Chapter 81

Blast furnaceIn the Dudley field, the furnaces are almost always in the middle of the plain, and an inclined rail-way must be formed to reach their platform. These inclined planes, composed of beams or rails placed alongside of each other, and sustained by props and cross-bars, as indicated infig.582., are set up mostly against the posterior face of the furnace. Two chains or ropes, passing over the drums of gins, moved by a steam engine (commonly the same that drives the bellows), draw up the waggons of wood or sheet irona a, which contain the various materials for supplying the furnace. To facilitate this service, the platform round the furnace is sometimes enlarged behind by a floor; while a balustrade, which opens when the waggons arrive at the platform, prevents accidents. This projection is occasionally covered by a roof. For a furnace of the largest size, the force expended by this lifting apparatus, is not more than a two-horse power.Fig.582.is a vertical section through the furnace from front to rear, or at right angles to the line of the lateral tuyères. The erection of a pair of blast furnaces, of 40 feet high each, costs, in the Dudley district, 1800 pounds sterling; and requires for building each, 160,000 common bricks for the outside work, 3900 fire-bricks for the lining or shirt of the furnace, and 825 for the boshes. The dimensions of the fire-bricks are various; 5 kinds are employed for the lining, and 9 kinds for the boshes. They are all 6 inches thick, and are curved to suit thevoussoirs.The number of charges given in 12 hours is different in different furnaces; being sometimes 20, 25, and even so high as 40; but 30 is a fair average. Each charge iscomposed of from 5 to 6 cwt. of coak, (or now of 3 to 4 cwt. of coal with the hot blast); 3, 4, and sometimes 6 cwt. of the roasted mine, according to its richness and the quality of cast iron wanted; the limestone flux is usually one-third of the weight of the roasted iron stone. There are 2 casts in 24 hours; one at 6 in the morning, and another at 6 in the evening.The height of the blast furnaces is very variable; some being only 36 feet high including the chimney, whilst others have an elevation of 60 feet. These extreme limits are very rare: so that the greater part of the furnaces are from 45 to 50 feet high. They are all terminated by a cylindrical chimney of from 8 to 12 feet long; being about one-fifth of the total height of the furnace. The inside diameter of this chimney is the same as that of the throat or mouth; and varies from 4 to 6 feet. The chimney is frequently formed of a single course of bricks, and acquires solidity from its hoops of iron, so thickly placed that one half of the surface is often covered with them. At its lower end, the mouth presents one or two rectangular openings, through which the charge is given. It is built on a basement circle of cast-iron, which forms the circumference of the throat; and a sloping plate of cast-ironbis so placed as to make the materials slide over into the furnace, as shown in thefigure.The inside of the blast furnaces of Staffordshire is most frequently of a circular form, except the hearth and working area. The inner space is divided into four portions, different in their forms, and the functions which they fulfil in the smelting of the ore.The undermost, called the hearth, or crucible, in which the cast-iron collects, is a right rectangular prism, elongated in a line perpendicular to the axes of the tuyères. The sides of the hearth consist in general of refractory sandstone (fire-stone), obtained mostly from the bed of the coal basin, calledmillstone grit; and the bottom of the hearth is formed of a large block of the same nature, laid on a cast-iron plate.The second portion is also made of the same refractory grit stone. It has the form of a quadrangular pyramidal, approaching considerably to a prism, from the smallness of the angle included between the sides and the axis.The third portion or lower body of the furnace is conical, but here the interior space suddenly expands; the slope outwards at this part seems to have a great influence on the quality of the cast-iron obtained from the furnace. When No. 2. of the blackest kind is wanted for castings, the inclination of this cavity of the furnace is in general less considerable than when No. 2. cast iron for conversion into bar iron is required. The inclination of this conical chamber, called the boshes, varies from 55 to 60 degrees with the horizon. The diameter of this part is equal to that of the belly, and is from 11 to 13 feet. The boshes are built of masonry, as shown infigs.583,584.The fourth part, which constitutes about two-thirds of the height of the furnace from the base of the hearth up to the throat, presents the figure of a surface of revolution, generated by a curve whose concavity is turned towards the axis of the furnace, and whose last tangent towards the bottom is almost vertical. This surface is sloped off with that of the boshes (étalagesin French), so that no sharp angle may exist at the belly. In some furnaces of considerable dimensions, as in that with three tuyères, this portion of the furnace is cylindrical for a certain height.The following measurements represent the interior structure of two well-going furnaces.No. 1.No. 2.Feet.Feet.Height from the hearth to the throat or mouth4549Height of the crucible or hearth61⁄26H—htof the boshes87H—htof the cone301⁄236H—htof the chimney or mouth8123⁄4Width of the bottom of the hearth21⁄22Ditto at its upper end322⁄3Ditto of the boshes122⁄3131⁄2Ditto at one-third of the belly12111⁄2Ditto at two-thirds of ditto82⁄391⁄2Ditto at the mouth41⁄232⁄3Inclination of the boshes59°52°Blast furnaceThe conical orifice called the tuyère, in which the tapered pipes are placed, for imparting the blast, is seen near the bottom of the furnace,fig.583.atA. Nose tubes of various sizes, from 2 to 4 inches in diameter, are applied to the extremity of the main blast-pipe. UnderAis the bottom of the hearth, which, in large furnaces, may be two feet square.Bis the top of the hearth, about two feet six inches square.A,B, is the height of the hearth, about six feet six inches.Bshows the round bottom of the conical or funnel part, called in this country, theboshes, standing upon the square area of the hearth.Cis the top of the boshes, which may be about 12 feet in diameter, and 8 feet in perpendicular height.Dis the furnace top or mouth (gueulardin French), at which thematerials are charged. It may be 41⁄2feet in diameter. The line betweenC,D, is the height of the internal cavity of the furnace, from the top of the boshes upwards, supposed to be 30 feet.A,D, is the total height of the interior of the furnace, reckoned at 441⁄2feet.E Eis the lining, which is built in the nicest manner with the best fire-bricks, from 12 to 14 inches long, 3 inches thick, and curved to suit the circle of the cone. A vacancy of 3 inches wide is left all round the outside of the first lining by the builder; which is sometimes filled with coak dust, but more generally with sand firmly rammed. This void space in the brick-work is for the purpose of allowing for any expansion which might occur, either by an increase in the bulk of the building, or by the pressure and weight of the materials when descending to the bottom of the furnace. Exterior toE Eis a second lining of fire-bricks similar to the first. AtF, on either side, is a cast-iron lintel, 81⁄2feet long, by 10 inches square, upon which the bottom of the arches is supported.F,G, is the rise of the tuyère arch, which may be 14 feet high upon the outside, and 18 feet wide. The extreme size of the bottom or sole of the hearth, upon each side ofA, may be 10 feet square. This part and the boshing stones, are preferably made from a coarse sandstone grit, containing large rounded grains of quartz, united by a siliceo-argillaceous cement.The bottom of the hearth consists, first, of a course of the said gritstone; beneath which is a layer of bedding sand, having, in its under part, passages for the escape of the vapours generated by damps; the whole being supported upon pillars of brick.Hearth and boshesFig.584.represents the hearth and boshes, in a vertical side section.ais the tymp stone, andbthe tymp plate for confining the liquid metal in the hearth. The latter is wedged firmly into the side-walls of the hearth;cis the dam-stone, which occupies the whole breadth at the bottom of the hearth, excepting about 6 inches, which space, when the furnace is at work, is filled before every cast, with a strong binding sand. This stone is faced outside by a cast-iron plated, called the dam-plate, of considerable thickness, and peculiar shape. The top of the dam-stone, or rather the notch of the dam-plate, lies from 4 to 8 inches under the level of the tuyère hole. The space under the tymp plate, for 5 or 6 inches down, is rammed full, for every cast, with strong loamy earth, or even fine clay; a process called the tymp stopping. The area of the base of this furnace being 38 feet; its extreme height is 55 feet.The blast furnaces of Staffordshire have always two tuyères, at least, placed on oppositesides, but so pointed that the blast may not pursue directly opposite lines. In a furnace acting well in the neighbourhood of Dudley, the one of the tuyères was 10 inches distant from the posterior wall of the hearth, and the other only 4 inches. In other furnaces with 3 tuyères; the side ones are placed, the one 161⁄2inches, and the other 61⁄2inches from the back. Three tuyères are seldom made to blow simultaneously. The third is brought into action only when the furnace seems to be choaked up, and when it becomes necessary to clear it up by a powerful concussion. Too much pains cannot be bestowed on the masonry and brickwork of a blast furnace, and on the solidity of its foundation. In a soft ground it should rest on piles, so driven that the channel left beneath for the drainage of the building may be above any water level. Small passages should likewise be left throughout the body of the work, for the transpiration of moisture.The blowing machines employed in Staffordshire, are generally cast-iron cylinders, in which a metallic piston is exactly fitted as for a steam engine, and made in the same way. Towards the top and bottom of the blowing cylinders orifices are left covered with valves, which open inside when the vacuum is made with the cylinders, and afterwards shut by their own weight. Adjutages conduct into the iron globe or chest, the air expelled by the piston, both in its ascent and descent; because these blowing machines have always a double stroke.The pressure of the air is made to vary through a very considerable range, according to the nature of the fuel and season of the year; for as in summer the atmosphere is more rarefied, it must be expelled with a compensating force. The limits are from 11⁄2pounds to 31⁄2pounds on the inch; but these numbers represent extreme proportions, the average amount in Staffordshire being 3 pounds. With this pressure a furnace usually works, which affords 60 tons of cast iron in the week; and the pressure may be 21⁄2pounds on an average. The orifices, or nose-pipes, through which the air issues, also vary with the nature of the coke and the ore. In Staffordshire they are generally from 2 inches and 5 tenths to 2 inches and 8 tenths in diameter.The blowing machines of Staffordshire are always impelled by steam engines. At Mr. Bagnall’s works, two blast furnaces, 40 feet high, exclusive of the chimney or top, and two finery furnaces, are worked by a steam engine of 40 horses power; and therefore the power of one horse corresponds to the production of 