CLOTH, MANUFACTURE OF. SeeTextile Fabrics,Weaving,Wool.
CLOTH, MANUFACTURE OF. SeeTextile Fabrics,Weaving,Wool.
CLOTH-BINDING. Nothing places in so striking a point of view the superior taste, judgment, and resources of London tradesmen over those of the rest of the world, than the extensive substitution which they have recently made of embossed silks and calicoes for leather in the binding of books. In old libraries, cloth-covered boards indeed may occasionally be seen, but they have the meanest aspect, and are no more to be compared with our modern cloth-binding, than thejuponof a trull, with the ballet dress of Taglioni. The silk or calico may be dyed of any shade which use or fancy may require, impressed with gold or silver foil in every form, and variegated by ornaments in relief, copied from the most beautiful productions in nature. This new style of binding is distinguished not more for its durability, elegance, and variety, than for the economy and dispatch with which it ushers the offspring of intellect into the world.For example, should a house eminent in this line, such as that of Westleys, Friar-street, Doctors’-commons, receive 5000 volumes from Messrs. Longman & Co. upon Monday morning, they can have them all ready for publication, within the incredibly short period of two days; being far sooner than they could have rudely boarded them upon the former plan. The reduction of price is not the least advantage incident to the new method, amounting to fully 50 per cent. upon that with leather.The dyed cloth being cut by a pattern to the size suited to the volume, is passed rapidly through a roller press, between engraved cylinders of hard steel, whereby it receives at once the impress characteristic of the back, and the sides, along with embossed designs over the surface in sharp relief. The cover thus rapidly fashioned, is as rapidly applied by paste to the stitched and pressed volume; no time being lost in mutual adjustments; since the steel rollers turn off the former, of a shape precisely adapted to the latter. Hard glazed and varnished calico is moreover much less an object of depredation to moths, and other insects, than ordinary leather has been found to be.
CLOTH-BINDING. Nothing places in so striking a point of view the superior taste, judgment, and resources of London tradesmen over those of the rest of the world, than the extensive substitution which they have recently made of embossed silks and calicoes for leather in the binding of books. In old libraries, cloth-covered boards indeed may occasionally be seen, but they have the meanest aspect, and are no more to be compared with our modern cloth-binding, than thejuponof a trull, with the ballet dress of Taglioni. The silk or calico may be dyed of any shade which use or fancy may require, impressed with gold or silver foil in every form, and variegated by ornaments in relief, copied from the most beautiful productions in nature. This new style of binding is distinguished not more for its durability, elegance, and variety, than for the economy and dispatch with which it ushers the offspring of intellect into the world.For example, should a house eminent in this line, such as that of Westleys, Friar-street, Doctors’-commons, receive 5000 volumes from Messrs. Longman & Co. upon Monday morning, they can have them all ready for publication, within the incredibly short period of two days; being far sooner than they could have rudely boarded them upon the former plan. The reduction of price is not the least advantage incident to the new method, amounting to fully 50 per cent. upon that with leather.
The dyed cloth being cut by a pattern to the size suited to the volume, is passed rapidly through a roller press, between engraved cylinders of hard steel, whereby it receives at once the impress characteristic of the back, and the sides, along with embossed designs over the surface in sharp relief. The cover thus rapidly fashioned, is as rapidly applied by paste to the stitched and pressed volume; no time being lost in mutual adjustments; since the steel rollers turn off the former, of a shape precisely adapted to the latter. Hard glazed and varnished calico is moreover much less an object of depredation to moths, and other insects, than ordinary leather has been found to be.
COBALT. This metal being difficult to reduce from its ores, is therefore very little known, and has not hitherto been employed in its simple state in any of the arts; but its oxide has been extensively used on account of the rich blue colour which it imparts to glass, and the glaze of porcelain and stone-ware. The principal ores of cobalt are those designated by mineralogists under the names ofarsenical cobaltandgray cobalt. The first contains, in addition to cobalt, some arsenic, iron, nickel, and occasionally silver, &c. The other is a compound of cobalt with iron, arsenic, sulphur, and nickel. Among the gray cobalts, the ore most esteemed for its purity is that of Tunaberg in Sweden. It is often in regular crystals which possess the lustre and colour of polished steel. The specific gravity of cobalt pyrites is 6·36 to 4·66. The Tunaberg variety afforded to Klaproth, cobalt, 44; arsenic, 55·5; sulphur, 0·5: so that it is an arseniuret. Others, however, contain much sulphur as well as iron. It imparts at the blowpipe a blue colour to borax and other fluxes, and gives out arsenical fumes.The ore being picked to separate its concomitant stony matters, is pounded fine and passed through a sieve; and is also occasionally washed. The powder is then spread on the sole of a reverberatory furnace, the flue of which leads into a long horizontal chimney. Here it is exposed to calcination for several hours, to expel the sulphur and arsenic that may be present; the former burning away in sulphurous acid gas, the latter being condensed into the white oxide or arsenious acid, whence chiefly the market is supplied with this article. This calcining process can never disengage the whole of these volatile ingredients, and there is therefore a point beyond which it is useless to push it; but the small quantities that remain are not injurious to the subsequent operations. The roasted ore is sifted anew; reduced to a very fine powder, and then mixed with 2 or 3 parts of very pure siliceous sand, to be converted into what is calledzaffre. With this product glasses are generally coloured blue, as well as enamels and pottery glaze. In the works where cobalt ores are treated, a blue glass is prepared with the zaffre, which is well known under the name of smalt or azure blue. This azure is made by adding to the zaffre 2 or 3 parts of potash, according to its richness in cobalt, and melting the mixture in earthen crucibles. The fused mass is thrown out while hot into water; and is afterwards triturated and levigated in mills mounted for the purpose. There remains at the bottom of the earthen pot a metallic lump, which contains a little cobalt, much nickel, arsenic, iron, &c. This is calledspeiss.As it is theoxideof cobalt which has the colouring quality, the calcination serves the purpose of oxidizement, as well as of expelling the foreign matters.A finer cobalt-oxide is procured for painting upon hard porcelain, by boiling the cobalt ore in nitric acid, which converts the arsenic into an acid, and combines it with the different metals present in the mineral. These arseniates being unequally soluble in nitric acid, may be separated in succession by a cautious addition of carbonate of soda or potash; and the arseniate of cobalt as the most soluble remains unaffected. It has a rose colour; and is easily distinguishable, whence the precipitation may be stopped at the proper point. The above solution should be much diluted, and the alkali should be cautiously added with frequent agitation.Cobalt ore furnaceThe cobalt ores, rich in nickel, are exposed to slow oxidizement in the air, whereby the iron, cobalt, arsenic, and sulphur get oxygenated by the atmospheric moisture, but the nickel continues in the metallic state. This action of the weather must not be extended beyond a year, otherwise the nickel becomes affected, and injures the cobalt blue. The ore hereby increases in weight, from 8 to 10 per cent.Fig.291.is a longitudinal section of the furnace:fig.292., a horizontal section upon a level with the sole of the hearth. It is constructed for wood fuel, and the hearth is composed of fire-bricks or tiles. The vapours and gases disengaged in the roasting, pass off through the fluesa a, into the channelsb b, and thence bycinto the common vent, or poison chamber. See the representation of thepoison tower of Altenberg, under thearticleArsenic. The flues are cleared out by means of openings left at suitable situations in the brick-work of the chimneys.The azure manufacture is carried on chiefly in winter, in order that the external cold may favour the more complete condensation of the acids of arsenic. From 3 to 5 cwt. of Schlich (pasty ore), are roasted at one operation, and its bed is laid from 5 to 6 inches thick. After two hours, it must be turned over; and the stirring must be repeated every half hour, till no more arsenic is observed to exhale. The process being then finished, the ore must be raked out of the furnace, and another charge introduced.The duration of the roasting is regulated partly by the proportion of sulphur and arsenic present, and partly by the amount of nickel; which must not be suffered to become oxidized, lest it should spoil the colour of the smalt. The latter ores should be but slightly roasted, so as to convert the nickel intospeiss. The roasted ore must be sifted in a safety apparatus. The loss of weight in the roasting amounts, upon the average, to 36 per cent. The roasted ore has a brownish gray hue, and is calledsafflorin German, and is distributed into different sorts. F F S is the finestsafre; F S, fine; O S, ordinary; and M S, middling. These varieties proceed from various mixtures of the calcined ores. The roasted ore is ground up along with sand, elatriated, and, when dry, is calledzaffre. It is then mixed with a sufficient quantity of potash for converting the mixture into a glass.Smalt furnaceFigs.293.and294.represent a round smalt furnace, in two vertical sections, at right angles to each other. The fire-place is vaulted or arched; the flame orificea, is in the middle of the furnace;bis the feed hole;c, a tunnel which serves as an ash-pit, and to supply air;d, openings through which the air arrives at the fuel, the wood being placed upon the vault;e, knee holes for taking out the scoriæ from the pot bottoms;f, working orifices, with cast-iron platesg, in front of them. Under these are the additional outletsh. The smoke and flame pass off through the orificesi, which terminate in expanded flues, where the sand may be calcined or the wood may