Chapter 5

Fig.5.HydrometerThe hydrometer constructed, under the directions of the Commissioners of Excise, by Mr. Bate, has a scale of 4 inches in length divided into 100 parts, and 9 weights. It has thus a range of 900 divisions, and expresses specific gravities at the temperature of 62° Fahr. In order to render this instrument so accurate a measurer of the specific gravity, at the standard temperature, as to involve no error of an appreciable amount, Mr. Bate has constructed the weights (which in this instrument are immersed in the fluid of different specific gravities) so that each successive weight should have an increase of bulk over the preceding weight equal to that part of the stem occupied by the scale, and an increase of weight sufficient to take the whole of the scale, and no more, down to the liquid. This arrangement requires great accuracy of workmanship, and enhances the price of the instrument. But it allows of increased strength in the ball, where it is very much required, and it gives, upon inspection only, the indication (apparent specific gravity) by which the general table is to be examined and the result ascertained.Fig.5.represents this instrument and two of its nine ballast weights. It comprehends all specific gravities between 820 and 1000. It indicates true specific gravity with almost perfect accuracy at the temperature of 62° Fahr.; but it does not exclude other instruments from being used in conjunction with tables. The latter are, in fact, independent of the instrument, and may be used with gravimeters, or any instrument affording indications by specific gravity at a given temperature.The commercial value of spirituous liquors being much lower in France than in England, a less sensible instrument becomes sufficient for the wants of that country. Baumé’s and Cartier’s hydrometers, with short arbitrary scales, are very much employed, but they have been lately superseded by an ingenious and ready instrument contrived by M. Gay Lussac, and called by him analcoomètre. He takes for the term of comparison pure alcohol by volume, at the temperature of 15° Cent., and represents the strength of it by 100centimes, or by unity. Consequently, the strength of a spirituous liquid is the number of centimes in volume of pure alcohol which that liquid contains at the temperature of 15° Cent. The instrument is formed like a common hydrometer, and is graduated for the temperature of 15° Cent. Its scale is divided into 100 parts or degrees, each of which denotes a centime of alcohol; the division 0 at the bottom of the stem corresponds to pure water, and the division 100 at its top, to pure alcohol. When immersed in a spirituous liquor at 15° Cent. (59° Fahr.) it announces its strength directly. For example: if in spirits supposed at the temperature of 15° Cent. it sinks to the division 50, it indicates that the strength of this liquor is 50 per cent., or that it contains 50 centimes of pure alcohol. In our new British proof spirit, it would sink to nearly 57, indicating 57 by volume of pure alcohol, allowing for condensation, or 50 by weight. A table of correction is given for temperature, which he calls “Table of real strength of spirituous liquors.” The first vertical column of this table contains the temperatures, from 0° to 30° Cent., and the first horizontal line the indications of the alcoomètre. In the same table we have most ingeniously inserted a correction for the volume of the spirits when the temperature differs from 15° Cent. If we take 1000 litres or gallons, measured at the temperature of 2°, of a spirituous liquor whose apparent strength is 44c; its real strength at 15° will from the preceding mode of correction be 49c. On heating this liquid to 15°, in order to find its real specific gravity or strength, its bulk will become greater; and, instead