21⁄2tons of cast iron per weekly, independently of the finery.In South Wales, especially at Pontypool, there are slighter blast furnaces, whose upper portion is composed of a single range of bricks, each of which is 20 inches long, 4 thick, and 9 broad. The interior of the chimney represents an inverted cone. These furnaces derive solidity, and power to resist the expansions and contractions from change of temperature, by being cased, as it were, in horizontal hoops, placed 3 feet, or, even in some cases, only 6 inches asunder. These flat rings consist of four pieces, which are joined by means of vertical bars, that carry a species of ears or rings, into which the hoops enter, and are retained by bolts or keys. Instead of these ears, screw nuts are also employed for the junction. Each hoop is alternately connected to each of the eight vertical bars. The interior of these furnaces is the same as of the others; being generally from 12 to 14 feet diameter at the belly, and from 50 to 55 feet high. Though slight, they last as long as those composed of an outer body of masonry and a double lining of bricks; and have continued constantly at work for three years. In Wales also the blast furnaces are generally somewhat larger than in Staffordshire; because there the object being to refine the cast iron, they wish to procure as large a smelting product as possible. But in Staffordshire, a fine quality of casting iron is chiefly sought after, and hence their furnaces have less height, but nearly the same width.In a blast apparatus employed at the Cyfartha works, moved by a 90-horse steam power, the piston rod of the blowing cylinder is connected by a parallelogram mechanism with the opposite end of the working beam of the steam engine. The cylinder is 9 feet 4 inches diameter, and 8 feet 4 inches high. The piston has a stroke 8 feet long, and it rises 13 times in the minute. By calculating the sum of the spaces percurred by the piston in a minute, and supposing that the volume of the air expelled is equal to only 96 per cent. of that sum, which must be admitted to hold with machines executed with so much precision, we find that 12,588 cubic feet of air are propelled every minute. Hence a horse power applied to blowing machines of this nature gives, on an average, 137 cubic feet of air per minute. The pressure on the air as it issues, rarely exceeds two pounds on the square inch in the Welsh works.At the establishment of Cyfartha, for blowing seven smelting furnaces, and the seven corresponding fineries, three steam engines are employed, one of 90 horse-power, another of 80, and a third of 40; which constitutes in the whole, a force of 210 horses, or 26 horses and1⁄5per furnace, supposing the fineries to consume one-eighth of the blast. In the whole of the works of Messrs. Crawshay, the proprietors of Cyfartha, the power of about 350 horses is expended in blowing 12 smelting furnaces, and their subordinate fineries; which gives from 25 to 26 horses for each, allowing as before one-eighth for the fineries. As these furnaces produce each about 60 tons of cast iron weekly, we findthat a horse power corresponds to 2 tons and a tenth in that time. Each of the furnaces consumes about 3567 cubic feet of air per minute. These works have been greatly increased of late years.The following analyses of the English coal ironstones have been made by M. Berthier, at the school of mines in Paris.Rich Welsh ore.Poor Welsh ore.Rich ore of Dudley,orgubbin.Loss by ignition30·0027·0031·00Insoluble residuum8·4022·037·66Lime0·06·002·66Peroxide of iron60·0042·6658·33On calculating the quantities of carbonate of iron, and metallic iron, to which theabove peroxide corresponds, we have:—Carbonate of iron88·7765·0985·20Metallic iron42·1531·3840·45The mean richness of the ores of carbonate of iron of these coal basins, is not far from 33 per cent. About 28per cent.is dissipated on an average, in the roasting of the ores.Every ferruginous clay-stone is regarded as an iron ore, when it contains more than 20 per cent. of metal; and it is paid for according to its quality, being on an average at 12 shillings per ton in Staffordshire. The gubbin however fetches so high a price as 16 or 17 shillings. The ore must be roasted before it is fit for the blast furnace, a process carried on in the open air. A heap of ore mingled with small coal (if necessary) is piled up over a stratum of larger pieces of coal; and this heap may be 6 or 7 feet high, by 15 or 20 broad. The fire is applied at the windward end, and after it has burned a certain way, the heap is prolonged at the other extremity, as far as the nature of the ground or convenience of the work requires. The quantity of coal requisite for roasting the ore varies from one to four hundred weight per ton, according to the proportion of bituminous matter associated with the iron-stone. The ore loses in this operation from 25 to 30 per cent. of its weight. Three and a quarter tons of crude ore, or two and a quarter tons of roasted ore are required to produce a ton of cast iron; that is to say, the crude material yields on an average 30·7 per cent., and the roasted ore 44·4 of pig metal. In most smelting works in Staffordshire, about equal weights of the rich ore in round nodules calledgubbin, and the poorer ore in cakes calledblue flat, are employed together in their roasted state; but the proportions are varied, in order to have an uniform mixture, capable of yielding from 30 to 33 per cent. of metal.The transition or carboniferous limestone of Dudley is used as the flux; it is compact and contains little clay. The bulk of the flux is made nearly equal to that of the ore. To treat two tons and a quarter of roasted ore, which furnish one ton of pig iron, 19 hundred weight of limestone are employed; constituting nearly 1 of limestone for 3 of unroasted ore. The limestone costs 6 shillings the ton.Carbonized pitcoal or coke was, till within these few years, the sole combustible used in the blast furnaces of Staffordshire.The coal is distributed in circular heaps, about 5 feet diameter, by 4 feet high; and the middle is occupied by a low brick chimney, piled with loose bricks, so open as to leave interstices between them, especially near the ground. The larger lumps of coal are arranged round this chimney, and the smaller towards the circumference of the heap. When every thing is adjusted, a kindling of coals is introduced into the bottom of the brick chimney; and to render the combustion slow, the whole is covered over with a coat of coal dross, the chimney being loosely closed with a slab of any kind. Openings are occasionally made in the crust and afterwards shut up, to quicken and retard the ignition at pleasure, during its continuance of 24 hours. Whenever the carbonization has reached the proper point for forming good coke, the covering of coal dross is removed, and water is thrown on the heap to extinguish the combustion; a circumstance deemed useful to the quality of the coke. In this operation the Staffordshire coal loses the half of its weight, or two tons of coal produce one of coke.As soon as the blast furnace gets into a regular heat, which happens about 15 days or three weeks after fires have been put in it, the working consists simply in charging it, at the opening in the throat, whenever there is a sufficient empty space; the only rule being to keep the furnace always full. The coke is measured in a basket, thirteen of which go to the ton. The ore and the flux (limestone) are brought forwards in wheelbarrows of sheet-iron. In 24 hours, there are thrown into a furnace such asfig.582., 141⁄3tons of coke, 16 tons of roasted ore, and 63⁄4tons of limestone; from which about 7 tons of pig iron are procured. This is run off every 12 hours; in some works the blast is suspended during the discharge. The metal intended to be convertedinto bar iron, or to be cast again into moulds, is run into small pigs 3 feet long, and 4 inches diameter; weighing each about 2 hundred weight and a half.The disorders to which blast furnaces are liable, have a tendency always to produce white cast iron. The colour of the slag or scoriæ is the surest test of these derangements, as it indicates the quality of the products. If the furnace is yielding an iron proper for casting into moulds, the slag has an uniform vitrification, and is slightly translucid. When the dose of ore is increased in order to obtain a gray pig iron, fit for fabrication into bars, the slag is opaque, dull, and of a greenish-yellow tint, with blue enamelled zones. Lastly, when the furnace is producing a white metal, the slags are black, glassy, full of bubbles, and emit an odour of sulphuretted hydrogen. The scoriæ from a coke, are much more loaded with lime than those from a charcoal blast furnace. This excess of lime appears adapted to absorb and carry off the sulphur, which would otherwise injure the quality of the iron. The slags, when breathed on, emit an argillaceous odour.A blast furnace of 50 or 60 feet in height, gives commonly from 60 to 70 tons of cast iron per week; one from 50 to 55 feet high, gives 60 tons; two united of 45 feet, produce together, 100 tons; and one of 36 feet furnishes from 30 to 40. A blast furnace should go for four or five years without needing restoration. From 31⁄2to 4 tons of coal, inclusive of the coal of calcination, are required in Staffordshire to obtain one ton of cast iron; and the expense in workmen’s wages is about 15 shillings on that quantity.At the Cyfartha works of Messrs. Crawshay in South Wales, the average price of the lithoid carbonate of iron, ready for roasting, is only 7s.6d.a ton, and its richness is about 33per cent.The furnaces for roasting the ore in that country are made in the form of cylinders, placed above an inverted cone. The cylindrical part is 6 feet high and wide, and the cone is about 4 feet high, with a base equal to that of the cylinder; towards the bottom or narrowest part of the inverted cone, there is an aperture which terminates in an outlet on a level with the bottom of the terrace in which the furnace is built. Sometimes, however, all the roasting furnaces are in a manner combined into one, which resembles a long pit about 6 feet in width and depth, and whose bottom presents a series of inverted hollow quadrangular pyramids, 6 feet in each side, and 4 deep. The bottom or apex of each of these pyramids, communicates with a mouth or door-way that opens on a lower terrace, through which the ore falls in proportion as it is roasted; and whence it is wheeled and tumbled into the throat of an adjoining blast furnace, on the same level with the terrace; for in Wales the blast furnace is generally built up against the face of a hill, which makes one of its fronts. The above roasting furnaces, which closely resemble lime-kilns, after being filled with alternate strata of small coal and ore, are set on fire; and the roasted ore is progressively withdrawn below, as already mentioned.The product of coke from a certain weight of coal is greater in Wales than in Staffordshire, though the mode of manufacture is the same. At Pen-y-Darran, for example, 5 of coal furnish 31⁄2of coke; or 100 give 70; at Dowlais 100 of coal afford 71 of coke, and the product would be still greater if more pains were bestowed upon the process. At Dowlais, coal costs only 2 shillings a ton; at Cyfartha, it is worth from 2s.6d.to 5 shillings. About 2 tons of coke are employed in obtaining 1 ton of cast iron.According to M. Berthier’s analysis, the slag or cinder of Dowlais consists of silica, 40·4; lime, 38·4; magnesia, 5·2; alumina, 11·2; protoxide of iron, 3·8; and a trace of sulphur. He says that the silica contains as much oxygen as