be baked. Eight hours are sufficient for one vitrifying operation, during which the glass is stirred about several times in the earthen melting pots.The preparation of the different shades of blue glass are considered as secrets in the smelting works; and marked with the following letters:—F F F C, the finest; F C,fine; M C, middling; O C, ordinary. A melting furnace, containing 8 pots of glass; produces in 24 hours, from 24 cwts. of the mixture, 19 cwts. of blue glass; and from1⁄2to3⁄4cwt. of scoriæ or speiss (speise). The compositionspeise, according to Berthier, is,—nickel, 49·0; arsenic, 37·8; sulphur, 7·8; copper, 1·6; cobalt, 3·2 in 100. Nickel, arsenic, and sulphur, are its essential constituents; the rest are accidental, and often absent. The freer the cobalt ore is from foreign metals, the finer is the colour, and the deeper is the shade; paler tints are easily obtained by dilution with more glass. The presence of nickel gives a violet tone.The production of smalt in the Prussian states amounted, in 1830, to 74521⁄2cwts.; and, in Saxony, to 9697 cwts.; in 1825, to 12,310 cwts.One process for making fine smalt has been given under the titleAzure; I shall introduce another somewhat different here.The ore of cobalt is to be reduced to very fine powder, and then roasted with much care. One part, by weight, is next to be introduced, in successive small portions, into an iron vessel, in which three parts of acid sulphate of potassa has been previously fused, at a moderate temperature. The mixture, at first fluid, soon becomes thick and firm, when the fire is to be increased, until the mass is in perfect fusion, and all white vapours have ceased. It is then to be taken out of the crucible with an iron ladle, the crucible is to be recharged with acid sulphate of potash, and the operation continued as before, until the vessel is useless. The fused mass contains sulphate of cobalt, neutral sulphate of potassa, and arseniate of iron, with a little cobalt. It is to be pulverized, and boiled in an iron vessel, with water, as long as the powder continues rough to the touch. The white, or yellowish white residue, may be allowed to separate from the solution, either by deposition or filtration. Carbonate of potassa, free from silica, is then to be added to the solution, and the carbonate of cobalt thrown down is to be separated and well washed, if possible, with warm water; the same water may be used to wash other portions of the fused mass. The filtered liquid which first passes, is a saturated solution of sulphate of potassa: being evaporated to dryness in an iron vessel, it may be reconverted into acid sulphate by fusing it with one half its weight of sulphuric acid: this salt is then as useful as at first.The oxide of cobalt thus obtained, contains no nickel; so little oxide of iron is present, that infusion of galls does not show its presence; it may contain a little copper, if that metal exists in the ore, but it is easily separated by the known methods. Sometimes sulphuretted hydrogen will produce a yellow brown precipitate in the solution of the fused mass; this, however, contains no arsenic, but is either sulphuret of antimony or bismuth, or a mixture of both.It has been found advantageous to add to the fused mass, sulphate of iron, calcined to redness, and one tenth of nitre when the residue is arseniate of iron, and contains no arseniate of cobalt. There is then no occasion to act upon the residue a second time for the cobalt in it.This process is founded on the circumstances that the sulphate of cobalt is not decomposed by a red heat, and that the arseniates of iron and cobalt are insoluble in all neutral liquids. It is quite evident that to obtain a perfect result, the excess of acid in the bisulphate of potassa must be completely driven off by the red heat applied.110,646 lbs. of smalts were imported into the United Kingdom in 1835, and 96,949 were retained for home consumption. In 1834, only 16,223 lbs. were retained.In 1835, 322,562 lbs. of zaffres were imported, and 336,824 are stated to have been retained, which is obviously an error. 284,000 lbs. were retained in 1834.
COBALT. This metal being difficult to reduce from its ores, is therefore very little known, and has not hitherto been employed in its simple state in any of the arts; but its oxide has been extensively used on account of the rich blue colour which it imparts to glass, and the glaze of porcelain and stone-ware. The principal ores of cobalt are those designated by mineralogists under the names ofarsenical cobaltandgray cobalt. The first contains, in addition to cobalt, some arsenic, iron, nickel, and occasionally silver, &c. The other is a compound of cobalt with iron, arsenic, sulphur, and nickel. Among the gray cobalts, the ore most esteemed for its purity is that of Tunaberg in Sweden. It is often in regular crystals which possess the lustre and colour of polished steel. The specific gravity of cobalt pyrites is 6·36 to 4·66. The Tunaberg variety afforded to Klaproth, cobalt, 44; arsenic, 55·5; sulphur, 0·5: so that it is an arseniuret. Others, however, contain much sulphur as well as iron. It imparts at the blowpipe a blue colour to borax and other fluxes, and gives out arsenical fumes.
The ore being picked to separate its concomitant stony matters, is pounded fine and passed through a sieve; and is also occasionally washed. The powder is then spread on the sole of a reverberatory furnace, the flue of which leads into a long horizontal chimney. Here it is exposed to calcination for several hours, to expel the sulphur and arsenic that may be present; the former burning away in sulphurous acid gas, the latter being condensed into the white oxide or arsenious acid, whence chiefly the market is supplied with this article. This calcining process can never disengage the whole of these volatile ingredients, and there is therefore a point beyond which it is useless to push it; but the small quantities that remain are not injurious to the subsequent operations. The roasted ore is sifted anew; reduced to a very fine powder, and then mixed with 2 or 3 parts of very pure siliceous sand, to be converted into what is calledzaffre. With this product glasses are generally coloured blue, as well as enamels and pottery glaze. In the works where cobalt ores are treated, a blue glass is prepared with the zaffre, which is well known under the name of smalt or azure blue. This azure is made by adding to the zaffre 2 or 3 parts of potash, according to its richness in cobalt, and melting the mixture in earthen crucibles. The fused mass is thrown out while hot into water; and is afterwards triturated and levigated in mills mounted for the purpose. There remains at the bottom of the earthen pot a metallic lump, which contains a little cobalt, much nickel, arsenic, iron, &c. This is calledspeiss.
As it is theoxideof cobalt which has the colouring quality, the calcination serves the purpose of oxidizement, as well as of expelling the foreign matters.
A finer cobalt-oxide is procured for painting upon hard porcelain, by boiling the cobalt ore in nitric acid, which converts the arsenic into an acid, and combines it with the different metals present in the mineral. These arseniates being unequally soluble in nitric acid, may be separated in succession by a cautious addition of carbonate of soda or potash; and the arseniate of cobalt as the most soluble remains unaffected. It has a rose colour; and is easily distinguishable, whence the precipitation may be stopped at the proper point. The above solution should be much diluted, and the alkali should be cautiously added with frequent agitation.
Cobalt ore furnace
The cobalt ores, rich in nickel, are exposed to slow oxidizement in the air, whereby the iron, cobalt, arsenic, and sulphur get oxygenated by the atmospheric moisture, but the nickel continues in the metallic state. This action of the weather must not be extended beyond a year, otherwise the nickel becomes affected, and injures the cobalt blue. The ore hereby increases in weight, from 8 to 10 per cent.Fig.291.is a longitudinal section of the furnace:fig.292., a horizontal section upon a level with the sole of the hearth. It is constructed for wood fuel, and the hearth is composed of fire-bricks or tiles. The vapours and gases disengaged in the roasting, pass off through the fluesa a, into the channelsb b, and thence bycinto the common vent, or poison chamber. See the representation of thepoison tower of Altenberg, under thearticleArsenic. The flues are cleared out by means of openings left at suitable situations in the brick-work of the chimneys.
The azure manufacture is carried on chiefly in winter, in order that the external cold may favour the more complete condensation of the acids of arsenic. From 3 to 5 cwt. of Schlich (pasty ore), are roasted at one operation, and its bed is laid from 5 to 6 inches thick. After two hours, it must be turned over; and the stirring must be repeated every half hour, till no more arsenic is observed to exhale. The process being then finished, the ore must be raked out of the furnace, and another charge introduced.
The duration of the roasting is regulated partly by the proportion of sulphur and arsenic present, and partly by the amount of nickel; which must not be suffered to become oxidized, lest it should spoil the colour of the smalt. The latter ores should be but slightly roasted, so as to convert the nickel intospeiss. The roasted ore must be sifted in a safety apparatus. The loss of weight in the roasting amounts, upon the average, to 36 per cent. The roasted ore has a brownish gray hue, and is calledsafflorin German, and is distributed into different sorts. F F S is the finestsafre; F S, fine; O S, ordinary; and M S, middling. These varieties proceed from various mixtures of the calcined ores. The roasted ore is ground up along with sand, elatriated, and, when dry, is calledzaffre. It is then mixed with a sufficient quantity of potash for converting the mixture into a glass.
Smalt furnace
Figs.293.and294.represent a round smalt furnace, in two vertical sections, at right angles to each other. The fire-place is vaulted or arched; the flame orificea, is in the middle of the furnace;bis the feed hole;c, a tunnel which serves as an ash-pit, and to supply air;d, openings through which the air arrives at the fuel, the wood being placed upon the vault;e, knee holes for taking out the scoriæ from the pot bottoms;f, working orifices, with cast-iron platesg, in front of them. Under these are the additional outletsh. The smoke and flame pass off through the orificesi, which terminate in expanded flues, where the sand may be calcined or the wood may be baked. Eight hours are sufficient for one vitrifying operation, during which the glass is stirred about several times in the earthen melting pots.
