to be filled with mercury, and then 10 measures of it are to be displaced at the open end, by inserting a wooden plug. This space, being filled with the solution of chloride of lime, is to be turned up into the shut end by covering the open end with the finger, and inverting the tube; a few drops of water may be sent through to wash the mercury. The ammonia being now let up, will cause a reaction, and evolve a quantity of azote, equivalent to the chlorine present. The action may be quickened by holding the sealed end of the tube obliquely over a lamp heat. The mercury is protected from the chlorine by the ammonia; and should any notion be entertained of such an action, the ammonia may be let up first. I have made innumerable researches over mercury with a detached apparatus of that kind, which combines precision with rapidity of result. It was by a similar mercurial syphon that I analyzed the carbonates, as described in the first edition of my Dictionary of Chemistry, twenty-one years ago.M. Gay Lussac takes, as the basis of his indigo chlorometer, the fact, that one pound of pure crystallized peroxide of manganese is capable of affording, with muriatic acid, 0·7964 parts of a pound of chlorine; or one kilogramme yields 2511⁄4litres; that is, one pound yields 2511⁄4pound measures. Hence 3·98 grammes of that manganese are capable of affording 1000 gramme measures, or 1 litre of chlorine; or, in round numbers, 4 grains will yield 1000 grain measures. This quantity of gas, being received into that volume of milk of lime, constitutes therefore Gay Lussac’s primary standard. The small retort in which the manganese and muriatic acid are put, ought to be heated to ebullition, to discharge every particle of chlorine. To prevent the manganese, in this experiment, from sticking to the bottom in a cake, it has been proposed to mix it previously with a little plumbago. SeeChlorometry.For preparing the chlorides of potash and soda, the same apparatus may be employed as for the liquid chloride of lime. The alkaline solutions should be weak, containing not more than a pound to the gallon of water. Potash liquor saturated with chlorine, is much employed at Paris for whitening linen, under the name of the water of Javelle, the place where it was first made as a manufacture. One hundred parts of chlorine are said to saturate 133 parts of pure potash, and 195 of the carbonate; but the latter should not be used for preparing the bleaching fluid, as the carbonic acid resists the combination of the chlorine. A chloride of carbonate of soda has been lately recommended as a disinfecting substance against contagious miasmata orfomites. One hundred parts of chlorine will saturate 150 of the dry carbonate, and 405 of the crystallized. M. Payen prepares this medicinal chloride by adding 138 parts of carbonate of soda to a liquid, consisting of water 1800, chloride of lime 100, at 98° of strength, by Gay Lussac’s standard. The chloride of lime is to be dissolved, and the sediment well washed; the carbonate of soda, dissolved by heat, is to be poured into the solution, the precipitate allowed to subside, the clear fluid decanted, and the solid matter washed upon a filter. The collected solutions are neutral chloride of soda. Sixty-two parts of the carbonate of soda are then to be dissolved in the remainder of the water, and added to the preparation; the whole being thus filtered, a limpid liquor is obtained, indicating 5° by the hydrometer of Baumé.The chloride of magnesia was long ago proposed by Sir H. Davy for bleaching linen, as being preferable to chloride of lime, because the resulting muriate of magnesia was not injurious to the fibre of cloth, as muriate of lime may be, under certain circumstances. I prepared a quantity of chloride of magnesia, by exposing a hydrate of that earth in the chlorine chamber of a large manufactory of chloride of lime at Glasgow, and obtained a compound possessed of considerable discolouring powers; but I found that the chlorine was so feebly saturated by the base, that it destroyed the colours of fast-dyed calicoes as readily as chlorine gas or chlorine water did, and was therefore dangerous for common bleaching, and destructive in clearing the grounds of printed goods, which is one of the most valuable applications of the calcareous and alkaline chlorides. The occasion of my making these experiments was the importation of a considerable quantity of magnesite, or native atomic carbonate of magnesia, from the district of Madras, by an enterprising friend of mine. Encouraged by the encomiums bestowed on the chloride of magnesia by many chemical writers, heexpected to have benefited both the country and himself, by bringing home the earthy base of that compound, at a moderate price; but was disappointed to his cost.Dr. Thomson is of opinion that the bleaching compound of lime and chlorine is not a chloride of lime, but a combination of chlorous acid with lime and of chlorine with calcium; consisting in its most concentrated state of3 atoms of chloride of calcium=211 atom of chlorite of lime=1132So that about one third of the weight is chlorite of lime, to which alone the bleaching powers of the substance are owing. He admits a fact, rather inconsistent with this opinion, that bleaching powder does not attract moisture from the atmosphere with nearly so much rapidity as might be expected from a mixture containing two thirds of its weight of so deliquescent a salt as muriate of lime; unless this indeed be prevented by the chloride and chlorite being united into a double salt, which is a mere conjecture without either proof or analogy. And further, when dilute sulphuric or muriatic acid is poured upon bleaching powder, a profusion of chlorine is given out immediately, which he also admits to be inconsistent with the notion of its being a mixture of chloride of calcium and chlorite of lime, for no such evolution takes place when the above acids are mixed with solutions of chloride of calcium and chlorate of potash. Though I am of opinion that bleaching powder is simply a chloride of lime, in which the lime corresponds to the water in the aqueous chlorine, yet I cannot see the truth or appositeness of his last reason, because chlorine is certainly given out when chlorate of potash is acted upon by dilute muriatic acid, as any man may prove by adding to a mixture of these two substances a vegetable colour; for it will be speedily blanched. Dr. Thomson considers the chloride which is at present made in Mr. Tennant’s great factory, as containing one atom of chlorine associated with one atom of lime, or, taking his numbers, as consisting ofHydrate of lime4·625Chlorine4·5Or nearly equal weights of the chlorine and the base; indicating a surprising degree of excellence in the preparation. The average commercial samples of bleaching powder from different factories which I examined some years ago, did not possess nearly that strength; but varied in their quantity of chlorine from 20 to 28 per cent. In my synthetic experiments related above, the greatest quantity of chlorine that would combine with the atomic hydrate of lime, was in the proportion of 130 to 200; but there is no doubt that if the lime contains additional water, it will condense more gas. I have never seen a chloride of lime of the strength mentioned by Dr. Thomson, and I should think there must be some fallacy in his statements. I have recorded in the paper above quoted an experiment which proves that with additional moisture, a chloride of lime may be obtained of the following composition:—Chlorine39·5Lime39·9Water20·6100·0In the articleBleaching, of the Encyclopædia Britannica, Dr. Thomson deduces from a test trial of Mr. Crum, that the best bleaching powder is a compound of 1 atom chlorite of lime = 11, 3 atoms chloride of calcium = 21, and 8 atoms of water = 9. “But,” adds he, “in general the whole lime is not accurately saturated with chlorine. Accordingly, when the bleaching powder is dissolved in water a small residue almost always remains undissolved. Unless the powder be fresh made, a portion of chlorite is always converted into chloride of calcium. It is probable therefore that the best bleaching powder, as it comes into the hands of the bleachers, consists of1atom chlorite of lime113atoms chloride of calcium216atoms water6·75Impurity2·2541·00“If we consider the bleaching powder as a compound of chlorine and lime, our mode of calculating will not be altered. Instead of 1 atom chlorite of lime, and 3 atoms chloride of calcium, we shall have 4 atoms chloride of lime, 6 atoms water, and 2·25 of impurity as before.” In such ambiguity does this able chemist place this interesting compound, for theoretical reasons, of which I cannot see the value. Surely there is no difficulty in conceiving chlorine to exercise a direct attractive force towards the hydrate of lime, as it is known to do towards each of its elementary constituents, the oxygen and the calcium. Such refinements as the preceding tend merely to mystify a plain matter. Even thechlorous acid here brought into play to form the ideal chlorite, is by his own admission a hypothetical being. “When chlorate of potash” says Dr. Thomson, “is mixed with sulphuric acid, and made into small balls the size of a pea, if we expose these balls to a heat somewhat lower than that of boiling water, a bright yellowish green gas separates, which may be received over mercury. Its smell is peculiar and aromatic. Water absorbs at least seven times its volume of it. It destroys vegetable blues. Its constituents are,1 volume chlorine2·5or4·52 volumes oxygen2·222or4.Thus this compound consists in weight of chlorine 4·5, oxygen 4 = 8·5. It has been calledquarteroxide of chlorine, but it is more probably ateroxide. It has been supposed by some to possess acid properties, and has therefore been calledchlorous acid. But this is only as yet a hypothesis.”Surely this by the Doctor’s own showing is very slender authority for renouncing our long-received doctrines concerning the constitution of bleaching powder. I shall conclude by remarking that the ultra-atomists are now in a dilemma about this substance; M. Welter, and many French chemists calling it a sub-chloride, of 1 atom of chlorine to 2 atoms of lime, and Dr. Thomson showing that Mr. Tennant, the greatest and best manufacturer of it, has produced it in the state of a chloride, or 1 atom of each. The fact is, in chloride of lime, as in water of ammonia, alcohol, and muriatic acid, there is nosufficient reasonfor definite proportion in any term short of saturation, and therefore we shall findthatchloride in every gradation of strength from 1 per cent. of chlorine up to 40 per cent.—the strongest which I succeeded in preparing, though I passed a constant stream of chlorine in great excess over a pure hydrate of lime for upwards of 24 hours, with frequent renewal of the surface; indeed, till it refused to absorb any more gas, as indicated by its remaining stationary in weight.