of 1000 litres or gallons, which it measured at 2°, we shall have 1009 at 15° C. This number is inscribed in smaller characters in the same square cell with the real force, precisely under 49c. All the numbers in small characters, printed under eachreal strength, indicate the volume which 1000 litres of a spirituous liquor would have, when measured at the temperature at which its apparent strength is taken. In the above example, the quantity in litres or gallons of pure alcohol contained in 1000 litres or gallons of the spirits, measured at the temperature of 2°, will be, therefore,—1009 lit. × 0·49 = 494 lit. 41.This quantity of pure alcohol, thus estimated, is calledrichness of spirit in alcohol, or simplyrichness.Let us take an example similar to the preceding, but at a higher temperature than 15° Cent. Suppose we have 1000 litres measured, at the temperature of 25°, of spirits whose apparent strength is 53c, what is the real quantity of pure alcohol which this spirit contains at the temperature of 15°? We shall find in the table, first of all, that the real strength of the spirits is 49c·3. As to its bulk or volume, it is very clear that the 1000 litres in cooling from 25° to 15°, will occupy a smaller space. Thisvolume will be 993 litres; it is inscribed directly below 49c·3, the real strength. We shall therefore have of pure alcohol, contained in the 1000 litres of spirits, measured at the temperature of 25°, or theirrichness, 993 lit. × 0·493 = 489 lit. 55.Alcometrical Table of real Strength, by M. Gay Lussac.Tem-pera-tureC.31c32c33c34c35c36c37c38c39c40c41c42c43c44c45c46c47c48c49c50c51c52c53c54c55c56c57c58c59c60c61c62c63c64c65c66c67c68c69c70c71c72c73c74c75c76c77c78c79c80c81c82c83c84c85c86c87c88c89c90cDeg.1033·03435363738394041424344454646·947·948·949·950·951·852·853·854·855·856·857·858·859·760·761·762·763·764·765·766·767·668·669·670·671·672·673·574·575·576·577·578·579·580·581·582·483·484·485·486·487·488·389·390·291·21002100210031003100310031003100310031003100310041004100410041004100410041004100410041004100410041004100410041004100410041004100410041004100410041004100410041004100410041005100510051005100510051005100510051005100510051005100510051005100510051132·633·634·635·636·637·638·639·640·641·642·643·644·645·646·647·648·649·550·551·552·553·554·455·456·457·458·459·460·461·462·463·464·465·466·467·368·369·370·371·372·373·274·275·276·277·278·279·280·281·282·283·184·185·186·187·1888990911002100210021002100210021002100210031003100310031003100310031003100310031003100310031003100310031003100310031003100310031003100310031003100310031003100410041004100410041004100410041004100410041004100410041004100410041004100410041004100410041232·233·234·235·236·237·238·239·240·241·242·243·244·245·246·247·248·249·250·251·152·153·154·155565758596061626364656667686970717272·973·974·975·976·977·978·979·980·981·982·983·984·885·886·887·888·789·790·71001100110021002100210021002100210021002100210021002100210021002100210021002100210021002100210021002100210021002100210021002100210021002100210021003100310031003100310031003100310031003100310031003100310031003100310031003100310031003100310031331·832·833·834·835·836·837·838·839·840·841·842·843·844·845·846·847·848·849·850·851·852·753·754·755·756·757·758·759·760·761·762·763·764·765·766·767·768·769·670·671·672·673·674·675·676·677·678·679·680·681·682·683·684·685·586·587·588·589·590·51001100110011001100110011001100110011001100110011001100210021002100210021002100210021002100210021002100210021002100210021002100210021002100210021002100210021002100210021002100210921002100210021002100210021002100210021002100210021002100210021431·432·433·434·435·436·437·438·439·440·441·442·443·444·445·446·447·448·449·450·451·452·353·354·355·356·357·358·359·360·361·362·363·364·365·366·367·368·369·370·371·372·373·374·375·376·377·378·379·380·381·382·383·384·385·386·387·388·289·290·2