The preparation of the different shades of blue glass are considered as secrets in the smelting works; and marked with the following letters:—F F F C, the finest; F C,fine; M C, middling; O C, ordinary. A melting furnace, containing 8 pots of glass; produces in 24 hours, from 24 cwts. of the mixture, 19 cwts. of blue glass; and from1⁄2to3⁄4cwt. of scoriæ or speiss (speise). The compositionspeise, according to Berthier, is,—nickel, 49·0; arsenic, 37·8; sulphur, 7·8; copper, 1·6; cobalt, 3·2 in 100. Nickel, arsenic, and sulphur, are its essential constituents; the rest are accidental, and often absent. The freer the cobalt ore is from foreign metals, the finer is the colour, and the deeper is the shade; paler tints are easily obtained by dilution with more glass. The presence of nickel gives a violet tone.
The production of smalt in the Prussian states amounted, in 1830, to 74521⁄2cwts.; and, in Saxony, to 9697 cwts.; in 1825, to 12,310 cwts.
One process for making fine smalt has been given under the titleAzure; I shall introduce another somewhat different here.
The ore of cobalt is to be reduced to very fine powder, and then roasted with much care. One part, by weight, is next to be introduced, in successive small portions, into an iron vessel, in which three parts of acid sulphate of potassa has been previously fused, at a moderate temperature. The mixture, at first fluid, soon becomes thick and firm, when the fire is to be increased, until the mass is in perfect fusion, and all white vapours have ceased. It is then to be taken out of the crucible with an iron ladle, the crucible is to be recharged with acid sulphate of potash, and the operation continued as before, until the vessel is useless. The fused mass contains sulphate of cobalt, neutral sulphate of potassa, and arseniate of iron, with a little cobalt. It is to be pulverized, and boiled in an iron vessel, with water, as long as the powder continues rough to the touch. The white, or yellowish white residue, may be allowed to separate from the solution, either by deposition or filtration. Carbonate of potassa, free from silica, is then to be added to the solution, and the carbonate of cobalt thrown down is to be separated and well washed, if possible, with warm water; the same water may be used to wash other portions of the fused mass. The filtered liquid which first passes, is a saturated solution of sulphate of potassa: being evaporated to dryness in an iron vessel, it may be reconverted into acid sulphate by fusing it with one half its weight of sulphuric acid: this salt is then as useful as at first.
The oxide of cobalt thus obtained, contains no nickel; so little oxide of iron is present, that infusion of galls does not show its presence; it may contain a little copper, if that metal exists in the ore, but it is easily separated by the known methods. Sometimes sulphuretted hydrogen will produce a yellow brown precipitate in the solution of the fused mass; this, however, contains no arsenic, but is either sulphuret of antimony or bismuth, or a mixture of both.
It has been found advantageous to add to the fused mass, sulphate of iron, calcined to redness, and one tenth of nitre when the residue is arseniate of iron, and contains no arseniate of cobalt. There is then no occasion to act upon the residue a second time for the cobalt in it.
This process is founded on the circumstances that the sulphate of cobalt is not decomposed by a red heat, and that the arseniates of iron and cobalt are insoluble in all neutral liquids. It is quite evident that to obtain a perfect result, the excess of acid in the bisulphate of potassa must be completely driven off by the red heat applied.
110,646 lbs. of smalts were imported into the United Kingdom in 1835, and 96,949 were retained for home consumption. In 1834, only 16,223 lbs. were retained.
In 1835, 322,562 lbs. of zaffres were imported, and 336,824 are stated to have been retained, which is obviously an error. 284,000 lbs. were retained in 1834.
COCCULUS INDICUS, or Indian berry, is the fruit of theMenispermum Cocculus, a large tree, which grows upon the coasts of Malabar, Ceylon, &c. The fruit is blackish, and of the size of a large pea. It owes its narcotic and poisonous qualities to the vegeto-alkaline chemical principle calledpicrotoxia, of which it contains about one-fiftieth part of its weight. It is sometimes thrown into waters to intoxicate or kill fishes; and it is said to have been employed to increase the inebriating qualities of ale or beer. Its use for this purpose is prohibited by act of parliament, under a penalty of 200l.upon the brewer, and 500l.upon the seller of the drug.
COCCULUS INDICUS, or Indian berry, is the fruit of theMenispermum Cocculus, a large tree, which grows upon the coasts of Malabar, Ceylon, &c. The fruit is blackish, and of the size of a large pea. It owes its narcotic and poisonous qualities to the vegeto-alkaline chemical principle calledpicrotoxia, of which it contains about one-fiftieth part of its weight. It is sometimes thrown into waters to intoxicate or kill fishes; and it is said to have been employed to increase the inebriating qualities of ale or beer. Its use for this purpose is prohibited by act of parliament, under a penalty of 200l.upon the brewer, and 500l.upon the seller of the drug.
COCHINEAL was taken in Europe at first for a seed, but was proved by the observations of Lewenhoeck to be an insect, being the female of that species of shield-louse, orcoccus, discovered in Mexico, so long ago as 1518. It is brought to us from Mexico, where the animal lives upon thecactus opuntiaornopal. Two sorts of cochineal are gathered—the wild, from the woods, called by the Spanish namegrana silvestra; and the cultivated, or thegrana fina, termed alsomesteque, from the name of a Mexican province. The first is smaller, and covered with a cottony down, which increases its bulk with a matter useless in dyeing; it yields, therefore, in equal weight, much less colour, and is of inferior price to that of the fine cochineal. But these disadvantages are compensated in some measure to the growers by its being reared more easily, andless expensively; partly by the effect of its down, which enables it better to resist rains and storms.The wild cochineal, when it is bred upon the field nopal, loses in part the tenacity and quantity of its cotton, and acquires a size double of what it has on the wild opuntias. It may therefore be hoped, that it will be improved by persevering care in the rearing of it, when it will approach more and more to fine cochineal.The fine cochineal, when well dried and well preserved, should have a gray colour, bordering on purple. The gray is owing to the powder, which naturally covers it, and of which a little adheres; as also to a waxy fat. The purple shade arises from the colour extracted by the water in which they were killed. It is wrinkled with parallel furrows across its back, which are intersected in the middle by a longitudinal one; hence, when viewed by a magnifier, or even a sharp naked eye, especially after being swollen by soaking for a little in water, it is easily distinguished from the factitious, smooth, glistening, black grains, of no value, called East India cochineal, with which it is often shamefully adulterated by certain London merchants. The genuine cochineal has the shape of an egg, bisected through its long axis, or of a tortoise, being rounded like a shield upon the back, flat upon the belly, and without wings.These female insects are gathered off the leaves of the nopal plant, after it has ripened its fruit, a few only being left for brood, and are killed, either by a momentary immersion in boiling water, by drying upon heated plates, or in ovens: the last become of an ash-gray colour, constituting thesilvercochineal, orjaspeada; the second are blackish, callednegra, and are most esteemed, being probably driest; the first are reddish brown, and reckoned inferior to the other two. The dry cochineal being sifted, the dust, with the imperfect insects and fragments which pass through, are sold under the name ofgranillo.Cochineal keeps for a long time in a dry place. Hellot says that he has tried some 130 years old, which produced the same effect as new cochineal.We are indebted to MM. Pelletier and Caventou for a chemical investigation of cochineal, in which its colouring matter was skilfully eliminated.Purified sulphuric ether acquired by digestion with it a golden yellow colour, amounting by Dr. John to one tenth of the weight of the insect. This infusion left, on evaporation, a fatty wax of the same colour.Cochineal, exhausted by ether, was treated with alcohol at 40° B. After 30 infusions in the digester of M. Chevreul, the cochineal continued to retain colour, although the alcohol had ceased to have any effect on it. The first alcoholic liquors were of a red verging on yellow. On cooling, they let fall a granular matter. By spontaneous evaporation, this matter, of a fine red colour, separated, assuming more of the crystalline appearance. These species of crystals dissolved entirely in water, which they tinged of a yellowish-red.This matter has a very brilliant purple-red colour; it adheres strongly to the sides of the vessels; it has a granular and somewhat crystalline aspect, very different, however, from those compound crystals alluded to above; it is not altered by the air, nor does it sensibly attract moisture. Exposed to the action of heat, it melts at about the fiftieth degree centigrade (122° Fahr.). At a higher temperature it swells up, and is decomposed with the production of carburetted hydrogen, much oil, and a small quantity of water, very slightly acidulous. No trace of ammonia was found in these products.The colouring principle of cochineal is very soluble in water. By evaporation, the liquid assumes the appearance of syrup, but never yields crystals. It requires of this matter a portion almost imponderable to give a perceptible tinge of bright purplish red to a large body of water. Alcohol dissolves this colouring substance, but, as we have already stated, the more highly it is rectified the less of it does it dissolve. Sulphuric ether does not dissolve the colouring principle of cochineal; but weak acids do, possibly owing to their water of dilution. No acid precipitates it in its pure state. This colouring principle, however, appears to be precipitable by all the acids, when it is accompanied by the animal matter of the cochineal.The affinity of alumina for the colouring matter is very remarkable. When that earth, newly precipitated, is put into a watery solution of the colouring principle, this is immediately seized by the alumina. The water becomes colourless, and a fine red lake is obtained, if we operate at the temperature of the atmosphere; but if the liquor has been hot, the colour passes to crimson, and the