CHLORINE; the most energetic of the undecompounded bodies, or chemical elements as they are usually called, exists, under ordinary circumstances, as a greenish yellow gas, but, when exposed to a pressure of 4 atmospheres, it becomes a yellow transparent liquid. In the first state, its density compared to air, reckoned 1·000, is 2·47; in the second, its density compared to water, 1·000, is 1·33. No degree of cold, hitherto tried, has liquefied the gas when dry. It is obtained by putting into a glass retort a mixture of 3 parts of common salt, with 2 parts of peroxide of manganese, and pouring upon it 2 parts of sulphuric acid diluted with its own weight of water; or, more conveniently, by pouring moderately strong muriatic acid upon peroxide of manganese in a retort; and in either case applying the gentle heat of a spirit lamp or a water bath, while the beak of the retort is plunged under brine upon the shelf of the pneumatic trough. The gas issues, and may be received in the usual way into inverted glass jars, or phials; but the first which comes over being mixed with the air of the retort, must be rejected. It has a peculiar smell, and irritates the nostrils most violently when inhaled, as also the windpipe and lungs. It is eminently noxious to animal life, and, if breathed in its undiluted state, would prove instantly fatal. It supports the combustion of many bodies, and indeed spontaneously burns several without their being previously kindled. The resulting combinations are called chlorides, and act most important parts in many manufacturing processes.

