DIAMONDS,cutting of. Although the diamond is the hardest of all known substances, yet it may be split by a steel tool, provided a blow be applied; but this requires a perfect knowledge of the structure, because it will only yield to such means in certain directions. This circumstance prevents the workman from forming facettes or planes generally, by the process of splitting; he is therefore obliged to resort to the process of abrasion, which is technically called cutting. The process of cutting is effected by fixing the diamond to be cut on the end of a stick, or handle, in a small ball of cement, that part which is to be reduced being left to project. Another diamond is also fixed in a similar manner; and the two stones being rubbed against each other with considerable force, they are mutually abraded, flat surfaces, or facettes, being thereby produced. Other facettes are formed by shifting the diamonds into fresh positions in the cement, and when a sufficient number are produced, they are fit for polishing. The stones, when cut, are fixed for this purpose, by imbedding them in soft solder, contained in a small copper cup, the part, or facette, to be polished, being left to protrude.A flat circular plate of cast-iron is then charged with the powder produced during the abrasion of the diamonds; and by this means a tool is formed which is capable of producing the exquisite lustre so much admired on a finely-polished gem. Those diamonds that are unfit for working, on account of the imperfection of their lustre or colour, are sold, for various purposes, under the technical name of Bort. Stones of this kind are frequently broken in a steel mortar, by repeated blows, until they are reduced to a fine powder, which is used to charge metal plates, of various kinds, for the use of jewellers, lapidaries, and others. Bort, in this state of preparation, is incapable of polishing any gems; but it is used to produce flat surfaces on rubies and other precious stones.Fine drills are made of small splinters of bort, which are used for drilling small holes in rubies, and other hard stones, for the use of watch-jewellers, gold and silver wire-drawers, and others, who require very fine holes drilled in such substances. These drills are also used to pierce holes in china, where rivets are to be inserted; also for piercing holes in artificial enamel teeth, or any vitreous substances, however hard.
DIAMONDS,cutting of. Although the diamond is the hardest of all known substances, yet it may be split by a steel tool, provided a blow be applied; but this requires a perfect knowledge of the structure, because it will only yield to such means in certain directions. This circumstance prevents the workman from forming facettes or planes generally, by the process of splitting; he is therefore obliged to resort to the process of abrasion, which is technically called cutting. The process of cutting is effected by fixing the diamond to be cut on the end of a stick, or handle, in a small ball of cement, that part which is to be reduced being left to project. Another diamond is also fixed in a similar manner; and the two stones being rubbed against each other with considerable force, they are mutually abraded, flat surfaces, or facettes, being thereby produced. Other facettes are formed by shifting the diamonds into fresh positions in the cement, and when a sufficient number are produced, they are fit for polishing. The stones, when cut, are fixed for this purpose, by imbedding them in soft solder, contained in a small copper cup, the part, or facette, to be polished, being left to protrude.
A flat circular plate of cast-iron is then charged with the powder produced during the abrasion of the diamonds; and by this means a tool is formed which is capable of producing the exquisite lustre so much admired on a finely-polished gem. Those diamonds that are unfit for working, on account of the imperfection of their lustre or colour, are sold, for various purposes, under the technical name of Bort. Stones of this kind are frequently broken in a steel mortar, by repeated blows, until they are reduced to a fine powder, which is used to charge metal plates, of various kinds, for the use of jewellers, lapidaries, and others. Bort, in this state of preparation, is incapable of polishing any gems; but it is used to produce flat surfaces on rubies and other precious stones.
Fine drills are made of small splinters of bort, which are used for drilling small holes in rubies, and other hard stones, for the use of watch-jewellers, gold and silver wire-drawers, and others, who require very fine holes drilled in such substances. These drills are also used to pierce holes in china, where rivets are to be inserted; also for piercing holes in artificial enamel teeth, or any vitreous substances, however hard.
DIAMOND MICROSCOPES, were first suggested by Dr. Goring, and have been well executed by Mr. Pritchard. Previous to grinding a diamond into a spherical figure, it should be ground flat and parallel upon both sides, that by looking through it, as opticians try flint glass, we may see whether it has a double or triple refractive power, as many have, which would render it useless as a lens. Among the 14 different crystalline forms of the diamond, probably the octahedron and the cube are the only ones that will give single vision. It will, in many cases, be advisable to grind diamond lenses, plano-convex, both because this figure gives a low spherical aberration, and because it saves the trouble of grinding one side of the gem. A concave tool of cast iron, paved with diamond powder, hammered into it by a hardened steel punch, was employed by Mr. Pritchard. This ingenious artist succeeded in completing a double convex of equal radii, of about1⁄25of an inch focus, bearing an aperture of1⁄30of an inch with distinctness upon opaque objects, and its entire diameter upon transparent ones. This lens gives vision with a trifling chromatic aberration; in other respects, like Dr. Goring’s Amician reflector, but without its darkness, its light is said to be superior to that of any compound microscope whatever, acting with the same power, and the same angle of aperture. The advantage of seeing an object withoutaberrationby the interposition of only a single magnifier, instead of looking at a picture of it with an eye-glass, is evident. We thus have a simple direct view, whereby we shall see more accurately and minutely the real texture of objects.
DIAMOND MICROSCOPES, were first suggested by Dr. Goring, and have been well executed by Mr. Pritchard. Previous to grinding a diamond into a spherical figure, it should be ground flat and parallel upon both sides, that by looking through it, as opticians try flint glass, we may see whether it has a double or triple refractive power, as many have, which would render it useless as a lens. Among the 14 different crystalline forms of the diamond, probably the octahedron and the cube are the only ones that will give single vision. It will, in many cases, be advisable to grind diamond lenses, plano-convex, both because this figure gives a low spherical aberration, and because it saves the trouble of grinding one side of the gem. A concave tool of cast iron, paved with diamond powder, hammered into it by a hardened steel punch, was employed by Mr. Pritchard. This ingenious artist succeeded in completing a double convex of equal radii, of about1⁄25of an inch focus, bearing an aperture of1⁄30of an inch with distinctness upon opaque objects, and its entire diameter upon transparent ones. This lens gives vision with a trifling chromatic aberration; in other respects, like Dr. Goring’s Amician reflector, but without its darkness, its light is said to be superior to that of any compound microscope whatever, acting with the same power, and the same angle of aperture. The advantage of seeing an object withoutaberrationby the interposition of only a single magnifier, instead of looking at a picture of it with an eye-glass, is evident. We thus have a simple direct view, whereby we shall see more accurately and minutely the real texture of objects.
DIAPER, is the name of a kind of cloth, used chiefly for table linen. It is known among the French by the name oftoile fourré, and is ornamented with the most extensivefigures of any kind of tweeled cloth, excepting damask. The mounting of a loom for working diaper is, in principle, much the same as a draw-loom, but the figures being less extensive, the mounting is more simple, and is wrought entirely by the weaver, without the aid of any other person. As tweeled cloths, of any number of leaves, are only interwoven at those intervals when one of the leaves is raised, the woof above, and the warp below, is kept floating or flushed, until the intersection takes place. Of consequence, the floating yarn above, appears across the fabric, and that below longitudinally. This property of tweeled cloths is applied to form the ornamental figures of all kinds of tweeled goods, merely by reversing the floating yarn when necessary. In the simpler patterns, this is effected by a few additional leaves of treddles; but when the range of pattern becomes too great to render this convenient, an apparatus called aback harnessis employed, and the cloth woven with this mounting is called diaper. Diapers are generally five-leaf tweels, that is to say, every warp floats under four threads of woof, and is raised, and of course interwoven with the fifth. This is done either successively, forming diagonals at 45° upon the cloth, or by intervals of two threads, which is called the broken tweel. The latter is generally, if not universally adopted in the manufacture of diaper. The reason of preferring the broken to the regular tweel, where ornaments are to be formed, is very obvious. The whole depending upon reversed flushing to give the appearance of oblique or diagonal lines, through either, would destroy much of the effect, and materially injure the beauty of the fabric. The broken tweel, on the contrary, restores to the tweeled cloth a great similarity of appearance to plain, or alternately interwoven fabrics, and, at the same time, preserves the facility of producing ornaments by reversing the flushing. The simplest kinds of reversed tweels will be found described underTextile Fabrics.
DIAPER, is the name of a kind of cloth, used chiefly for table linen. It is known among the French by the name oftoile fourré, and is ornamented with the most extensivefigures of any kind of tweeled cloth, excepting damask. The mounting of a loom for working diaper is, in principle, much the same as a draw-loom, but the figures being less extensive, the mounting is more simple, and is wrought entirely by the weaver, without the aid of any other person. As tweeled cloths, of any number of leaves, are only interwoven at those intervals when one of the leaves is raised, the woof above, and the warp below, is kept floating or flushed, until the intersection takes place. Of consequence, the floating yarn above, appears across the fabric, and that below longitudinally. This property of tweeled cloths is applied to form the ornamental figures of all kinds of tweeled goods, merely by reversing the floating yarn when necessary. In the simpler patterns, this is effected by a few additional leaves of treddles; but when the range of pattern becomes too great to render this convenient, an apparatus called aback harnessis employed, and the cloth woven with this mounting is called diaper. Diapers are generally five-leaf tweels, that is to say, every warp floats under four threads of woof, and is raised, and of course interwoven with the fifth. This is done either successively, forming diagonals at 45° upon the cloth, or by intervals of two threads, which is called the broken tweel. The latter is generally, if not universally adopted in the manufacture of diaper. The reason of preferring the broken to the regular tweel, where ornaments are to be formed, is very obvious. The whole depending upon reversed flushing to give the appearance of oblique or diagonal lines, through either, would destroy much of the effect, and materially injure the beauty of the fabric. The broken tweel, on the contrary, restores to the tweeled cloth a great similarity of appearance to plain, or alternately interwoven fabrics, and, at the same time, preserves the facility of producing ornaments by reversing the flushing. The simplest kinds of reversed tweels will be found described underTextile Fabrics.
DIASTASE. This curious substance, extracted by water from crushed malt, and precipitated from that infusion by alcohol, as is described underFermentation, has been made the subject of new researches by M. Guerin Varry. The conclusions deducible from his interesting experiments are the following:—1. One part of diastase, dissolved in 30 parts of cold water, put with 408 parts of potato starch out of contact of air, did not exercise the slightest action upon this substance in the course of 63 days, under a temperature varying from 68° to 79° Fahr.2. Two parts of diastase do not in the course of an hour, cause the globules of three parts of starch to burst, at a temperature approaching very nearly to that of the hot water which bursts them into a paste. It follows that diastase acts no part in the process of germination, towards eliminating the teguments of the starch, or transforming its interior portion into sugar, and a gummy matter assimilated by plants.3. Diastase liquefies and saccharifies the paste of starch without absorption or disengagement of gas; a reaction which takes place equally in vacuo, as in the open air.4. 100 parts of starch made into a paste with 39 times their weight of water, mixed with 6·13 parts of diastase dissolved in 40 parts of water, and kept for an hour between 140° and 149° Fahr., afforded 86·91 parts of sugar.5. A paste containing 100 parts of starch, and 1393 parts of water, put in contact with 12·25 parts of diastase dissolved in 367 parts of cold water, having been maintained at 68° Fahr. during 24 hours, produced 77·64 parts of sugar.6. The preceding experiment, repeated at the temperature of melting ice, afforded at the end of 2 hours, 11·82 parts of sugar.7. The most favourable proportions and circumstances for the production of a great quantity of sugar, are a slight excess of diastase or barley malt, (at least 25 per cent. of the latter), about 50 parts of water to one of starch, and a temperature between 140° and 149° Fahr. It is of the greatest consequence for the saccharification to take place as speedily as possible, so that the sugar produced may not be left in contact with much gummy matter (dextrine), in which case, the diastase will not convert the latter into sugar. In fact, the liquefaction and saccharification should proceed simultaneously.8. The sugar of starch, prepared either with diastase, or sulphuric acid, crystallizes in cauliflowers, or in prisms with rhomboidal facets. It has the same composition as sugar of grapes.9. Diastase even in excess does not saccharify the gummy matter dissolved in the water along with the starch sugar, but when the gum is insulated, it is convertible almost entirely into sugar.10. Gum arabic, cane sugar, and beer yeast, suffer no change from diastase.11. A watery solution of diastase readily decomposes on keeping, either in contact or out of contact of air.12. When starch-sugar, whether obtained by means of diastase or sulphuric acid, is submitted to the spirituous fermentation, the sum of the weights of the alcohol, carbonic acid, and water of crystallization of the sugar, is less than the weight of the sugar by about 31⁄2per cent. This difference proceeds in a great measure from the formationof some acetic acid, lactic acid, volatile oil, and probably some other unknown products in the act of fermentation.
DIASTASE. This curious substance, extracted by water from crushed malt, and precipitated from that infusion by alcohol, as is described underFermentation, has been made the subject of new researches by M. Guerin Varry. The conclusions deducible from his interesting experiments are the following:—
1. One part of diastase, dissolved in 30 parts of cold water, put with 408 parts of potato starch out of contact of air, did not exercise the slightest action upon this substance in the course of 63 days, under a temperature varying from 68° to 79° Fahr.
2. Two parts of diastase do not in the course of an hour, cause the globules of three parts of starch to burst, at a temperature approaching very nearly to that of the hot water which bursts them into a paste. It follows that diastase acts no part in the process of germination, towards eliminating the teguments of the starch, or transforming its interior portion into sugar, and a gummy matter assimilated by plants.
3. Diastase liquefies and saccharifies the paste of starch without absorption or disengagement of gas; a reaction which takes place equally in vacuo, as in the open air.
4. 100 parts of starch made into a paste with 39 times their weight of water, mixed with 6·13 parts of diastase dissolved in 40 parts of water, and kept for an hour between 140° and 149° Fahr., afforded 86·91 parts of sugar.
5. A paste containing 100 parts of starch, and 1393 parts of water, put in contact with 12·25 parts of diastase dissolved in 367 parts of cold water, having been maintained at 68° Fahr. during 24 hours, produced 77·64 parts of sugar.
6. The preceding experiment, repeated at the temperature of melting ice, afforded at the end of 2 hours, 11·82 parts of sugar.
7. The most favourable proportions and circumstances for the production of a great quantity of sugar, are a slight excess of diastase or barley malt, (at least 25 per cent. of the latter), about 50 parts of water to one of starch, and a temperature between 140° and 149° Fahr. It is of the greatest consequence for the saccharification to take place as speedily as possible, so that the sugar produced may not be left in contact with much gummy matter (dextrine), in which case, the diastase will not convert the latter into sugar. In fact, the liquefaction and saccharification should proceed simultaneously.
8. The sugar of starch, prepared either with diastase, or sulphuric acid, crystallizes in cauliflowers, or in prisms with rhomboidal facets. It has the same composition as sugar of grapes.
9. Diastase even in excess does not saccharify the gummy matter dissolved in the water along with the starch sugar, but when the gum is insulated, it is convertible almost entirely into sugar.
10. Gum arabic, cane sugar, and beer yeast, suffer no change from diastase.
11. A watery solution of diastase readily decomposes on keeping, either in contact or out of contact of air.
12. When starch-sugar, whether obtained by means of diastase or sulphuric acid, is submitted to the spirituous fermentation, the sum of the weights of the alcohol, carbonic acid, and water of crystallization of the sugar, is less than the weight of the sugar by about 31⁄2per cent. This difference proceeds in a great measure from the formationof some acetic acid, lactic acid, volatile oil, and probably some other unknown products in the act of fermentation.
DIMITY, is a kind of cotton cloth originally imported from India, and now manufactured in great quantities in various parts of Britain, especially in Lancashire. Dr. Johnson calls itdimmity, and describes it as a kind offustian. The distinction between fustian and dimity seems to be, that the former designates a common tweeled cotton cloth of a stout fabric, which receives no ornament in the loom, but is most frequently dyed after being woven. Dimity is also a stout cotton cloth, but not usually of so thick a texture; and is ornamented in the loom, either with raised stripes or fancy figures, is seldom dyed, but usually worn white, as for bed and bed-room furniture. The striped dimities are the most common, they require less labour in weaving than the others; and the mounting of the loom being more simple, and consequently less expensive, they can be sold at much lower rates. SeeTextile Fabrics, for particular details of the plan of mounting them.