all the other bases united; or is equivalent to them in saturating power; and to the excess of lime he ascribes the freedom from sulphur, and the good quality of the iron produced. The specimen examined was from a furnace at Merthyr-Tydvil. Other slags from the same furnace, and one from Dudley, furnished upwards of 2per cent.of manganese. Those which he analysed from Saint Etienne in France afforded about 1 per cent. of sulphur.The consumption of coal in the Welsh smelting furnaces may be estimated, on an average, at 3 tons per ton of cast iron; corresponding to 2·1 of their coke. From this economy in the quantity of fuel, as well as from its cheapness and that of the iron ore, the iron of South Wales can be brought into the market at a much lower rate than that of any other district. These blast furnaces remain in action from 5 to 10 years; at the end of which time only their interior surface has to be repaired. The lining of the upper part lasts much longer; for examples are not wanting of its holding good for nearly 40 years.One of the greatest improvements ever made by simple means in any manufacture is the employment of hot air instead of the ordinary cold air of the atmosphere, in supplying the blast of furnaces for smelting and founding iron. The discovery of the superior power of a hot over a cold blast in fusing refractory lumps of cast iron, was accidentally observed by my pupil Mr. James Beaumont Neilson, engineer to the Glasgow gas works, about the year 1827, at a smith’s forge in that city, and it was made the subject of a patent in the month of September of the following year. No particular construction of apparatus was described by the inventor by which the air was to beheated, and conveyed to the furnace; but it was merely stated that the air may be heated in a chamber or closed vessel, having a fire under it, or in a vessel connected in any convenient manner with the forge or furnace. From this vessel the air is to be forced by means of bellows into the furnace. The quantity of surface which a heating furnace is required to have for a forge, is about 1260 cubic inches; for a cupola furnace, about 10,000 cubic inches. The vessel may be enclosed in brickwork, or fixed in any other manner that may be found desirable, the application of heated air in any way to furnaces or forges, for the purposes of working iron, being the subject claimed as constituting the invention.Wherever a forced stream of air is employed for combustion, the resulting temperature must evidently be impaired by the coldness of the air injected upon the fuel. The heat developed in combustion is distributed into three portions; one is communicated to the remaining fuel, another is communicated to the azote of the atmosphere, and to the volatile products of combustion, and a third to the iron and fluxes, or other surrounding matter to be afterwards dissipated by wider diffusion. This inevitable distribution takes place in such a way, that there is a nearly equal temperature over the whole extent of a fire-place, in which an equal degree of combustion exists.We thus perceive that if the air and the coal be very cold, the portions of heat absorbed by them might be very considerable, and sufficient to prevent the resulting temperature from rising to a proper pitch; but if they were very hot they would absorb less caloric, and would leave more to elevate the common temperature. Let us suppose two furnaces charged with burning fuel, into one of which cold air is blown, and into the other hot air, in the same quantity. In the same time, nearly equal quantities of fuel will be consumed with a nearly equal production of heat; but notwithstanding of this, there will not be the same degree of heat in the two furnaces, for the one which receives the hot air will be hotter by all the excess of heat in its air above that of the other, since the former air adds to the heat while the latter abstracts from it. Nor are we to imagine that by injecting a little more cold air into the one furnace, we can raise its temperature to that of the other. With more air indeed we should burn more coals in the same time, and we should produce a greater quantity of heat, but this heat being diffused proportionally among more considerable masses of matter, would not produce a greater temperature; we should have a larger space heated, but not a greater intensity of heat in the same space.Thus, according to the physical principles of the production and distribution of heat, fires fed with hot air should, with the same fuel, rise to a higher pitch of temperature than fires fed with common cold air. This consequence is independent of the masses, being as true for a small stove which burns only an ounce of charcoal in a minute, as for a furnace which burns a hundred weight; but the excess of temperature produced by hot air cannot be the same in small fires as in great; because the waste of heat is usually less the more fuel is burned.This principle may be rendered still more evident by a numerical illustration. Let us take, for example, a blast furnace, into which 600 cubic feet of air are blown per minute; suppose it to contain no ore but merely coal or coke, and that it has been burning long enough to have arrived at the equilibrium of temperature, and let us see what excess of temperature it would have if blown with air of 300° C. (572° F.), instead of being blown with air at 0° C.600 cubic feet of air under the mean temperature and pressure, weigh a little more than 45 pounds avoirdupois; they contain 10·4 pounds of oxygen, which would burn very nearly 4 pounds of carbon, and disengage 16,000 times as much heat as would raise by one degree cent. the temperature of two pounds of water. These 16,000 portions of heat, produced every minute, will replace 16,000 other portions of heat, dissipated by the sides of the furnace, and employed in heating the gases which escape from its mouth. This must take place in order to establish the assumed equilibrium of caloric.If the 45 pounds of air be heated beforehand up to 300° C., they will contain about the eighth part of the heat of the 16,000 disengaged by the combustion, and there will be therefore in the same space one eighth of heat more, which will be ready to operate upon any bodies within its range, and to heat them one eighth more. Thus the blast of 300° C. gives a temperature which is nine-eighths of the blast at zero C., or at even the ordinary atmospheric temperature; and as we may reckon at from 2200° to 2700° F. (from 1200° to 1500° C.), the temperature of blast furnaces worked in the common way, we perceive that the hot-air blast produces an increase of temperature equal to from 270° to 360° F.Now in order to appreciate the immense effects which this excess of temperature may produce in metallurgic operations, we must consider that often only a few degrees more temperature are required to modify the state of a fusible body, or to determine the play of affinities dormant at lower degrees of heat. Water is solid at 1° under 32° F.; it is liquid at 1° above. Every fusible body has a determinate melting point, a very fewdegrees above which it is quite fluid, though it may be pasty below it. The same observation applies to ordinary chemical affinities; charcoal, for example, which reduces the greater part of metallic oxides, begins to do so only at a determinate pitch of temperature, under which it is inoperative, but a few degrees above, it is in general lively and complete. It is unnecessary, in this article, to enter into any more details to show the influence of a few degrees of heat, more or less, in a furnace, upon chemical operations, or merely upon physical changes of state.These consequences might have been deduced long ago, and industry might thus have been enriched with a new application of science; but philosophers have been and still are too much estranged from the study of the useful arts, and content themselves too much with the minutiæ of the laboratory or theoretic abstractions. Within the space of 7 years, the use of the hot blast has been so much extended in Great Britain, as to have enabled many proprietors of iron works to add 50 per cent. to their weekly production of metal, to diminish the expenses of smelting by 50 per cent., and, in many cases, to produce a better sort of cast iron from indifferent materials.Furnace with apparatusThe figures here given represent the blast furnace, and all the details of the air-heating at one view.Fig.583.is a vertical section of the furnace and the apparatus;fig.585.represents the plan at the height of the line 1, 2. offig.583.The blowing machine, which is not shown in this view, injects the air through the pipeA, into the regulator chamberR,fig.585.; the air thence issues by the pipeB, proceeds toC, where it is subdivided into two portions; the one passes along the pipeC Dto get to the tuyèreT, the other passes behind the furnace, and arrives at the tuyèreT′ by the pipeC E F.These pipes are distributed in a long furnace or flue, whose bottom, sides, and top are formed with fire-brick, where they are exposed to the action of the flame of the three firesX,Y,Z. The flame of the fireXplays round the pipeBat its entrance into the flue, and quits it only to go into the chimneyH; that of the fireYacts from the pointDto the same chimney, passing by the elbowC; that of the fireZacts equally uponFandH, in passing by the elbowE.Blast furnaceDisposition of the fires and furnace.—Fig.586.represents, upon a scale three times larger thanfig.585., the section of thefireX, of which the plan is seen infig.585., and the elevation infig.583.; as also in the outside view of the blast furnace,fig.589.Section of fireThe grate is atL; the fuel is introduced by the doorP,fig.583.; the flame rises above the bridgeI K, and proceeds along the vaulted flue towards the chimneyH. Through a length of about 13 feet including the grate, the furnace is on each side supported by oblong plates of cast iron, which are bound together by 4 upright ribbed or feathered bars, also on each side; these barsnbeing bound together by iron rods furnished with screw nuts at their ends (figs.583,585,586.) Beyond this distance, the outside of the furnace is mere brickwork.The firesYandZhave exactly a like disposition with the above.Furnace and pipeFig.586.indicates the dimensions and the curvature of the arch above the grate, near the bridge;fig.587.represents the section of the furnace and of the pipe beyond the cast-iron casing.I find that the furnace is only about 3 feet wide at the bottom, and that the elevation of the arch above the bottom is no more than 30 inches. Perhaps it might be made a little wider with advantage; the combustion would be more vigorous and effective; and if the sides also were a little thicker, the heat would be better confined.The distance from the fire-placeXto the chimneyH, is431⁄2feet.The di—ance from the fire—Yto the pointC, is13—The di—ance from the fire—Zto the chimney, is29—including the turn of the elbowE.Pipes and couplingsDistribution of the pipes.