Water absorbs, at the ordinary temperature of the atmosphere, about double its volume of chlorine, and acquires the colour, smell, and taste of the gas, as well as its power of destroying or bleaching vegetable colours. When this aqueous chlorine is cooled to 36° F. dark yellow crystalline plates appear in it of the hydrate of chlorine, which are composed in 100 parts of 27·7 chlorine, and 72·3 water. If these crystals be heated to about 45° they liquefy, and the gas flies off.

Chlorine has a powerful affinity for hydrogen, not only combining with it rapidly in the gaseous, but seizing it in many of its liquid and solid combinations, as in volatile oils, which it inflames, and in yellow wax, cotton, and flax, which it whitens. The compound of chlorine and hydrogen gases is muriatic acid gas. Manganese, when mixed with liquid muriatic acid, as in the above process, abstracts the hydrogen, and lets the chlorine gas go free. When chlorine is passed into water, it decomposes some of it, seizes its hydrogen to form a little muriatic acid, and enables its oxygen to unite either with the chlorine, into chlorous acid, or with the remaining water, and to constitute oxygenated water. Hence, aqueous chlorine, exposed to the sunbeam, continually evolves oxygen, and, ere long, becomes muriatic acid.

This watery compound acts in a powerful way upon coloured vegetable fibres, extracting their hydrogen or colouring element by the twofold affinities of the chlorine and oxygen for it.

Hence chlorine, as a bleaching agent, requires to be tempered by the quiescent affinity of some alkaline base, potash or lime. Malaria, or morbific and putrescent miasmata, consist chiefly of hydrogenous matter as their basis, and are best counteracted by chlorine, where it can be conveniently applied.

Chlorides of Potash, Soda, and Lime.—These are the most important preparationsthrough which chlorine exercises its peculiar powers upon the objects of manufactures. When a weak solution of caustic potash or soda is saturated with chlorine, it affords a bleaching liquor which is still used by some bleachers and calico-printers for their most delicate processes; but the price of the alkalis has led to the disuse of these chlorides as a general means, and has occasioned an extensive employment of chloride of lime. Upon the manufacture of this interesting compound I made an elaborate series of experiments several years ago, and published the results in the 13th volume of Brande’s Journal, for April 1822. I have no reason to suppose, from any thing that has been published since, that the processes there described have been essentially improved, or that any errors, either theoretical or practical, of any moment, exist in that memoir. I shall therefore first present my readers with a brief abstract of it, and then make such observations as subsequent inquiries suggest.

In the researches which I made, at many different times, upon the nature of the chloride of lime, I generally sought to combine the information flowing from both synthesis and analysis; that is, I first converted a known portion of hydrate of lime into bleaching-powder, and then subjected this chloride to analysis.