DIMITY, is a kind of cotton cloth originally imported from India, and now manufactured in great quantities in various parts of Britain, especially in Lancashire. Dr. Johnson calls itdimmity, and describes it as a kind offustian. The distinction between fustian and dimity seems to be, that the former designates a common tweeled cotton cloth of a stout fabric, which receives no ornament in the loom, but is most frequently dyed after being woven. Dimity is also a stout cotton cloth, but not usually of so thick a texture; and is ornamented in the loom, either with raised stripes or fancy figures, is seldom dyed, but usually worn white, as for bed and bed-room furniture. The striped dimities are the most common, they require less labour in weaving than the others; and the mounting of the loom being more simple, and consequently less expensive, they can be sold at much lower rates. SeeTextile Fabrics, for particular details of the plan of mounting them.
DIES FOR STAMPING, (Coins, Fr.;Münzstempeln, Germ.) The first circumstance that claims particular attention in the manufacture of dies, is the selection of the best kind of steel for the purpose, and this must in some measure be left to the experience of the die-forger, who, if well skilled in his art, will be able to form a tolerably correct judgment of the fitness of the metal for the purpose, by the manner in which it works upon the anvil. It should be rather fine-grained than otherwise, and above all things perfectly even and uniform in its texture, and free from spots and patches finer or coarser than the general mass. But the very fine and uniform steel with a silky fracture, which is so much esteemed for some of the purposes of cutlery, is unfit for our present purpose, from the extreme facility with which it acquires great hardness by pressure, and its liability to cracks and flaws. The very coarse-grained, or highly crystalline steel, is also equally objectionable; it acquires fissures under the die-press, and seldom admits of being equally and properly hardened. The object, therefore, is to select a steel of a medium quality as to fineness of texture, not easily acted upon by dilute sulphuric acid, and exhibiting an uniform texture when its surface is washed over with a little aqua-fortis, by which its freedom from pins of iron, and other irregularities of composition, is sufficiently indicated.The best kind of steel being thus selected, and properly forged at a high heat into the rough die, it is softened by very careful annealing, and in that state, having been smoothed externally, and brought to a table in the turning lathe, it is delivered to the engraver.The process of annealing the die consists in heating it to a bright cherry red, and suffering it to cool gradually, which is best effected by bedding it in a crucible or iron pot of coarsely-powdered charcoal, that of animal substances being generally preferred. In this operation it is sometimes supposed that the die, or at least its superficial parts, becomes super-carbonized, or highly-converted steel, as it is sometimes called; but experience does not justify such an opinion, and I believe the composition of the die is scarcely, certainly not materially, affected by the process, for it does not remain long enough in the fire for the purpose.The engraver usually commences his labours by working out the device with small steel tools, in intaglio; he rarely begins in relief (though this is sometimes done); and having ultimately completed his design, and satisfied himself of its general effect and correctness, by impressions in clay, and dabs, or casts in type metal, the die is ready for the important operation of hardening, which, from various causes, a few of which I shall enumerate, is a process of much risk and difficulty; for should any accident now occur, the labour of many months may be seriously injured, or even rendered quite useless.The process of hardening soft steel is in itself very simple, though not very easily explained upon mechanical or chemical principles. We know by experience, that it is a property of this highly valuable substance, to become excessively hard, if heated and suddenly cooled; if, therefore, we heat a bar of soft malleable and ductile steel red hot, and then suddenly quench it in a large quantity of cold water, it not only becomes hard, but fragile and brittle. But as a die is a mass of steel of considerable dimensions, this hardening is an operation attended by many and peculiar difficulties, more especially as we have at the same time to attend to the careful preservation of the engraving. This is effected by covering the engraved face of the die with a protecting face, composed of fixed oil of any kind, thickened with powdered charcoal: some persons add pipe-clay, others use a pulp of garlic, but pure lamp-black and linseed oil answer the purpose perfectly. This is thinly spread upon the work of the die, which, if requisite, may be further defended by an iron ring; the die is then placed with its face downwards in a crucible, and completely surrounded by powdered charcoal. It is heated to a suitable temperature, that is, about cherry red, and in that state is taken out with proper tongs, and plunged into a body of cold water, of such magnitude as notto become materially increased in temperature; here it is rapidly moved about, until all noise ceases, and then left in the water till quite cool. In this process it should produce a bubbling and hissing noise; if it pipes and sings, we may generally apprehend a crack or fissure.No process has been found to answer better than the above simple and common mode of hardening dies, though others have had repeated and fair trials. It has been proposed to keep up currents and eddies of cold water in the hardening cistern, by means of delivery-pipes, coming from a height; and to subject the hot die, with its face uppermost, to a sudden and copious current of water, let upon it from a large pipe, supplied from a high reservoir; but these means have not in any way proved more successful, either in saving the die, or in giving it any good qualities. It will be recollected, from the form of the die, that it is necessarily only, as it were, case-hardened, the hardest strata being outside, and the softer ones within, which envelope a core, something in the manner of the successive coats of an onion; an arrangement which we sometimes have an opportunity of seeing displayed in dies which have been smashed by a violent blow.The hardening having been effected, and the die being for the time safe, some further steps may be taken for its protection; one of these consists in a very mild kind of tempering, produced by putting it into water, gradually raised to the boiling point, till heated throughout, and then suffering it gradually to cool. This operation renders the die less apt to crack in very cold weather. A great safeguard is also obtained by thrusting the cold die into a red-hot iron ring, which just fits it in that state, and which, by contracting as it cools, keeps its parts together under considerable pressure, preventing the spreading of external cracks and fissures, and often enabling us to employ a split or die for obtaining punches, which would break to pieces without the protecting ring.If the die has been successfully hardened, and the protecting paste has done its duty, by preserving the face from all injury and oxidizement, or burning, as it is usually called, it is now to be cleaned and polished, and in this state constitutes what is technically called aMATRIX: it may of course be used as a multiplier of medals, coins, or impressions, but it is not generally thus employed, for fear of accidents happening to it in the coining press, and because the artist has seldom perfected his work upon it in this state. It is, therefore, resorted to for the purpose of finishing aPUNCH, or steel impression for relief. For this purpose a proper block of steel is selected, of the same quality, and with the same precautions as before, and being carefully annealed, or softened, is turned like the matrix, perfectly true and flat at the bottom, and obtusely conical at top. In this state, its conical surface is carefully compressed by powerful and proper machinery upon the matrix, which being very hard, soon allows it to receive the commencement of an impression; but in thus receiving the impression, it becomes itself so hard by condensation of texture as to require during the operation to be repeatedly annealed, or softened, otherwise it would split into small superficial fissures, or would injure the matrix; much practical skill is therefore required in taking this impression, and the punch, at each annealing, must be carefully protected, so that the work may not be injured.Thus, after repeated blows in the die-press, and frequent annealing, the impression from the matrix is at length perfected, or brought completely up, and having been retouched by the engraver, is turned, hardened, and collared, like the matrix, of which it is now a complete impression in relief, and, as we have before said, is called a punch.This punch becomes an inexhaustible parent of dies, without further reference to the original matrix; for now by impressing upon it plugs of soft steel, and by pursuing with them an exactly similar operation to that by which the punch itself was obtained, we procure impressions from it to any amount, which of course are fac-similes of the matrix, and these dies being turned, hardened, polished, and, if necessary, tempered, are employed for the purposes of coinage.The distinction between striking medals, and common coin, is very essential, and the work upon the dies is accordingly adjusted to each. Medals are usually in very high relief, and the effect is produced by a succession of blows; and as the metal in which they are struck, be it gold, silver, or copper, acquires considerable hardness at each stroke of the press, they are repeatedly annealed during the process of bringing them up. In a beautiful medal, which Mr. Wyon some time since completed for the Royal Navy College, the obverse represents a head of the King, in very bold relief; it required thirty blows of a very powerful press to complete the impression, and it was necessary to anneal each medal after every third blow, so that they went ten times into the fire for that purpose. In striking a coin or medal, the lateral spread of the metal, which otherwise would ooze out as it were from between the dies, is prevented by the application of a steel collar, accurately turned to the dimensions of the dies, and which, when left plain, gives to the edge of the piece a finished and polished appearance; it issometimes grooved, or milled, or otherwise ornamented, and occasionally lettered, in which case it is made in three separate and moveable pieces, confined by a ring, into which they are most accurately fitted, and so adjusted that the metal may be forced into the letters by its lateral spread, at the same time that the coin receives the blow of the screw-press.Coins are generally completed by one blow of the coining-press. These presses are worked in the Royal Mint by machinery, so contrived that they shall strike, upon an average, sixty blows in a minute; the blank piece, previously properly prepared and annealed, being placed between the dies by part of the same mechanism.The number of pieces which may be struck by a single die of good steel, properly hardened and duly tempered, not unfrequently amounts at the Mint to between three and four hundred thousand, but the average consumption of dies is of course much greater, owing to the variable qualities of steel, and to the casualties to which the dies are liable: thus, the upper and lower die are often violently struck together, owing to an error in the layer-on, or in that part of the machinery which ought to put the blank into its place, but which now and then fails so to do. This accident very commonly arises from the boy who superintends the press neglecting to feed the hopper of the layer-on with blank pieces. If a die is too hard, it is apt to break or split, and is especially subject to fissures, which run from letter to letter upon the edge. If too soft, it swells, and the collar will not rise and fall upon it, or it sinks in the centre, and the work becomes distorted and faulty. He, therefore, who supplies the dies for an extensive coinage, has many accidents and difficulties to encounter. There are eight presses at the Mint, frequently at work for ten hours each day, and the destruction of eight pair of dies per day (one pair for each press) may be considered a fair average result, though they much more frequently fall short of, than exceed this proportion. It must be remembered, that each press produces 3600 pieces per hour, but, making allowance for occasional stoppages, we may reckon the daily produce of each press at 30,000 pieces; the eight presses therefore will furnish a diurnal average of 240,000 pieces.
DIES FOR STAMPING, (Coins, Fr.;Münzstempeln, Germ.) The first circumstance that claims particular attention in the manufacture of dies, is the selection of the best kind of steel for the purpose, and this must in some measure be left to the experience of the die-forger, who, if well skilled in his art, will be able to form a tolerably correct judgment of the fitness of the metal for the purpose, by the manner in which it works upon the anvil. It should be rather fine-grained than otherwise, and above all things perfectly even and uniform in its texture, and free from spots and patches finer or coarser than the general mass. But the very fine and uniform steel with a silky fracture, which is so much esteemed for some of the purposes of cutlery, is unfit for our present purpose, from the extreme facility with which it acquires great hardness by pressure, and its liability to cracks and flaws. The very coarse-grained, or highly crystalline steel, is also equally objectionable; it acquires fissures under the die-press, and seldom admits of being equally and properly hardened. The object, therefore, is to select a steel of a medium quality as to fineness of texture, not easily acted upon by dilute sulphuric acid, and exhibiting an uniform texture when its surface is washed over with a little aqua-fortis, by which its freedom from pins of iron, and other irregularities of composition, is sufficiently indicated.
The best kind of steel being thus selected, and properly forged at a high heat into the rough die, it is softened by very careful annealing, and in that state, having been smoothed externally, and brought to a table in the turning lathe, it is delivered to the engraver.
The process of annealing the die consists in heating it to a bright cherry red, and suffering it to cool gradually, which is best effected by bedding it in a crucible or iron pot of coarsely-powdered charcoal, that of animal substances being generally preferred. In this operation it is sometimes supposed that the die, or at least its superficial parts, becomes super-carbonized, or highly-converted steel, as it is sometimes called; but experience does not justify such an opinion, and I believe the composition of the die is scarcely, certainly not materially, affected by the process, for it does not remain long enough in the fire for the purpose.
The engraver usually commences his labours by working out the device with small steel tools, in intaglio; he rarely begins in relief (though this is sometimes done); and having ultimately completed his design, and satisfied himself of its general effect and correctness, by impressions in clay, and dabs, or casts in type metal, the die is ready for the important operation of hardening, which, from various causes, a few of which I shall enumerate, is a process of much risk and difficulty; for should any accident now occur, the labour of many months may be seriously injured, or even rendered quite useless.
The process of hardening soft steel is in itself very simple, though not very easily explained upon mechanical or chemical principles. We know by experience, that it is a property of this highly valuable substance, to become excessively hard, if heated and suddenly cooled; if, therefore, we heat a bar of soft malleable and ductile steel red hot, and then suddenly quench it in a large quantity of cold water, it not only becomes hard, but fragile and brittle. But as a die is a mass of steel of considerable dimensions, this hardening is an operation attended by many and peculiar difficulties, more especially as we have at the same time to attend to the careful preservation of the engraving. This is effected by covering the engraved face of the die with a protecting face, composed of fixed oil of any kind, thickened with powdered charcoal: some persons add pipe-clay, others use a pulp of garlic, but pure lamp-black and linseed oil answer the purpose perfectly. This is thinly spread upon the work of the die, which, if requisite, may be further defended by an iron ring; the die is then placed with its face downwards in a crucible, and completely surrounded by powdered charcoal. It is heated to a suitable temperature, that is, about cherry red, and in that state is taken out with proper tongs, and plunged into a body of cold water, of such magnitude as notto become materially increased in temperature; here it is rapidly moved about, until all noise ceases, and then left in the water till quite cool. In this process it should produce a bubbling and hissing noise; if it pipes and sings, we may generally apprehend a crack or fissure.
No process has been found to answer better than the above simple and common mode of hardening dies, though others have had repeated and fair trials. It has been proposed to keep up currents and eddies of cold water in the hardening cistern, by means of delivery-pipes, coming from a height; and to subject the hot die, with its face uppermost, to a sudden and copious current of water, let upon it from a large pipe, supplied from a high reservoir; but these means have not in any way proved more successful, either in saving the die, or in giving it any good qualities. It will be recollected, from the form of the die, that it is necessarily only, as it were, case-hardened, the hardest strata being outside, and the softer ones within, which envelope a core, something in the manner of the successive coats of an onion; an arrangement which we sometimes have an opportunity of seeing displayed in dies which have been smashed by a violent blow.
The hardening having been effected, and the die being for the time safe, some further steps may be taken for its protection; one of these consists in a very mild kind of tempering, produced by putting it into water, gradually raised to the boiling point, till heated throughout, and then suffering it gradually to cool. This operation renders the die less apt to crack in very cold weather. A great safeguard is also obtained by thrusting the cold die into a red-hot iron ring, which just fits it in that state, and which, by contracting as it cools, keeps its parts together under considerable pressure, preventing the spreading of external cracks and fissures, and often enabling us to employ a split or die for obtaining punches, which would break to pieces without the protecting ring.
If the die has been successfully hardened, and the protecting paste has done its duty, by preserving the face from all injury and oxidizement, or burning, as it is usually called, it is now to be cleaned and polished, and in this state constitutes what is technically called aMATRIX: it may of course be used as a multiplier of medals, coins, or impressions, but it is not generally thus employed, for fear of accidents happening to it in the coining press, and because the artist has seldom perfected his work upon it in this state. It is, therefore, resorted to for the purpose of finishing aPUNCH, or steel impression for relief. For this purpose a proper block of steel is selected, of the same quality, and with the same precautions as before, and being carefully annealed, or softened, is turned like the matrix, perfectly true and flat at the bottom, and obtusely conical at top. In this state, its conical surface is carefully compressed by powerful and proper machinery upon the matrix, which being very hard, soon allows it to receive the commencement of an impression; but in thus receiving the impression, it becomes itself so hard by condensation of texture as to require during the operation to be repeatedly annealed, or softened, otherwise it would split into small superficial fissures, or would injure the matrix; much practical skill is therefore required in taking this impression, and the punch, at each annealing, must be carefully protected, so that the work may not be injured.