—AtB, the pipe is 18 inches diameter outside, and one inch thick of metal, and it tapers toC; fromCtoDand fromDtoCthe pipes are only 11 inches in external diameter, and three-fourths of an inch thick; they are 5 feet long, and are united by two kinds of joints; the ordinary ones, and those of compensation, to give play for the expansion and contraction. One of these is seen betweenBandC, one betweenCandD, one betweenCandE, and a fourth betweenEandF. These pipes and their adjustment are seen more at large infig.588.;U Vis one of these pipes, its widened mouth receives the extremityMof the preceding pipe. These pieces are truly bored and turned to fit each other, and slide out and in like telescope tubes, by the effect of dilatation and contraction of the pipes with changes of temperature.At certain distances castors or friction-rollers of cast iron are placed to carry the pipes, which roll upon oblong plates of cast iron laid upon the floor of the flues. These castors are shown ata,b,c,d,e,f,g,fig.585.; one of them is shown separate upon a larger scale atG,fig.587., as also the plate or railS, on which it runs.The tuyèresT T′ are adjusted into the pipe behind them; this is truly bored, so as to allow the thick end of the tuyère to slide tightly backwards and forwards in it, like a piston in the barrel of a pump; a diaphragm moreover prevents the tuyère from being drawn or forced entirely out of its tube. At the side of this tube there is a small orifice, which may be shut or opened at pleasure with a stopcock or screw-plug: it serves to try the degree of heat of the air-blast; if a lead wire does not melt when held at this hole, the temperature is reckoned too low; being under the 612th degree of Fahrenheit. The nozzles are 2 inches in diameter.Near the fire-places of the air-heating furnaces the pipes are at a cherry-red heat; and lest they should be burned, they are there coated with a lute of fire-clay, as shown nearKfig.586.By this means the air is kept up at the heat of 350° C, or 662° F., a little above the boiling point of quicksilver.Quantity of air and pressure.—The blowing-machine belonging to the above blast-furnace is moved by a water wheel of 22-horse power, the pistons are 4 feet in diameter, have a 31⁄2-feet stroke, work double, and expel 1200 cubic feet of air in the minute; or 600 cubic feet for each nozzle. The pressure of the air is equivalent to no more than 2 or 21⁄4inches of mercury; formerly with cold air it amounted to 31⁄2inches. This furnace yields, upon an average, 51⁄4tons of cast iron daily, and consumes 11⁄3cwt. of coke for each cwt. of cast iron produced; being 7 tons of cokeper diem.The consumption of the three flue fires is 30 pounds of small coal, for 100 pounds of cast-iron produced, which may be reckoned equivalent to 15 pounds of coke; hence altogether each ton of cast iron requires for its production 11⁄2tons of coke.The same furnace worked with the cold blast, the same pressure and the same ores, produced only 31⁄2tons of cast iron daily, with an expenditure of 2·55 of coke for 1 of cast iron; in which case the coke amounted to 9 tons daily.The returns by the hot blast compared with those by the cold, are therefore as the numbers 3 and 2, which shows an advantage by the former plan of 50 per cent. The consumption of fuel in the two cases is as 8 to 9, being a saving in this article of about 11 per cent. Coke is used on account of sulphur in the coal.Hot-blast heated by the flame of the furnace mouth.—This system is mounted in Staffordshire. The heating apparatus is there set immediately upon the mouth of the furnace; and is composed of 2 large cast-iron cylinders of the same length, the one withinthe other, leaving a space between them. This annular interval amounts to 16 inches, and it is closed at top and bottom: but the innermost cylinder is open at both ends, and forms, indeed, the vent of the chimney or furnace. It carries nine rows of pipes, three in each row, which cross its interior, and open into the annular space.The flame of the furnace passes between the intervals of the cross pipes, heating them, and also the two upright cylinders with which they are connected. The air of the blowing machine arrives by a vertical pipe, which is placed at the back of the furnace; it enters into the above annular space, and thence circulates, with more or less velocity, through the 27 cross tubes, upon which the flame is continually playing; lastly, it is drawn through to the bottom of the annular space; the two tubes which conduct it to the two tuyères, pass down within the brickwork of the furnace, and thus prevent the dissipation of its heat.Below this heating apparatus there is a door for putting the charges into the furnace.The above arrangement does not seem to be the best for obtaining the greatest possible heat for the blast, nor for favouring the free action of the furnace; but it illustrates perfectly well the principle of this application. A serpentine movement in a long bent hot channel would be much better adapted for communicating heat to so bad a conductor as air is known to be.In the month of July, 1836, I paid a visit to Codner Park and Butterly works, in Derbyshire, belonging to the eminent iron-masters, Messrs. Jessop and Co., where I was kindly permitted not only to study the various processes of the manufacture of cast and wrought iron, but to inspect the registers of the products of cast iron in their blast furnaces for several years back. It appeared that in the year 1829, only 29 tons of cast iron were made weekly in each of the blast furnaces at Codner Park. They were then worked with coke, and blown with cold air. Each ton of iron required for its production, at that time, 6·82 tons of coals, made into coke for smelting; with 2·64 of roasted iron ore (carbonate), called mine; and 0·87 of limestone, thecastineof the French.In 1835 and 1836, the same furnaces turned out weekly, 49 tons of cast iron each; and every ton of iron required for its production only 3 tons of coal (not made into coke); 2·72 tons of mine; and 0·77 of lime.In 1829, and for many years before, as well as one or two after, each ton of coals is said to have cost for coking the sum of 6s., whence the 6·82 tons of coals then converted into coke for smelting one ton of iron, cost fully 40s.in coking alone, in addition to their prime cost. The saving in this respect, therefore, is 40s.upon each ton of iron, besides the saving of fully half the coal, and the increased produce of nearly 60 per cent. of metal per week. The iron-master pays the patentee 1s.upon every ton of iron which he makes, and at the prices of 1836, he lessened his expenses by, at least, 30s.or 40s.per ton by the patent improvement.The following tabular view of the progression in the management and results of the hot blast, is given by M. Dufrénoy, after visiting the various iron works in this country where it had been introduced.“At the Clyde iron works, near Glasgow; in 1829, when the combustion was effected by the cold air blast,—Coal.Tons.cwt.lbs.There were consumed,for smelting; 3 tons of coke, equivalent to6130—for the blowing engine107Total coal per ton of iron7137Limestone0101⁄20In 1831, with the hot blast at 450° F., coke being still used in smelting,—There were consumed,for smelting; 1 ton 18 cwt. of coke, equivalent to460—for heating the air, 5 cwt.-0124—for the blowing engine, 7 cwt. 4 lbs.Total coal per ton of iron4184Limestone090In July, 1833, with the hot blast at 612° F., raw coal alone being used for smelting,—There were consumed,for smelting200—for heating the air080—for the blowing engine0112Total coal per ton of iron2192Limestone070“At the last period the use of hot air had increased the make of the furnaces by more than one third, and had consequently produced a great saving of expense in the article of labour. The quantity of blast necessary for the furnaces was also sensibly diminished; for a blowing engine of seventy-horse power, which, in 1829, served only for three blast furnaces, was now sufficient for the supply of four.“On comparing these several results, we find that the economy of fuel is in proportion to the temperature to which the air is raised. As for the actual saving, it varies in every work, according to the nature of the coal, and the care with which the operation is conducted.“This process, though it has been four years in use in the works near Glasgow, (which it has rescued from certain ruin) has scarcely passed the borders of Scotland; the marvellous advantages, however, which it has produced, are beginning to triumph over prejudice, and gradually to extend its use into the different English iron districts. There are one-and-twenty works, containing altogether sixty-seven blast furnaces, in which hot air is used. The pig iron run out of these furnaces is generally No. 1., and is fit for making the most delicate castings. This process is equally applicable to forge pigs for the manufacture of bar iron; since in order to obtain this quality of iron, it is only necessary to alter the proportion of fuel and mineral. In the forges of the Tyne iron-works, near Newcastle, and of Codner Park, near Derby, pigs made in furnaces blown by hot air, are alone used in the manufacture of bar iron.“In the side of the tuyère pipe a small hole is made, by means of which the heat of the air may be ascertained at any moment. This precaution is indispensable, it being of importance to the beneficial use of hot air, that it be kept at a uniformly high temperature. With a proper apparatus the air is raised to 612 degrees Fahr., which is a greater heat, by several degrees, than is necessary for the fusion of lead.”“At Calder works the consumption of fuel has diminished in the proportion of 7 tons 17 cwt. to 2 tons 2 cwt. There has also been a great diminution of expense in limestone, of which only 51⁄2cwt. are now used, instead of 13 cwt., which were used in 1828. This decrease results, as I have already said, from the high temperature which the furnace has acquired since the introduction of hot air.“The quantity of blast has been reduced from 3500 cubic feet per minute, to 2627 cubic feet; the pressure also has been reduced from 31⁄4to 23⁄4lbs.”Of the refinery of cast iron, or its conversion into bar-iron, in England.—This operation is naturally divisible into three distinct parts. The first, or the finery properly speaking, is executed in peculiar furnaces calledrunning out fires; the second operation completes the first, and is calledpuddling; and the third consists in welding several iron bars together, and working them under forge hammers, and between rolls.1. Thefinery furnacesare composed of a body of brickwork, about 9 feet square; rising but little above the surface of the ground. The hearth, placed in the middle, is two feet and a half deep; it is rectangular, being in general, 3 feet by 2, with its greatest side parallel to the face of the tuyères; and it is made of cast iron in four plates. On the side of the tuyères there is a single brick wall. On the three other sides, sheet iron doors are placed, to prevent the external air from cooling the metal, which is almost always worked under an open shed, or in the open air, but never in a space surrounded by walls. The chimney, from 15 to 18 feet high, is supported upon four columns of cast iron; its lintel is four feet above the level of the hearth, in order that the labourers may work without restraint.The number of tuyères is from two to three; they are placed at the height of the lip of the crucible or hearth, and distributed so as to divide its length into equal parts; their axes being inclined towards the bottom, at an angle of from 25° to 30°, so as to point upon the bath of melted metal as it flows. The cast-iron nose-pipe is encased, and water is made to circulate in the hollow space by means of cylindrical tubes; being introduced by one tube, and let off by another, so as to prevent the tuyères from getting burned in the process.Two nozzles are usually placed in each tuyère, to render the blast constant and uniform; and for the same end, the air impelled by the bellows, is sometimes received at first in a regulator. The quantity of air blown into the fineries is considerable; being nearly 400 cubic feet per minute for each finery; or about the eighth part of the consumption of a blast furnace.