Two hundred grains of the atomic proto-hydrate of pure lime were put into a glass globe, which was kept cold by immersion in a body of water at 50°. A stream of chlorine, after being washed in water of the same temperature in another glass globe, connected to the former by a long narrow glass tube, was passed over the calcareous hydrate. The globe with the lime was detached from the rest of the apparatus from time to time, that the process might be suspended as soon as the augmentation of weight ceased. This happened when the 200 grains of hydrate, containing 151·9 of lime, had absorbed 130 grains of chlorine. By one analytical experiment it was found, that dilute muriatic acid expelled from 50 grains of the chloride, 20 grains of chlorine, or 40 per cent.; and by another, from 40 grains, 16·25 of gas, which is 40·6 per cent. From the residuum of the first 39·7 grains of carbonate of lime were obtained by carbonate of ammonia; from that of the second, 36·6 of ignited muriate of lime. The whole results are therefore as follows:—

Though the heat generated by the action of the dilute acid had carried off in the analytical experiments a small portion of moisture with the chlorine, yet their accordance with the synthetic experiment is sufficiently good to confirm the general results. The above powder appears to have been a pure chloride, without any mixture of muriate. But it exhibits no atomic constitution in its proportions.

To 200 grains of that hydrate of lime 30 grains of water being added, the powder was subjected to a stream of chlorine in the above way, till saturation took place. Its increase of weight was 150 grains.

It ought to be remarked, that in this and the preceding experiment, there was no appreciable pneumatic pressure employed to aid the condensation of the chlorine. In the last case, we see that the addition of 30 grains of water has enabled the lime to absorb 20 grains more of chlorine, being altogether a quantity of gas nearly equal to that of the dry lime. Thus, an atom of lime seems associated with7⁄9of an atom of chlorine. Analysis by muriatic acid confirmed this composition. It gave

A great variety of apparatus has been at different times contrived for favouring the combination of chlorine with the slacked lime for the purposes of commerce. One of the most ingenious forms, is that of a cylinder, or barrel, furnished with narrow wooden shelves within, and suspended on a hollow axis by which the chlorine was admitted, and round which the barrel was made to revolve. By this mode of agitation, the lime-dust being exposed on the most extensive surface, was speedily impregnated with the gas to the requisite degree. Such a mechanism I saw at MM. Oberkampf and Widmer’s celebratedfabrique de toiles peintes, at Jouy, in 1816. But this is a costly refinement, inadmissible on the largest scale of British manufacture. The simplest, and, in my opinion, the best construction for subjecting lime-powder to chlorine, is a large chamber8 or 9 feet high, built of siliceous sandstone, having the joints of the masonry secured with a cement composed of pitch, resin, and dry gypsum in equal parts. A door is fitted into it at one end, which can be made air-tight by strips of cloth and clay lute. A window on each side enables the operator to judge how the impregnation goes on by the colour of the air, and also gives light for making the arrangements within at the commencement of the process. As water lutes are incomparably superior to all others where the pneumatic pressure is small, I would recommend a large valve or door on this principle to be made in the roof, and two tunnels of considerable width at the bottom of each side wall. The three covers could be simultaneously lifted off by cords passing over a pulley, without the necessity of the workman approaching the deleterious gas, when the apartment is to be opened. A great number of wooden shelves, or rather trays, 8 or 10 feet long, 2 feet broad, and 1 inch deep, are provided to receive the riddled slacked lime, containing generally about 2 atoms of lime to 3 of water. These shelves are piled one over another in the chamber, to the height of 5 or 6 feet, cross bars below each keeping them about an inch asunder, that the gas may have free room to circulate over the surface of the calcareous hydrate.

The alembics for generating the chlorine, which are usually nearly spherical, are in some cases made entirely of lead, in others of two hemispheres, joined together in the middle, the upper hemisphere being lead, the under one cast-iron. The first kind of alembic is enclosed for two-thirds from its bottom, in a leaden or iron case, the interval of two inches between the two being destined to receive steam from an adjoining boiler. Those which consist below of cast-iron, have their bottom directly exposed to a very gentle fire; round the outer edge of the iron hemisphere a groove is cast, into which the under edge of the leaden hemisphere fits, the joint being rendered air-tight by Roman or patent cement. In this leaden dome there are four apertures, each secured by a water-lute. The first opening is about 10 or 12 inches square, and is shut with a leaden valve, with incurvated edges, that fit into the water channel at the margin of the hole. It is destined for the admission of a workman to rectify any derangement in the apparatus of rotation, or to detach hard concretions of salt from the bottom.

The second aperture is in the centre of the top. Here a tube of lead is fixed, which descends nearly to the bottom, and down through which the vertical axis passes. To its lower end the cross bars of iron, or of wood, sheathed with lead, are attached, by whose revolution the materials receive the proper agitation for mixing the dense manganese with the sulphuric acid and salt. The motion is communicated either by the hand of a workman applied from time to time to a winch at top, or it is given by connecting the axis with wheel work, impelled by a stream of water or a steam-engine. The third opening admits the syphon-formed funnel, through which the sulphuric acid is introduced; and the fourth is the orifice of the eduction-pipe.