Thus, after repeated blows in the die-press, and frequent annealing, the impression from the matrix is at length perfected, or brought completely up, and having been retouched by the engraver, is turned, hardened, and collared, like the matrix, of which it is now a complete impression in relief, and, as we have before said, is called a punch.
This punch becomes an inexhaustible parent of dies, without further reference to the original matrix; for now by impressing upon it plugs of soft steel, and by pursuing with them an exactly similar operation to that by which the punch itself was obtained, we procure impressions from it to any amount, which of course are fac-similes of the matrix, and these dies being turned, hardened, polished, and, if necessary, tempered, are employed for the purposes of coinage.
The distinction between striking medals, and common coin, is very essential, and the work upon the dies is accordingly adjusted to each. Medals are usually in very high relief, and the effect is produced by a succession of blows; and as the metal in which they are struck, be it gold, silver, or copper, acquires considerable hardness at each stroke of the press, they are repeatedly annealed during the process of bringing them up. In a beautiful medal, which Mr. Wyon some time since completed for the Royal Navy College, the obverse represents a head of the King, in very bold relief; it required thirty blows of a very powerful press to complete the impression, and it was necessary to anneal each medal after every third blow, so that they went ten times into the fire for that purpose. In striking a coin or medal, the lateral spread of the metal, which otherwise would ooze out as it were from between the dies, is prevented by the application of a steel collar, accurately turned to the dimensions of the dies, and which, when left plain, gives to the edge of the piece a finished and polished appearance; it issometimes grooved, or milled, or otherwise ornamented, and occasionally lettered, in which case it is made in three separate and moveable pieces, confined by a ring, into which they are most accurately fitted, and so adjusted that the metal may be forced into the letters by its lateral spread, at the same time that the coin receives the blow of the screw-press.
Coins are generally completed by one blow of the coining-press. These presses are worked in the Royal Mint by machinery, so contrived that they shall strike, upon an average, sixty blows in a minute; the blank piece, previously properly prepared and annealed, being placed between the dies by part of the same mechanism.
The number of pieces which may be struck by a single die of good steel, properly hardened and duly tempered, not unfrequently amounts at the Mint to between three and four hundred thousand, but the average consumption of dies is of course much greater, owing to the variable qualities of steel, and to the casualties to which the dies are liable: thus, the upper and lower die are often violently struck together, owing to an error in the layer-on, or in that part of the machinery which ought to put the blank into its place, but which now and then fails so to do. This accident very commonly arises from the boy who superintends the press neglecting to feed the hopper of the layer-on with blank pieces. If a die is too hard, it is apt to break or split, and is especially subject to fissures, which run from letter to letter upon the edge. If too soft, it swells, and the collar will not rise and fall upon it, or it sinks in the centre, and the work becomes distorted and faulty. He, therefore, who supplies the dies for an extensive coinage, has many accidents and difficulties to encounter. There are eight presses at the Mint, frequently at work for ten hours each day, and the destruction of eight pair of dies per day (one pair for each press) may be considered a fair average result, though they much more frequently fall short of, than exceed this proportion. It must be remembered, that each press produces 3600 pieces per hour, but, making allowance for occasional stoppages, we may reckon the daily produce of each press at 30,000 pieces; the eight presses therefore will furnish a diurnal average of 240,000 pieces.
DIGESTER, is the name of a strong kettle or pot of small dimensions, made very strong, and mounted with a safety valve in its top. Papin, the contriver of this apparatus, used it for subjecting bones, cartilages, &c. to the solvent action of high-pressure steam, or highly heated water, whereby he proposed to facilitate their digestion in the stomach. This contrivance is the origin of the French cookery pans, calledautoclaves, because the lid is self-keyed, or becomes steam-tight by turning it round under clamps or ears at the sides, having been previously ground with emery to fit the edge of the pot exactly. In some autoclaves the lid is merely laid on with a fillet of linen as a lute, and then secured in its place by means of a screw bearing down upon its centre from an arched bar above. The safety valve is loaded either by a weight placed vertically upon it, or by of a lever of the second kind pressing near its fulcrum, and acted upon by a weight which may be made to bear upon any point of its graduated arm.Chevreul has made a useful application of the digester to vegetable analysis. His instrument consists of a strong copper cylinder, into which enters a tight cylinder of silver, having its edge turned over at right angles to the axis of the cylinder, so as to form the rim of the digester. A segment of a copper sphere, also lined with silver stops the aperture of the silver cylinder, being applied closely to its rim. It has a conical valve pressed with a spiral spring, of any desired force, estimated by a steelyard. This spring is enclosed within a brass box perforated with four holes; which may be screwed into a tapped orifice in the top of the digester. A tube screwed into another hole serves to conduct away the condensable vapours at pleasure into aWoulfe’s apparatus.
DIGESTER, is the name of a strong kettle or pot of small dimensions, made very strong, and mounted with a safety valve in its top. Papin, the contriver of this apparatus, used it for subjecting bones, cartilages, &c. to the solvent action of high-pressure steam, or highly heated water, whereby he proposed to facilitate their digestion in the stomach. This contrivance is the origin of the French cookery pans, calledautoclaves, because the lid is self-keyed, or becomes steam-tight by turning it round under clamps or ears at the sides, having been previously ground with emery to fit the edge of the pot exactly. In some autoclaves the lid is merely laid on with a fillet of linen as a lute, and then secured in its place by means of a screw bearing down upon its centre from an arched bar above. The safety valve is loaded either by a weight placed vertically upon it, or by of a lever of the second kind pressing near its fulcrum, and acted upon by a weight which may be made to bear upon any point of its graduated arm.
Chevreul has made a useful application of the digester to vegetable analysis. His instrument consists of a strong copper cylinder, into which enters a tight cylinder of silver, having its edge turned over at right angles to the axis of the cylinder, so as to form the rim of the digester. A segment of a copper sphere, also lined with silver stops the aperture of the silver cylinder, being applied closely to its rim. It has a conical valve pressed with a spiral spring, of any desired force, estimated by a steelyard. This spring is enclosed within a brass box perforated with four holes; which may be screwed into a tapped orifice in the top of the digester. A tube screwed into another hole serves to conduct away the condensable vapours at pleasure into aWoulfe’s apparatus.
DISTILLATION, (Eng. and Fr.;Branntweinbrennerei, Germ.) means, in the commercial language of this country, the manufacture of intoxicating spirits; under which are comprehended the four processes, ofmashingthe vegetable materials,coolingthe worts, exciting the vinousfermentation, and separating by a peculiar vessel called astill, the alcohol combined with more or less water. This art of evoking the fiery demon of drunkenness from his attempered state in wine and beer, was unknown to the ancient Greeks and Romans. It seems to have been invented by the barbarians of the north of Europe, as a solace to their cold and humid clime; and was first made known to the southern nations in the writings of Arnoldus de Villa Nova, and his pupil, Raymond Lully of Majorca, who declares this admirable essence of wine to be an emanation of the Divinity, an element newly revealed to man, but hid from antiquity, because the human race were then too young to need this beverage, destined to revive the energies of modern decrepitude. He further imagined that the discovery of thisaqua vitæ, as it was called, indicated the approaching consummation of all things—the end of this world. However much he erred as to the value of this remarkable essence, he truly predicted its vast influence upon humanity, since to both civilized and savage nations it has realized greater ills than were threatened in the fabled box of Pandora.I shall consider in this place the first three of these subjects, reserving for the articleStillan account of the construction and use of that apparatus.Whiskey, from the Irish word Usquebaugh, is the British name of the spirituous liquor manufactured by our distillers, and corresponds to theEau de vieof the French, and theBranntweinof the Germans. It is generated by that intestine change which grape juice and other glutino-saccharine liquids spontaneously undergo when exposed to the atmosphere at common temperatures; the theory of which will be expounded under the articleFermentation. The production of whiskey depends upon the simple fact, that when any vinous fluid is boiled, the alcohol being very volatile, evaporates first, and may thereby be separated from the aqueous vegetable infusion in which it took its birth. Sugar is the only substance which can be transformed into alcohol. Whatsoever fruits, seeds, or roots afford juices or extracts capable of conversion into vinous liquor, either contain sugar ready formed, or starch susceptible of acquiring the saccharine state by proper treatment. In common language, the intoxicating liquor obtained from the sweet juices of fruits is called wine; and that from the infusions of farinaceous seeds, beer; though there is no real difference between them in chemical constitution. A similar beverage, though probably less palatable, is procurable from the juices and infusions of many roots, by the process of fermentation. Wine, cyder, beer, and fermented wash of every kind, when distilled, yields an identical intoxicating spirit, which differs in these different cases merely in flavour, in consequence of the presence of a minute quantity of volatile oils of different odours.I. The juices of sweet fruits contain a glutinous ingredient which acts as a ferment in causing their spontaneous change into a vinous condition; but the infusions of seeds, even in their germinated or malted state, require the addition of a glutinous substance called yeast, to excite the best fermentation. In the fabrication of wine or beer for drinking, the fermentative action should be arrested before all the fruity saccharum is decomposed; nor should it on any account be suffered to pass into the acetous stage; whereas for making distillery wash, that action should be promoted as long as the proportion of alcohol is increased, because the formation of a little acetic acid is not injurious to the quality of the distilled spirit, but rather improves its flavour by the addition of acetic ether, while all the undecomposed sugar is lost. Distillers operate upon the saccharine matter from corn of various kinds in two methods; in the first they draw off a pure watery extract from the grain, and subject this species of wort to fermentation; in the second they ferment and distil the infused mass of grains. The former is the practice of the distillers in the United Kingdom, and is preferable on many accounts; the latter, which is adopted in Germany, Holland, and the north of Europe, is less economical, more uncertain in the product, and affords a cruder spirit, in consequence of the fetid volatile oil evolved from the husks in the still. The substances employed by the distillers may be distributed into the following classes:—1. Saccharine juices. At the head of these stands cane-juice, which fresh from the mill contains from 12 to 16 per cent. of raw sugar, and like the must of the grape enters into the vinous fermentation without the addition of yeast, affording the species of spirit called Rum, which is possessed of a peculiar aroma derived from an essential oil in the cane. An inferior sort of rum is fabricated from molasses, mixed with the skimmings and washings of the sugar pans. When molasses or treacle is diluted with twenty times its weight of warm water, and when the mixture has cooled to 78° F., if one twelfth of its weight of yeast be added, fermentation will speedily ensue, and an ardent spirit will be generated, which when distilled has none of the aroma of rum; proving this to reside in the immediate juice or substance of the cane, and to be dissipated at the high temperature employed in the production of molasses. Though the cane juice will spontaneously undergo the vinous fermentation, it does so more slowly and irregularly than the routine of business requires, and therefore is quickened by the addition of the lees of a preceding distillation. So sensible are the rum distillers of the advantage of such a plan, that they soak woollen cloths in the yeast of the fermenting vats, in order to preserve a ferment from one sugar season to another. In Jamaica and some other of our colonies, 50 gallons of spent wash or lees are mixed with 6 gallons of molasses, 36 gallons of sugar-pan skimmings (a substance rich in aroma), and 8 gallons of water; in which mixture there is about one twelfth part of solid saccharum. Those who attend more to the quality than the quantity of their rum, will use a smaller proportion of the spent wash, which is always empyreumatic, and imparts more or less of its odour to the spirit distilled from it. The fermentation is seldom complete in less than 9 days, and most commonly it requires from 12 to 15; the period being dependent upon the capacity of the fermenting tun, and the quality of its contents. The liquid now becomes clear, the froth having fallen to the bottom, and few bubbles of gas are extricated from it, while its specific gravity is reduced from 1·050 down to 0·992. The sooner it is subjected to distillation after this period the better, to preventthe loss of alcohol by the supervention of the acetous stage of fermentation, an accident very liable to happen in the sugar colonies. The crude spirit obtained from the large single still at the first operation, is rectified in a smaller still. About 114 gallons of rum, proof strength, specific gravity 0·920, are obtained from 1200 gallons of wash. Now these 1200 gallons weigh 12,600 libs., and contain nearly one eighth of their weight of sugar = 1575 libs.; which should yield nearly its own weight of proof spirit, whose bulk is =15750·92= 1712 pound measures = 171·2 gallons; whereas only 114 are obtained; proving the processes to be conducted in a manner far from economical, even with every reasonable allowance.Mr Edwards gives the following estimate: “The total amount of sweets from an estate in Jamaica which makes 200 hogsheads of sugar, is 16,666 gallons. The wash set at the rate of 12 per cent. sweets, should return 34,720 gallons of low wines, which should give 14,412 gallons of rum, or 131 puncheons of 110 gallons each.”By my own experiments on the quantity of proof spirit obtainable from molasses by fermentation (afterwards to be detailed), one gallon of sweets should yield one gallon of spirit; and hence the above 16,666 gallons should have afforded the same bulk of rum. But here we are left somewhat in the dark, by not knowing the specific gravity of the rum spoken of by Mr. Edwards. The only light let in upon us is when he mentions rum oil-proof, that is, a spirit in which olive oil will sink; indicating a density nearly the same with our actual excise proof, for olive oil at 60° F. has the specific gravity 0·919. When a solution of sugar of the proper strength is mixed with wine lees, and fermented, it affords a spirit by distillation not of the rum, but of the brandy flavour.The sweet juices of palm trees and cocoa nuts, as also of the maple, and ash, birch, &c., when treated like cane juice, afford vinous liquors from which ardent spirits, under various names, are obtained; asarrack, &c.; the quantity being about 50 pounds of alcohol of 0·825 for every 100 pounds of solid saccharine extract present. Honey similarly treated affords the metheglin so much prized by our ancestors. Good whey, freed from curd by boiling, will yield 4 per cent. of spirit of wine, when fermented with the addition of a little yeast.2. The juices of apples, pears, currants, and such fruits, afford by fermentation quantities of alcohol proportional to the sugar they contain. But the quality of the spirit is much better when it is distilled from vinous liquids of a certain age, than from recently fermented must. Cherries are employed in Germany, and other parts of the Continent, for making a high-flavoured spirit calledKirsch-wasser, or cherry water. The fully ripe fruit is crushed by a roller press, or an edge-stone mill, along with the kernels; the pulp is fermented in a mass, the liquid part is then drawn off, and distilled. More or less prussic acid enters from the kernels into this spirit, which renders it very injurious, as a liquor, to many constitutions. I was once nearly poisoned by swallowing a wine glass of it in the valley of Chamouni. The ripened red fruit of the mountain ash constitutes a good material for vinous fermentation. The juice being mixed with some water and a little yeast, affords when well fermented, according to Hermstaedt, 12 pounds, or 11⁄2gallons, of alcohol from 2 bushels of the ripe berries.3. Many roots contain sugar, particularly beet, from which no less than 7 per cent. of it may be extracted by judicious means. Hermstaedt recommends to mash the steam boiled clean roots, and add to the paste two-thirds of its weight of boiling water, and a thirtieth of its weight of ground malt, mixing the materials well, and then leaving them three hours in a covered vessel. The mixture must now be passed through a wire sieve, with meshes of one-third of an inch square each; the residuum is washed with a little cold water, and, when the temperature has fallen to 77° F., the proper quantity of yeast must be added, and the fermentation suffered to proceed in a covered tun. In 5 or 6 days it will be complete, and will afford by distillation, from 100 pounds of beet root, about 10 or 12 pounds of proof spirits. Carrots and parsnips, when similarly treated, yield a considerable quantity of alcohol.II.Ardent spirits or whiskey from fecula or starchy materials.I have already pointed out, in the articleBeer, how the starch is transformed into a saccharine condition, by malting and mashing; and how a fermentable wort may be obtained from starchy meal. By like operations may all vegetable substances, which consist chiefly of starch, become materials for a whiskey distillery. To this class belong all the farinaceous grains, potatos, and the pods of shell fruits, as beans, vetches, horse-chesnuts, acorns, &c.1.Whiskey from corn.All those species of corn which are employed in breweries answer for distilleries; as wheat, rye, barley, and oats; as well as buckwheat, and maize or Indian corn. The product of spirits which these different grains afford, depends upon the proportion of starch they contain, including the small quantity of uncrystallizable sugar present in them. Hermstaedt, who has made exact experiments upon the subject, reckons a quart (Prussian or British) spirits, containing 30 per cent. of the absolute alcohol of Richter, for 2 pounds of starch. Hence 100 pounds of starch should yield35 pounds of alcohol; or 4·375 gallons imperial, equal to 7·8 gallons of spirits, excise proof.100 pounds of the following grains afford in spirits of specific gravity 0·9427, containing 45 per cent. of absolute alcohol (=9⁄11of British proof,) the following quantities:—Wheat, 40 to 45 pounds of spirits; rye, 36 to 42; barley, 40; oats, 36; buckwheat, 40; maize, 40. The mean of the whole may be taken at 40 pounds, equal to 41⁄4gallons imperial, of 0·9427 specific gravity = 3·47 gallons, at excise proof. The chief difference in these several