Blast furnace

In the Dudley field, the furnaces are almost always in the middle of the plain, and an inclined rail-way must be formed to reach their platform. These inclined planes, composed of beams or rails placed alongside of each other, and sustained by props and cross-bars, as indicated infig.582., are set up mostly against the posterior face of the furnace. Two chains or ropes, passing over the drums of gins, moved by a steam engine (commonly the same that drives the bellows), draw up the waggons of wood or sheet irona a, which contain the various materials for supplying the furnace. To facilitate this service, the platform round the furnace is sometimes enlarged behind by a floor; while a balustrade, which opens when the waggons arrive at the platform, prevents accidents. This projection is occasionally covered by a roof. For a furnace of the largest size, the force expended by this lifting apparatus, is not more than a two-horse power.

Fig.582.is a vertical section through the furnace from front to rear, or at right angles to the line of the lateral tuyères. The erection of a pair of blast furnaces, of 40 feet high each, costs, in the Dudley district, 1800 pounds sterling; and requires for building each, 160,000 common bricks for the outside work, 3900 fire-bricks for the lining or shirt of the furnace, and 825 for the boshes. The dimensions of the fire-bricks are various; 5 kinds are employed for the lining, and 9 kinds for the boshes. They are all 6 inches thick, and are curved to suit thevoussoirs.

The number of charges given in 12 hours is different in different furnaces; being sometimes 20, 25, and even so high as 40; but 30 is a fair average. Each charge iscomposed of from 5 to 6 cwt. of coak, (or now of 3 to 4 cwt. of coal with the hot blast); 3, 4, and sometimes 6 cwt. of the roasted mine, according to its richness and the quality of cast iron wanted; the limestone flux is usually one-third of the weight of the roasted iron stone. There are 2 casts in 24 hours; one at 6 in the morning, and another at 6 in the evening.

The height of the blast furnaces is very variable; some being only 36 feet high including the chimney, whilst others have an elevation of 60 feet. These extreme limits are very rare: so that the greater part of the furnaces are from 45 to 50 feet high. They are all terminated by a cylindrical chimney of from 8 to 12 feet long; being about one-fifth of the total height of the furnace. The inside diameter of this chimney is the same as that of the throat or mouth; and varies from 4 to 6 feet. The chimney is frequently formed of a single course of bricks, and acquires solidity from its hoops of iron, so thickly placed that one half of the surface is often covered with them. At its lower end, the mouth presents one or two rectangular openings, through which the charge is given. It is built on a basement circle of cast-iron, which forms the circumference of the throat; and a sloping plate of cast-ironbis so placed as to make the materials slide over into the furnace, as shown in thefigure.

The inside of the blast furnaces of Staffordshire is most frequently of a circular form, except the hearth and working area. The inner space is divided into four portions, different in their forms, and the functions which they fulfil in the smelting of the ore.

The undermost, called the hearth, or crucible, in which the cast-iron collects, is a right rectangular prism, elongated in a line perpendicular to the axes of the tuyères. The sides of the hearth consist in general of refractory sandstone (fire-stone), obtained mostly from the bed of the coal basin, calledmillstone grit; and the bottom of the hearth is formed of a large block of the same nature, laid on a cast-iron plate.

The second portion is also made of the same refractory grit stone. It has the form of a quadrangular pyramidal, approaching considerably to a prism, from the smallness of the angle included between the sides and the axis.

The third portion or lower body of the furnace is conical, but here the interior space suddenly expands; the slope outwards at this part seems to have a great influence on the quality of the cast-iron obtained from the furnace. When No. 2. of the blackest kind is wanted for castings, the inclination of this cavity of the furnace is in general less considerable than when No. 2. cast iron for conversion into bar iron is required. The inclination of this conical chamber, called the boshes, varies from 55 to 60 degrees with the horizon. The diameter of this part is equal to that of the belly, and is from 11 to 13 feet. The boshes are built of masonry, as shown infigs.583,584.

The fourth part, which constitutes about two-thirds of the height of the furnace from the base of the hearth up to the throat, presents the figure of a surface of revolution, generated by a curve whose concavity is turned towards the axis of the furnace, and whose last tangent towards the bottom is almost vertical. This surface is sloped off with that of the boshes (étalagesin French), so that no sharp angle may exist at the belly. In some furnaces of considerable dimensions, as in that with three tuyères, this portion of the furnace is cylindrical for a certain height.

The following measurements represent the interior structure of two well-going furnaces.

Blast furnace

The conical orifice called the tuyère, in which the tapered pipes are placed, for imparting the blast, is seen near the bottom of the furnace,fig.583.atA. Nose tubes of various sizes, from 2 to 4 inches in diameter, are applied to the extremity of the main blast-pipe. UnderAis the bottom of the hearth, which, in large furnaces, may be two feet square.Bis the top of the hearth, about two feet six inches square.A,B, is the height of the hearth, about six feet six inches.Bshows the round bottom of the conical or funnel part, called in this country, theboshes, standing upon the square area of the hearth.Cis the top of the boshes, which may be about 12 feet in diameter, and 8 feet in perpendicular height.Dis the furnace top or mouth (gueulardin French), at which thematerials are charged. It may be 41⁄2feet in diameter. The line betweenC,D, is the height of the internal cavity of the furnace, from the top of the boshes upwards, supposed to be 30 feet.A,D, is the total height of the interior of the furnace, reckoned at 441⁄2feet.E Eis the lining, which is built in the nicest manner with the best fire-bricks, from 12 to 14 inches long, 3 inches thick, and curved to suit the circle of the cone. A vacancy of 3 inches wide is left all round the outside of the first lining by the builder; which is sometimes filled with coak dust, but more generally with sand firmly rammed. This void space in the brick-work is for the purpose of allowing for any expansion which might occur, either by an increase in the bulk of the building, or by the pressure and weight of the materials when descending to the bottom of the furnace. Exterior toE Eis a second lining of fire-bricks similar to the first. AtF, on either side, is a cast-iron lintel, 81⁄2feet long, by 10 inches square, upon which the bottom of the arches is supported.F,G, is the rise of the tuyère arch, which may be 14 feet high upon the outside, and 18 feet wide. The extreme size of the bottom or sole of the hearth, upon each side ofA, may be 10 feet square. This part and the boshing stones, are preferably made from a coarse sandstone grit, containing large rounded grains of quartz, united by a siliceo-argillaceous cement.

The bottom of the hearth consists, first, of a course of the said gritstone; beneath which is a layer of bedding sand, having, in its under part, passages for the escape of the vapours generated by damps; the whole being supported upon pillars of brick.

Hearth and boshes

Fig.584.represents the hearth and boshes, in a vertical side section.ais the tymp stone, andbthe tymp plate for confining the liquid metal in the hearth. The latter is wedged firmly into the side-walls of the hearth;cis the dam-stone, which occupies the whole breadth at the bottom of the hearth, excepting about 6 inches, which space, when the furnace is at work, is filled before every cast, with a strong binding sand. This stone is faced outside by a cast-iron plated, called the dam-plate, of considerable thickness, and peculiar shape. The top of the dam-stone, or rather the notch of the dam-plate, lies from 4 to 8 inches under the level of the tuyère hole. The space under the tymp plate, for 5 or 6 inches down, is rammed full, for every cast, with strong loamy earth, or even fine clay; a process called the tymp stopping. The area of the base of this furnace being 38 feet; its extreme height is 55 feet.

The blast furnaces of Staffordshire have always two tuyères, at least, placed on oppositesides, but so pointed that the blast may not pursue directly opposite lines. In a furnace acting well in the neighbourhood of Dudley, the one of the tuyères was 10 inches distant from the posterior wall of the hearth, and the other only 4 inches. In other furnaces with 3 tuyères; the side ones are placed, the one 161⁄2inches, and the other 61⁄2inches from the back. Three tuyères are seldom made to blow simultaneously. The third is brought into action only when the furnace seems to be choaked up, and when it becomes necessary to clear it up by a powerful concussion. Too much pains cannot be bestowed on the masonry and brickwork of a blast furnace, and on the solidity of its foundation. In a soft ground it should rest on piles, so driven that the channel left beneath for the drainage of the building may be above any water level. Small passages should likewise be left throughout the body of the work, for the transpiration of moisture.

The blowing machines employed in Staffordshire, are generally cast-iron cylinders, in which a metallic piston is exactly fitted as for a steam engine, and made in the same way. Towards the top and bottom of the blowing cylinders orifices are left covered with valves, which open inside when the vacuum is made with the cylinders, and afterwards shut by their own weight. Adjutages conduct into the iron globe or chest, the air expelled by the piston, both in its ascent and descent; because these blowing machines have always a double stroke.