shade becomes more and more violet, according to the elevation of the temperature, and the continuance of the ebullition.The salts of tin exercise upon the colouring matter of cochineal a remarkable action. The muriatic protoxide of tin forms a very abundant violet precipitate in the liquid. This precipitate verges on crimson, if the salt contains an excess of acid. The muriatic deutoxide of tin produces no precipitate, but changes the colour to scarlet-red. If gelatinous alumina be now added, we obtain a fine red precipitate, which does not pass to crimson by boiling.To this colouring principle the namecarminiumhas been given, because it forms the basis of the pigment called carmine.The process followed in Germany for making carmine, which consists in pouring a certain quantity of solution of alum into a decoction of cochineal, is the most simple of all, and affords an explanation of the formation of carmine, which is merely the carminium and the animal matter precipitated by the excess of acid in the salt, which has taken down with it a small quantity of alumina; though it appears that alumina ought not to be regarded as essential to the formation of carmine. In fact, by another process, called by the name of Madame Cenette of Amsterdam, the carmine is thrown down, by pouring into the decoction of cochineal a certain quantity of the binoxalate of potash. When carbonate of soda is added, then carminated lake also falls down. That carmine is a triple compound of animal matter, carminium, and an acid appears from the circumstance, that liquors which have afforded their carmine, when a somewhat strong acid is poured into them, yield a new formation of carmine by the precipitation of the last portions of the animal matter. But whenever the whole animal matter is thrown down, the decoctions, although still much charged with the colouring principle, can afford no more carmine. Such decoctions may be usefully employed to make carminated lakes, saturating the acid with a slight excess of alkali, and adding gelatinous alumina. The precipitates obtained, on adding acids to the alkaline decoctions of cochineal, are therefore true carmines, since they do not contain alumina; but the small quantity of alumina which is thrown down by alum in the manufacture of carmine, augments its bulk and weight. It gives, besides, a greater lustre to the colour, even though diluting and weakening it a little.The carmines found in the shops of Paris were analysed, and yielded the same products. They are decomposed by the action of heat, with the diffusion at first of a very strong smell of burning animal matter, and then of sulphur. A white powder remained, amounting to about one-tenth of the matter employed, and which was found to be alumina. Other quantities of carmine were treated with a solution of caustic potash, which completely dissolved them, with the exception of a beautiful red powder, not acted on by potash and concentrated acids, and which was recognized to be red sulphuret of mercury or vermillion. This matter, evidently foreign to the carmine, appears to have been added, in order to increase its weight.The preceding observations and experiments seem calculated to throw some light on the art of dyeing scarlet and crimson. The former is effected by employing a cochineal bath, to which there have been added, in determinate proportions, acidulous tartrate of potash, and nitro-muriatic deutoxide of tin. The effect of these two salts is now well known. The former, in consequence of its excess of acid, tends to redden the colour, and to precipitate it along with the animal matter: the latter acts in the same manner, at first by its excess of acid, then by the oxide of tin which falls down also with the carmine and animal matter, and is fixed on the wool, with which it has of itself a strong tendency to combine. MM. Pelletier and Caventou remark, that “to obtain a beautiful shade, the muriate of tin ought to be entirely at the maximum of oxidizement; and it is in reality in this state that it must exist in the solution of tin prepared according to the proportions prescribed in M. Berthollet’s treatise on dyeing.”We hence see why, in dyeing scarlet, the employment of alum is carefully avoided, as this salt tends to convert the shade to a crimson. The presence of an alkali would seem less to be feared. The alkali would occasion, no doubt, a crimson-coloured bath; but it would be easy in this case to restore the colour, by using a large quantity of tartar. We should, therefore, procure the advantage of having a bath better charged with colouring matter and animal substance. It is for experience on the large scale to determine this point. As to the earthy salts, they must be carefully avoided; and if the waters be selenitish, it would be a reason for adding a little alkali.To obtain crimson, it is sufficient, as we know, to add alum to the cochineal bath, or to boil the scarlet cloth in alum water. It is also proper to diminish the dose of the salt of tin, since it is found to counteract the action of the alum.The alkalies ought to be rejected as a means of changing scarlet to crimson. In fact, crimsons by this process cannot be permanent colours, as they pass into reds by the action of acids.According to M. Von Grotthuss, carmine may be deprived of its golden shade by ammonia, and subsequent treatment with acetic acid and alcohol. Since this fact was made known, M. Herschel, colour maker at Halle, has prepared a most beautiful carmine.The officers of Her Majesty’s Customs have lately detected a system of adulterating cochineal, which has been practised for many years upon a prodigious scale by a mercantile house in London. I have analyzed about 100 samples of such cochineal, from which it appears that the genuine article is moistened with gum-water, agitated in a box orleather bag, first, with sulphate of baryta in fine powder, afterwards with bone or ivory black, to give it the appearance ofnegracochineal, and then dried. By this means about 12 per cent. of the worthless heavy spar is sold at the price of cochineal, to the enrichment of the sophisticators, and the disgrace and injury of British trade and manufactures.The specific gravity of genuine cochineal is 1·25; that of the cochineal loaded with the barytic sulphate 1·35. It was taken in oil of turpentine and reduced to water as unity, because the waxy fat of the insects prevents the intimate contact of the latter liquid with them, and the ready expulsion of air from their wrinkled surface. They are not at all acted upon by the oil, but are rapidly altered by water, especially when they have been gummed and barytified.The quantities of cochineal imported into the United Kingdom in the following years, were:—1827.1828.1829.1830.1831.1832.1833.1834.1835.Libs.320,722258,032288,456316,589244,371388,478359,381410,387418,320The quantities re-exported were:—Libs.145,756158,109153,738100,059168,329138,270130,732265,490352,023Humboldt states that so long ago as the year 1736, there was imported into Europe from South America cochineal to the value of 15 millions of francs. Its high price had for a long time induced dyers to look out for cheaper substitutes in dyeing red, and since science has introduced so many improvements in tinctorial processes, both madder and lac have been made to supersede cochineal to a very great extent. Its price has, in consequence of this substitution, as well as from more successful modes of cultivation, fallen very greatly of late years. At present it is only 7s.per lib. in London. SeeScarlet Dyeing.
COCHINEAL was taken in Europe at first for a seed, but was proved by the observations of Lewenhoeck to be an insect, being the female of that species of shield-louse, orcoccus, discovered in Mexico, so long ago as 1518. It is brought to us from Mexico, where the animal lives upon thecactus opuntiaornopal. Two sorts of cochineal are gathered—the wild, from the woods, called by the Spanish namegrana silvestra; and the cultivated, or thegrana fina, termed alsomesteque, from the name of a Mexican province. The first is smaller, and covered with a cottony down, which increases its bulk with a matter useless in dyeing; it yields, therefore, in equal weight, much less colour, and is of inferior price to that of the fine cochineal. But these disadvantages are compensated in some measure to the growers by its being reared more easily, andless expensively; partly by the effect of its down, which enables it better to resist rains and storms.
The wild cochineal, when it is bred upon the field nopal, loses in part the tenacity and quantity of its cotton, and acquires a size double of what it has on the wild opuntias. It may therefore be hoped, that it will be improved by persevering care in the rearing of it, when it will approach more and more to fine cochineal.
The fine cochineal, when well dried and well preserved, should have a gray colour, bordering on purple. The gray is owing to the powder, which naturally covers it, and of which a little adheres; as also to a waxy fat. The purple shade arises from the colour extracted by the water in which they were killed. It is wrinkled with parallel furrows across its back, which are intersected in the middle by a longitudinal one; hence, when viewed by a magnifier, or even a sharp naked eye, especially after being swollen by soaking for a little in water, it is easily distinguished from the factitious, smooth, glistening, black grains, of no value, called East India cochineal, with which it is often shamefully adulterated by certain London merchants. The genuine cochineal has the shape of an egg, bisected through its long axis, or of a tortoise, being rounded like a shield upon the back, flat upon the belly, and without wings.
These female insects are gathered off the leaves of the nopal plant, after it has ripened its fruit, a few only being left for brood, and are killed, either by a momentary immersion in boiling water, by drying upon heated plates, or in ovens: the last become of an ash-gray colour, constituting thesilvercochineal, orjaspeada; the second are blackish, callednegra, and are most esteemed, being probably driest; the first are reddish brown, and reckoned inferior to the other two. The dry cochineal being sifted, the dust, with the imperfect insects and fragments which pass through, are sold under the name ofgranillo.
Cochineal keeps for a long time in a dry place. Hellot says that he has tried some 130 years old, which produced the same effect as new cochineal.
We are indebted to MM. Pelletier and Caventou for a chemical investigation of cochineal, in which its colouring matter was skilfully eliminated.
Purified sulphuric ether acquired by digestion with it a golden yellow colour, amounting by Dr. John to one tenth of the weight of the insect. This infusion left, on evaporation, a fatty wax of the same colour.