kinds of corn consists in their different bulks under the same weight; a matter of considerable importance; for since a bushel of oats weighs little more than the half of a bushel of wheat, the former becomes for some purposes less convenient in use than the latter, though it affords a good spirit.Barley and rye are the species of grain most commonly employed in the European distilleries for making whiskey. Barley is mostly taken either partly or altogether in the malted state; while the other corns are not malted, but merely mixed with a certain proportion of barley malt to favour the saccharine fermentation in the mashing. It is deemed preferable to use a mixture of several sorts of grain, instead of a single one; for example, wheat with barley and oats; or barley with rye and wheat; for the husks of the oats diffused through the wheat flour and rye meal keep it open or porous when mashed, and thus favour the abstraction of the wort; while the gluten of the wheat tends to convert the starch of the barley and oats into sugar. When the whole of the grain, however, is malted, a much more limpid wort is obtained than from a mixture of malt with raw grain; hence the pure malt is preferable for the ale and porter brewer, while the mixture affords a larger product, at the same cost of materials, to the distiller. When barley is the only grain employed, from one-third to one-sixth of malt is usually mixed with it; but when wheat and rye are also taken, the addition of from one-eighth to one-sixteenth of barley malt is sufficient. Oats are peculiarly proper to be mixed with wheat, to keep the meal open in the mashing.The following are the proportions used by some experienced Scotch distillers.250bolls, containing 6 bushels each, being used for a mashing, consist of,25bolls ofoats,weighing284lbs. per boll, or471⁄3lbs. per bushel;42malt2404025rye320531⁄3158barley320531⁄3250mean481⁄2From each boll, weighing 291 lbs., 14 imperial gallons of proof whiskey are obtained on an average; equivalent to 11·2 gallons at 25 over proof.The malting for the distilleries is to be conducted on the same principles as for the breweries, but the malt ought to be lightly kiln-dried, and that preferably at a steam heat, instead of a fire, which is apt to give an empyreumatic smell to the grain that passes into the spirits. For such persons, indeed, as relish the smell of burned turf, called peat-reek in Scotland, the malt should be dried by a turf fire, whereby the whiskey will acquire that peculiar odour.But this smell, which was originally prized as a criterion of whiskey made from pure malt, moderately fermented and distilled with peculiar care, has of late years lost its value, since the artifice of impregnating bad raw grain whiskey with peat-smoke has been extensively practised.Dr. Kolle, in his treatise on making spirits, describes a malting kiln with a copper plate heated with steam, 18 feet long, and 12 feet broad, on which a quantity of malt being spread thin, is changed every 3 or 4 hours, so that in 24 hours he turns out upwards of 28 cwt. of an excellent and well-kilned article. The malt of the distiller should be as pale as possible, because with the deepening of the colour an empyreumatic principle is generated.When Indian corn is the subject of distillation, it must be malted in the same way as described in the articleBeer. According to Hermstaedt, its flour may be advantageously mixed with the crushed malt in the mash tun. But its more complete dissolution may be accomplished by Siemen’s mode of operating upon potatos, presently to be described.1.Mashing.Barley and raw grain are ground to meal by millstones, but malt is merely crushed between rollers. If only one-tenth or one-eighth of malt be used with nine-tenths or seven-eighths of barley, some husks of oats are added, to render the mash mixture more drainable.When 40 bushels of barley and 20 of malt form one mashing, from 600 to 700 gallons of water, heated to 150° F., are mixed with these 60 bushels in the mash tun,and carefully incorporated by much manual labour with wooden oars, or in great concerns by the mechanical apparatus used in the breweries. This agitation must be continued for 2 or 3 hours, with the admission from time to time of about 400 additional gallons of water, at a temperature of 190°, to counteract the cooling of the materials. But since the discovery ofdiastase, as the best heat for saccharifying starch is shewn to be not higher than 160° F., it would be far better to mash in a tun, partially, at least, steam encased, whereby we could preserve the temperature at the appropriate degree for generating the greatest quantity of sugar.If the wort be examined every half-hour of the mashing period, it will be found to become progressively sweeter to the taste, thinner in appearance, but denser in reality.The wort must be drawn off from the grains whenever it has attained its maximum density, which seldom exceeds 150 lbs. per barrel; that is,360 + 150360= 1·42, or 42 per cent. As the corn of the distiller of raw grain has not the same porosity as the brewer’s, the wort cannot be drawn off from the bottom of the tun, but through a series of holes at the level of the liquor, bored in a pipe stuck in at the corner of the vessel. About one-third only of the water of infusion can thus be drawn off from the pasty mass. More water is therefore poured on at the temperature of 190°, well mixed by agitation for half an hour, then quietly infused for an hour and a half, and finally drawn off as before. Fully 400 gallons of water are used upon this occasion, and nearly as much liquor may be drawn off. Lastly, to extract from the grains every thing soluble, about 700 gallons of boiling hot water are turned in upon them, thoroughly incorporated, then left quietly to infuse, and drawn off as above. This weak wort is commonly reserved for the first liquor of the next mashing operation upon a fresh quantity of meal and malt.The English distiller is bound by law to make his mixed worts to be let down into the fermenting tun of a specific gravity not less than 1·050, nor more than 1·090; the Scotch and Irish distillers not less than 1·030, nor more than 1·080; which numbers are called, gravity 50, 90, 30, and 80, respectively.With the proportion of malt, raw grain, and water, above prescribed, the infusion first drawn off may have a strength = 20 per cent. = spec. grav. 1·082, or 73 lbs. per barrel; the second of 50 lbs. per barrel, or 14 per cent.; and the two together would have a strength of 61·2 lbs. per barrel = 17 per cent., or spec. grav. 1·070. From experiments carefully made upon a considerable scale, it appears that no more than four-fifths of the soluble saccharo-starchy matter of the worts is decomposed in the best regulated fermentations of the distiller from raw grain. For every 2 lbs. so decomposed, 1 lb. of alcohol, spec. grav. 0·825 is generated; and as every gallon of spirits of the spec. grav. 0·909 contains 4·6 lbs. of such alcohol, it will take twice 4·6 or 9·2 lbs. of saccharine matter to produce the said gallon. To these 9·2 lbs., truly transmuted in the process, we must add one-fifth, or 1·84 lbs., which will raise to 11·04 the amount of solid matter employed in producing a gallon of the above spirits.Some distillers mash a fourth time; and always use the feeble wort so obtained in mashing fresh grain.2. As the imperfect saccharine infusion obtained from raw grain is much more acescent than the rich sugary solution got from malt in the breweries, the distiller must use every precaution to cool his worts as quietly as possible, and to keep them clear from any acetous taint. The different schemes of cooling worts are considered underBeerandRefrigeration. As the worts cool, a quantity of starchy matter is precipitated, but it is all carefully swept along into the fermenting tun, and undoubtedly contributes to increase the production of alcohol. During the winter and temperate months, when the distilleries are most actively at work, the temperature at which the worts are set is usually about 70° F. When much farinaceous deposit is present, the heat may be only 65°, because, in this case, a slow fermentation seems to favour the conversion of that starch into sugar. In some German distilleries a little chalk is mixed with the worts, to check acidity.3.The fermentation.The yeast added to the worts as a ferment, ought to be the best top barm of the London porter breweries. About 1 gallon of it is requisite for every 2 bushels of meal and malt worked up in the mashing process; and of this quantity only a certain proportion is introduced at the beginning; the remainder being added by degrees, on the second and third day.Should the fermentation flag, a little more may be added on the fourth or fifth day, and the contents of the tun may be roused by an agitator. About 8 or 9 gallons may be introduced four days in succession to the quantity of worts extracted from 60 bushels of the farinaceous materials; or the third day’s dose may be intermitted, and joined to the fourth on the subsequent day.Great diversity, and no little caprice prevail among distillers in respect of the periods of administering the yeast; but they should be governed very much by the appearance of the fermentation. This process continues from nine to twelve or even fourteen days, according to circumstances; the tuns being left quite open during the first five days, but being covered moderately close afterwards to favour the full impregnation of the liquor with carbonic acid, as a fermenting agent. In consequence of the great attenuation of the wort by the generation of so much alcohol, no good body of yeast continues to float on the surface, and what is formed is beat down into the liquor on purpose to promote the fermentation. The temperature of the wash gradually increases till towards the end of the fourth day, when it attains its maximum height of about 25° above the pitch of 55° or 60° at which it may have been set. The time of the greatest elevation of temperature, as well as its amount, depends conjointly upon the quality of the yeast, the nature of the saccharo-starchy matter, and the state of the weather. It is highly probable that the electrical condition of the atmosphere exercises a considerable influence upon fermentation. We know the power of a thunderstorm to sour vinous fluids. An experimental inquiry into the relation between electricity and fermentation, could not fail to prove both curious and profitable.The diminution of the density of the wort is carefully watched by the distiller, as the true criterion of the success of his process. Thisattenuation, as he calls it, is owing partly to the decomposition of the sugar, which communicated its gravity to the solution, and partly to the introduction of the lighter alcoholic particles. Were all the saccharo-starchy matter resolved into gaseous compounds, the wort would become water; but since a part of it remains undecomposed, and a portion of alcohol is produced at the expense of the decomposed part, the degree of attenuation becomes a somewhat complicated problem in a theoretical point of view; the density due to the residuary sugar being masked and counteracted by the spirit evolved. Could the alcohol be drawn off as it is formed, the attenuation would probably become greater, because the alcohol checks the fermentative action, and eventually stops it, before all the saccharum is decomposed. After the wash has taken its highest degree of temperature, not much more spirit is found to be generated; were this therefore removed by proper means, the remaining vegetable matter would undoubtedly yield a further product of alcohol.In the attenuation of raw-grain wash, the specific gravity seldom arrives at 1·000; but most commonly stops short at 1·002 or 1·004. When the vinous fermentation comes to an end, the acetous is apt to commence, and to convert a portion of the alcohol into vinegar; a result which is easily ascertained by the increasing specific gravity, sour smell, and acidulous reaction of the wash upon litmus paper, which remains after the paper is heated, showing that the red colour is not caused by carbonic acid.Fermentation proceeds with more uniformity and success in the large tuns of the distiller, than in the experimental apparatus of the chemist; because the body of heat generated in the former case maintains the action. But I have succeeded in obviating this inconvenience in operating upon 80 or 90 gallons, by keeping up the temperature, when it begins to flag, by transmitting hot water through a recurved pipe plunged into the tun.We have already mentioned that one gallon of spirits, one in ten over-proof, is upon the average generated from 11·04 libs. of starch sugar; hence we conclude that one pound water-measure of spirits at proof (=1⁄10imperial gallon) is produced from one pound of the saccharum.Malt whiskey.—The treatment and produce of malt distilleries are in some respects different from those of raw grain. Having been professionally employed by the proprietors of both, I am prepared to state the peculiarities of the latter, by an example. 500 bushels of ground malt are first mashed with 9000 gallons of water, heated to the temperature of 160° F.: 6000 gallons of worts are drawn off into the coolers, and let down into the fermenting tun at 68°. From 3 to 4 per cent. of a mixture of London porter yeast with quick Scotch barm, are added, and well stirred through the mass. At the end of two or three days, in general, the fermentation is finished. On the residuary grains of the malt, from 4500 to 5000 gallons of water at 180° are run, which after proper mashing as before, are drawn off; then 4500 more are poured on, the drainage of which is added to the second. Both of these together, constituting 9000 gallons, are heated next day, and employed for the mashing of 500 bushels of fresh malt. During the fermentation, the wash which was set at the spec. grav. 1·065, comes down to water = 1·000.The wash is distilled in two stills, appropriated to it, of about 800 gallons capacity each, provided with a rotatory chain apparatus for preventing the lees from adhering to the bottom of the still. Into about 800 gallons of wash 8 lbs. of soap are put. The liquor obtained at this first distillation is called low-wines. These low-wines are redistilled in the spirit stills; the first and last portions of liquid being more or less blue or milky in colour, and rank in flavour, are run into a separate receiver called thefaints-back;while the middle portion, constituting in a well-managed distillery, from three-fourths to four-fifths of the whole, are received into the spirit-back. The faints are mixed with a large quantity of water, and redistilled, in order to free them from the fetid oil derived from the husks of the grain. The interception of this noxious oil may be best effected by a self-regulating bath, between the capital of the still and the refrigeratory, as will be explained in treating ofStills. The capitals of the common Scotch stills are made from 15 to 20 feet high, in order to prevent the chance of the wash boiling over into the worm; and they are, towards the beginning of the process, struck from time to time with a rod, and by the sound emitted it is known whether they be empty, partially filled, or in danger of an overflow; in which case the fire is damped, by a spout near the furnace door, connected by a leather pipe with an elevated reservoir of water. When very pure spirits are wished for, a third or even a fourth distillation is had recourse to; there being a quantity of water mixed each time with the spirit in the still, to prevent its acquiring a harsh alcoholic flavour.According to some experienced distillers from raw grain, the mashing temperature of the first liquor should not exceed 140° F.; whereas with malt it may be safely and beneficially 165° or 170°. When rye is used instead of malt, 90 bushels of it are mixed with 190 bushels of raw grain, constituting 280 bushels in whole, for the mashing of which 5200 gallons of water are required. An hour and a half more time is necessary for settling the mashing of the above mixture, than of grain alone. Gin is made in this way.The distiller of malt whiskey calculates on obtaining two gallons of proof spirits from one bushel of malt, in average years. The highest yield is 20 gallons per quarter of 8 bushels; and the lowest is 16, when the malt and fermentation are indifferent. The best temperature to set the fermenting tuns with malt wash is about 70° or 72° F.When malt is 5s.the bushel, 6 bushels at 30s.will yield 12 gallons of proof spirits. These cost therefore 2s.6d.per gallon for the malt; to which must be added 3d.per bushel for the amount of malt duty not returned, or 11⁄2d.on the gallon; this added to the Scotch duty of 3s.4d.the gallon, makes the price altogether 5s.111⁄2d.; besides the expenses in fuel, yeast, labour, and rent, which may be estimated at 81⁄2d.per gallon. But 3d.may be deducted for what is paid by the dairymen for the spent wash and grains. The total cost, therefore, exclusive of use of capital, is 6s.5d.per gallon in Scotland.The following is the work of a Scotch distillery, where good malt whiskey was made.One bushel of the malt weighed 35 libs., or the boll, = 6 bushels, 210 libs. In mashing each boll of malt, 110 gallons of water were run on it at 160° F. As soon as the fermenting tun of 3000 gallons capacity was charged with the wash at from 64° to 74° F., 2 gallons per cent. of barm were added. When the wash had become attenuated from 1·060 to 1·040, another gallon of barm was introduced.The temperature of the fermenting wash sometimes rises to 96°, which is, however, an extreme case, and not desirable. When the bubbles of carbonic acid mount in rapid succession, it is reckoned an excellent sign. If the tun be small, and stand in a cool apartment, it should be started at a higher temperature than in the reverse predicament. Should the fermentation be suffered to flag, it is in general a hopeless task to restore vigorous action. Some try the addition ofbubs, that is of some wort brought into a state of rapid fermentation in a tub, by a large proportion of yeast, but seldom with much success. Indeed the law prohibits the addition of any wort to the tun at a later period than 24 hours after it is set; so that if bubs are used afterwards, the distiller is apt to incur a penalty.The maximum quantity of proof spirits obtained on the great scale at any time from raw grain mixed with from one-fourth to one-eighth of malt, seems to be 22 gallons per quarter.By the British laws a distiller is not allowed to brew and distil at the same time but he must work alternately, one week, for instance, at fermentation, and next week at distillation.In fermenting solutions of sugar mixed with good yeast, the attenuation has been carried down to 0·984, and even 0·982, that is, in the language of the excise, 16 and 18 degrees below water, from 1·060, the density at which it was originally set in the tun. This was excellent work done on the scale of a great distillery nearly 30 years ago, when distillation from sugar was encouraged, in consequence of bad corn harvests.In an experiment which I made in 1831 for the information of a committee of the House of Commons, on the use of molasses in the breweries and distilleries, I dissolved 1 cwt. of raw sugar in water; so as to form 741⁄2gallons, inclusive of 2 gallons of yeast. The specific gravity of the mixture was 1·0593 on the 31st of March. By the 6th of April, that is in 6 days, the gravity had sunk to 0·992, or 8 degrees under water, which was reckoned a good attenuation, considering the circumstances and the small quantity operated upon. By distillation it afforded at the rate of 14·875 gallons of proof spirits for 100 gallons of the wash.When the distillers first worked from sugar, they only obtained upon an average from 1 cwt. 10·09 gallons imp. of proof spirit; but they afterwards got no less than 11·92 imp. gallons.The following experiment, which I made upon the fermentation of West India molasses into spirits, for the information of the said committee, may prove not uninteresting to my readers. 