The pressure of the air is made to vary through a very considerable range, according to the nature of the fuel and season of the year; for as in summer the atmosphere is more rarefied, it must be expelled with a compensating force. The limits are from 11⁄2pounds to 31⁄2pounds on the inch; but these numbers represent extreme proportions, the average amount in Staffordshire being 3 pounds. With this pressure a furnace usually works, which affords 60 tons of cast iron in the week; and the pressure may be 21⁄2pounds on an average. The orifices, or nose-pipes, through which the air issues, also vary with the nature of the coke and the ore. In Staffordshire they are generally from 2 inches and 5 tenths to 2 inches and 8 tenths in diameter.

The blowing machines of Staffordshire are always impelled by steam engines. At Mr. Bagnall’s works, two blast furnaces, 40 feet high, exclusive of the chimney or top, and two finery furnaces, are worked by a steam engine of 40 horses power; and therefore the power of one horse corresponds to the production of 21⁄2tons of cast iron per weekly, independently of the finery.

In South Wales, especially at Pontypool, there are slighter blast furnaces, whose upper portion is composed of a single range of bricks, each of which is 20 inches long, 4 thick, and 9 broad. The interior of the chimney represents an inverted cone. These furnaces derive solidity, and power to resist the expansions and contractions from change of temperature, by being cased, as it were, in horizontal hoops, placed 3 feet, or, even in some cases, only 6 inches asunder. These flat rings consist of four pieces, which are joined by means of vertical bars, that carry a species of ears or rings, into which the hoops enter, and are retained by bolts or keys. Instead of these ears, screw nuts are also employed for the junction. Each hoop is alternately connected to each of the eight vertical bars. The interior of these furnaces is the same as of the others; being generally from 12 to 14 feet diameter at the belly, and from 50 to 55 feet high. Though slight, they last as long as those composed of an outer body of masonry and a double lining of bricks; and have continued constantly at work for three years. In Wales also the blast furnaces are generally somewhat larger than in Staffordshire; because there the object being to refine the cast iron, they wish to procure as large a smelting product as possible. But in Staffordshire, a fine quality of casting iron is chiefly sought after, and hence their furnaces have less height, but nearly the same width.

In a blast apparatus employed at the Cyfartha works, moved by a 90-horse steam power, the piston rod of the blowing cylinder is connected by a parallelogram mechanism with the opposite end of the working beam of the steam engine. The cylinder is 9 feet 4 inches diameter, and 8 feet 4 inches high. The piston has a stroke 8 feet long, and it rises 13 times in the minute. By calculating the sum of the spaces percurred by the piston in a minute, and supposing that the volume of the air expelled is equal to only 96 per cent. of that sum, which must be admitted to hold with machines executed with so much precision, we find that 12,588 cubic feet of air are propelled every minute. Hence a horse power applied to blowing machines of this nature gives, on an average, 137 cubic feet of air per minute. The pressure on the air as it issues, rarely exceeds two pounds on the square inch in the Welsh works.

At the establishment of Cyfartha, for blowing seven smelting furnaces, and the seven corresponding fineries, three steam engines are employed, one of 90 horse-power, another of 80, and a third of 40; which constitutes in the whole, a force of 210 horses, or 26 horses and1⁄5per furnace, supposing the fineries to consume one-eighth of the blast. In the whole of the works of Messrs. Crawshay, the proprietors of Cyfartha, the power of about 350 horses is expended in blowing 12 smelting furnaces, and their subordinate fineries; which gives from 25 to 26 horses for each, allowing as before one-eighth for the fineries. As these furnaces produce each about 60 tons of cast iron weekly, we findthat a horse power corresponds to 2 tons and a tenth in that time. Each of the furnaces consumes about 3567 cubic feet of air per minute. These works have been greatly increased of late years.

The following analyses of the English coal ironstones have been made by M. Berthier, at the school of mines in Paris.

The mean richness of the ores of carbonate of iron of these coal basins, is not far from 33 per cent. About 28per cent.is dissipated on an average, in the roasting of the ores.

Every ferruginous clay-stone is regarded as an iron ore, when it contains more than 20 per cent. of metal; and it is paid for according to its quality, being on an average at 12 shillings per ton in Staffordshire. The gubbin however fetches so high a price as 16 or 17 shillings. The ore must be roasted before it is fit for the blast furnace, a process carried on in the open air. A heap of ore mingled with small coal (if necessary) is piled up over a stratum of larger pieces of coal; and this heap may be 6 or 7 feet high, by 15 or 20 broad. The fire is applied at the windward end, and after it has burned a certain way, the heap is prolonged at the other extremity, as far as the nature of the ground or convenience of the work requires. The quantity of coal requisite for roasting the ore varies from one to four hundred weight per ton, according to the proportion of bituminous matter associated with the iron-stone. The ore loses in this operation from 25 to 30 per cent. of its weight. Three and a quarter tons of crude ore, or two and a quarter tons of roasted ore are required to produce a ton of cast iron; that is to say, the crude material yields on an average 30·7 per cent., and the roasted ore 44·4 of pig metal. In most smelting works in Staffordshire, about equal weights of the rich ore in round nodules calledgubbin, and the poorer ore in cakes calledblue flat, are employed together in their roasted state; but the proportions are varied, in order to have an uniform mixture, capable of yielding from 30 to 33 per cent. of metal.

The transition or carboniferous limestone of Dudley is used as the flux; it is compact and contains little clay. The bulk of the flux is made nearly equal to that of the ore. To treat two tons and a quarter of roasted ore, which furnish one ton of pig iron, 19 hundred weight of limestone are employed; constituting nearly 1 of limestone for 3 of unroasted ore. The limestone costs 6 shillings the ton.

Carbonized pitcoal or coke was, till within these few years, the sole combustible used in the blast furnaces of Staffordshire.

The coal is distributed in circular heaps, about 5 feet diameter, by 4 feet high; and the middle is occupied by a low brick chimney, piled with loose bricks, so open as to leave interstices between them, especially near the ground. The larger lumps of coal are arranged round this chimney, and the smaller towards the circumference of the heap. When every thing is adjusted, a kindling of coals is introduced into the bottom of the brick chimney; and to render the combustion slow, the whole is covered over with a coat of coal dross, the chimney being loosely closed with a slab of any kind. Openings are occasionally made in the crust and afterwards shut up, to quicken and retard the ignition at pleasure, during its continuance of 24 hours. Whenever the carbonization has reached the proper point for forming good coke, the covering of coal dross is removed, and water is thrown on the heap to extinguish the combustion; a circumstance deemed useful to the quality of the coke. In this operation the Staffordshire coal loses the half of its weight, or two tons of coal produce one of coke.

As soon as the blast furnace gets into a regular heat, which happens about 15 days or three weeks after fires have been put in it, the working consists simply in charging it, at the opening in the throat, whenever there is a sufficient empty space; the only rule being to keep the furnace always full. The coke is measured in a basket, thirteen of which go to the ton. The ore and the flux (limestone) are brought forwards in wheelbarrows of sheet-iron. In 24 hours, there are thrown into a furnace such asfig.582., 141⁄3tons of coke, 16 tons of roasted ore, and 63⁄4tons of limestone; from which about 7 tons of pig iron are procured. This is run off every 12 hours; in some works the blast is suspended during the discharge. The metal intended to be convertedinto bar iron, or to be cast again into moulds, is run into small pigs 3 feet long, and 4 inches diameter; weighing each about 2 hundred weight and a half.

The disorders to which blast furnaces are liable, have a tendency always to produce white cast iron. The colour of the slag or scoriæ is the surest test of these derangements, as it indicates the quality of the products. If the furnace is yielding an iron proper for casting into moulds, the slag has an uniform vitrification, and is slightly translucid. When the dose of ore is increased in order to obtain a gray pig iron, fit for fabrication into bars, the slag is opaque, dull, and of a greenish-yellow tint, with blue enamelled zones. Lastly, when the furnace is producing a white metal, the slags are black, glassy, full of bubbles, and emit an odour of sulphuretted hydrogen. The scoriæ from a coke, are much more loaded with lime than those from a charcoal blast furnace. This excess of lime appears adapted to absorb and carry off the sulphur, which would otherwise injure the quality of the iron. The slags, when breathed on, emit an argillaceous odour.

A blast furnace of 50 or 60 feet in height, gives commonly from 60 to 70 tons of cast iron per week; one from 50 to 55 feet high, gives 60 tons; two united of 45 feet, produce together, 100 tons; and one of 36 feet furnishes from 30 to 40. A blast furnace should go for four or five years without needing restoration. From 31⁄2to 4 tons of coal, inclusive of the coal of calcination, are required in Staffordshire to obtain one ton of cast iron; and the expense in workmen’s wages is about 15 shillings on that quantity.

At the Cyfartha works of Messrs. Crawshay in South Wales, the average price of the lithoid carbonate of iron, ready for roasting, is only 7s.6d.a ton, and its richness is about 33per cent.The furnaces for roasting the ore in that country are made in the form of cylinders, placed above an inverted cone. The cylindrical part is 6 feet high and wide, and the cone is about 4 feet high, with a base equal to that of the cylinder; towards the bottom or narrowest part of the inverted cone, there is an aperture which terminates in an outlet on a level with the bottom of the terrace in which the furnace is built. Sometimes, however, all the roasting furnaces are in a manner combined into one, which resembles a long pit about 6 feet in width and depth, and whose bottom presents a series of inverted hollow quadrangular pyramids, 6 feet in each side, and 4 deep. The bottom or apex of each of these pyramids, communicates with a mouth or door-way that opens on a lower terrace, through which the ore falls in proportion as it is roasted; and whence it is wheeled and tumbled into the throat of an adjoining blast furnace, on the same level with the terrace; for in Wales the blast furnace is generally built up against the face of a hill, which makes one of its fronts. The above roasting furnaces, which closely resemble lime-kilns, after being filled with alternate strata of small coal and ore, are set on fire; and the roasted ore is progressively withdrawn below, as already mentioned.

