G.

FUSTIC. (Bois jaune, Fr.;Gelbholz, Germ.) Theoldfustic of the English dyer, as the article fustet is theiryellowfustic. It is the wood of the Morus tinctoria. It is light, not hard, and pale yellow with orange veins; it contains two colouring matters, one resinous, and another soluble in water. The latter resembles weld, but it has more of an orange cast, and is not so lively.Its decoctions in water are brightened by the addition of a little glue, and more by curdled milk. This wood is rich in colour, and imparts permanent dyes to woollen stuffs, when aided by proper mordants. It unites well with the blue of the indigo vat, and Saxon blue, in producing green of various shades. Alum, tartar, and solution of tin, render its colour more vivid; sea salt and sulphate of iron deepen its hue. From 5 to 6 parts of old fustic are sufficient to give a lemon colour to 16 parts of cloth. The colour of weld is however purer and less inclining to orange; but that of fustic is less affected by acids than any other yellow dye. This wood is often employed with sulphate of iron in producing olive and brownish tints, which agree well with its dull yellow. For the same reason it is much used for dark greens.

FUSTIC. (Bois jaune, Fr.;Gelbholz, Germ.) Theoldfustic of the English dyer, as the article fustet is theiryellowfustic. It is the wood of the Morus tinctoria. It is light, not hard, and pale yellow with orange veins; it contains two colouring matters, one resinous, and another soluble in water. The latter resembles weld, but it has more of an orange cast, and is not so lively.

Its decoctions in water are brightened by the addition of a little glue, and more by curdled milk. This wood is rich in colour, and imparts permanent dyes to woollen stuffs, when aided by proper mordants. It unites well with the blue of the indigo vat, and Saxon blue, in producing green of various shades. Alum, tartar, and solution of tin, render its colour more vivid; sea salt and sulphate of iron deepen its hue. From 5 to 6 parts of old fustic are sufficient to give a lemon colour to 16 parts of cloth. The colour of weld is however purer and less inclining to orange; but that of fustic is less affected by acids than any other yellow dye. This wood is often employed with sulphate of iron in producing olive and brownish tints, which agree well with its dull yellow. For the same reason it is much used for dark greens.

GABRONITE, is a yellowish stony substance, of a greasy lustre and spec. gr. = 2·74; affording no water by calcination; fusible at the blowpipe into an opaque glass; soluble in muriatic acid; solution affords hardly any precipitate by oxalate of ammonia. This mineral is distinguished by the large quantity of soda which it contains; its constituents being,—silica, 54; alumina, 24; soda, 17·25; magnesia, 1·5; oxide of iron, 1·25; water, 2. It belongs to the species Nepheline.

GABRONITE, is a yellowish stony substance, of a greasy lustre and spec. gr. = 2·74; affording no water by calcination; fusible at the blowpipe into an opaque glass; soluble in muriatic acid; solution affords hardly any precipitate by oxalate of ammonia. This mineral is distinguished by the large quantity of soda which it contains; its constituents being,—silica, 54; alumina, 24; soda, 17·25; magnesia, 1·5; oxide of iron, 1·25; water, 2. It belongs to the species Nepheline.

GADOLINITE; called also Yttrite and Ytterbite; is a mineral of a black, brownish, or yellowish colour, granular, or compactly vitreous, and conchoidal fracture; of spec. grav. 4·23? readily scratching glass; fusible at the blowpipe into an opaque glass, sometimes with intumescence. It affords, with acids, a solution that lets fall, with caustic soda, a precipitate partly re-soluble in carbonate of ammonia. It is remarkable for containing from 45 to 55 per cent. of the earth Yttria; its remaining constituents being silica, 25·8; oxide of cerium, 17·92; oxide of iron, 11·43. This mineral is very rare, having been hitherto found only in the neighbourhood of Fahlun and Ytterby, in Sweden; its peculiar constituent was discovered by Professor Gadolin.