150 libs. were dissolved in water and mixed with 2 gallons of yeast, weighing exactly 20 libs. The wash measured 70 gallons, and had a spec. gravity of 1·0647 at 60° F. In two days the gravity had fallen to 1·0055; in three days to 1·0022; and in five days to 1·001. The temperature was kept up at from 80° to 90° F., during the two last days, by means of a steam pipe, to favour the fermentation. The product of spirits was 11 gallons, and35⁄100of a gallon. Now 150 libs. of the above molasses were found to contain of solid matter, chiefly uncrystallizable, 112 libs. And as 112 libs. of sugar are estimated by the revenue laws to afford by fermentation 111⁄2gallons imp. of proof spirit, the result of that experiment upon molasses must be considered satisfactory, bearing in mind that the saccharine substance in molasses has been not only partially decomposed by heat, but is mixed with some of the glutinous or extractive matter of the cane.Since the alteration of the excise laws relative to distillation in 1825 and 1826, when permission was given to set the wort at lower gravities, the quantity of spirits produced from 1 quarter of corn has been much increased, even up to fully 20 gallons; and the proportion of malt has been much diminished. The latter was soon reduced from three-sevenths malt, and four-sevenths barley, or two-fifths malt and three-fifths barley, to one-fifth of malt, and now to one-tenth or even one-sixteenth.A discussion having lately taken place in Ireland between certain persons connected with the distilleries and the officers of the excise, whether, and to what extent, raw grain worts would pass spontaneously into the vinous fermentation, the Board in London requested me to superintend a series of researches in a laboratory fitted up at their office, to settle this important point. I shall content myself here with giving the result of one experiment, out of several, which seems to me quite decisive. Three bushels of mixed grains were taken, consisting of two of barley, one half of oats, and one half of malt, which, being coarsely ground by a hand-mill, were mashed in a new tun with 24 gallons of water at 155°. The mash liquor drawn off amounted to 18 gallons, at the density of 1·0465; and temperature of 82° F. Being set in a new tun, it began to ferment in the course of 12 hours, and in 4 days it was attenuated down to gravity 1·012. This yielded, upon distillation in low wines, 3·22 gallons, and by rectification, in spirits, 3·05; while the quantity equivalent to the attenuation by the tables was 3·31, being an excellent accordance in such circumstances.The inquisitorialregimeimposed by law upon our distilleries, might lead a stranger to imagine that our legislators were desirous of repressing by every species of annoyance the fabrication of the fiery liquid which infuriates and demoralizes the lower population of these islands. But alas! credit can be given them for no such moral or philanthropic motive. The necessity of the exchequer to raise a great revenue, created by the wasteful expenditure of the state, on the one hand, and the efforts of fraudulent ingenuity on the other, to evade the payment of the high duties imposed, are the true origin of thatregime. Examinations in distilleries are constantly made by the officers of excise. There is a survey at 6 o’clock in the morning, when the officers take their accounts and gauges, and make calculations which occupy several hours. At 10 o’clock they again survey, going over the whole premises, where they continue a considerable time, frequently till the succeeding officer comes on duty; at 2 in the afternoon another survey takes place, but not by the same people; at 6 in the evening the survey is repeated; at 10 there comes another survey by an officer who had not been engaged in any of the previous surveys of that day. He is not relieved till 6 o’clock next morning. In addition to these regular inspections, the distilleries are subject to frequent and uncertain visits of the surveyor and general surveyor. “We are never,” says Mr. Smith, the eminent distiller of Whitechapel, “out of their hands.”[24][24]Report of Committee on Molasses, 2198.Before the fermented wort goes into the still, a calculation is made of the quantity of wash drawn from the wash back, and which is first pumped into what is called the wash charger. If the quantity in the wash charger exceeds the quantity in the wash back, the distiller is charged upon the higher quantity; if it contains less, he must pay according to the wash back, as being the larger quantity. When the quantity of wash is all transferred to the charger, the discharge cock of the wash charger is unlocked, and the wash is allowed to be drawn off from the charger into the still, the charging and discharging cock of the still being locked by the officer. There can be no transfer of wash but through the pumps, which are locked also. The first distillation from the wash is worked into the low-wine receiver, which is also a locked-up vessel; then ofthose low wines, the strength and quantity are ascertained by the excise. The account of them affords a comparison with the quantity which the contents of the wash-back had been estimated to produce; they are then pumped from the low-wine receiver, through pumps previously locked into the low-wine charger, which is also a locked-up vessel; from the locked-up charger, after the officer has done his duty regarding it, they are allowed to be drawn off into the low-wine still, which is a distillation of the second extraction; then that low wine still works into another locked-up cask, called the spirit receiver, for the receiving of raw spirits; when that distillation is finished, the officer, attending again on regular notice for that purpose, takes the quantity and strength of the spirits therein, and upon the quantity so ascertained he charges the duty. In distilling low wines, one portion of them goes into the spirit receiver, and a portion into what is called the faint receiver, which is another locked-up vessel. These faints are in the next distillation united with the low wines, from the succeeding wash-back on their second distillation, and are worked together; the united produce of these goes partly into the spirit cask, and partly back again into the faint cask. The operation is thus continued till all the backs in the house are emptied.[25][25]Thomas Smith, Esq., of Whitechapel Road, in Report of Molasses Committee, Part II. p. 149.There is a kind of ardent spirits manufactured in Holland, vulgarly called Dutch gin, Hollands, and sometimesgeneva, fromgenievre, the French for juniper, a plant with the essential oil of whose berries it is flavoured. One cwt. of ground malt mixed with two cwt. of rye meal are mashed for two hours, with about 450 gallons of water at the temperature of 160° F. The mash drawn off is reduced with cold water till the liquid part has the density of 45 libs. per barrel, = specific gravity 1·047; and is then put altogether into the fermenting back at the temperature of 80° F. One or two gallons of yeast are added. The fermentation soon becomes so vigorous as to raise the heat to 90° and upwards, but it is not pushed far, being generally over in two days, when the gravity of the wash, still indicates 12 pounds of saccharum per barrel. By this moderate attenuation, like that practised by the contraband distillers of the Highlands of Scotland, it is supposed that the fetid oil of the husks is not evolved, or at least in very small quantity. The grains are put into the alembic along with the liquid wash, and distilled into low wines, which are rectified twice over, some juniper berries and hops being added at the last distillation. But the junipers are sometimes bruised and put into the mash. The produce of worts so imperfectly fermented, is probably little more than one half of what the British distiller draws from the same quantity of grain. But the cheapness of labour and of grain, as well as the superior flavour of the Schiedam spirits, enables the Dutch distiller to carry on his business with a respectable profit. In opposition to the above facts, Dubrunfaut says that about one third more spirits is obtained in Holland from grain than in France, because a very calcareous spring water is employed in the mashing operation. Were this account well founded, all that the distillers of other countries would have to do would be merely to introduce a portion of chalk into their mash tuns, in order to be on a par with the Dutch. But the statement is altogether a mistake.In the vine countries, the inferior wines or those damaged by keeping, as also a fermented mash of the pressed grapes, mixed with water, are distilled to form theeau de vie de Cognacof the French, called Brandy in this country. It contains less essential oil, and that of a more agreeable flavour, than corn spirits. SeeBrandy.Berzelius says that there are distillers who are guilty of putting a little arsenious acid into the still; that the spirits contain pretty frequently traces of arsenic, which may be detected by adding to them a little muriatic acid, then evaporating off the alcohol, and passing a current of sulphuretted hydrogen gas through the residuary liquid, which will give it the characteristic orpiment yellow tinge, arsenic being present. Copper, which is sometimes introduced into distilled grain, or even malt spirits, in consequence of the soap employed in the process of distillation, may be detected best by the brown precipitate which it occasions with ferroprussiate of potash. No arsenic is ever used in this country.When damaged grain has been mashed in making whiskey, a peculiar oily substance makes its appearance in it. On approaching the nostrils to such whiskey slightly heated, this volatile matter irritates the pituitary membrane and the eyes very powerfully. These spirits have exactly the smell of an alcoholic solution of cyanogene; they intoxicate more powerfully than pure alcohol of equal strength, and produce even temporary frenzy, with subsequent sickness and disordered functions. This volatile body is not cyanogene, though it be so like it, for it forms no such combinations as cyanogene does. It may be extracted from diluted alcohol by agitating it with an unctuous oil, and then distilling the oil along with water. At the end of 3 or 4 months, this volatile matter disappears in a great measure, even when the spirits impregnated with it are inclosed in well-corked bottles; obviously from its undergoing a spontaneous decomposition. It may be preserved much longer in the state of a watery solution.When acetic ether is added to well purified or clean spirits, such as the distillers callsilent whiskey, it gives it somewhat of the flavour of brandy. For this purpose, also, the spirits are rectified from bruised prunes, or the lees of the cognac distilleries, whereby they acquire additional flavour. The astringent taste of old brandy is imitated by the introduction of a little catechu into the British spirits. Burned sugar is employed as a colouring in these imitations.IV.Of making whiskey from potatos.—This root in certain localities where it abounds at a moderate price, is an excellent material for fermenting into alcohol. When sound, it possesses from 20 to 25 per cent. of solid substance, of which starch constitutes at least three-fourths; hence 100 pounds contain from 16 to 22 pounds of starch susceptible of being saccharified. In the expressed juice there is a small quantity of tartaric acid.Potato steamerPreviously to mashing, potatos must be first well washed in a horizontal cylindrical cage revolving partially in a trough of water, as will be described in treating of the manufacture ofsugar from beet root. They must be then boiled in a close vessel with steam, provided with a perforated bottom a few inches above the real one. The top has an opening with a cover fitted tightly to it; through that the potatos are introduced; and immediately above the false bottom there is a similar aperture through which the boiled potatos are taken out. The steam-pipe enters at the top, runs down the side a little way; and terminates in a widened mouth. The large lids are secured by cross bars, the small hole by folds of linen. In the lower valve there are two small holes closed with pins, for inserting a wire to feel whether the potatos be sufficiently boiled. If so, the steam is immediately stopped off, the lower lid is removed, and the potatos pulled out with a hook into a tub. They must be immediately made into a homogeneous paste before they get cold.Fig.361.represents, in plan, or horizontal section, the apparatus used in France for this purpose.A Bare two cylinders covered with wire cloth, but open at the ends;C CandD Dare two pieces of wood fixed on the two axes, in the form of two cones, with the adjoining surfaces truncated; upon which, as also upon iron ringsE F, of the same diameter, made fast to the axes, the wire cylinder rests. Of the two wheelsG,H, the smaller has 18, the greater has 21 teeth. The diameter of each cylinder is 14 inches, the length 18. Above and between the two cylinders, there is a hopper for the reception of the boiled potatos. This machine triturates 1200 pounds of potatos per hour. Their paste must be forthwith mashed with some ground wheat or barley, and a proportion of malt; then be set a fermenting.Potato steamerAs in the above mode of trituration, the potatos are apt to cool to such a degree as to obstruct their ready admixture with water, it is better to make them into a paste in the vessel in which they are steamed. The apparatus contrived by Siemens fully answers this end. It consists essentially of a tubA, represented infig.362.in section. It is cylindrical, and made of planks from 3 to 4 inches thick, joined firmly and steam-tight; the upper and under ends being well secured with iron hoops. The lower part is about 2 inches more in diameter than the upper. About a foot from the bottom, in a circular groove, a cast iron partitionWor disc full of holes is made fast, which serves the purpose of a scarce, the apertures being an inch asunder; above, from1⁄8to1⁄10of an inch in diameter, and below, scooped out to half an inch. This disc is half an inch thick in the edges, and five fourths of an inch in the middle.Through the female screwain the top of the cylinder, there passes the screwed rodb, one and a half inches thick, provided at top with a strong cross barC C, for turning it round. The under end of this rod has a square piece terminating in a short screw, upon which a wrought iron cross is secured by means of a screw nut, so as to stand at right angles to the rod. This cross is composed of two distinct arms; of which one of them is mounted on the upper side with little knives an inch and a half long; the other, upon the under side, with a wire brush, that may be made to rub against the perforated cast iron disc. On the side of the cylinder atE,fig.362., there is a narrow aperture provided with a bung secured by a cross bar, and near the bottom atHthere is another like it. Both openings serve for taking out the residuary matter. Through the openingE, the above two arms are introduced; and secured to the square of the rod by the screw nut. In the top there is an opening,D,for putting in the potatos which may be shut in the same way. From the lid there likewise issues a lateral tubeF, which terminates in a tubful of water, for condensing the waste steam.Gis the tube connected with the steam boiler, for conducting the steam into the space under the iron discW.With this apparatus the potatos are prepared as follows: when the screw rod is so fixed that the cross touches the disc, the cylinder is to be filled with washed potatos to within one foot of the top, leaving them some space to expand. The orificeDis to be then closed, and the steam admitted. When the potatos are boiled enough, two labourers lay hold of the lever handlesC C, of the screw rodb, and turn it round with the effect of screwing up the spiked cross, and of triturating the potatos; an operation which may be still more effectually done by screwing it down again. The potato paste is now let off by the plug holeH, into the tubL, where it is mixed with about 30 per cent. of boiling water, and one thousandth part of potash, made caustic with quicklime, in order to dissolve the albuminous matter coagulated by the heat, and give complete fluidity to the mass. The alkali also neutralises the tartaric acid present. The mashed matter must now be mixed with the crushed malt diffused through 40 or 50 pounds of cold water for every 100 pounds of potatos, which lowers the temperature to 167°. The wort must be then diligently stirred during two hours; mixed with 40 or 50 pounds of cold water for 100 pounds of potatos, and when reduced to the temperature of 77° put into the fermenting tun along with the proper quantity (3 or 4 per cent.) of yeast. As potatos readily pass into the acetous fermentation, the admixture of the malt, the mashing, and the cooling should be rapidly performed, while the utmost cleanliness must be observed.The fermentation is brisk, probably from the agency of the albumen, and furnishes a good head of barm, which answers well for the bakers; 100 pounds of potatos yield from 18 to 20 pounds measure of spirits, nine elevenths of our excise proof; or about 16 pounds measure of proof, = about 12⁄3gallons.It has been observed that after the month of December potatos begin to yield a smaller product of fermented spirits; and when they have once sprouted or germinated, they afford very little indeed. From the difficulty of keeping and transporting potatos, distillation from them, even though our laws now permit it, can never become general till some plan be adopted for overcoming these disadvantages. A scheme of this kind, however, has been successfully practised in Vienna, which consists in subjecting the washed potatos to strong pressure in a perforated chest by a hydraulic or screw press, whereby they lose about three fourths of their weight, and may then be readily dried into a white flour, that may be kept for several years without injury, and transported to considerable distances with comparative ease. This flour, mixed with a moderate quantity of ground malt, and saccharified by mashing with water, at the temperature of 167° F., becomes capable of affording a sweet wort convertible by fermentation either into beer or whiskey.Horse-chestnuts, according to Hermstaedt, are an eligible material for producing alcohol, as 128 pounds of them afford 100 pounds of meal; which 100 pounds yield, by proper treatment, 34 pounds of spirits, containing 36 per cent. of absolute alcohol, by Richter’s tables. Barley to the extent of 10 pounds per 100 should be ground up with them, after they have been boiled in a steam apparatus, not only for the purpose of softening them, but freeing them from their bitter astringent matter. Acorns are productive of alcohol by similar treatment.The best means hitherto discovered for depriving bad whiskey of its nauseous smell and taste, is to pass it through well-burned and coarsely pulverised charcoal, distributed as follows in a series of cylindrical casks. Each vessel must have a double bottom, the false one being perforated with conical holes, and placed a few inches above the true. Upon this perforated board a layer of chopped clean straw one inch thick is laid; and over the straw, a stratum of small river gravel, the size of large peas. This is to be covered with a pretty thick stratum of the charcoal, previously freed from dirt and dust by washing; upon which a piece of close canvass is to be spread, and pressed down by a thin bed of river sand. The cylinder or cask should be filled with these successive layers to within two inches of its top, and it is then to be closed air-tight. Immediately below the head, a round orifice is pierced in the side, for receiving an overflow tube, which is either screwed rectangularly to another elbow pipe, or is bent (when of block tin) so as to enter tight into an orifice beneath the false bottom of the second cylinder or cask. In this way, the series may be continued to any desired number of vessels; the last discharging the purified spirit into the store-back. The foul spirit must be made to flow into the bottom space of the first cylinder down through a pipe in communication with a charging-back placed upon such an elevated level as to give sufficient pressure to force the spirits up through the series of filters; the supply-pipe being provided with a regulating stop-cock. The spirit may be filtereddownwardsthrough sand and cloth inits final passage to the receiver. It has been found, with very crude spirits, that eight successive cylinders were required to deprive them entirely of the rank flavour.In the year 1831, 23,000,000 gallons of spirits were made in the United Kingdom, equivalent to the consumption of 1,500,000 quarters of grain, and for that year and the four preceding years, there were imported annually 2,000,000 of quarters of foreign barley.In1832,20,778,521.gallons paid excise duty.1834,23,397,806.1836,27,137,000;of which 14,000,000 were Irish.We may add to the last quantity, 3 millions of gallons at least on the score of smuggling, in licensed and illicit distilleries; making 30 millions to be the frightful amount of whiskey consumed by the British people, independent of other intoxicating liquors.