Manufacturers differ much from each other in the proportion of their materials for generating chlorine. In general, 10 cwt. of salt are mixed with from 10 to 14 cwt. of manganese, to which mixture, after its introduction into the alembic, from 12 to 14 cwt. of sulphuric acid are added in successive portions. That quantity of oil of vitriol must, however, be previously diluted with water, till its specific gravity becomes about 1·6. But, indeed, this dilution is seldom actually made, for the manufacturer of bleaching-powder almost always prepares his own sulphuric acid for the purpose, and therefore carries its concentration no higher in the leaden boilers than the density of 1·65, which from my table of sulphuric acid, indicates1⁄4th of its weight of water, and therefore1⁄3d more of such acid must be used.

The fourth aperture, I have said, admits the eduction pipe. This pipe is afterwards conveyed into a leaden chest or cylinder, in which all the other eduction pipes also terminate. They are connected with it simply by water-lutes, having a hydrostatic pressure of 2 or 3 inches. In this generaldiversoriumthe chlorine is washed from adhering muriatic acid, by passing through a little water, in which each tube is immersed, and from this the gas is let off by a pretty large leaden tube, into the combination room. It usually enters in the top of the ceiling, whence it diffuses its heavy gas equally round.

Four days are required, at the ordinary rate of working, for making good marketable bleaching-powder. A more rapid formation would merely endanger an elevation of temperature, productive of muriate of lime, at the expense of the bleaching quality. But skilful manufacturers use here an alternating process. They pile up, first of all, the wooden trays only in alternate shelves in each column. At the end of two days the distillation is intermitted, and the chamber is laid open. After two hours the workman enters, to introduce the alternate trays covered with fresh hydrate of lime, and at the same time rakes up thoroughly the half-formed chloride in the others. The door is then secured, and the chamber, after being filled for two days more with chlorine, is again opened, to allow the first set of trays to be removed, and to be replaced by others, containing fresh hydrate, as before. Thus the process is conducted in regular alternation;thus, to my knowledge, very superior bleaching-powder is manufactured, and thus the chlorine may be suffered to enter in a pretty uniform stream. But for this judicious plan, as the hydrate advances in impregnation, its faculty of absorption becoming diminished, it would be requisite to diminish proportionately the evolution of chlorine, or to allow the excess to escape to the great loss of the proprietor, and, what is of more consequence, to the great detriment of the health of the workmen.

The manufacturer generally reckons on obtaining from one ton of rock-salt, employed as above, a ton and a half of good bleaching-powder. But the following analysis of the operation will show that he ought to obtain two tons.

When a mixture of sulphuric acid, common salt, and black oxide of manganese are the ingredients used, as by the manufacturer of bleaching-powder, the absolute proportions are, upon the oxygen scale of equivalents:—

And the products ought to be:—

These proportions are, however, very different from those employed, by many, nay I believe by all manufacturers; and they ought to be so, on account of the impurity of their oxide of manganese. Yet making allowance for this, I am afraid that many of them commit great errors in the relative quantities of their materials.

From the preceding computation, it is evident that 1 ton of salt with 1 ton of the above native oxide of manganese properly treated, would yield 0·59 of a ton of chlorine, which would impregnate 1·41 tons of slaked lime, producing 2 tons of bleaching-powder, stronger than the average of the commercial specimens; or allowing for a little loss, which is unavoidable, would afford 2 tons of ordinary powder, with a little more slaked lime.

Chlorine retort

Fig.287.represents a retort of lead, well adapted to the evolution of chlorine from the mixture of salt, manganese, and sulphuric acid, or from manganese and muriatic acid. The interior vessel is cast in lead, and it has round its bottom part a cast-iron steam case. The salt and manganese are introduced by the apertureC, and the sulphuric acid by the syphon funnelF. The contact of these three substances is continually renewed by the agitator or stirrerB, which consists of wrought or cast iron sheathed with lead.eis the gas discharge pipe. The residuums are drawn off by the bottom discharge pipeG. The heating case receives its steam by the pipeh.

The chlorine gasfig.288.is conveyed from the retortBinto the chamberI, by the tubeE E E. This chamber is divided into four compartments, to receive the gas disengaged from four retorts, like the above. The bottom of it is covered with a stratum three or four inches thick of quicklime, newly slaked and sifted, which is stirred about fromtime to time, by the rakesL L L L. When the saturation is sufficient, the chloride of lime is taken out by the doorsK K K K. The size of this apparatus allows 2 cwt. of manganese, and its equivalent quantity of salt and sulphuric acid, or of muriatic acid, to be introduced at once into the retort.Dis the handle of the agitator.