Cochineal, exhausted by ether, was treated with alcohol at 40° B. After 30 infusions in the digester of M. Chevreul, the cochineal continued to retain colour, although the alcohol had ceased to have any effect on it. The first alcoholic liquors were of a red verging on yellow. On cooling, they let fall a granular matter. By spontaneous evaporation, this matter, of a fine red colour, separated, assuming more of the crystalline appearance. These species of crystals dissolved entirely in water, which they tinged of a yellowish-red.
This matter has a very brilliant purple-red colour; it adheres strongly to the sides of the vessels; it has a granular and somewhat crystalline aspect, very different, however, from those compound crystals alluded to above; it is not altered by the air, nor does it sensibly attract moisture. Exposed to the action of heat, it melts at about the fiftieth degree centigrade (122° Fahr.). At a higher temperature it swells up, and is decomposed with the production of carburetted hydrogen, much oil, and a small quantity of water, very slightly acidulous. No trace of ammonia was found in these products.
The colouring principle of cochineal is very soluble in water. By evaporation, the liquid assumes the appearance of syrup, but never yields crystals. It requires of this matter a portion almost imponderable to give a perceptible tinge of bright purplish red to a large body of water. Alcohol dissolves this colouring substance, but, as we have already stated, the more highly it is rectified the less of it does it dissolve. Sulphuric ether does not dissolve the colouring principle of cochineal; but weak acids do, possibly owing to their water of dilution. No acid precipitates it in its pure state. This colouring principle, however, appears to be precipitable by all the acids, when it is accompanied by the animal matter of the cochineal.
The affinity of alumina for the colouring matter is very remarkable. When that earth, newly precipitated, is put into a watery solution of the colouring principle, this is immediately seized by the alumina. The water becomes colourless, and a fine red lake is obtained, if we operate at the temperature of the atmosphere; but if the liquor has been hot, the colour passes to crimson, and the shade becomes more and more violet, according to the elevation of the temperature, and the continuance of the ebullition.
The salts of tin exercise upon the colouring matter of cochineal a remarkable action. The muriatic protoxide of tin forms a very abundant violet precipitate in the liquid. This precipitate verges on crimson, if the salt contains an excess of acid. The muriatic deutoxide of tin produces no precipitate, but changes the colour to scarlet-red. If gelatinous alumina be now added, we obtain a fine red precipitate, which does not pass to crimson by boiling.
To this colouring principle the namecarminiumhas been given, because it forms the basis of the pigment called carmine.
The process followed in Germany for making carmine, which consists in pouring a certain quantity of solution of alum into a decoction of cochineal, is the most simple of all, and affords an explanation of the formation of carmine, which is merely the carminium and the animal matter precipitated by the excess of acid in the salt, which has taken down with it a small quantity of alumina; though it appears that alumina ought not to be regarded as essential to the formation of carmine. In fact, by another process, called by the name of Madame Cenette of Amsterdam, the carmine is thrown down, by pouring into the decoction of cochineal a certain quantity of the binoxalate of potash. When carbonate of soda is added, then carminated lake also falls down. That carmine is a triple compound of animal matter, carminium, and an acid appears from the circumstance, that liquors which have afforded their carmine, when a somewhat strong acid is poured into them, yield a new formation of carmine by the precipitation of the last portions of the animal matter. But whenever the whole animal matter is thrown down, the decoctions, although still much charged with the colouring principle, can afford no more carmine. Such decoctions may be usefully employed to make carminated lakes, saturating the acid with a slight excess of alkali, and adding gelatinous alumina. The precipitates obtained, on adding acids to the alkaline decoctions of cochineal, are therefore true carmines, since they do not contain alumina; but the small quantity of alumina which is thrown down by alum in the manufacture of carmine, augments its bulk and weight. It gives, besides, a greater lustre to the colour, even though diluting and weakening it a little.
The carmines found in the shops of Paris were analysed, and yielded the same products. They are decomposed by the action of heat, with the diffusion at first of a very strong smell of burning animal matter, and then of sulphur. A white powder remained, amounting to about one-tenth of the matter employed, and which was found to be alumina. Other quantities of carmine were treated with a solution of caustic potash, which completely dissolved them, with the exception of a beautiful red powder, not acted on by potash and concentrated acids, and which was recognized to be red sulphuret of mercury or vermillion. This matter, evidently foreign to the carmine, appears to have been added, in order to increase its weight.
The preceding observations and experiments seem calculated to throw some light on the art of dyeing scarlet and crimson. The former is effected by employing a cochineal bath, to which there have been added, in determinate proportions, acidulous tartrate of potash, and nitro-muriatic deutoxide of tin. The effect of these two salts is now well known. The former, in consequence of its excess of acid, tends to redden the colour, and to precipitate it along with the animal matter: the latter acts in the same manner, at first by its excess of acid, then by the oxide of tin which falls down also with the carmine and animal matter, and is fixed on the wool, with which it has of itself a strong tendency to combine. MM. Pelletier and Caventou remark, that “to obtain a beautiful shade, the muriate of tin ought to be entirely at the maximum of oxidizement; and it is in reality in this state that it must exist in the solution of tin prepared according to the proportions prescribed in M. Berthollet’s treatise on dyeing.”
We hence see why, in dyeing scarlet, the employment of alum is carefully avoided, as this salt tends to convert the shade to a crimson. The presence of an alkali would seem less to be feared. The alkali would occasion, no doubt, a crimson-coloured bath; but it would be easy in this case to restore the colour, by using a large quantity of tartar. We should, therefore, procure the advantage of having a bath better charged with colouring matter and animal substance. It is for experience on the large scale to determine this point. As to the earthy salts, they must be carefully avoided; and if the waters be selenitish, it would be a reason for adding a little alkali.
To obtain crimson, it is sufficient, as we know, to add alum to the cochineal bath, or to boil the scarlet cloth in alum water. It is also proper to diminish the dose of the salt of tin, since it is found to counteract the action of the alum.
The alkalies ought to be rejected as a means of changing scarlet to crimson. In fact, crimsons by this process cannot be permanent colours, as they pass into reds by the action of acids.
According to M. Von Grotthuss, carmine may be deprived of its golden shade by ammonia, and subsequent treatment with acetic acid and alcohol. Since this fact was made known, M. Herschel, colour maker at Halle, has prepared a most beautiful carmine.
The officers of Her Majesty’s Customs have lately detected a system of adulterating cochineal, which has been practised for many years upon a prodigious scale by a mercantile house in London. I have analyzed about 100 samples of such cochineal, from which it appears that the genuine article is moistened with gum-water, agitated in a box orleather bag, first, with sulphate of baryta in fine powder, afterwards with bone or ivory black, to give it the appearance ofnegracochineal, and then dried. By this means about 12 per cent. of the worthless heavy spar is sold at the price of cochineal, to the enrichment of the sophisticators, and the disgrace and injury of British trade and manufactures.
The specific gravity of genuine cochineal is 1·25; that of the cochineal loaded with the barytic sulphate 1·35. It was taken in oil of turpentine and reduced to water as unity, because the waxy fat of the insects prevents the intimate contact of the latter liquid with them, and the ready expulsion of air from their wrinkled surface. They are not at all acted upon by the oil, but are rapidly altered by water, especially when they have been gummed and barytified.
The quantities of cochineal imported into the United Kingdom in the following years, were:—
The quantities re-exported were:—
Humboldt states that so long ago as the year 1736, there was imported into Europe from South America cochineal to the value of 15 millions of francs. Its high price had for a long time induced dyers to look out for cheaper substitutes in dyeing red, and since science has introduced so many improvements in tinctorial processes, both madder and lac have been made to supersede cochineal to a very great extent. Its price has, in consequence of this substitution, as well as from more successful modes of cultivation, fallen very greatly of late years. At present it is only 7s.per lib. in London. SeeScarlet Dyeing.