DISTILLATION, (Eng. and Fr.;Branntweinbrennerei, Germ.) means, in the commercial language of this country, the manufacture of intoxicating spirits; under which are comprehended the four processes, ofmashingthe vegetable materials,coolingthe worts, exciting the vinousfermentation, and separating by a peculiar vessel called astill, the alcohol combined with more or less water. This art of evoking the fiery demon of drunkenness from his attempered state in wine and beer, was unknown to the ancient Greeks and Romans. It seems to have been invented by the barbarians of the north of Europe, as a solace to their cold and humid clime; and was first made known to the southern nations in the writings of Arnoldus de Villa Nova, and his pupil, Raymond Lully of Majorca, who declares this admirable essence of wine to be an emanation of the Divinity, an element newly revealed to man, but hid from antiquity, because the human race were then too young to need this beverage, destined to revive the energies of modern decrepitude. He further imagined that the discovery of thisaqua vitæ, as it was called, indicated the approaching consummation of all things—the end of this world. However much he erred as to the value of this remarkable essence, he truly predicted its vast influence upon humanity, since to both civilized and savage nations it has realized greater ills than were threatened in the fabled box of Pandora.
I shall consider in this place the first three of these subjects, reserving for the articleStillan account of the construction and use of that apparatus.
Whiskey, from the Irish word Usquebaugh, is the British name of the spirituous liquor manufactured by our distillers, and corresponds to theEau de vieof the French, and theBranntweinof the Germans. It is generated by that intestine change which grape juice and other glutino-saccharine liquids spontaneously undergo when exposed to the atmosphere at common temperatures; the theory of which will be expounded under the articleFermentation. The production of whiskey depends upon the simple fact, that when any vinous fluid is boiled, the alcohol being very volatile, evaporates first, and may thereby be separated from the aqueous vegetable infusion in which it took its birth. Sugar is the only substance which can be transformed into alcohol. Whatsoever fruits, seeds, or roots afford juices or extracts capable of conversion into vinous liquor, either contain sugar ready formed, or starch susceptible of acquiring the saccharine state by proper treatment. In common language, the intoxicating liquor obtained from the sweet juices of fruits is called wine; and that from the infusions of farinaceous seeds, beer; though there is no real difference between them in chemical constitution. A similar beverage, though probably less palatable, is procurable from the juices and infusions of many roots, by the process of fermentation. Wine, cyder, beer, and fermented wash of every kind, when distilled, yields an identical intoxicating spirit, which differs in these different cases merely in flavour, in consequence of the presence of a minute quantity of volatile oils of different odours.
I. The juices of sweet fruits contain a glutinous ingredient which acts as a ferment in causing their spontaneous change into a vinous condition; but the infusions of seeds, even in their germinated or malted state, require the addition of a glutinous substance called yeast, to excite the best fermentation. In the fabrication of wine or beer for drinking, the fermentative action should be arrested before all the fruity saccharum is decomposed; nor should it on any account be suffered to pass into the acetous stage; whereas for making distillery wash, that action should be promoted as long as the proportion of alcohol is increased, because the formation of a little acetic acid is not injurious to the quality of the distilled spirit, but rather improves its flavour by the addition of acetic ether, while all the undecomposed sugar is lost. Distillers operate upon the saccharine matter from corn of various kinds in two methods; in the first they draw off a pure watery extract from the grain, and subject this species of wort to fermentation; in the second they ferment and distil the infused mass of grains. The former is the practice of the distillers in the United Kingdom, and is preferable on many accounts; the latter, which is adopted in Germany, Holland, and the north of Europe, is less economical, more uncertain in the product, and affords a cruder spirit, in consequence of the fetid volatile oil evolved from the husks in the still. The substances employed by the distillers may be distributed into the following classes:—
1. Saccharine juices. At the head of these stands cane-juice, which fresh from the mill contains from 12 to 16 per cent. of raw sugar, and like the must of the grape enters into the vinous fermentation without the addition of yeast, affording the species of spirit called Rum, which is possessed of a peculiar aroma derived from an essential oil in the cane. An inferior sort of rum is fabricated from molasses, mixed with the skimmings and washings of the sugar pans. When molasses or treacle is diluted with twenty times its weight of warm water, and when the mixture has cooled to 78° F., if one twelfth of its weight of yeast be added, fermentation will speedily ensue, and an ardent spirit will be generated, which when distilled has none of the aroma of rum; proving this to reside in the immediate juice or substance of the cane, and to be dissipated at the high temperature employed in the production of molasses. Though the cane juice will spontaneously undergo the vinous fermentation, it does so more slowly and irregularly than the routine of business requires, and therefore is quickened by the addition of the lees of a preceding distillation. So sensible are the rum distillers of the advantage of such a plan, that they soak woollen cloths in the yeast of the fermenting vats, in order to preserve a ferment from one sugar season to another. In Jamaica and some other of our colonies, 50 gallons of spent wash or lees are mixed with 6 gallons of molasses, 36 gallons of sugar-pan skimmings (a substance rich in aroma), and 8 gallons of water; in which mixture there is about one twelfth part of solid saccharum. Those who attend more to the quality than the quantity of their rum, will use a smaller proportion of the spent wash, which is always empyreumatic, and imparts more or less of its odour to the spirit distilled from it. The fermentation is seldom complete in less than 9 days, and most commonly it requires from 12 to 15; the period being dependent upon the capacity of the fermenting tun, and the quality of its contents. The liquid now becomes clear, the froth having fallen to the bottom, and few bubbles of gas are extricated from it, while its specific gravity is reduced from 1·050 down to 0·992. The sooner it is subjected to distillation after this period the better, to preventthe loss of alcohol by the supervention of the acetous stage of fermentation, an accident very liable to happen in the sugar colonies. The crude spirit obtained from the large single still at the first operation, is rectified in a smaller still. About 114 gallons of rum, proof strength, specific gravity 0·920, are obtained from 1200 gallons of wash. Now these 1200 gallons weigh 12,600 libs., and contain nearly one eighth of their weight of sugar = 1575 libs.; which should yield nearly its own weight of proof spirit, whose bulk is =15750·92= 1712 pound measures = 171·2 gallons; whereas only 114 are obtained; proving the processes to be conducted in a manner far from economical, even with every reasonable allowance.
Mr Edwards gives the following estimate: “The total amount of sweets from an estate in Jamaica which makes 200 hogsheads of sugar, is 16,666 gallons. The wash set at the rate of 12 per cent. sweets, should return 34,720 gallons of low wines, which should give 14,412 gallons of rum, or 131 puncheons of 110 gallons each.”
By my own experiments on the quantity of proof spirit obtainable from molasses by fermentation (afterwards to be detailed), one gallon of sweets should yield one gallon of spirit; and hence the above 16,666 gallons should have afforded the same bulk of rum. But here we are left somewhat in the dark, by not knowing the specific gravity of the rum spoken of by Mr. Edwards. The only light let in upon us is when he mentions rum oil-proof, that is, a spirit in which olive oil will sink; indicating a density nearly the same with our actual excise proof, for olive oil at 60° F. has the specific gravity 0·919. When a solution of sugar of the proper strength is mixed with wine lees, and fermented, it affords a spirit by distillation not of the rum, but of the brandy flavour.
The sweet juices of palm trees and cocoa nuts, as also of the maple, and ash, birch, &c., when treated like cane juice, afford vinous liquors from which ardent spirits, under various names, are obtained; asarrack, &c.; the quantity being about 50 pounds of alcohol of 0·825 for every 100 pounds of solid saccharine extract present. Honey similarly treated affords the metheglin so much prized by our ancestors. Good whey, freed from curd by boiling, will yield 4 per cent. of spirit of wine, when fermented with the addition of a little yeast.
2. The juices of apples, pears, currants, and such fruits, afford by fermentation quantities of alcohol proportional to the sugar they contain. But the quality of the spirit is much better when it is distilled from vinous liquids of a certain age, than from recently fermented must. Cherries are employed in Germany, and other parts of the Continent, for making a high-flavoured spirit calledKirsch-wasser, or cherry water. The fully ripe fruit is crushed by a roller press, or an edge-stone mill, along with the kernels; the pulp is fermented in a mass, the liquid part is then drawn off, and distilled. More or less prussic acid enters from the kernels into this spirit, which renders it very injurious, as a liquor, to many constitutions. I was once nearly poisoned by swallowing a wine glass of it in the valley of Chamouni. The ripened red fruit of the mountain ash constitutes a good material for vinous fermentation. The juice being mixed with some water and a little yeast, affords when well fermented, according to Hermstaedt, 12 pounds, or 11⁄2gallons, of alcohol from 2 bushels of the ripe berries.
3. Many roots contain sugar, particularly beet, from which no less than 7 per cent. of it may be extracted by judicious means. Hermstaedt recommends to mash the steam boiled clean roots, and add to the paste two-thirds of its weight of boiling water, and a thirtieth of its weight of ground malt, mixing the materials well, and then leaving them three hours in a covered vessel. The mixture must now be passed through a wire sieve, with meshes of one-third of an inch square each; the residuum is washed with a little cold water, and, when the temperature has fallen to 77° F., the proper quantity of yeast must be added, and the fermentation suffered to proceed in a covered tun. In 5 or 6 days it will be complete, and will afford by distillation, from 100 pounds of beet root, about 10 or 12 pounds of proof spirits. Carrots and parsnips, when similarly treated, yield a considerable quantity of alcohol.
II.Ardent spirits or whiskey from fecula or starchy materials.
I have already pointed out, in the articleBeer, how the starch is transformed into a saccharine condition, by malting and mashing; and how a fermentable wort may be obtained from starchy meal. By like operations may all vegetable substances, which consist chiefly of starch, become materials for a whiskey distillery. To this class belong all the farinaceous grains, potatos, and the pods of shell fruits, as beans, vetches, horse-chesnuts, acorns, &c.
1.Whiskey from corn.All those species of corn which are employed in breweries answer for distilleries; as wheat, rye, barley, and oats; as well as buckwheat, and maize or Indian corn. The product of spirits which these different grains afford, depends upon the proportion of starch they contain, including the small quantity of uncrystallizable sugar present in them. Hermstaedt, who has made exact experiments upon the subject, reckons a quart (Prussian or British) spirits, containing 30 per cent. of the absolute alcohol of Richter, for 2 pounds of starch. Hence 100 pounds of starch should yield35 pounds of alcohol; or 4·375 gallons imperial, equal to 7·8 gallons of spirits, excise proof.
100 pounds of the following grains afford in spirits of specific gravity 0·9427, containing 45 per cent. of absolute alcohol (=9⁄11of British proof,) the following quantities:—
Wheat, 40 to 45 pounds of spirits; rye, 36 to 42; barley, 40; oats, 36; buckwheat, 40; maize, 40. The mean of the whole may be taken at 40 pounds, equal to 41⁄4gallons imperial, of 0·9427 specific gravity = 3·47 gallons, at excise proof. The chief difference in these several kinds of corn consists in their different bulks under the same weight; a matter of considerable importance; for since a bushel of oats weighs little more than the half of a bushel of wheat, the former becomes for some purposes less convenient in use than the latter, though it affords a good spirit.
Barley and rye are the species of grain most commonly employed in the European distilleries for making whiskey. Barley is mostly taken either partly or altogether in the malted state; while the other corns are not malted, but merely mixed with a certain proportion of barley malt to favour the saccharine fermentation in the mashing. It is deemed preferable to use a mixture of several sorts of grain, instead of a single one; for example, wheat with barley and oats; or barley with rye and wheat; for the husks of the oats diffused through the wheat flour and rye meal keep it open or porous when mashed, and thus favour the abstraction of the wort; while the gluten of the wheat tends to convert the starch of the barley and oats into sugar. When the whole of the grain, however, is malted, a much more limpid wort is obtained than from a mixture of malt with raw grain; hence the pure malt is preferable for the ale and porter brewer, while the mixture affords a larger product, at the same cost of materials, to the distiller. When barley is the only grain employed, from one-third to one-sixth of malt is usually mixed with it; but when wheat and rye are also taken, the addition of from one-eighth to one-sixteenth of barley malt is sufficient. Oats are peculiarly proper to be mixed with wheat, to keep the meal open in the mashing.
The following are the proportions used by some experienced Scotch distillers.
From each boll, weighing 291 lbs., 14 imperial gallons of proof whiskey are obtained on an average; equivalent to 11·2 gallons at 25 over proof.
The malting for the distilleries is to be conducted on the same principles as for the breweries, but the malt ought to be lightly kiln-dried, and that preferably at a steam heat, instead of a fire, which is apt to give an empyreumatic smell to the grain that passes into the spirits. For such persons, indeed, as relish the smell of burned turf, called peat-reek in Scotland, the malt should be dried by a turf fire, whereby the whiskey will acquire that peculiar odour.
But this smell, which was originally prized as a criterion of whiskey made from pure malt, moderately fermented and distilled with peculiar care, has of late years lost its value, since the artifice of impregnating bad raw grain whiskey with peat-smoke has been extensively practised.