The same form of retort will suit perfectly well to prepare chlorine for making liquid chloride of lime, which is preferred by many bleachers and calico-printers who have conveniences for preparing it themselves. The most concentrated solutions of the dry chloride of lime do not mark more than 6° B. (sp. grav. 1·04), and discolour only 50 volumes of Gay Lussac’s solution of indigo, whilst the chloride made in the humid way marks from 8° to 9° B. (about 1·060), and discolours 80 volumes of the same solution.

In the chloride of lime apparatus, most generally used by the skilful calico-printers of Mulhausen, the mixture of muriatic acid and manganese is put into glass globes, with long necks, heated upon a sand-bath. The chlorine is conveyed by glass tubes into a cylindrical stone cistern, containing milk of lime. The furnace of the sand baths is made of cast iron, and has brick partitions, to give each retort its own fire. The smoke of all these fires goes off by a flue into sheet iron pipes. The cistern is made of siliceous sandstone. Its cover is of wood, coated with a resinous cement; and it fits at its edges into grooves cut in the stone. A wheel serves to agitate the liquid continually; its paddles being kept at two inches distance from the sides of the cistern. The milk of lime is introduced by a funnel, and the chloride is drawn off by a discharge pipe. I think the lead retort and agitator used in this country greatly preferable to the experimental laboratory plan described above. In all such apparatus we should avoid giving any pressure to the tubes or vessels, and should not therefore dip the extremities of the gas pipes beneath the surface of the liquid, but rather facilitate the combination of the chlorine and the lime, by enlarging the surfaces of contact and by agitating. Intermediate vessels containing water, or the chemical cascade of M. Clement, are very useful for absorbing any muriatic acid which may be disengaged along with the chlorine, and thereby preventing the needless formation of muriate of lime in the chambers or cisterns of impregnation.

When the solution of the chloride of lime is mixed with hydrate of lime, it bears, without decomposing, a pretty high temperature, provided it be not too long continued; it may even, in certain cases, be raised to near the boiling point without suffering a marked loss of its discolouring power; but when the chloride is deprived of that excess of lime, it is decomposed in a short time, even at a heat of 110° F.

When chlorine is admitted to milk of lime, it infallibly produces some muriate of lime; but the quantity is kept at aminimumby constantly presenting an excess of lime to the gas with the agitator, and by keeping the temperature as low as possible. Hence the influx of gas should not be so rapid as to generate much heat. An automatic agitator, moved by steam or water power, is therefore much better than one driven by the hand of the operator, who is apt to intermit his labours. If the liquor becomes hot at the end of the process, it should be immediately drawn off into large stone bottles, and cooled. The rose-colour, which sometimes supervenes, is due to a minute quantity of manganese. The strongest liquid chloride of lime that can be prepared will not discolour more than 80 times its volume of Gay Lussac’s indigo test.

On acting upon cotton cloth with a concentrated solution of chloride of lime, at from 110° to 120° F., pure carbonic acid gas is disengaged, and the texture of the cloth is injured. Here the hydrogen of the water and the cotton being seized by the chlorine, the liberated oxygen combines with the carbon to form carbonic acid. In the discharge troughs where printed calicoes are passed through strong solutions of chloride of lime, stalactitic crusts of carbonate of lime come to be formed in this way.

Thechlorometreof Gay Lussac consists of a test solution of indigo and a graduated tube. One part of the best indigo, passed through a silk sieve, is to be dissolved in nine parts of concentrated sulphuric acid, by the aid of a water-bath heat applied for six hours. The sulphate of indigo is now to be diffused through such a body of water that one volume of chlorine gas shall discolour exactly ten times its volume of this dilute solution. The test liquor should be protected from the agency of light.

Mr. Crum, of Thorniebank, near Glasgow, has lately modified Dr. Dalton’s copperas test for chloride of lime, and made it convenient to the practical man. The Doctor justly considered that the more chlorine any bleaching powder contains, the more of the green sulphate of iron will it convert into the red sulphate, so that we have only to add successive portions of the chloride to a given weight of the dissolved copperas, and note the point at which all the iron gets peroxidized. SeeBleaching.