The product of coke from a certain weight of coal is greater in Wales than in Staffordshire, though the mode of manufacture is the same. At Pen-y-Darran, for example, 5 of coal furnish 31⁄2of coke; or 100 give 70; at Dowlais 100 of coal afford 71 of coke, and the product would be still greater if more pains were bestowed upon the process. At Dowlais, coal costs only 2 shillings a ton; at Cyfartha, it is worth from 2s.6d.to 5 shillings. About 2 tons of coke are employed in obtaining 1 ton of cast iron.

According to M. Berthier’s analysis, the slag or cinder of Dowlais consists of silica, 40·4; lime, 38·4; magnesia, 5·2; alumina, 11·2; protoxide of iron, 3·8; and a trace of sulphur. He says that the silica contains as much oxygen as all the other bases united; or is equivalent to them in saturating power; and to the excess of lime he ascribes the freedom from sulphur, and the good quality of the iron produced. The specimen examined was from a furnace at Merthyr-Tydvil. Other slags from the same furnace, and one from Dudley, furnished upwards of 2per cent.of manganese. Those which he analysed from Saint Etienne in France afforded about 1 per cent. of sulphur.

The consumption of coal in the Welsh smelting furnaces may be estimated, on an average, at 3 tons per ton of cast iron; corresponding to 2·1 of their coke. From this economy in the quantity of fuel, as well as from its cheapness and that of the iron ore, the iron of South Wales can be brought into the market at a much lower rate than that of any other district. These blast furnaces remain in action from 5 to 10 years; at the end of which time only their interior surface has to be repaired. The lining of the upper part lasts much longer; for examples are not wanting of its holding good for nearly 40 years.

One of the greatest improvements ever made by simple means in any manufacture is the employment of hot air instead of the ordinary cold air of the atmosphere, in supplying the blast of furnaces for smelting and founding iron. The discovery of the superior power of a hot over a cold blast in fusing refractory lumps of cast iron, was accidentally observed by my pupil Mr. James Beaumont Neilson, engineer to the Glasgow gas works, about the year 1827, at a smith’s forge in that city, and it was made the subject of a patent in the month of September of the following year. No particular construction of apparatus was described by the inventor by which the air was to beheated, and conveyed to the furnace; but it was merely stated that the air may be heated in a chamber or closed vessel, having a fire under it, or in a vessel connected in any convenient manner with the forge or furnace. From this vessel the air is to be forced by means of bellows into the furnace. The quantity of surface which a heating furnace is required to have for a forge, is about 1260 cubic inches; for a cupola furnace, about 10,000 cubic inches. The vessel may be enclosed in brickwork, or fixed in any other manner that may be found desirable, the application of heated air in any way to furnaces or forges, for the purposes of working iron, being the subject claimed as constituting the invention.

Wherever a forced stream of air is employed for combustion, the resulting temperature must evidently be impaired by the coldness of the air injected upon the fuel. The heat developed in combustion is distributed into three portions; one is communicated to the remaining fuel, another is communicated to the azote of the atmosphere, and to the volatile products of combustion, and a third to the iron and fluxes, or other surrounding matter to be afterwards dissipated by wider diffusion. This inevitable distribution takes place in such a way, that there is a nearly equal temperature over the whole extent of a fire-place, in which an equal degree of combustion exists.

We thus perceive that if the air and the coal be very cold, the portions of heat absorbed by them might be very considerable, and sufficient to prevent the resulting temperature from rising to a proper pitch; but if they were very hot they would absorb less caloric, and would leave more to elevate the common temperature. Let us suppose two furnaces charged with burning fuel, into one of which cold air is blown, and into the other hot air, in the same quantity. In the same time, nearly equal quantities of fuel will be consumed with a nearly equal production of heat; but notwithstanding of this, there will not be the same degree of heat in the two furnaces, for the one which receives the hot air will be hotter by all the excess of heat in its air above that of the other, since the former air adds to the heat while the latter abstracts from it. Nor are we to imagine that by injecting a little more cold air into the one furnace, we can raise its temperature to that of the other. With more air indeed we should burn more coals in the same time, and we should produce a greater quantity of heat, but this heat being diffused proportionally among more considerable masses of matter, would not produce a greater temperature; we should have a larger space heated, but not a greater intensity of heat in the same space.

Thus, according to the physical principles of the production and distribution of heat, fires fed with hot air should, with the same fuel, rise to a higher pitch of temperature than fires fed with common cold air. This consequence is independent of the masses, being as true for a small stove which burns only an ounce of charcoal in a minute, as for a furnace which burns a hundred weight; but the excess of temperature produced by hot air cannot be the same in small fires as in great; because the waste of heat is usually less the more fuel is burned.

This principle may be rendered still more evident by a numerical illustration. Let us take, for example, a blast furnace, into which 600 cubic feet of air are blown per minute; suppose it to contain no ore but merely coal or coke, and that it has been burning long enough to have arrived at the equilibrium of temperature, and let us see what excess of temperature it would have if blown with air of 300° C. (572° F.), instead of being blown with air at 0° C.

600 cubic feet of air under the mean temperature and pressure, weigh a little more than 45 pounds avoirdupois; they contain 10·4 pounds of oxygen, which would burn very nearly 4 pounds of carbon, and disengage 16,000 times as much heat as would raise by one degree cent. the temperature of two pounds of water. These 16,000 portions of heat, produced every minute, will replace 16,000 other portions of heat, dissipated by the sides of the furnace, and employed in heating the gases which escape from its mouth. This must take place in order to establish the assumed equilibrium of caloric.

If the 45 pounds of air be heated beforehand up to 300° C., they will contain about the eighth part of the heat of the 16,000 disengaged by the combustion, and there will be therefore in the same space one eighth of heat more, which will be ready to operate upon any bodies within its range, and to heat them one eighth more. Thus the blast of 300° C. gives a temperature which is nine-eighths of the blast at zero C., or at even the ordinary atmospheric temperature; and as we may reckon at from 2200° to 2700° F. (from 1200° to 1500° C.), the temperature of blast furnaces worked in the common way, we perceive that the hot-air blast produces an increase of temperature equal to from 270° to 360° F.

Now in order to appreciate the immense effects which this excess of temperature may produce in metallurgic operations, we must consider that often only a few degrees more temperature are required to modify the state of a fusible body, or to determine the play of affinities dormant at lower degrees of heat. Water is solid at 1° under 32° F.; it is liquid at 1° above. Every fusible body has a determinate melting point, a very fewdegrees above which it is quite fluid, though it may be pasty below it. The same observation applies to ordinary chemical affinities; charcoal, for example, which reduces the greater part of metallic oxides, begins to do so only at a determinate pitch of temperature, under which it is inoperative, but a few degrees above, it is in general lively and complete. It is unnecessary, in this article, to enter into any more details to show the influence of a few degrees of heat, more or less, in a furnace, upon chemical operations, or merely upon physical changes of state.

These consequences might have been deduced long ago, and industry might thus have been enriched with a new application of science; but philosophers have been and still are too much estranged from the study of the useful arts, and content themselves too much with the minutiæ of the laboratory or theoretic abstractions. Within the space of 7 years, the use of the hot blast has been so much extended in Great Britain, as to have enabled many proprietors of iron works to add 50 per cent. to their weekly production of metal, to diminish the expenses of smelting by 50 per cent., and, in many cases, to produce a better sort of cast iron from indifferent materials.

Furnace with apparatus

The figures here given represent the blast furnace, and all the details of the air-heating at one view.Fig.583.is a vertical section of the furnace and the apparatus;fig.585.represents the plan at the height of the line 1, 2. offig.583.The blowing machine, which is not shown in this view, injects the air through the pipeA, into the regulator chamberR,fig.585.; the air thence issues by the pipeB, proceeds toC, where it is subdivided into two portions; the one passes along the pipeC Dto get to the tuyèreT, the other passes behind the furnace, and arrives at the tuyèreT′ by the pipeC E F.

These pipes are distributed in a long furnace or flue, whose bottom, sides, and top are formed with fire-brick, where they are exposed to the action of the flame of the three firesX,Y,Z. The flame of the fireXplays round the pipeBat its entrance into the flue, and quits it only to go into the chimneyH; that of the fireYacts from the pointDto the same chimney, passing by the elbowC; that of the fireZacts equally uponFandH, in passing by the elbowE.

Blast furnace

Disposition of the fires and furnace.—Fig.586.represents, upon a scale three times larger thanfig.585., the section of thefireX, of which the plan is seen infig.585., and the elevation infig.583.; as also in the outside view of the blast furnace,fig.589.

Section of fire

The grate is atL; the fuel is introduced by the doorP,fig.583.; the flame rises above the bridgeI K, and proceeds along the vaulted flue towards the chimneyH. Through a length of about 13 feet including the grate, the furnace is on each side supported by oblong plates of cast iron, which are bound together by 4 upright ribbed or feathered bars, also on each side; these barsnbeing bound together by iron rods furnished with screw nuts at their ends (figs.583,585,586.) Beyond this distance, the outside of the furnace is mere brickwork.

The firesYandZhave exactly a like disposition with the above.

Furnace and pipe

Fig.586.indicates the dimensions and the curvature of the arch above the grate, near the bridge;fig.587.represents the section of the furnace and of the pipe beyond the cast-iron casing.

I find that the furnace is only about 3 feet wide at the bottom, and that the elevation of the arch above the bottom is no more than 30 inches. Perhaps it might be made a little wider with advantage; the combustion would be more vigorous and effective; and if the sides also were a little thicker, the heat would be better confined.