100110011001100110011001100110011001100110011001100110011001100110011001100110001001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001153132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889901000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001630·631·632·533·534·535·536·537·538·539·540·641·642·643·644·645·646·647·648·649·650·651·652·653·654·655·656·657·658·659·660·661·762·763·764·765·766·767·768·769·770·771·772·773·774·775·776·777·778·779·780·781·782·783·784·785·786·787·788·789·7100010009999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991730·231·232·133·134·135·136·137·138·139·140·241·242·243·244·945·246·247·248·249·250·351·352·353·354·355·356·357·358·359·360·361·362·363·364·365·366·367·368·369·370·371·372·373·374·375·476·477·478·479·480·481·482·483·484·485·486·487·488·489·59999999999999999999999999999999999999999989989989989989989989989989989989989989989989989989989989989989989989989989989989989989989989989989989989989989989989989989989989989989989981829·830·831·732·733·734·735·736·737·738·739·840·841·842·843·844·945·946·947·948·949·950·951·952·953·954·955·956·957·958·959·9616263646566676869707172737475·176·177·178·179·180·181·182·183·184·185·286·287·288·289·29999999989989989989989989989989989989989989989989989989989989989989989989989989989979979979979979979979979979979979979979979979979979979979979979979979979979979979979979979979979971929·430·431·332·333·334·335·336·337·338·339·440·441·442·543·544·545·546·547·548·549·550·651·652·653·654·655·656·657·658·659·660·661·662·763·764·765·766·767·768·769·770·771·772·773·774·775·876·877·878·879·880·881·982·983·984·985·986·987·988·999899899899899899899899899799799799799799799799799799799799799799799799799799799799799799799799799799799799799799799699699699699699699699699699699699699699699699699699699699699699620293030·931·932·933·934·935·936·937·939404142·143·144·145·146·147·248·249·250·251·252·253·254·255·256·257·258·259·260·361·362·363·364·365·466·467·468·469·470·471·472·473·474·475·576·577·578·579·580·581·682·683·684·685·686·687·788·79989989979979979979979979979979979979979979969969969969969969969969969969969969969969969969969969969969969969969969969969969969959959959959959959959959959959959959959959959959959952128·629·630·531·532·533·534·535·536·537·538·639·640·641·742·743·744·845·846·847·848·849·850·851·852·953·954·955·956·957·958·959·96162636465666768·169·170·171·172·173·174·175·276·277·278·279·280·281·382·383·384·385·386·487·488·49979979979979979979979969969969969969969969969969969969959959959959959959959959959959959959959959959959959959959959959959959959959949949949949949949949949949949949949949949949949942228·229·230·131·132·133·134·135·136·137·138·239·240·241·342·343·344·345·346·447·448·449·450·451·452·553·554·555·556·557·558·559·560·661·662·763·764·765·766·767·768·869·870·871·872·873·874·875·976·977·978·979·9818283848586·187·188·29979979969969969969969969969969969959959959959959959959959959959959959949949949949949949949949949949949949949949949949949949949949949939939939939939939939939939939939939939939939932327·828·829·730·731·732·733·734·735·736·737·838·839·840·941·942·943·944·946474849·150·151·152·153·154·155·156·157·158·159·260·261·362·363·364·365·466·467·468·469·470·571·572·573·574·575·576·677·678·679·680·781·782·783·884·885·886·887·99969969969969969969969959959959959959959949949949949949949949949949949949949949949939939939939939939939939939939939939939939939939939929929929929929929929929929929929929929929929922427·428·429·330·331·332·333·334·335·336·337·438·439·440·541·542·543·644·645·646·647·648·749·750·751·852·853·854·855·856·857·858·959·961626364656667·168·169·170·171·272·273·274·275·276·377·378·379·380·481·482·483·584·585·586·587·699699699599599599599599599599499499499499499499499499499399399399399369399399399399399399299299299299299299299299299299299299299299299299299299199199199199