Chlorometer

Besides the method of analysis already quoted from my memoir on the manufacture of the chloride of lime, another occurred to me long ago, which I often practised as an easy and expeditious test. Chlorine decomposes ammonia. If therefore water of ammonia, faintly tinged with litmus, be added slowly to a solution of a given weight ofchloride of lime, the colour will continue to disappear till the chlorine be all neutralized by the reaction of the hydrogen of the ammonia. The quantity of liquid ammonia of a certain strength requisite to neutralize in this way, a certain volume, say, one cubic inch, or a thousand grain measures of chlorine gas, may be assumed as the standard of such a chlorometer. As chlorine or chloride of lime, when mixed with water of ammonia, causes the disengagement of azote, the quantity of this gas evolved may also be made the foundation of an accurate and convenient chlorometer. The two substances should be mixed over mercury, in agraduated syphon tube. The shut endAand the open endBare both graduated to one scale; for example, to hundredths of a cubic inch, or to grain or 10 grain measures. The tube is to be filled with mercury, and then 10 measures of it are to be displaced at the open end, by inserting a wooden plug. This space, being filled with the solution of chloride of lime, is to be turned up into the shut end by covering the open end with the finger, and inverting the tube; a few drops of water may be sent through to wash the mercury. The ammonia being now let up, will cause a reaction, and evolve a quantity of azote, equivalent to the chlorine present. The action may be quickened by holding the sealed end of the tube obliquely over a lamp heat. The mercury is protected from the chlorine by the ammonia; and should any notion be entertained of such an action, the ammonia may be let up first. I have made innumerable researches over mercury with a detached apparatus of that kind, which combines precision with rapidity of result. It was by a similar mercurial syphon that I analyzed the carbonates, as described in the first edition of my Dictionary of Chemistry, twenty-one years ago.

M. Gay Lussac takes, as the basis of his indigo chlorometer, the fact, that one pound of pure crystallized peroxide of manganese is capable of affording, with muriatic acid, 0·7964 parts of a pound of chlorine; or one kilogramme yields 2511⁄4litres; that is, one pound yields 2511⁄4pound measures. Hence 3·98 grammes of that manganese are capable of affording 1000 gramme measures, or 1 litre of chlorine; or, in round numbers, 4 grains will yield 1000 grain measures. This quantity of gas, being received into that volume of milk of lime, constitutes therefore Gay Lussac’s primary standard. The small retort in which the manganese and muriatic acid are put, ought to be heated to ebullition, to discharge every particle of chlorine. To prevent the manganese, in this experiment, from sticking to the bottom in a cake, it has been proposed to mix it previously with a little plumbago. SeeChlorometry.

For preparing the chlorides of potash and soda, the same apparatus may be employed as for the liquid chloride of lime. The alkaline solutions should be weak, containing not more than a pound to the gallon of water. Potash liquor saturated with chlorine, is much employed at Paris for whitening linen, under the name of the water of Javelle, the place where it was first made as a manufacture. One hundred parts of chlorine are said to saturate 133 parts of pure potash, and 195 of the carbonate; but the latter should not be used for preparing the bleaching fluid, as the carbonic acid resists the combination of the chlorine. A chloride of carbonate of soda has been lately recommended as a disinfecting substance against contagious miasmata orfomites. One hundred parts of chlorine will saturate 150 of the dry carbonate, and 405 of the crystallized. M. Payen prepares this medicinal chloride by adding 138 parts of carbonate of soda to a liquid, consisting of water 1800, chloride of lime 100, at 98° of strength, by Gay Lussac’s standard. The chloride of lime is to be dissolved, and the sediment well washed; the carbonate of soda, dissolved by heat, is to be poured into the solution, the precipitate allowed to subside, the clear fluid decanted, and the solid matter washed upon a filter. The collected solutions are neutral chloride of soda. Sixty-two parts of the carbonate of soda are then to be dissolved in the remainder of the water, and added to the preparation; the whole being thus filtered, a limpid liquor is obtained, indicating 5° by the hydrometer of Baumé.

The chloride of magnesia was long ago proposed by Sir H. Davy for bleaching linen, as being preferable to chloride of lime, because the resulting muriate of magnesia was not injurious to the fibre of cloth, as muriate of lime may be, under certain circumstances. I prepared a quantity of chloride of magnesia, by exposing a hydrate of that earth in the chlorine chamber of a large manufactory of chloride of lime at Glasgow, and obtained a compound possessed of considerable discolouring powers; but I found that the chlorine was so feebly saturated by the base, that it destroyed the colours of fast-dyed calicoes as readily as chlorine gas or chlorine water did, and was therefore dangerous for common bleaching, and destructive in clearing the grounds of printed goods, which is one of the most valuable applications of the calcareous and alkaline chlorides. The occasion of my making these experiments was the importation of a considerable quantity of magnesite, or native atomic carbonate of magnesia, from the district of Madras, by an enterprising friend of mine. Encouraged by the encomiums bestowed on the chloride of magnesia by many chemical writers, heexpected to have benefited both the country and himself, by bringing home the earthy base of that compound, at a moderate price; but was disappointed to his cost.