GADOLINITE; called also Yttrite and Ytterbite; is a mineral of a black, brownish, or yellowish colour, granular, or compactly vitreous, and conchoidal fracture; of spec. grav. 4·23? readily scratching glass; fusible at the blowpipe into an opaque glass, sometimes with intumescence. It affords, with acids, a solution that lets fall, with caustic soda, a precipitate partly re-soluble in carbonate of ammonia. It is remarkable for containing from 45 to 55 per cent. of the earth Yttria; its remaining constituents being silica, 25·8; oxide of cerium, 17·92; oxide of iron, 11·43. This mineral is very rare, having been hitherto found only in the neighbourhood of Fahlun and Ytterby, in Sweden; its peculiar constituent was discovered by Professor Gadolin.

GALACTOMETER, or LACTOMETER, is an instrument to ascertain the quality of milk; an article often sophisticated in various ways. Fresh milk, rich in cream, has a less specific gravity, than the same milk after it has been skimmed; and milk diluted with water becomes proportionably lighter. Hence, when our purpose is to determine the quantity of cream, the galactometer may consist merely of a long graduated glass tube standing upright upon a sole. Having filled 100 measures with the recent milk, we shall see, by the measures of cream thrown up, its value in this respect. A delicate long-ranged glass hydrometer, graduated from 1·000 up to 1·060, affords the most convenient means of detecting the degree of watery dilution, provided the absence of thickening materials has been previously ascertained by filtration. Good fresh milk indicates from 1·030 to 1·032; when the cream is removed, 1·035 to 1·037. When its density is less than 1·028, we may infer it has been thinned with water.

GALACTOMETER, or LACTOMETER, is an instrument to ascertain the quality of milk; an article often sophisticated in various ways. Fresh milk, rich in cream, has a less specific gravity, than the same milk after it has been skimmed; and milk diluted with water becomes proportionably lighter. Hence, when our purpose is to determine the quantity of cream, the galactometer may consist merely of a long graduated glass tube standing upright upon a sole. Having filled 100 measures with the recent milk, we shall see, by the measures of cream thrown up, its value in this respect. A delicate long-ranged glass hydrometer, graduated from 1·000 up to 1·060, affords the most convenient means of detecting the degree of watery dilution, provided the absence of thickening materials has been previously ascertained by filtration. Good fresh milk indicates from 1·030 to 1·032; when the cream is removed, 1·035 to 1·037. When its density is less than 1·028, we may infer it has been thinned with water.

GALBANUM, is a gum-resin, which occurs sometimes in yellow, shining tears, easily agglutinated; of a strong durable smell; an acrid and bitter taste; at other times in lumps. It exudes either spontaneously or from incisions made into the stem of thebubon galbanum, a plant of the family ofumbelliferæ, which grows in Africa, particularly in Ethiopia. It contains 67 of resin; 19·3 of gum; 6·4 of volatile oil and water; 7·5 of woody fibres and other impurities; with traces of acid malate of lime.

GALBANUM, is a gum-resin, which occurs sometimes in yellow, shining tears, easily agglutinated; of a strong durable smell; an acrid and bitter taste; at other times in lumps. It exudes either spontaneously or from incisions made into the stem of thebubon galbanum, a plant of the family ofumbelliferæ, which grows in Africa, particularly in Ethiopia. It contains 67 of resin; 19·3 of gum; 6·4 of volatile oil and water; 7·5 of woody fibres and other impurities; with traces of acid malate of lime.

GALENA; (Plomb sulfuré, Fr.;Bleiglanz, Germ.;) is a metallic looking substance of a lead-gray colour, which crystallizes in the cubical system, and is susceptible of cleavages parallel to the faces of the cube; spec. gr. 7·7592; cannot be cut; fusible at the blowpipe with exhalation of sulphureous vapours; is easily reduced to metallic lead. Nitric acid first dissolves it, and then throws down sulphate of lead in a white precipitate; the solution affording with plates of zinc, brilliant laminæ of lead (arbor Saturni.) It consists of sulphur, 13; lead, 85; with a little iron, and sometimes a minute quantity of silver. This is the richest ore of lead, and it occurs in almost every geological formation, in veins, in masses, or in beds. It is almost always accompanied by sulphuret of zinc, different salts of lead, heavy spar, fluor spar, &c. Galena in powder, called Alquifoux, is employed as a glaze for coarse stoneware.