199199199199199199199199125272828·929·930·931·932·933·934·935·937383940·142·142·243·244·245·246·347·348·349·350·351·452·453·454·455·556·557·558·559·560·661·662·663·764·765·766·767·868·869·870·871·872·873·974·97677787980·181·182·183·284·285·286·387·4995995995995995994994994994994994994993993993993993993993993993993993992992992992992992992992992992991991991991991991991991991991991991991991991991991991991990990990990990990990990Tem-pera-tureC.31c32c33c34c35c36c37c38c39c40c41c42cDeg.1033·034353637383940414243441002100210031003100310031003100310031003100310041132·633·634·635·636·637·638·639·640·641·642·643·61002100210021002100210021002100210031003100310031232·233·234·235·236·237·238·239·240·241·242·243·21001100110021002100210021002100210021002100210021331·832·833·834·835·836·837·838·839·840·841·842·81001100110011001100110011001100110011001100110011431·432·433·434·435·436·437·438·439·440·441·442·4100110011001100110011001100110011001100110011001153132333435363738394041421000100010001000100010001000100010001000100010001630·631·632·533·534·535·536·537·538·539·540·641·6100010009999999999999999999999999999991730·231·232·133·134·135·136·137·138·139·140·241·29999999999999999999999999999999999991829·830·831·732·733·734·735·736·737·738·739·840·89999999989989989989989989989989989981929·430·431·332·333·334·335·336·337·338·339·440·499899899899899899899899899799799799720293030·931·932·933·934·935·936·937·939409989989979979979979979979979979979972128·629·630·531·532·533·534·535·536·537·538·639·69979979979979979979979969969969969962228·229·230·131·132·133·134·135·136·137·138·239·29979979969969969969969969969969969952327·828·829·730·731·732·733·734·735·736·737·838·89969969969969969969969959959959959952427·428·429·330·331·332·333·334·335·336·337·438·499699699599599599599599599599499499425272828·929·930·931·932·933·934·935·93738995995995995995994994994994994994994Tem-pera-tureC.43c44c45c46c47c48c49c50c51c52c53c54cDeg.10454646·947·948·949·950·951·852·853·854·855·81004100410041004100410041004100410041004100410041144·645·646·647·648·649·550·551·552·553·554·455·41003100310031003100310031003100310031003100310031244·245·246·247·248·249·250·251·152·153·154·1551002100210021002100210021002100210021002100210021343·844·845·846·847·848·849·850·851·852·753·754·71001100210021002100210021002100210021002100210021443·444·445·446·447·448·449·450·451·452·353·354·3100110011001100110011001100110001001100110011001154344454647484950515253541000100010001000100010001000100010001000100010001642·643·644·645·646·647·648·649·650·651·652·653·69999999999999999999999999999999999991742·243·244·945·246·247·248·249·250·351·352·353·39999989989989989989989989989989989981841·842·843·844·945·946·947·948·949·950·951·952·99989989989989989989989989989989989981941·442·543·544·545·546·547·548·549·550·651·652·6997997997997997997997997997997997997204142·143·144·145·146·147·248·249·250·251·252·29979979969969969969969969969969969962140·641·742·743·744·845·846·847·848·849·850·851·89969969969969969969959959959959959952240·241·342·343·344·345·346·447·448·449·450·451·49959959959959959959959959959959959942339·840·941·942·943·944·946474849·150·151·19959949949949949949949949949949949942439·440·541·542·543·644·645·646·647·648·749·750·7994994994994994994993993993993993693253940·142·142·243·244·245·246·347·348·349·350·3993993993993993993993993993993993992Tem-pera-tureC.55c56c57c58c59c60c61c62c63c64c65c66cDeg.1056·857·858·859·760·761·762·763·764·765·766·767·61004100410041004100410041004100410041004100410041156·457·458·459·460·461·462·463·464·465·466·467·3100310031003100310031003100310031003100310031003125657585960616263646566671002100210021002100210021002100210021002100210021355·756·757·758·759·760·761·762·763·764·765·766·71002100210021002100210021002100210021002100210021455·356·357·358·359·360·361·362·363·364·365·366·3100110011001100110011001100110011001