COCOA, STEARINE,ANDELAINE. Mr. Soames obtained a patent in September 1829, for making these useful articles, by the following process:He takes the substance called cocoa-nut oil, in the state of lard, in which it is imported into this country, and submits it to a strong hydraulic pressure, having made it up in small packages, 3 or 4 inches wide, 2 feet long, and 1 or 11⁄2inches thick. These packages are formed by first wrapping up the said substance in a strong linen cloth, of close texture, and then in an outward wrapper of strong sail cloth. The packages are to be placed side by side, in single rows, between the plates of the press, allowing a small space between the packages for the escape of theelaine.The temperature at which the pressure is begun, should be from about 50 to 55 degrees, or in summer as nearly at this pitch as can be obtained, and the packages of the said substance intended for pressure, should be exposed for several hours previously to about the same temperature. When the packages will no longer yield their oil or elaine freely at this temperature, it is to be gradually raised; but it must at no time exceed 65 degrees, and the lower the temperature at which the separation can be effected, the better will be the quality of the oil expressed.When the packages are sufficiently pressed, that is, when they will give out no more oil, or yield it only in drops at long intervals, the residuum in them is to be taken out and cleansed and purified, which is done by melting it in a well-tinned copper vessel, which is fixed in an outer vessel, having a vacant space between, closed at the top, into which steam is admitted, and the heat is kept up moderately for a sufficient time to allow the impurities to subside; but if a still higher degree of purity is required, it is necessary to pass it through filters of thick flannel lined with blotting paper.Having been thus cleansed or purified, it is fit for the manufacture of candles, which are made by the ordinary process used in making mould tallow candles. Having thus disposed of thestearine, or what is called the first product, he proceeds with theelaineor oil expressed from it, and which he calls the second product, as follows: that is to say, he purifies it by an admixture, according to the degree of its apparent foulness, of from 1 to 2 per cent. by weight of the sulphuric acid of commerce, of about 1·80 specific gravity, diluted with six times its weight of water. The whole is then to be violently agitated by mechanical means, and he prefers for this purpose the use of a vessel constructed on the principle of a common barrel churn. When sufficiently agitated, it will have a dirty whitish appearance, and is then to be drawn off into another vessel, in which it is to be allowed to settle, and any scum that rises is to be carefully taken off. In a day or two the impurities will be deposited at the bottom of the oil, which will then become clear, or nearly so, and it is to be filtered through a thick woollen cloth, after which it will be fit for burning in ordinary lamps and for other uses.The process of separating the elaine from the stearine, by pressure, in manner aforesaid, had never before been applied to the substance called cocoa-nut oil, and consequently no product had heretofore been obtained thereby from that substance, fit for being manufactured into candles in the ordinary way, or for being refined by any of the usualmodes, so as to burn in ordinary lamps, both which objects are obtained by this method of preparing or manufacturing the said substance.Candles well made from the above material are a very superior article. The light produced is more brilliant than from the same sized candle made of tallow; the flame is perfectly colourless, and the wick remains free from cinder, or any degree of foulness during combustion.
COCOA, STEARINE,ANDELAINE. Mr. Soames obtained a patent in September 1829, for making these useful articles, by the following process:
He takes the substance called cocoa-nut oil, in the state of lard, in which it is imported into this country, and submits it to a strong hydraulic pressure, having made it up in small packages, 3 or 4 inches wide, 2 feet long, and 1 or 11⁄2inches thick. These packages are formed by first wrapping up the said substance in a strong linen cloth, of close texture, and then in an outward wrapper of strong sail cloth. The packages are to be placed side by side, in single rows, between the plates of the press, allowing a small space between the packages for the escape of theelaine.
The temperature at which the pressure is begun, should be from about 50 to 55 degrees, or in summer as nearly at this pitch as can be obtained, and the packages of the said substance intended for pressure, should be exposed for several hours previously to about the same temperature. When the packages will no longer yield their oil or elaine freely at this temperature, it is to be gradually raised; but it must at no time exceed 65 degrees, and the lower the temperature at which the separation can be effected, the better will be the quality of the oil expressed.
When the packages are sufficiently pressed, that is, when they will give out no more oil, or yield it only in drops at long intervals, the residuum in them is to be taken out and cleansed and purified, which is done by melting it in a well-tinned copper vessel, which is fixed in an outer vessel, having a vacant space between, closed at the top, into which steam is admitted, and the heat is kept up moderately for a sufficient time to allow the impurities to subside; but if a still higher degree of purity is required, it is necessary to pass it through filters of thick flannel lined with blotting paper.
Having been thus cleansed or purified, it is fit for the manufacture of candles, which are made by the ordinary process used in making mould tallow candles. Having thus disposed of thestearine, or what is called the first product, he proceeds with theelaineor oil expressed from it, and which he calls the second product, as follows: that is to say, he purifies it by an admixture, according to the degree of its apparent foulness, of from 1 to 2 per cent. by weight of the sulphuric acid of commerce, of about 1·80 specific gravity, diluted with six times its weight of water. The whole is then to be violently agitated by mechanical means, and he prefers for this purpose the use of a vessel constructed on the principle of a common barrel churn. When sufficiently agitated, it will have a dirty whitish appearance, and is then to be drawn off into another vessel, in which it is to be allowed to settle, and any scum that rises is to be carefully taken off. In a day or two the impurities will be deposited at the bottom of the oil, which will then become clear, or nearly so, and it is to be filtered through a thick woollen cloth, after which it will be fit for burning in ordinary lamps and for other uses.
The process of separating the elaine from the stearine, by pressure, in manner aforesaid, had never before been applied to the substance called cocoa-nut oil, and consequently no product had heretofore been obtained thereby from that substance, fit for being manufactured into candles in the ordinary way, or for being refined by any of the usualmodes, so as to burn in ordinary lamps, both which objects are obtained by this method of preparing or manufacturing the said substance.
Candles well made from the above material are a very superior article. The light produced is more brilliant than from the same sized candle made of tallow; the flame is perfectly colourless, and the wick remains free from cinder, or any degree of foulness during combustion.
COFFEE. The coffee is the seed of a tree of the familyrubiaceæ, and belongs to the Pentandria monogynia of Linnæus. There are several species of the genus, but the only one cultivated is theCoffæa Arabica, a native of Upper Ethiopia and Arabia Felix. It rises to the height of 15 or 20 feet; its trunk sends forth opposite branches in pairs above and at right angles to each other; the leaves resemble those of the common laurel, although not so dry and thick. From the angle of the leaf-stalks small groups of white flowers issue, which are like those of the Spanish jasmine. These flowers fade very soon, and are replaced by a kind of fruit not unlike a cherry, which contains a yellow glairy fluid, enveloping two small seeds or berries convex upon one side, flat and furrowed upon the other in the direction of the long axis. These seeds are of a horny or cartilaginous nature; they are glued together, each being surrounded with a peculiar coriaceous membrane. They constitute the coffee of commerce.It was not till towards the end of the 15th century that the coffee tree began to be cultivated in Arabia. Historians usually ascribe the discovery of the use of coffee as a beverage to the superior of a monastery there, who, desirous of preventing the monks from sleeping at their nocturnal services, made them drink the infusion of coffee upon the report of shepherds, who pretended that their flocks were more lively after browsing on the fruit of that plant. The use of coffee was soon rapidly spread, but it encountered much opposition on the part of the Turkish government, and became the occasion of public assemblies. Under the reign of Amurath III. the mufti procured a law to shut all the coffee-houses, and this act of suppression was renewed under the minority of Mahomet IV. It was not till 1554 under Solyman the Great that the drinking of coffee was accredited in Constantinople; and a century elapsed before it was known in London and Paris. Solyman Aga introduced its use into the latter city in 1669, and in 1672 an Armenian established the firstcaféat the fair of Saint Germain.When coffee became somewhat of a necessary of life from the influence of habit among the people, all the European powers who had colonies between the tropics, projected to form plantations of coffee trees in them. The Dutch were the first who transported the coffee plant from Moka to Batavia, and from Batavia to Amsterdam. In 1714 the magistrates of that city sent a root to Louis XIV. which he caused to be planted in the Jardin du Roi. This became the parent stock of all the French coffee plantations in Martinique.The most extensive culture of coffee is still in Arabia Felix, and principally in the kingdom of Yemen, towards the cantons of Aden and Moka. Although these countries are very hot in the plains, they possess mountains where the air is mild. The coffee is generally grown halfway up on their slopes. When cultivated on the lower grounds it is always surrounded by large trees which shelter it from the torrid sun, and prevent its fruit from withering before their maturity. The harvest is gathered at three periods, the most considerable occurs in May, when the reapers begin by spreading cloths under the trees, then shaking the branches strongly, so as to make the fruit drop, which they collect, and expose upon mats to dry. They then pass over the dried berries a very heavy roller, to break the envelopes, which are afterwards winnowed away with a fan. The interior bean is again dried before being laid up in store.In Demerara, Berbice, and some of our West India islands, where much good coffee is now raised, a different mode of treating the pulpy fruit and curing the beans is adopted. When the cherry-looking berry has assumed a deep-red colour it is gathered, and immediately subjected to the operations of a mill composed of two wooden rollers, furnished with iron plates, which revolve near a third fixed roller called thechops. The berries are fed into a hopper above the rollers, and falling down between them and the chops, they are stripped of their outer skins and pulp, while the twin beans are separated from each other. These beans then fall upon a sieve, which allows the skin and the pulp to pass through, while the hard beans accumulate and are progressively slid over