Dr. Kolle, in his treatise on making spirits, describes a malting kiln with a copper plate heated with steam, 18 feet long, and 12 feet broad, on which a quantity of malt being spread thin, is changed every 3 or 4 hours, so that in 24 hours he turns out upwards of 28 cwt. of an excellent and well-kilned article. The malt of the distiller should be as pale as possible, because with the deepening of the colour an empyreumatic principle is generated.
When Indian corn is the subject of distillation, it must be malted in the same way as described in the articleBeer. According to Hermstaedt, its flour may be advantageously mixed with the crushed malt in the mash tun. But its more complete dissolution may be accomplished by Siemen’s mode of operating upon potatos, presently to be described.
1.Mashing.Barley and raw grain are ground to meal by millstones, but malt is merely crushed between rollers. If only one-tenth or one-eighth of malt be used with nine-tenths or seven-eighths of barley, some husks of oats are added, to render the mash mixture more drainable.
When 40 bushels of barley and 20 of malt form one mashing, from 600 to 700 gallons of water, heated to 150° F., are mixed with these 60 bushels in the mash tun,and carefully incorporated by much manual labour with wooden oars, or in great concerns by the mechanical apparatus used in the breweries. This agitation must be continued for 2 or 3 hours, with the admission from time to time of about 400 additional gallons of water, at a temperature of 190°, to counteract the cooling of the materials. But since the discovery ofdiastase, as the best heat for saccharifying starch is shewn to be not higher than 160° F., it would be far better to mash in a tun, partially, at least, steam encased, whereby we could preserve the temperature at the appropriate degree for generating the greatest quantity of sugar.
If the wort be examined every half-hour of the mashing period, it will be found to become progressively sweeter to the taste, thinner in appearance, but denser in reality.
The wort must be drawn off from the grains whenever it has attained its maximum density, which seldom exceeds 150 lbs. per barrel; that is,360 + 150360= 1·42, or 42 per cent. As the corn of the distiller of raw grain has not the same porosity as the brewer’s, the wort cannot be drawn off from the bottom of the tun, but through a series of holes at the level of the liquor, bored in a pipe stuck in at the corner of the vessel. About one-third only of the water of infusion can thus be drawn off from the pasty mass. More water is therefore poured on at the temperature of 190°, well mixed by agitation for half an hour, then quietly infused for an hour and a half, and finally drawn off as before. Fully 400 gallons of water are used upon this occasion, and nearly as much liquor may be drawn off. Lastly, to extract from the grains every thing soluble, about 700 gallons of boiling hot water are turned in upon them, thoroughly incorporated, then left quietly to infuse, and drawn off as above. This weak wort is commonly reserved for the first liquor of the next mashing operation upon a fresh quantity of meal and malt.
The English distiller is bound by law to make his mixed worts to be let down into the fermenting tun of a specific gravity not less than 1·050, nor more than 1·090; the Scotch and Irish distillers not less than 1·030, nor more than 1·080; which numbers are called, gravity 50, 90, 30, and 80, respectively.
With the proportion of malt, raw grain, and water, above prescribed, the infusion first drawn off may have a strength = 20 per cent. = spec. grav. 1·082, or 73 lbs. per barrel; the second of 50 lbs. per barrel, or 14 per cent.; and the two together would have a strength of 61·2 lbs. per barrel = 17 per cent., or spec. grav. 1·070. From experiments carefully made upon a considerable scale, it appears that no more than four-fifths of the soluble saccharo-starchy matter of the worts is decomposed in the best regulated fermentations of the distiller from raw grain. For every 2 lbs. so decomposed, 1 lb. of alcohol, spec. grav. 0·825 is generated; and as every gallon of spirits of the spec. grav. 0·909 contains 4·6 lbs. of such alcohol, it will take twice 4·6 or 9·2 lbs. of saccharine matter to produce the said gallon. To these 9·2 lbs., truly transmuted in the process, we must add one-fifth, or 1·84 lbs., which will raise to 11·04 the amount of solid matter employed in producing a gallon of the above spirits.
Some distillers mash a fourth time; and always use the feeble wort so obtained in mashing fresh grain.
2. As the imperfect saccharine infusion obtained from raw grain is much more acescent than the rich sugary solution got from malt in the breweries, the distiller must use every precaution to cool his worts as quietly as possible, and to keep them clear from any acetous taint. The different schemes of cooling worts are considered underBeerandRefrigeration. As the worts cool, a quantity of starchy matter is precipitated, but it is all carefully swept along into the fermenting tun, and undoubtedly contributes to increase the production of alcohol. During the winter and temperate months, when the distilleries are most actively at work, the temperature at which the worts are set is usually about 70° F. When much farinaceous deposit is present, the heat may be only 65°, because, in this case, a slow fermentation seems to favour the conversion of that starch into sugar. In some German distilleries a little chalk is mixed with the worts, to check acidity.
3.The fermentation.
The yeast added to the worts as a ferment, ought to be the best top barm of the London porter breweries. About 1 gallon of it is requisite for every 2 bushels of meal and malt worked up in the mashing process; and of this quantity only a certain proportion is introduced at the beginning; the remainder being added by degrees, on the second and third day.
Should the fermentation flag, a little more may be added on the fourth or fifth day, and the contents of the tun may be roused by an agitator. About 8 or 9 gallons may be introduced four days in succession to the quantity of worts extracted from 60 bushels of the farinaceous materials; or the third day’s dose may be intermitted, and joined to the fourth on the subsequent day.
Great diversity, and no little caprice prevail among distillers in respect of the periods of administering the yeast; but they should be governed very much by the appearance of the fermentation. This process continues from nine to twelve or even fourteen days, according to circumstances; the tuns being left quite open during the first five days, but being covered moderately close afterwards to favour the full impregnation of the liquor with carbonic acid, as a fermenting agent. In consequence of the great attenuation of the wort by the generation of so much alcohol, no good body of yeast continues to float on the surface, and what is formed is beat down into the liquor on purpose to promote the fermentation. The temperature of the wash gradually increases till towards the end of the fourth day, when it attains its maximum height of about 25° above the pitch of 55° or 60° at which it may have been set. The time of the greatest elevation of temperature, as well as its amount, depends conjointly upon the quality of the yeast, the nature of the saccharo-starchy matter, and the state of the weather. It is highly probable that the electrical condition of the atmosphere exercises a considerable influence upon fermentation. We know the power of a thunderstorm to sour vinous fluids. An experimental inquiry into the relation between electricity and fermentation, could not fail to prove both curious and profitable.
The diminution of the density of the wort is carefully watched by the distiller, as the true criterion of the success of his process. Thisattenuation, as he calls it, is owing partly to the decomposition of the sugar, which communicated its gravity to the solution, and partly to the introduction of the lighter alcoholic particles. Were all the saccharo-starchy matter resolved into gaseous compounds, the wort would become water; but since a part of it remains undecomposed, and a portion of alcohol is produced at the expense of the decomposed part, the degree of attenuation becomes a somewhat complicated problem in a theoretical point of view; the density due to the residuary sugar being masked and counteracted by the spirit evolved. Could the alcohol be drawn off as it is formed, the attenuation would probably become greater, because the alcohol checks the fermentative action, and eventually stops it, before all the saccharum is decomposed. After the wash has taken its highest degree of temperature, not much more spirit is found to be generated; were this therefore removed by proper means, the remaining vegetable matter would undoubtedly yield a further product of alcohol.
In the attenuation of raw-grain wash, the specific gravity seldom arrives at 1·000; but most commonly stops short at 1·002 or 1·004. When the vinous fermentation comes to an end, the acetous is apt to commence, and to convert a portion of the alcohol into vinegar; a result which is easily ascertained by the increasing specific gravity, sour smell, and acidulous reaction of the wash upon litmus paper, which remains after the paper is heated, showing that the red colour is not caused by carbonic acid.
Fermentation proceeds with more uniformity and success in the large tuns of the distiller, than in the experimental apparatus of the chemist; because the body of heat generated in the former case maintains the action. But I have succeeded in obviating this inconvenience in operating upon 80 or 90 gallons, by keeping up the temperature, when it begins to flag, by transmitting hot water through a recurved pipe plunged into the tun.
We have already mentioned that one gallon of spirits, one in ten over-proof, is upon the average generated from 11·04 libs. of starch sugar; hence we conclude that one pound water-measure of spirits at proof (=1⁄10imperial gallon) is produced from one pound of the saccharum.
Malt whiskey.—The treatment and produce of malt distilleries are in some respects different from those of raw grain. Having been professionally employed by the proprietors of both, I am prepared to state the peculiarities of the latter, by an example. 500 bushels of ground malt are first mashed with 9000 gallons of water, heated to the temperature of 160° F.: 6000 gallons of worts are drawn off into the coolers, and let down into the fermenting tun at 68°. From 3 to 4 per cent. of a mixture of London porter yeast with quick Scotch barm, are added, and well stirred through the mass. At the end of two or three days, in general, the fermentation is finished. On the residuary grains of the malt, from 4500 to 5000 gallons of water at 180° are run, which after proper mashing as before, are drawn off; then 4500 more are poured on, the drainage of which is added to the second. Both of these together, constituting 9000 gallons, are heated next day, and employed for the mashing of 500 bushels of fresh malt. During the fermentation, the wash which was set at the spec. grav. 1·065, comes down to water = 1·000.
The wash is distilled in two stills, appropriated to it, of about 800 gallons capacity each, provided with a rotatory chain apparatus for preventing the lees from adhering to the bottom of the still. Into about 800 gallons of wash 8 lbs. of soap are put. The liquor obtained at this first distillation is called low-wines. These low-wines are redistilled in the spirit stills; the first and last portions of liquid being more or less blue or milky in colour, and rank in flavour, are run into a separate receiver called thefaints-back;while the middle portion, constituting in a well-managed distillery, from three-fourths to four-fifths of the whole, are received into the spirit-back. The faints are mixed with a large quantity of water, and redistilled, in order to free them from the fetid oil derived from the husks of the grain. The interception of this noxious oil may be best effected by a self-regulating bath, between the capital of the still and the refrigeratory, as will be explained in treating ofStills. The capitals of the common Scotch stills are made from 15 to 20 feet high, in order to prevent the chance of the wash boiling over into the worm; and they are, towards the beginning of the process, struck from time to time with a rod, and by the sound emitted it is known whether they be empty, partially filled, or in danger of an overflow; in which case the fire is damped, by a spout near the furnace door, connected by a leather pipe with an elevated reservoir of water. When very pure spirits are wished for, a third or even a fourth distillation is had recourse to; there being a quantity of water mixed each time with the spirit in the still, to prevent its acquiring a harsh alcoholic flavour.
According to some experienced distillers from raw grain, the mashing temperature of the first liquor should not exceed 140° F.; whereas with malt it may be safely and beneficially 165° or 170°. When rye is used instead of malt, 90 bushels of it are mixed with 190 bushels of raw grain, constituting 280 bushels in whole, for the mashing of which 5200 gallons of water are required. An hour and a half more time is necessary for settling the mashing of the above mixture, than of grain alone. Gin is made in this way.
The distiller of malt whiskey calculates on obtaining two gallons of proof spirits from one bushel of malt, in average years. The highest yield is 20 gallons per quarter of 8 bushels; and the lowest is 16, when the malt and fermentation are indifferent. The best temperature to set the fermenting tuns with malt wash is about 70° or 72° F.
When malt is 5s.the bushel, 6 bushels at 30s.will yield 12 gallons of proof spirits. These cost therefore 2s.6d.per gallon for the malt; to which must be added 3d.per bushel for the amount of malt duty not returned, or 11⁄2d.on the gallon; this added to the Scotch duty of 3s.4d.the gallon, makes the price altogether 5s.111⁄2d.; besides the expenses in fuel, yeast, labour, and rent, which may be estimated at 81⁄2d.per gallon. But 3d.may be deducted for what is paid by the dairymen for the spent wash and grains. The total cost, therefore, exclusive of use of capital, is 6s.5d.per gallon in Scotland.
The following is the work of a Scotch distillery, where good malt whiskey was made.
One bushel of the malt weighed 35 libs., or the boll, = 6 bushels, 210 libs. In mashing each boll of malt, 110 gallons of water were run on it at 160° F. As soon as the fermenting tun of 3000 gallons capacity was charged with the wash at from 64° to 74° F., 2 gallons per cent. of barm were added. When the wash had become attenuated from 1·060 to 1·040, another gallon of barm was introduced.
The temperature of the fermenting wash sometimes rises to 96°, which is, however, an extreme case, and not desirable. When the bubbles of carbonic acid mount in rapid succession, it is reckoned an excellent sign. If the tun be small, and stand in a cool apartment, it should be started at a higher temperature than in the reverse predicament. Should the fermentation be suffered to flag, it is in general a hopeless task to restore vigorous action. Some try the addition ofbubs, that is of some wort brought into a state of rapid fermentation in a tub, by a large proportion of yeast, but seldom with much success. Indeed the law prohibits the addition of any wort to the tun at a later period than 24 hours after it is set; so that if bubs are used afterwards, the distiller is apt to incur a penalty.
The maximum quantity of proof spirits obtained on the great scale at any time from raw grain mixed with from one-fourth to one-eighth of malt, seems to be 22 gallons per quarter.
By the British laws a distiller is not allowed to brew and distil at the same time but he must work alternately, one week, for instance, at fermentation, and next week at distillation.
In fermenting solutions of sugar mixed with good yeast, the attenuation has been carried down to 0·984, and even 0·982, that is, in the language of the excise, 16 and 18 degrees below water, from 1·060, the density at which it was originally set in the tun. This was excellent work done on the scale of a great distillery nearly 30 years ago, when distillation from sugar was encouraged, in consequence of bad corn harvests.
In an experiment which I made in 1831 for the information of a committee of the House of Commons, on the use of molasses in the breweries and distilleries, I dissolved 1 cwt. of raw sugar in water; so as to form 741⁄2gallons, inclusive of 2 gallons of yeast. The specific gravity of the mixture was 1·0593 on the 31st of March. By the 6th of April, that is in 6 days, the gravity had sunk to 0·992, or 8 degrees under water, which was reckoned a good attenuation, considering the circumstances and the small quantity operated upon. By distillation it afforded at the rate of 14·875 gallons of proof spirits for 100 gallons of the wash.
When the distillers first worked from sugar, they only obtained upon an average from 1 cwt. 10·09 gallons imp. of proof spirit; but they afterwards got no less than 11·92 imp. gallons.
The following experiment, which I made upon the fermentation of West India molasses into spirits, for the information of the said committee, may prove not uninteresting to my readers. 150 libs. were dissolved in water and mixed with 2 gallons of yeast, weighing exactly 20 libs. The wash measured 70 gallons, and had a spec. gravity of 1·0647 at 60° F. In two days the gravity had fallen to 1·0055; in three days to 1·0022; and in five days to 1·001. The temperature was kept up at from 80° to 90° F., during the two last days, by means of a steam pipe, to favour the fermentation. The product of spirits was 11 gallons, and35⁄100of a gallon. Now 150 libs. of the above molasses were found to contain of solid matter, chiefly uncrystallizable, 112 libs. And as 112 libs. of sugar are estimated by the revenue laws to afford by fermentation 111⁄2gallons imp. of proof spirit, the result of that experiment upon molasses must be considered satisfactory, bearing in mind that the saccharine substance in molasses has been not only partially decomposed by heat, but is mixed with some of the glutinous or extractive matter of the cane.
Since the alteration of the excise laws relative to distillation in 1825 and 1826, when permission was given to set the wort at lower gravities, the quantity of spirits produced from 1 quarter of corn has been much increased, even up to fully 20 gallons; and the proportion of malt has been much diminished. The latter was soon reduced from three-sevenths malt, and four-sevenths barley, or two-fifths malt and three-fifths barley, to one-fifth of malt, and now to one-tenth or even one-sixteenth.