Dr. Thomson is of opinion that the bleaching compound of lime and chlorine is not a chloride of lime, but a combination of chlorous acid with lime and of chlorine with calcium; consisting in its most concentrated state of

So that about one third of the weight is chlorite of lime, to which alone the bleaching powers of the substance are owing. He admits a fact, rather inconsistent with this opinion, that bleaching powder does not attract moisture from the atmosphere with nearly so much rapidity as might be expected from a mixture containing two thirds of its weight of so deliquescent a salt as muriate of lime; unless this indeed be prevented by the chloride and chlorite being united into a double salt, which is a mere conjecture without either proof or analogy. And further, when dilute sulphuric or muriatic acid is poured upon bleaching powder, a profusion of chlorine is given out immediately, which he also admits to be inconsistent with the notion of its being a mixture of chloride of calcium and chlorite of lime, for no such evolution takes place when the above acids are mixed with solutions of chloride of calcium and chlorate of potash. Though I am of opinion that bleaching powder is simply a chloride of lime, in which the lime corresponds to the water in the aqueous chlorine, yet I cannot see the truth or appositeness of his last reason, because chlorine is certainly given out when chlorate of potash is acted upon by dilute muriatic acid, as any man may prove by adding to a mixture of these two substances a vegetable colour; for it will be speedily blanched. Dr. Thomson considers the chloride which is at present made in Mr. Tennant’s great factory, as containing one atom of chlorine associated with one atom of lime, or, taking his numbers, as consisting of

Or nearly equal weights of the chlorine and the base; indicating a surprising degree of excellence in the preparation. The average commercial samples of bleaching powder from different factories which I examined some years ago, did not possess nearly that strength; but varied in their quantity of chlorine from 20 to 28 per cent. In my synthetic experiments related above, the greatest quantity of chlorine that would combine with the atomic hydrate of lime, was in the proportion of 130 to 200; but there is no doubt that if the lime contains additional water, it will condense more gas. I have never seen a chloride of lime of the strength mentioned by Dr. Thomson, and I should think there must be some fallacy in his statements. I have recorded in the paper above quoted an experiment which proves that with additional moisture, a chloride of lime may be obtained of the following composition:—

In the articleBleaching, of the Encyclopædia Britannica, Dr. Thomson deduces from a test trial of Mr. Crum, that the best bleaching powder is a compound of 1 atom chlorite of lime = 11, 3 atoms chloride of calcium = 21, and 8 atoms of water = 9. “But,” adds he, “in general the whole lime is not accurately saturated with chlorine. Accordingly, when the bleaching powder is dissolved in water a small residue almost always remains undissolved. Unless the powder be fresh made, a portion of chlorite is always converted into chloride of calcium. It is probable therefore that the best bleaching powder, as it comes into the hands of the bleachers, consists of

“If we consider the bleaching powder as a compound of chlorine and lime, our mode of calculating will not be altered. Instead of 1 atom chlorite of lime, and 3 atoms chloride of calcium, we shall have 4 atoms chloride of lime, 6 atoms water, and 2·25 of impurity as before.” In such ambiguity does this able chemist place this interesting compound, for theoretical reasons, of which I cannot see the value. Surely there is no difficulty in conceiving chlorine to exercise a direct attractive force towards the hydrate of lime, as it is known to do towards each of its elementary constituents, the oxygen and the calcium. Such refinements as the preceding tend merely to mystify a plain matter. Even thechlorous acid here brought into play to form the ideal chlorite, is by his own admission a hypothetical being. “When chlorate of potash” says Dr. Thomson, “is mixed with sulphuric acid, and made into small balls the size of a pea, if we expose these balls to a heat somewhat lower than that of boiling water, a bright yellowish green gas separates, which may be received over mercury. Its smell is peculiar and aromatic. Water absorbs at least seven times its volume of it. It destroys vegetable blues. Its constituents are,

Thus this compound consists in weight of chlorine 4·5, oxygen 4 = 8·5. It has been calledquarteroxide of chlorine, but it is more probably ateroxide. It has been supposed by some to possess acid properties, and has therefore been calledchlorous acid. But this is only as yet a hypothesis.”

Surely this by the Doctor’s own showing is very slender authority for renouncing our long-received doctrines concerning the constitution of bleaching powder. I shall conclude by remarking that the ultra-atomists are now in a dilemma about this substance; M. Welter, and many French chemists calling it a sub-chloride, of 1 atom of chlorine to 2 atoms of lime, and Dr. Thomson showing that Mr. Tennant, the greatest and best manufacturer of it, has produced it in the state of a chloride, or 1 atom of each. The fact is, in chloride of lime, as in water of ammonia, alcohol, and muriatic acid, there is nosufficient reasonfor definite proportion in any term short of saturation, and therefore we shall findthatchloride in every gradation of strength from 1 per cent. of chlorine up to 40 per cent.—the strongest which I succeeded in preparing, though I passed a constant stream of chlorine in great excess over a pure hydrate of lime for upwards of 24 hours, with frequent renewal of the surface; indeed, till it refused to absorb any more gas, as indicated by its remaining stationary in weight.


Back to IndexNext