the edge into baskets. They are next steeped for a night in water, thoroughly washed in the morning, and afterwards dried in the sun. They are now ready for the peeling mill, a wooden edge wheel turned vertically by a horse yoked to the extremity of its horizontal axis. In travelling over the coffee, it bursts and detaches the coriaceous or parchment-like skin which surrounds each hemispherical bean. It is then freed from the membranes by a winnowing machine, in which four pieces of tin made fast to an axle are caused to revolve with great velocity. Corn fanners would answer better than this rude instrument of negro invention. The coffee is finally spread upon mats or tables, picked clean, and packed up for shipment.The most highly esteemed coffee is that of Moka. It has a smaller and a rounder bean; a more agreeable taste and smell than any other. Its colour is yellow. Next to it in European reputation is the Martinique and Bourbon coffees; the former is larger than the Arabian and more oblong; it is rounded at the ends; its colour is greenish, and it preserves almost always a silver gray pellicle, which comes off in the roasting. The Bourbon coffee approaches nearest to the Moka from which it originally sprung. The Saint Domingo coffee has its two extremities pointed, and is much less esteemed than the preceding.The coffee tree flourishes in hilly districts where its root can be kept dry, while its leaves are refreshed with frequent showers. Rocky ground, with rich decomposed mould in the fissures, agrees best with it. Though it would grow, as we have said, to the height of 15 or 20 feet, yet it is usually kept down by pruning to that of five feet for increasing the production of the fruit, as well as for the convenience of cropping. It begins to yield fruit the third year, but is not in full bearing till the fifth, does not thrive beyond the twenty-fifth, and is useless in general at the thirtieth. In the coffee husbandry, the plants should be placed eight feet apart, as the trees throw out extensive horizontal branches, and in holes ten or twelve feet deep to secure a constant supply of moisture.Coffee has been analysed by a great many chemists, with considerable diversity of results. The best analysis perhaps is that of Schrader. He found that the raw beans distilled with water in a retort communicated to it their flavour and rendered it turbid, whence they seem to contain some volatile oil. On reboiling the beans, filtering, and evaporating the liquor to a syrup, adding a little alcohol till no more matter was precipitated, and then evaporating to dryness, he obtained 17·58 per cent. of a yellowish-brown transparent extract, which constitutes the characteristic part of coffee, though it is not in that state the pure proximate principle, calledcafeine. Its most remarkable reaction is its producing, with both the protoxide and the peroxide salts of iron, a fine grass green colour, while a dark green precipitate falls, which re-dissolves when an acid is poured into the liquor. It produces on the solution of the salts of copper scarcely any effect, till an alkali be added, when a very beautiful green colour is produced which may be employed in painting. Coffee beans contain also a resin, and a fatty substance somewhat like suet. According to Robiquet, ether extracts from coffee beans nearly 10 per cent. of resin and fat, but he probably exaggerates the amount. The peculiar substance cafeine contained in the above extract is crystallizable. It is remarkable in regard to composition, that after urea and the uric acid, it is among organic products the richest in azote. It was discovered and described in 1820 by Runge. It does not possess alkaline properties. Pfaff obtained only 90 grains of cafeine from six pounds of coffee beans. There is also an acid in raw coffee to which the name ofcafeic acidhas been given. When distilled to dryness and decomposed, it has the smell of roasted coffee.Coffee undergoes important changes in the process of roasting. When it is roasted to a yellowish brown it loses, according to Cadet, 121⁄2per cent. of its weight, and is in this state difficult to grind. When roasted to a chestnut brown it loses 18 per cent., and when it becomes entirely black, though not at all carbonised, it has lost 23 per cent. Schrader has analyzed roasted coffee comparatively with raw coffee, and he found in the first 121⁄2per cent. of an extract of coffee, soluble in water and alcohol, which possesses nearly the properties of the extract of the raw coffee, although it has a deeper brown colour, and softens more readily in the air. He found also 10·4 of a blackish brown gum; 5·7 of an oxygenated extract or ratherapothèmesoluble in alcohol, insoluble in water; 2 of a fatty substance and resin; 69 of burnt vegetable fibre, insoluble. On distilling roasted coffee with water, Schrader obtained a product which contained the aromatic principle of coffee; it reddened litmus paper, and exhaled a strong and agreeable odour of roasted coffee. If we roast coffee in a retort, the first portions of the aromatic principle of coffee condense into a yellow liquid in the receiver; and these may be added to the coffee roasted in the common way, from which this matter has been expelled and dissipated in the air.Chenevix affirmed that by the roasting of coffee a certain quantity of tannin possessing the property of precipitating gelatine is generated. Cadet made the same observation, and found, moreover, that the tannin was most abundant in the lightly roasted coffee, and that there was nearly none of it in coffee highly roasted. Payssé and Schrader, on the contrary, state that solution of gelatine does not precipitate either the decoction of roasted coffee or the alcoholic extract of this coffee. Runge likewise asserts that he could obtain no precipitate with gelatine; but he says that albumen precipitates from the decoction of roasted coffee the same kind of tannin as is precipitated from raw coffee by the acetate of lead, and set free from the lead by sulphuretted hydrogen. With these results my own experiments agree. Gelatine certainly does not disturb clear infusion of roasted coffee, but the salts of iron blacken it.Schrader endeavoured to roast separately the different principles of coffee, but none of them exhaled the aromatic odour of roasted coffee except the horny fibrous matter. He therefore concludes that this substance contributes mainly to the characteristic taste of roasted coffee, which cannot be imitated by any other vegetable matter, and which, as we have seen, should be ascribed chiefly to the altered cafeic acid. According to Garot we may extract the cafeine without alteration from roasted coffee by precipitating its decoction by subacetate of lead, treating the washed precipitate with sulphuretted hydrogen, and evaporating the liquid product to dryness.Of late years, much ingenuity has been expended in contriving various forms of apparatus for making infusions of coffee for the table. I have tried most of them, and find, after all, none so good as acafetière à la Belloy, the coffeebiggin, with the perforated tin plate strainer, especially when the filtered liquor is kept simmering in a close vessel, set over a lamp or steam pan. The useful and agreeable matter in coffee is very soluble: it comes off with the first waters of infusion, and needs no boiling.To roast coffee rightly we should keep in view the proper objects of this process, which are to develop its aroma, and destroy its toughness, so that it may be readily ground to powder. Too much heat destroys those principles which we should wish to preserve, and substitutes new ones which have nothing in common with the first, but add a disagreeable empyreumatic taste and smell. If, on the other hand, the rawness or greenness is not removed by an adequate heat, it masks the flavour of the bean, and injures the beverage made with it. When well roasted in the sheet iron cylinders set to revolve over a fire, it should have a uniform chocolate colour, a point readily hit by experienced roasters, who now manage the business very well for the principal coffee dealers both of London and Paris, so far as my judgment can determine. The development of the proper aroma is a criterion by which coffee roasters frequently regulate their operations. When it loses more than 20 per cent. of its weight, coffee is sure to be injured. It should never be ground till immediately before infusion.
COFFEE. The coffee is the seed of a tree of the familyrubiaceæ, and belongs to the Pentandria monogynia of Linnæus. There are several species of the genus, but the only one cultivated is theCoffæa Arabica, a native of Upper Ethiopia and Arabia Felix. It rises to the height of 15 or 20 feet; its trunk sends forth opposite branches in pairs above and at right angles to each other; the leaves resemble those of the common laurel, although not so dry and thick. From the angle of the leaf-stalks small groups of white flowers issue, which are like those of the Spanish jasmine. These flowers fade very soon, and are replaced by a kind of fruit not unlike a cherry, which contains a yellow glairy fluid, enveloping two small seeds or berries convex upon one side, flat and furrowed upon the other in the direction of the long axis. These seeds are of a horny or cartilaginous nature; they are glued together, each being surrounded with a peculiar coriaceous membrane. They constitute the coffee of commerce.
It was not till towards the end of the 15th century that the coffee tree began to be cultivated in Arabia. Historians usually ascribe the discovery of the use of coffee as a beverage to the superior of a monastery there, who, desirous of preventing the monks from sleeping at their nocturnal services, made them drink the infusion of coffee upon the report of shepherds, who pretended that their flocks were more lively after browsing on the fruit of that plant. The use of coffee was soon rapidly spread, but it encountered much opposition on the part of the Turkish government, and became the occasion of public assemblies. Under the reign of Amurath III. the mufti procured a law to shut all the coffee-houses, and this act of suppression was renewed under the minority of Mahomet IV. It was not till 1554 under Solyman the Great that the drinking of coffee was accredited in Constantinople; and a century elapsed before it was known in London and Paris. Solyman Aga introduced its use into the latter city in 1669, and in 1672 an Armenian established the firstcaféat the fair of Saint Germain.
When coffee became somewhat of a necessary of life from the influence of habit among the people, all the European powers who had colonies between the tropics, projected to form plantations of coffee trees in them. The Dutch were the first who transported the coffee plant from Moka to Batavia, and from Batavia to Amsterdam. In 1714 the magistrates of that city sent a root to Louis XIV. which he caused to be planted in the Jardin du Roi. This became the parent stock of all the French coffee plantations in Martinique.
The most extensive culture of coffee is still in Arabia Felix, and principally in the kingdom of Yemen, towards the cantons of Aden and Moka. Although these countries are very hot in the plains, they possess mountains where the air is mild. The coffee is generally grown halfway up on their slopes. When cultivated on the lower grounds it is always surrounded by large trees which shelter it from the torrid sun, and prevent its fruit from withering before their maturity. The harvest is gathered at three periods, the most considerable occurs in May, when the reapers begin by spreading cloths under the trees, then shaking the branches strongly, so as to make the fruit drop, which they collect, and expose upon mats to dry. They then pass over the dried berries a very heavy roller, to break the envelopes, which are afterwards winnowed away with a fan. The interior bean is again dried before being laid up in store.