A discussion having lately taken place in Ireland between certain persons connected with the distilleries and the officers of the excise, whether, and to what extent, raw grain worts would pass spontaneously into the vinous fermentation, the Board in London requested me to superintend a series of researches in a laboratory fitted up at their office, to settle this important point. I shall content myself here with giving the result of one experiment, out of several, which seems to me quite decisive. Three bushels of mixed grains were taken, consisting of two of barley, one half of oats, and one half of malt, which, being coarsely ground by a hand-mill, were mashed in a new tun with 24 gallons of water at 155°. The mash liquor drawn off amounted to 18 gallons, at the density of 1·0465; and temperature of 82° F. Being set in a new tun, it began to ferment in the course of 12 hours, and in 4 days it was attenuated down to gravity 1·012. This yielded, upon distillation in low wines, 3·22 gallons, and by rectification, in spirits, 3·05; while the quantity equivalent to the attenuation by the tables was 3·31, being an excellent accordance in such circumstances.
The inquisitorialregimeimposed by law upon our distilleries, might lead a stranger to imagine that our legislators were desirous of repressing by every species of annoyance the fabrication of the fiery liquid which infuriates and demoralizes the lower population of these islands. But alas! credit can be given them for no such moral or philanthropic motive. The necessity of the exchequer to raise a great revenue, created by the wasteful expenditure of the state, on the one hand, and the efforts of fraudulent ingenuity on the other, to evade the payment of the high duties imposed, are the true origin of thatregime. Examinations in distilleries are constantly made by the officers of excise. There is a survey at 6 o’clock in the morning, when the officers take their accounts and gauges, and make calculations which occupy several hours. At 10 o’clock they again survey, going over the whole premises, where they continue a considerable time, frequently till the succeeding officer comes on duty; at 2 in the afternoon another survey takes place, but not by the same people; at 6 in the evening the survey is repeated; at 10 there comes another survey by an officer who had not been engaged in any of the previous surveys of that day. He is not relieved till 6 o’clock next morning. In addition to these regular inspections, the distilleries are subject to frequent and uncertain visits of the surveyor and general surveyor. “We are never,” says Mr. Smith, the eminent distiller of Whitechapel, “out of their hands.”[24]
[24]Report of Committee on Molasses, 2198.
[24]Report of Committee on Molasses, 2198.
Before the fermented wort goes into the still, a calculation is made of the quantity of wash drawn from the wash back, and which is first pumped into what is called the wash charger. If the quantity in the wash charger exceeds the quantity in the wash back, the distiller is charged upon the higher quantity; if it contains less, he must pay according to the wash back, as being the larger quantity. When the quantity of wash is all transferred to the charger, the discharge cock of the wash charger is unlocked, and the wash is allowed to be drawn off from the charger into the still, the charging and discharging cock of the still being locked by the officer. There can be no transfer of wash but through the pumps, which are locked also. The first distillation from the wash is worked into the low-wine receiver, which is also a locked-up vessel; then ofthose low wines, the strength and quantity are ascertained by the excise. The account of them affords a comparison with the quantity which the contents of the wash-back had been estimated to produce; they are then pumped from the low-wine receiver, through pumps previously locked into the low-wine charger, which is also a locked-up vessel; from the locked-up charger, after the officer has done his duty regarding it, they are allowed to be drawn off into the low-wine still, which is a distillation of the second extraction; then that low wine still works into another locked-up cask, called the spirit receiver, for the receiving of raw spirits; when that distillation is finished, the officer, attending again on regular notice for that purpose, takes the quantity and strength of the spirits therein, and upon the quantity so ascertained he charges the duty. In distilling low wines, one portion of them goes into the spirit receiver, and a portion into what is called the faint receiver, which is another locked-up vessel. These faints are in the next distillation united with the low wines, from the succeeding wash-back on their second distillation, and are worked together; the united produce of these goes partly into the spirit cask, and partly back again into the faint cask. The operation is thus continued till all the backs in the house are emptied.[25]
[25]Thomas Smith, Esq., of Whitechapel Road, in Report of Molasses Committee, Part II. p. 149.
[25]Thomas Smith, Esq., of Whitechapel Road, in Report of Molasses Committee, Part II. p. 149.
There is a kind of ardent spirits manufactured in Holland, vulgarly called Dutch gin, Hollands, and sometimesgeneva, fromgenievre, the French for juniper, a plant with the essential oil of whose berries it is flavoured. One cwt. of ground malt mixed with two cwt. of rye meal are mashed for two hours, with about 450 gallons of water at the temperature of 160° F. The mash drawn off is reduced with cold water till the liquid part has the density of 45 libs. per barrel, = specific gravity 1·047; and is then put altogether into the fermenting back at the temperature of 80° F. One or two gallons of yeast are added. The fermentation soon becomes so vigorous as to raise the heat to 90° and upwards, but it is not pushed far, being generally over in two days, when the gravity of the wash, still indicates 12 pounds of saccharum per barrel. By this moderate attenuation, like that practised by the contraband distillers of the Highlands of Scotland, it is supposed that the fetid oil of the husks is not evolved, or at least in very small quantity. The grains are put into the alembic along with the liquid wash, and distilled into low wines, which are rectified twice over, some juniper berries and hops being added at the last distillation. But the junipers are sometimes bruised and put into the mash. The produce of worts so imperfectly fermented, is probably little more than one half of what the British distiller draws from the same quantity of grain. But the cheapness of labour and of grain, as well as the superior flavour of the Schiedam spirits, enables the Dutch distiller to carry on his business with a respectable profit. In opposition to the above facts, Dubrunfaut says that about one third more spirits is obtained in Holland from grain than in France, because a very calcareous spring water is employed in the mashing operation. Were this account well founded, all that the distillers of other countries would have to do would be merely to introduce a portion of chalk into their mash tuns, in order to be on a par with the Dutch. But the statement is altogether a mistake.
In the vine countries, the inferior wines or those damaged by keeping, as also a fermented mash of the pressed grapes, mixed with water, are distilled to form theeau de vie de Cognacof the French, called Brandy in this country. It contains less essential oil, and that of a more agreeable flavour, than corn spirits. SeeBrandy.
Berzelius says that there are distillers who are guilty of putting a little arsenious acid into the still; that the spirits contain pretty frequently traces of arsenic, which may be detected by adding to them a little muriatic acid, then evaporating off the alcohol, and passing a current of sulphuretted hydrogen gas through the residuary liquid, which will give it the characteristic orpiment yellow tinge, arsenic being present. Copper, which is sometimes introduced into distilled grain, or even malt spirits, in consequence of the soap employed in the process of distillation, may be detected best by the brown precipitate which it occasions with ferroprussiate of potash. No arsenic is ever used in this country.
When damaged grain has been mashed in making whiskey, a peculiar oily substance makes its appearance in it. On approaching the nostrils to such whiskey slightly heated, this volatile matter irritates the pituitary membrane and the eyes very powerfully. These spirits have exactly the smell of an alcoholic solution of cyanogene; they intoxicate more powerfully than pure alcohol of equal strength, and produce even temporary frenzy, with subsequent sickness and disordered functions. This volatile body is not cyanogene, though it be so like it, for it forms no such combinations as cyanogene does. It may be extracted from diluted alcohol by agitating it with an unctuous oil, and then distilling the oil along with water. At the end of 3 or 4 months, this volatile matter disappears in a great measure, even when the spirits impregnated with it are inclosed in well-corked bottles; obviously from its undergoing a spontaneous decomposition. It may be preserved much longer in the state of a watery solution.
When acetic ether is added to well purified or clean spirits, such as the distillers callsilent whiskey, it gives it somewhat of the flavour of brandy. For this purpose, also, the spirits are rectified from bruised prunes, or the lees of the cognac distilleries, whereby they acquire additional flavour. The astringent taste of old brandy is imitated by the introduction of a little catechu into the British spirits. Burned sugar is employed as a colouring in these imitations.
IV.Of making whiskey from potatos.—This root in certain localities where it abounds at a moderate price, is an excellent material for fermenting into alcohol. When sound, it possesses from 20 to 25 per cent. of solid substance, of which starch constitutes at least three-fourths; hence 100 pounds contain from 16 to 22 pounds of starch susceptible of being saccharified. In the expressed juice there is a small quantity of tartaric acid.
Potato steamer
Previously to mashing, potatos must be first well washed in a horizontal cylindrical cage revolving partially in a trough of water, as will be described in treating of the manufacture ofsugar from beet root. They must be then boiled in a close vessel with steam, provided with a perforated bottom a few inches above the real one. The top has an opening with a cover fitted tightly to it; through that the potatos are introduced; and immediately above the false bottom there is a similar aperture through which the boiled potatos are taken out. The steam-pipe enters at the top, runs down the side a little way; and terminates in a widened mouth. The large lids are secured by cross bars, the small hole by folds of linen. In the lower valve there are two small holes closed with pins, for inserting a wire to feel whether the potatos be sufficiently boiled. If so, the steam is immediately stopped off, the lower lid is removed, and the potatos pulled out with a hook into a tub. They must be immediately made into a homogeneous paste before they get cold.Fig.361.represents, in plan, or horizontal section, the apparatus used in France for this purpose.A Bare two cylinders covered with wire cloth, but open at the ends;C CandD Dare two pieces of wood fixed on the two axes, in the form of two cones, with the adjoining surfaces truncated; upon which, as also upon iron ringsE F, of the same diameter, made fast to the axes, the wire cylinder rests. Of the two wheelsG,H, the smaller has 18, the greater has 21 teeth. The diameter of each cylinder is 14 inches, the length 18. Above and between the two cylinders, there is a hopper for the reception of the boiled potatos. This machine triturates 1200 pounds of potatos per hour. Their paste must be forthwith mashed with some ground wheat or barley, and a proportion of malt; then be set a fermenting.
Potato steamer
As in the above mode of trituration, the potatos are apt to cool to such a degree as to obstruct their ready admixture with water, it is better to make them into a paste in the vessel in which they are steamed. The apparatus contrived by Siemens fully answers this end. It consists essentially of a tubA, represented infig.362.in section. It is cylindrical, and made of planks from 3 to 4 inches thick, joined firmly and steam-tight; the upper and under ends being well secured with iron hoops. The lower part is about 2 inches more in diameter than the upper. About a foot from the bottom, in a circular groove, a cast iron partitionWor disc full of holes is made fast, which serves the purpose of a scarce, the apertures being an inch asunder; above, from1⁄8to1⁄10of an inch in diameter, and below, scooped out to half an inch. This disc is half an inch thick in the edges, and five fourths of an inch in the middle.
Through the female screwain the top of the cylinder, there passes the screwed rodb, one and a half inches thick, provided at top with a strong cross barC C, for turning it round. The under end of this rod has a square piece terminating in a short screw, upon which a wrought iron cross is secured by means of a screw nut, so as to stand at right angles to the rod. This cross is composed of two distinct arms; of which one of them is mounted on the upper side with little knives an inch and a half long; the other, upon the under side, with a wire brush, that may be made to rub against the perforated cast iron disc. On the side of the cylinder atE,fig.362., there is a narrow aperture provided with a bung secured by a cross bar, and near the bottom atHthere is another like it. Both openings serve for taking out the residuary matter. Through the openingE, the above two arms are introduced; and secured to the square of the rod by the screw nut. In the top there is an opening,D,for putting in the potatos which may be shut in the same way. From the lid there likewise issues a lateral tubeF, which terminates in a tubful of water, for condensing the waste steam.Gis the tube connected with the steam boiler, for conducting the steam into the space under the iron discW.
With this apparatus the potatos are prepared as follows: when the screw rod is so fixed that the cross touches the disc, the cylinder is to be filled with washed potatos to within one foot of the top, leaving them some space to expand. The orificeDis to be then closed, and the steam admitted. When the potatos are boiled enough, two labourers lay hold of the lever handlesC C, of the screw rodb, and turn it round with the effect of screwing up the spiked cross, and of triturating the potatos; an operation which may be still more effectually done by screwing it down again. The potato paste is now let off by the plug holeH, into the tubL, where it is mixed with about 30 per cent. of boiling water, and one thousandth part of potash, made caustic with quicklime, in order to dissolve the albuminous matter coagulated by the heat, and give complete fluidity to the mass. The alkali also neutralises the tartaric acid present. The mashed matter must now be mixed with the crushed malt diffused through 40 or 50 pounds of cold water for every 100 pounds of potatos, which lowers the temperature to 167°. The wort must be then diligently stirred during two hours; mixed with 40 or 50 pounds of cold water for 100 pounds of potatos, and when reduced to the temperature of 77° put into the fermenting tun along with the proper quantity (3 or 4 per cent.) of yeast. As potatos readily pass into the acetous fermentation, the admixture of the malt, the mashing, and the cooling should be rapidly performed, while the utmost cleanliness must be observed.
The fermentation is brisk, probably from the agency of the albumen, and furnishes a good head of barm, which answers well for the bakers; 100 pounds of potatos yield from 18 to 20 pounds measure of spirits, nine elevenths of our excise proof; or about 16 pounds measure of proof, = about 12⁄3gallons.
It has been observed that after the month of December potatos begin to yield a smaller product of fermented spirits; and when they have once sprouted or germinated, they afford very little indeed. From the difficulty of keeping and transporting potatos, distillation from them, even though our laws now permit it, can never become general till some plan be adopted for overcoming these disadvantages. A scheme of this kind, however, has been successfully practised in Vienna, which consists in subjecting the washed potatos to strong pressure in a perforated chest by a hydraulic or screw press, whereby they lose about three fourths of their weight, and may then be readily dried into a white flour, that may be kept for several years without injury, and transported to considerable distances with comparative ease. This flour, mixed with a moderate quantity of ground malt, and saccharified by mashing with water, at the temperature of 167° F., becomes capable of affording a sweet wort convertible by fermentation either into beer or whiskey.
Horse-chestnuts, according to Hermstaedt, are an eligible material for producing alcohol, as 128 pounds of them afford 100 pounds of meal; which 100 pounds yield, by proper treatment, 34 pounds of spirits, containing 36 per cent. of absolute alcohol, by Richter’s tables. Barley to the extent of 10 pounds per 100 should be ground up with them, after they have been boiled in a steam apparatus, not only for the purpose of softening them, but freeing them from their bitter astringent matter. Acorns are productive of alcohol by similar treatment.
The best means hitherto discovered for depriving bad whiskey of its nauseous smell and taste, is to pass it through well-burned and coarsely pulverised charcoal, distributed as follows in a series of cylindrical casks. Each vessel must have a double bottom, the false one being perforated with conical holes, and placed a few inches above the true. Upon this perforated board a layer of chopped clean straw one inch thick is laid; and over the straw, a stratum of small river gravel, the size of large peas. This is to be covered with a pretty thick stratum of the charcoal, previously freed from dirt and dust by washing; upon which a piece of close canvass is to be spread, and pressed down by a thin bed of river sand. The cylinder or cask should be filled with these successive layers to within two inches of its top, and it is then to be closed air-tight. Immediately below the head, a round orifice is pierced in the side, for receiving an overflow tube, which is either screwed rectangularly to another elbow pipe, or is bent (when of block tin) so as to enter tight into an orifice beneath the false bottom of the second cylinder or cask. In this way, the series may be continued to any desired number of vessels; the last discharging the purified spirit into the store-back. The foul spirit must be made to flow into the bottom space of the first cylinder down through a pipe in communication with a charging-back placed upon such an elevated level as to give sufficient pressure to force the spirits up through the series of filters; the supply-pipe being provided with a regulating stop-cock. The spirit may be filtereddownwardsthrough sand and cloth inits final passage to the receiver. It has been found, with very crude spirits, that eight successive cylinders were required to deprive them entirely of the rank flavour.
In the year 1831, 23,000,000 gallons of spirits were made in the United Kingdom, equivalent to the consumption of 1,500,000 quarters of grain, and for that year and the four preceding years, there were imported annually 2,000,000 of quarters of foreign barley.
We may add to the last quantity, 3 millions of gallons at least on the score of smuggling, in licensed and illicit distilleries; making 30 millions to be the frightful amount of whiskey consumed by the British people, independent of other intoxicating liquors.