Pipes and couplings

Distribution of the pipes.—AtB, the pipe is 18 inches diameter outside, and one inch thick of metal, and it tapers toC; fromCtoDand fromDtoCthe pipes are only 11 inches in external diameter, and three-fourths of an inch thick; they are 5 feet long, and are united by two kinds of joints; the ordinary ones, and those of compensation, to give play for the expansion and contraction. One of these is seen betweenBandC, one betweenCandD, one betweenCandE, and a fourth betweenEandF. These pipes and their adjustment are seen more at large infig.588.;U Vis one of these pipes, its widened mouth receives the extremityMof the preceding pipe. These pieces are truly bored and turned to fit each other, and slide out and in like telescope tubes, by the effect of dilatation and contraction of the pipes with changes of temperature.

At certain distances castors or friction-rollers of cast iron are placed to carry the pipes, which roll upon oblong plates of cast iron laid upon the floor of the flues. These castors are shown ata,b,c,d,e,f,g,fig.585.; one of them is shown separate upon a larger scale atG,fig.587., as also the plate or railS, on which it runs.

The tuyèresT T′ are adjusted into the pipe behind them; this is truly bored, so as to allow the thick end of the tuyère to slide tightly backwards and forwards in it, like a piston in the barrel of a pump; a diaphragm moreover prevents the tuyère from being drawn or forced entirely out of its tube. At the side of this tube there is a small orifice, which may be shut or opened at pleasure with a stopcock or screw-plug: it serves to try the degree of heat of the air-blast; if a lead wire does not melt when held at this hole, the temperature is reckoned too low; being under the 612th degree of Fahrenheit. The nozzles are 2 inches in diameter.

Near the fire-places of the air-heating furnaces the pipes are at a cherry-red heat; and lest they should be burned, they are there coated with a lute of fire-clay, as shown nearKfig.586.By this means the air is kept up at the heat of 350° C, or 662° F., a little above the boiling point of quicksilver.

Quantity of air and pressure.—The blowing-machine belonging to the above blast-furnace is moved by a water wheel of 22-horse power, the pistons are 4 feet in diameter, have a 31⁄2-feet stroke, work double, and expel 1200 cubic feet of air in the minute; or 600 cubic feet for each nozzle. The pressure of the air is equivalent to no more than 2 or 21⁄4inches of mercury; formerly with cold air it amounted to 31⁄2inches. This furnace yields, upon an average, 51⁄4tons of cast iron daily, and consumes 11⁄3cwt. of coke for each cwt. of cast iron produced; being 7 tons of cokeper diem.

The consumption of the three flue fires is 30 pounds of small coal, for 100 pounds of cast-iron produced, which may be reckoned equivalent to 15 pounds of coke; hence altogether each ton of cast iron requires for its production 11⁄2tons of coke.

The same furnace worked with the cold blast, the same pressure and the same ores, produced only 31⁄2tons of cast iron daily, with an expenditure of 2·55 of coke for 1 of cast iron; in which case the coke amounted to 9 tons daily.

The returns by the hot blast compared with those by the cold, are therefore as the numbers 3 and 2, which shows an advantage by the former plan of 50 per cent. The consumption of fuel in the two cases is as 8 to 9, being a saving in this article of about 11 per cent. Coke is used on account of sulphur in the coal.

Hot-blast heated by the flame of the furnace mouth.—This system is mounted in Staffordshire. The heating apparatus is there set immediately upon the mouth of the furnace; and is composed of 2 large cast-iron cylinders of the same length, the one withinthe other, leaving a space between them. This annular interval amounts to 16 inches, and it is closed at top and bottom: but the innermost cylinder is open at both ends, and forms, indeed, the vent of the chimney or furnace. It carries nine rows of pipes, three in each row, which cross its interior, and open into the annular space.

The flame of the furnace passes between the intervals of the cross pipes, heating them, and also the two upright cylinders with which they are connected. The air of the blowing machine arrives by a vertical pipe, which is placed at the back of the furnace; it enters into the above annular space, and thence circulates, with more or less velocity, through the 27 cross tubes, upon which the flame is continually playing; lastly, it is drawn through to the bottom of the annular space; the two tubes which conduct it to the two tuyères, pass down within the brickwork of the furnace, and thus prevent the dissipation of its heat.

Below this heating apparatus there is a door for putting the charges into the furnace.

The above arrangement does not seem to be the best for obtaining the greatest possible heat for the blast, nor for favouring the free action of the furnace; but it illustrates perfectly well the principle of this application. A serpentine movement in a long bent hot channel would be much better adapted for communicating heat to so bad a conductor as air is known to be.

In the month of July, 1836, I paid a visit to Codner Park and Butterly works, in Derbyshire, belonging to the eminent iron-masters, Messrs. Jessop and Co., where I was kindly permitted not only to study the various processes of the manufacture of cast and wrought iron, but to inspect the registers of the products of cast iron in their blast furnaces for several years back. It appeared that in the year 1829, only 29 tons of cast iron were made weekly in each of the blast furnaces at Codner Park. They were then worked with coke, and blown with cold air. Each ton of iron required for its production, at that time, 6·82 tons of coals, made into coke for smelting; with 2·64 of roasted iron ore (carbonate), called mine; and 0·87 of limestone, thecastineof the French.

In 1835 and 1836, the same furnaces turned out weekly, 49 tons of cast iron each; and every ton of iron required for its production only 3 tons of coal (not made into coke); 2·72 tons of mine; and 0·77 of lime.

In 1829, and for many years before, as well as one or two after, each ton of coals is said to have cost for coking the sum of 6s., whence the 6·82 tons of coals then converted into coke for smelting one ton of iron, cost fully 40s.in coking alone, in addition to their prime cost. The saving in this respect, therefore, is 40s.upon each ton of iron, besides the saving of fully half the coal, and the increased produce of nearly 60 per cent. of metal per week. The iron-master pays the patentee 1s.upon every ton of iron which he makes, and at the prices of 1836, he lessened his expenses by, at least, 30s.or 40s.per ton by the patent improvement.

The following tabular view of the progression in the management and results of the hot blast, is given by M. Dufrénoy, after visiting the various iron works in this country where it had been introduced.

“At the Clyde iron works, near Glasgow; in 1829, when the combustion was effected by the cold air blast,—

“At the last period the use of hot air had increased the make of the furnaces by more than one third, and had consequently produced a great saving of expense in the article of labour. The quantity of blast necessary for the furnaces was also sensibly diminished; for a blowing engine of seventy-horse power, which, in 1829, served only for three blast furnaces, was now sufficient for the supply of four.

“On comparing these several results, we find that the economy of fuel is in proportion to the temperature to which the air is raised. As for the actual saving, it varies in every work, according to the nature of the coal, and the care with which the operation is conducted.

“This process, though it has been four years in use in the works near Glasgow, (which it has rescued from certain ruin) has scarcely passed the borders of Scotland; the marvellous advantages, however, which it has produced, are beginning to triumph over prejudice, and gradually to extend its use into the different English iron districts. There are one-and-twenty works, containing altogether sixty-seven blast furnaces, in which hot air is used. The pig iron run out of these furnaces is generally No. 1., and is fit for making the most delicate castings. This process is equally applicable to forge pigs for the manufacture of bar iron; since in order to obtain this quality of iron, it is only necessary to alter the proportion of fuel and mineral. In the forges of the Tyne iron-works, near Newcastle, and of Codner Park, near Derby, pigs made in furnaces blown by hot air, are alone used in the manufacture of bar iron.

“In the side of the tuyère pipe a small hole is made, by means of which the heat of the air may be ascertained at any moment. This precaution is indispensable, it being of importance to the beneficial use of hot air, that it be kept at a uniformly high temperature. With a proper apparatus the air is raised to 612 degrees Fahr., which is a greater heat, by several degrees, than is necessary for the fusion of lead.”

“At Calder works the consumption of fuel has diminished in the proportion of 7 tons 17 cwt. to 2 tons 2 cwt. There has also been a great diminution of expense in limestone, of which only 51⁄2cwt. are now used, instead of 13 cwt., which were used in 1828. This decrease results, as I have already said, from the high temperature which the furnace has acquired since the introduction of hot air.

“The quantity of blast has been reduced from 3500 cubic feet per minute, to 2627 cubic feet; the pressure also has been reduced from 31⁄4to 23⁄4lbs.”

Of the refinery of cast iron, or its conversion into bar-iron, in England.—This operation is naturally divisible into three distinct parts. The first, or the finery properly speaking, is executed in peculiar furnaces calledrunning out fires; the second operation completes the first, and is calledpuddling; and the third consists in welding several iron bars together, and working them under forge hammers, and between rolls.

1. Thefinery furnacesare composed of a body of brickwork, about 9 feet square; rising but little above the surface of the ground. The hearth, placed in the middle, is two feet and a half deep; it is rectangular, being in general, 3 feet by 2, with its greatest side parallel to the face of the tuyères; and it is made of cast iron in four plates. On the side of the tuyères there is a single brick wall. On the three other sides, sheet iron doors are placed, to prevent the external air from cooling the metal, which is almost always worked under an open shed, or in the open air, but never in a space surrounded by walls. The chimney, from 15 to 18 feet high, is supported upon four columns of cast iron; its lintel is four feet above the level of the hearth, in order that the labourers may work without restraint.

The number of tuyères is from two to three; they are placed at the height of the lip of the crucible or hearth, and distributed so as to divide its length into equal parts; their axes being inclined towards the bottom, at an angle of from 25° to 30°, so as to point upon the bath of melted metal as it flows. The cast-iron nose-pipe is encased, and water is made to circulate in the hollow space by means of cylindrical tubes; being introduced by one tube, and let off by another, so as to prevent the tuyères from getting burned in the process.

Two nozzles are usually placed in each tuyère, to render the blast constant and uniform; and for the same end, the air impelled by the bellows, is sometimes received at first in a regulator. The quantity of air blown into the fineries is considerable; being nearly 400 cubic feet per minute for each finery; or about the eighth part of the consumption of a blast furnace.


Back to IndexNext