100110011001155556575859606162636465661000100010001000100010001000100010001000100010001654·655·656·657·658·659·660·661·762·763·764·765·79999999999999999999999999999999999991754·355·356·357·358·359·360·361·362·363·364·365·39989989989989989989989989989989989981853·954·955·956·957·958·959·961626364659989989989979979979979979979979979971953·654·655·656·657·658·659·660·661·662·763·764·79979979979979979979979979979979979972053·254·255·256·257·258·259·260·361·362·363·364·39969969969969969969969969969969969962152·953·954·955·956·957·958·959·9616263649959959959959959959959959959959959952252·553·554·555·556·557·558·559·560·661·662·763·79949949949949949949949949949949949942352·153·154·155·156·157·158·159·260·261·362·363·39949949949939939939939939939939939932451·852·853·854·855·856·857·858·959·96162639939939939939939929929929929929929922551·452·453·454·455·556·557·558·559·560·661·662·6992992992992992992992992992991991991Tem-pera-tureC.67c68c69c70c71c72c73c74c75c76c77c78cDeg.1068·669·670·671·672·673·574·575·576·577·578·579·51004100410041004100410041005100510051005100510051168·369·370·371·372·373·274·275·276·277·278·279·210031004100410041004100410041004100410041004100412686970717272·973·974·975·976·977·978·91003100310031003100310031003100310031003100310031367·768·769·670·671·672·673·674·675·676·677·678·61002100210021002100210021002100210921002100210021467·368·369·370·371·372·373·374·375·376·377·378·3100110011001100110011001100110011001100110011001156768697071727374757677781000100010001000100010001000100010001000100010001666·767·768·769·770·771·772·773·774·775·776·777·79999999999999999999999999999999999991766·367·368·369·370·371·372·373·374·375·476·477·49989989989989989989989989989989989981866676869707172737475·176·177·19979979979979979979979979979979979971965·766·767·768·769·770·771·772·773·774·775·876·89979979969969969969969969969969969962065·466·467·468·469·470·471·472·473·474·475·576·59969969969969969969959959959959959952165666768·169·170·171·172·173·174·175·276·29959959959959959959959949949949949942264·765·766·767·768·869·870·871·872·873·874·875·99949949949949949949949949939939939932364·365·466·467·468·469·470·571·572·573·574·575·59939939939939939939939939929929929922464656667·168·169·170·171·272·273·274·275·29929929929929929929929929929929929912563·764·765·766·767·868·869·870·871·872·873·974·9991991991991991991991991991991991991Tem-pera-tureC.79c80c81c82c83c84c85c86c87c88c89c90cDeg.1080·581·582·483·484·485·486·487·488·389·390·291·21005100510051005100510051005100510051005100510051180·281·282·283·184·185·186·187·1888990911004100410041004100410041004100410041004100410041279·980·981·982·983·984·885·886·887·888·789·790·71003100310031003100310031003100310031003100310031379·680·681·682·683·684·685·586·587·588·589·590·51002100210021002100210021002100210021002100210021479·380·381·382·383·384·385·386·387·388·289·290·2100110011001100110011001100110011001100110011001157980818283848586878889901000100010001000100010001000100010001000100010001678·779·780·781·782·783·784·785·786·787·788·789·79999999999999999999999999999999999991778·479·480·481·482·483·484·485·486·487·488·489·59989989989989989989989989989989989981878·179·180·181·182·183·184·185·286·287·288·289·29979979979979979979979979979979979971977·878·879·880·881·982·983·984·985·986·987·988·99969969969969969969969969969969969962077·578·579·580·581·682·683·684·685·686·687·788·79959959959959959959959959959959959952177·278·279·280·281·382·383·384·385·386·487·488·49949949949949949949949949949949949942276·977·978·979·9818283848586·187·188·29939939939939939939939939939939939932376·677·678·679·680·781·782·783·884·885·886·887·99929929929929929929929929929929929922476·377·378·379·380·481·482·483·584·585·586·587·6991991991991991991991991991991991991257677787980·181·182·183·284·285·286·387·4991991991991990990990990990990990990

Fig.5.Hydrometer

Fig.5.