GALENA; (Plomb sulfuré, Fr.;Bleiglanz, Germ.;) is a metallic looking substance of a lead-gray colour, which crystallizes in the cubical system, and is susceptible of cleavages parallel to the faces of the cube; spec. gr. 7·7592; cannot be cut; fusible at the blowpipe with exhalation of sulphureous vapours; is easily reduced to metallic lead. Nitric acid first dissolves it, and then throws down sulphate of lead in a white precipitate; the solution affording with plates of zinc, brilliant laminæ of lead (arbor Saturni.) It consists of sulphur, 13; lead, 85; with a little iron, and sometimes a minute quantity of silver. This is the richest ore of lead, and it occurs in almost every geological formation, in veins, in masses, or in beds. It is almost always accompanied by sulphuret of zinc, different salts of lead, heavy spar, fluor spar, &c. Galena in powder, called Alquifoux, is employed as a glaze for coarse stoneware.

GALIPOT, is a name of a white semi-solid viscid rosin found on fir-trees; or an inferior sort of turpentine, poor in oil.

GALIPOT, is a name of a white semi-solid viscid rosin found on fir-trees; or an inferior sort of turpentine, poor in oil.

GALLATES; salts consisting of gallic acid combined with bases; the most important being that with oxide of iron, constituting a principal part of the black dye.

GALLATES; salts consisting of gallic acid combined with bases; the most important being that with oxide of iron, constituting a principal part of the black dye.

GALLIC ACID, is the peculiar acid extracted fromgall-nuts; which see.

GALLIC ACID, is the peculiar acid extracted fromgall-nuts; which see.

GALLIPOLI OIL, is a coarse olive oil, containing more or less mucilage; imported from a sea port so named, of the province of Otranto, in the kingdom of Naples.

GALLIPOLI OIL, is a coarse olive oil, containing more or less mucilage; imported from a sea port so named, of the province of Otranto, in the kingdom of Naples.