In Demerara, Berbice, and some of our West India islands, where much good coffee is now raised, a different mode of treating the pulpy fruit and curing the beans is adopted. When the cherry-looking berry has assumed a deep-red colour it is gathered, and immediately subjected to the operations of a mill composed of two wooden rollers, furnished with iron plates, which revolve near a third fixed roller called thechops. The berries are fed into a hopper above the rollers, and falling down between them and the chops, they are stripped of their outer skins and pulp, while the twin beans are separated from each other. These beans then fall upon a sieve, which allows the skin and the pulp to pass through, while the hard beans accumulate and are progressively slid over the edge into baskets. They are next steeped for a night in water, thoroughly washed in the morning, and afterwards dried in the sun. They are now ready for the peeling mill, a wooden edge wheel turned vertically by a horse yoked to the extremity of its horizontal axis. In travelling over the coffee, it bursts and detaches the coriaceous or parchment-like skin which surrounds each hemispherical bean. It is then freed from the membranes by a winnowing machine, in which four pieces of tin made fast to an axle are caused to revolve with great velocity. Corn fanners would answer better than this rude instrument of negro invention. The coffee is finally spread upon mats or tables, picked clean, and packed up for shipment.
The most highly esteemed coffee is that of Moka. It has a smaller and a rounder bean; a more agreeable taste and smell than any other. Its colour is yellow. Next to it in European reputation is the Martinique and Bourbon coffees; the former is larger than the Arabian and more oblong; it is rounded at the ends; its colour is greenish, and it preserves almost always a silver gray pellicle, which comes off in the roasting. The Bourbon coffee approaches nearest to the Moka from which it originally sprung. The Saint Domingo coffee has its two extremities pointed, and is much less esteemed than the preceding.
The coffee tree flourishes in hilly districts where its root can be kept dry, while its leaves are refreshed with frequent showers. Rocky ground, with rich decomposed mould in the fissures, agrees best with it. Though it would grow, as we have said, to the height of 15 or 20 feet, yet it is usually kept down by pruning to that of five feet for increasing the production of the fruit, as well as for the convenience of cropping. It begins to yield fruit the third year, but is not in full bearing till the fifth, does not thrive beyond the twenty-fifth, and is useless in general at the thirtieth. In the coffee husbandry, the plants should be placed eight feet apart, as the trees throw out extensive horizontal branches, and in holes ten or twelve feet deep to secure a constant supply of moisture.
Coffee has been analysed by a great many chemists, with considerable diversity of results. The best analysis perhaps is that of Schrader. He found that the raw beans distilled with water in a retort communicated to it their flavour and rendered it turbid, whence they seem to contain some volatile oil. On reboiling the beans, filtering, and evaporating the liquor to a syrup, adding a little alcohol till no more matter was precipitated, and then evaporating to dryness, he obtained 17·58 per cent. of a yellowish-brown transparent extract, which constitutes the characteristic part of coffee, though it is not in that state the pure proximate principle, calledcafeine. Its most remarkable reaction is its producing, with both the protoxide and the peroxide salts of iron, a fine grass green colour, while a dark green precipitate falls, which re-dissolves when an acid is poured into the liquor. It produces on the solution of the salts of copper scarcely any effect, till an alkali be added, when a very beautiful green colour is produced which may be employed in painting. Coffee beans contain also a resin, and a fatty substance somewhat like suet. According to Robiquet, ether extracts from coffee beans nearly 10 per cent. of resin and fat, but he probably exaggerates the amount. The peculiar substance cafeine contained in the above extract is crystallizable. It is remarkable in regard to composition, that after urea and the uric acid, it is among organic products the richest in azote. It was discovered and described in 1820 by Runge. It does not possess alkaline properties. Pfaff obtained only 90 grains of cafeine from six pounds of coffee beans. There is also an acid in raw coffee to which the name ofcafeic acidhas been given. When distilled to dryness and decomposed, it has the smell of roasted coffee.
Coffee undergoes important changes in the process of roasting. When it is roasted to a yellowish brown it loses, according to Cadet, 121⁄2per cent. of its weight, and is in this state difficult to grind. When roasted to a chestnut brown it loses 18 per cent., and when it becomes entirely black, though not at all carbonised, it has lost 23 per cent. Schrader has analyzed roasted coffee comparatively with raw coffee, and he found in the first 121⁄2per cent. of an extract of coffee, soluble in water and alcohol, which possesses nearly the properties of the extract of the raw coffee, although it has a deeper brown colour, and softens more readily in the air. He found also 10·4 of a blackish brown gum; 5·7 of an oxygenated extract or ratherapothèmesoluble in alcohol, insoluble in water; 2 of a fatty substance and resin; 69 of burnt vegetable fibre, insoluble. On distilling roasted coffee with water, Schrader obtained a product which contained the aromatic principle of coffee; it reddened litmus paper, and exhaled a strong and agreeable odour of roasted coffee. If we roast coffee in a retort, the first portions of the aromatic principle of coffee condense into a yellow liquid in the receiver; and these may be added to the coffee roasted in the common way, from which this matter has been expelled and dissipated in the air.
Chenevix affirmed that by the roasting of coffee a certain quantity of tannin possessing the property of precipitating gelatine is generated. Cadet made the same observation, and found, moreover, that the tannin was most abundant in the lightly roasted coffee, and that there was nearly none of it in coffee highly roasted. Payssé and Schrader, on the contrary, state that solution of gelatine does not precipitate either the decoction of roasted coffee or the alcoholic extract of this coffee. Runge likewise asserts that he could obtain no precipitate with gelatine; but he says that albumen precipitates from the decoction of roasted coffee the same kind of tannin as is precipitated from raw coffee by the acetate of lead, and set free from the lead by sulphuretted hydrogen. With these results my own experiments agree. Gelatine certainly does not disturb clear infusion of roasted coffee, but the salts of iron blacken it.
Schrader endeavoured to roast separately the different principles of coffee, but none of them exhaled the aromatic odour of roasted coffee except the horny fibrous matter. He therefore concludes that this substance contributes mainly to the characteristic taste of roasted coffee, which cannot be imitated by any other vegetable matter, and which, as we have seen, should be ascribed chiefly to the altered cafeic acid. According to Garot we may extract the cafeine without alteration from roasted coffee by precipitating its decoction by subacetate of lead, treating the washed precipitate with sulphuretted hydrogen, and evaporating the liquid product to dryness.
Of late years, much ingenuity has been expended in contriving various forms of apparatus for making infusions of coffee for the table. I have tried most of them, and find, after all, none so good as acafetière à la Belloy, the coffeebiggin, with the perforated tin plate strainer, especially when the filtered liquor is kept simmering in a close vessel, set over a lamp or steam pan. The useful and agreeable matter in coffee is very soluble: it comes off with the first waters of infusion, and needs no boiling.
To roast coffee rightly we should keep in view the proper objects of this process, which are to develop its aroma, and destroy its toughness, so that it may be readily ground to powder. Too much heat destroys those principles which we should wish to preserve, and substitutes new ones which have nothing in common with the first, but add a disagreeable empyreumatic taste and smell. If, on the other hand, the rawness or greenness is not removed by an adequate heat, it masks the flavour of the bean, and injures the beverage made with it. When well roasted in the sheet iron cylinders set to revolve over a fire, it should have a uniform chocolate colour, a point readily hit by experienced roasters, who now manage the business very well for the principal coffee dealers both of London and Paris, so far as my judgment can determine. The development of the proper aroma is a criterion by which coffee roasters frequently regulate their operations. When it loses more than 20 per cent. of its weight, coffee is sure to be injured. It should never be ground till immediately before infusion.
COKE, is carbonized pitcoal. SeeCharcoal; andPitcoalat the end.
COKE, is carbonized pitcoal. SeeCharcoal; andPitcoalat the end.
COLCOTHAR OF VITRIOL, (Rouge d’Angleterre, Fr.;Rothes Eisenoxyd, Germ.) is the brown-red peroxide of iron, produced by calcining sulphate of iron with a strong heat, levigating the resulting mass, and elutriating it into an impalpable powder. A better way of making it so as to complete the separation of the acid, is to mix 100 parts of the green sulphate of iron with 42 of common salt, to calcine the mixture, wash away the resulting sulphate of soda, and levigate the residuum. The sulphuric acid in this case expels the chlorine of the salt in the form of muriatic acid gas, and saturates its alkaline base produced by the chemical reaction; whence an oxide will be obtained free from acid, much superior to what is commonly found in the shops. The best sort of polishing powder calledjewellers’ red rougeor plate powder is the precipitated oxide of iron prepared by adding solution of soda to solution of copperas, washing, drying, and calcining the powder in shallow vessels with a gentle heat, till it assumes a deep brown red colour. SeeIron.
COLCOTHAR OF VITRIOL, (Rouge d’Angleterre, Fr.;Rothes Eisenoxyd, Germ.) is the brown-red peroxide of iron, produced by calcining sulphate of iron with a strong heat, levigating the resulting mass, and elutriating it into an impalpable powder. A better way of making it so as to complete the separation of the acid, is to mix 100 parts of the green sulphate of iron with 42 of common salt, to calcine the mixture, wash away the resulting sulphate of soda, and levigate the residuum. The sulphuric acid in this case expels the chlorine of the salt in the form of muriatic acid gas, and saturates its alkaline base produced by the chemical reaction; whence an oxide will be obtained free from acid, much superior to what is commonly found in the shops. The best sort of polishing powder calledjewellers’ red rougeor plate powder is the precipitated oxide of iron prepared by adding solution of soda to solution of copperas, washing, drying, and calcining the powder in shallow vessels with a gentle heat, till it assumes a deep brown red colour. SeeIron.