The hydrometer constructed, under the directions of the Commissioners of Excise, by Mr. Bate, has a scale of 4 inches in length divided into 100 parts, and 9 weights. It has thus a range of 900 divisions, and expresses specific gravities at the temperature of 62° Fahr. In order to render this instrument so accurate a measurer of the specific gravity, at the standard temperature, as to involve no error of an appreciable amount, Mr. Bate has constructed the weights (which in this instrument are immersed in the fluid of different specific gravities) so that each successive weight should have an increase of bulk over the preceding weight equal to that part of the stem occupied by the scale, and an increase of weight sufficient to take the whole of the scale, and no more, down to the liquid. This arrangement requires great accuracy of workmanship, and enhances the price of the instrument. But it allows of increased strength in the ball, where it is very much required, and it gives, upon inspection only, the indication (apparent specific gravity) by which the general table is to be examined and the result ascertained.Fig.5.represents this instrument and two of its nine ballast weights. It comprehends all specific gravities between 820 and 1000. It indicates true specific gravity with almost perfect accuracy at the temperature of 62° Fahr.; but it does not exclude other instruments from being used in conjunction with tables. The latter are, in fact, independent of the instrument, and may be used with gravimeters, or any instrument affording indications by specific gravity at a given temperature.

The commercial value of spirituous liquors being much lower in France than in England, a less sensible instrument becomes sufficient for the wants of that country. Baumé’s and Cartier’s hydrometers, with short arbitrary scales, are very much employed, but they have been lately superseded by an ingenious and ready instrument contrived by M. Gay Lussac, and called by him analcoomètre. He takes for the term of comparison pure alcohol by volume, at the temperature of 15° Cent., and represents the strength of it by 100centimes, or by unity. Consequently, the strength of a spirituous liquid is the number of centimes in volume of pure alcohol which that liquid contains at the temperature of 15° Cent. The instrument is formed like a common hydrometer, and is graduated for the temperature of 15° Cent. Its scale is divided into 100 parts or degrees, each of which denotes a centime of alcohol; the division 0 at the bottom of the stem corresponds to pure water, and the division 100 at its top, to pure alcohol. When immersed in a spirituous liquor at 15° Cent. (59° Fahr.) it announces its strength directly. For example: if in spirits supposed at the temperature of 15° Cent. it sinks to the division 50, it indicates that the strength of this liquor is 50 per cent., or that it contains 50 centimes of pure alcohol. In our new British proof spirit, it would sink to nearly 57, indicating 57 by volume of pure alcohol, allowing for condensation, or 50 by weight. A table of correction is given for temperature, which he calls “Table of real strength of spirituous liquors.” The first vertical column of this table contains the temperatures, from 0° to 30° Cent., and the first horizontal line the indications of the alcoomètre. In the same table we have most ingeniously inserted a correction for the volume of the spirits when the temperature differs from 15° Cent. If we take 1000 litres or gallons, measured at the temperature of 2°, of a spirituous liquor whose apparent strength is 44c; its real strength at 15° will from the preceding mode of correction be 49c. On heating this liquid to 15°, in order to find its real specific gravity or strength, its bulk will become greater; and, instead of 1000 litres or gallons, which it measured at 2°, we shall have 1009 at 15° C. This number is inscribed in smaller characters in the same square cell with the real force, precisely under 49c. All the numbers in small characters, printed under eachreal strength, indicate the volume which 1000 litres of a spirituous liquor would have, when measured at the temperature at which its apparent strength is taken. In the above example, the quantity in litres or gallons of pure alcohol contained in 1000 litres or gallons of the spirits, measured at the temperature of 2°, will be, therefore,—1009 lit. × 0·49 = 494 lit. 41.

This quantity of pure alcohol, thus estimated, is calledrichness of spirit in alcohol, or simplyrichness.

Let us take an example similar to the preceding, but at a higher temperature than 15° Cent. Suppose we have 1000 litres measured, at the temperature of 25°, of spirits whose apparent strength is 53c, what is the real quantity of pure alcohol which this spirit contains at the temperature of 15°? We shall find in the table, first of all, that the real strength of the spirits is 49c·3. As to its bulk or volume, it is very clear that the 1000 litres in cooling from 25° to 15°, will occupy a smaller space. Thisvolume will be 993 litres; it is inscribed directly below 49c·3, the real strength. We shall therefore have of pure alcohol, contained in the 1000 litres of spirits, measured at the temperature of 25°, or theirrichness, 993 lit. × 0·493 = 489 lit. 55.

Alcometrical Table of real Strength, by M. Gay Lussac.


Back to IndexNext