GALL-NUTS, or GALLS; (Noix de Galle, Fr.;Galläpfel, Germ.;) are excrescences found upon the loaves and leaf-stalks of a species of oak, calledQuercus infectoria, which grows in the Levant. They are produced in consequence of the puncture of the female of the gall wasp, (Cynips folii quercus), made in order to deposit hereggs; round which the juice of the tree exudes, and dries in concentric portions. When the insect gets fully formed, it eats through the nut, and flies off.The Levant galls are of two different appearances and qualities; the first are heavy, compact, imperforated, the insect having not been sufficiently advanced to eat its way through the shell; prickly on the surface; of a blackish or bluish green hue; about the size of a musket ball. These are calledblack, blue, or Aleppo galls. The second are light, spongy, pierced with one or more holes; smooth upon the surface, of a pale grayish or reddish yellow colour, generally larger than the first, and are calledwhitegalls. Besides the galls of the Levant, others come from Dalmatia, Illyria, Calabria, &c.; but they are of inferior quality, being found upon theQuercus Cerris; they are smaller, of a brownish colour, and of inferior value. The further south the galls are grown, they are reckoned the better.Galls consist principally of three substances; tannin or tannic acid; yellow extractive; and gallic acid. Their decoction has a very astringent and unpleasant bitter taste. The following are their habitudes with various reagents:—Litmus paper is powerfully reddened.Stannous chloride (protomuriate of tin), produces an isabel yellow precipitate.Alum; a yellowish gray precipitate.Acetate of lead; a thick yellowish white precipitate.Acetate of copper; a chocolate brown precipitate.Ferric sulphate (red sulphate of iron); a blue precipitate.Sulphuric acid; a dirty yellowish precipitate.Acetic acid brightens the muddy decoction.The galls of theQuercus Cerrisand common oak (Galles à l’épine, Fr.;Knoppern, Germ.) are of a dark-brown colour, prickly on the surface, and irregular in shape and size. They are used chiefly for tanning in Hungary, Dalmatia, and the southern provinces of the Austrian states, where they abound.Tannin or tannic acid is prepared as follows: Into a long narrow glass adopter tube shut at its lower orifice with a cotton wick, a quantity of pounded galls are put, and slightly pressed down. The tapering end of the tube being inserted into a matrass or bottle, the vacant upper half of the tube is filled with sulphuric ether, and then closed with a ground-glass stopper. Next day there will be found in the bottle a liquid in two distinct strata; of which the more limpid occupies the upper part, and the other, of a syrupy consistence and amber colour, the lower. More ether must be filtered through the galls, till the thicker liquid ceases to augment. Both are now poured into a funnel, closed with the finger, and after the dense liquor is settled at the bottom, it is steadily run off into a capsule. This, after being washed repeatedly with ether, is to be transferred into a stove chamber, or placed under the receiver of an air pump to be evaporated. The residuary matter swells up in a spongy crystalline form of considerable brilliancy, sometimes colourless, but more frequently of a faintly yellowish hue.This is pure tannin, which exists in galls to the amount of from 40 to 45 per cent. It is indispensable that the ether employed in the preceding process be previously agitated with water, or that it contain some water, because by using anhydrous ether, not a particle of tannin will be obtained.Tannic acid is a white or yellowish solid, inodorous, extremely astringent, very soluble in water and alcohol, much less so in sulphuric ether, and uncrystallizable. Its watery solution, out of contact of air, undergoes no change; but if, in a very dilute state, it be left exposed to the atmosphere, it loses gradually its transparency, and lets fall a slightly grayish crystalline matter, consisting almost entirely of gallic acid. For procuring this acid in a perfectly pure state, it is merely necessary to treat that solution thus changed with animal charcoal, and to filter it in a boiling state, through paper previously washed with dilute muriatic acid. The gallic acid will fall down in crystals as the liquid cools.If the preceding experiment be made in a graduated glass tube containing oxygen over mercury, this gas will be absorbed, and a corresponding volume of carbonic acid gas will be disengaged. In this case the liquor will appear in the course of a few weeks as if traversed with numerous crystalline colourless needles of gallic acid.Tannin or tannic acid consists of carbon 51·56; hydrogen 4·20; oxygen 44·24.From the above facts it is obvious that gallic acid does not exist ready formed in gall nuts, but that it is produced by the reaction of atmospheric oxygen upon the tannin of these concretions.Gallic acid is a solid, feebly acidulous and styptic to the taste, inodorous, crystallizing in silky needles of the greatest whiteness; soluble in about 100 times its weight of cold, and in a much smaller quantity of boiling water; more soluble in alcohol than in water, but little so in sulphuric ether.Gallic acid does not decompose the salts of protoxide of iron, but it forms, with the sulphate of the peroxide, a dark blue precipitate, much less insoluble than the tannate of iron. Gallic acid takes the oxide from the acetate and nitrate of lead, and throwsdown a white gallate unchangeable in the air, when it is mixed with that acetate and nitrate. It occasions no precipitate in solutions of gelatine (isinglass or glue), by which criterion its freedom from tannin is verified.Gallic acid occurs but seldom in nature; and always united to brucine, veratrine, or lime. Its constituents are, carbon 49·89; hydrogen 3·49; oxygen 46·62. In the crystalline state it contains one atom of water, which it loses by drying.Scheele obtained gallic acid by infusing pounded galls for 3 or 4 days in 8 times their weight of water, and exposing the infusion to the air, in a vessel covered loosely with paper. At the end of two months, the liquor had almost all evaporated, leaving some mouldiness mixed with a crystalline precipitate. The former being removed, the deposit was squeezed in a linen cloth, and then treated with boiling water. The solution being gradually evaporated, yielded crystals of gallic acid, granular or star-like, of a grayish colour. These crystals might be whitened by boiling their solution along with a little animal charcoal. About one fifth of gallic acid may be obtained by Scheele’s process from good gall-nuts.From a decoction of 500 parts of galls, Sir H. Davy obtained 185 parts of solid extract; which consisted of 130 parts of tannin; 31 parts of gallic acid with extractive; 13 parts of mucilage; 12 parts of lime and salts. Hence gall-nuts would seem to contain, by this statement, more than two-thirds of their weight of tannin. This result is now seen, from the above experiments of Pelouze, to have been incorrect, in consequence of the admixture of yellow extractive in Davy’s tannin.The uses of galls in many processes of dyeing, and in makingblack ink, are detailed under their respective heads.

GALL-NUTS, or GALLS; (Noix de Galle, Fr.;Galläpfel, Germ.;) are excrescences found upon the loaves and leaf-stalks of a species of oak, calledQuercus infectoria, which grows in the Levant. They are produced in consequence of the puncture of the female of the gall wasp, (Cynips folii quercus), made in order to deposit hereggs; round which the juice of the tree exudes, and dries in concentric portions. When the insect gets fully formed, it eats through the nut, and flies off.

The Levant galls are of two different appearances and qualities; the first are heavy, compact, imperforated, the insect having not been sufficiently advanced to eat its way through the shell; prickly on the surface; of a blackish or bluish green hue; about the size of a musket ball. These are calledblack, blue, or Aleppo galls. The second are light, spongy, pierced with one or more holes; smooth upon the surface, of a pale grayish or reddish yellow colour, generally larger than the first, and are calledwhitegalls. Besides the galls of the Levant, others come from Dalmatia, Illyria, Calabria, &c.; but they are of inferior quality, being found upon theQuercus Cerris; they are smaller, of a brownish colour, and of inferior value. The further south the galls are grown, they are reckoned the better.

Galls consist principally of three substances; tannin or tannic acid; yellow extractive; and gallic acid. Their decoction has a very astringent and unpleasant bitter taste. The following are their habitudes with various reagents:—

Litmus paper is powerfully reddened.

Stannous chloride (protomuriate of tin), produces an isabel yellow precipitate.

Alum; a yellowish gray precipitate.

Acetate of lead; a thick yellowish white precipitate.

Acetate of copper; a chocolate brown precipitate.

Ferric sulphate (red sulphate of iron); a blue precipitate.

Sulphuric acid; a dirty yellowish precipitate.

Acetic acid brightens the muddy decoction.

The galls of theQuercus Cerrisand common oak (Galles à l’épine, Fr.;Knoppern, Germ.) are of a dark-brown colour, prickly on the surface, and irregular in shape and size. They are used chiefly for tanning in Hungary, Dalmatia, and the southern provinces of the Austrian states, where they abound.

Tannin or tannic acid is prepared as follows: Into a long narrow glass adopter tube shut at its lower orifice with a cotton wick, a quantity of pounded galls are put, and slightly pressed down. The tapering end of the tube being inserted into a matrass or bottle, the vacant upper half of the tube is filled with sulphuric ether, and then closed with a ground-glass stopper. Next day there will be found in the bottle a liquid in two distinct strata; of which the more limpid occupies the upper part, and the other, of a syrupy consistence and amber colour, the lower. More ether must be filtered through the galls, till the thicker liquid ceases to augment. Both are now poured into a funnel, closed with the finger, and after the dense liquor is settled at the bottom, it is steadily run off into a capsule. This, after being washed repeatedly with ether, is to be transferred into a stove chamber, or placed under the receiver of an air pump to be evaporated. The residuary matter swells up in a spongy crystalline form of considerable brilliancy, sometimes colourless, but more frequently of a faintly yellowish hue.

This is pure tannin, which exists in galls to the amount of from 40 to 45 per cent. It is indispensable that the ether employed in the preceding process be previously agitated with water, or that it contain some water, because by using anhydrous ether, not a particle of tannin will be obtained.

Tannic acid is a white or yellowish solid, inodorous, extremely astringent, very soluble in water and alcohol, much less so in sulphuric ether, and uncrystallizable. Its watery solution, out of contact of air, undergoes no change; but if, in a very dilute state, it be left exposed to the atmosphere, it loses gradually its transparency, and lets fall a slightly grayish crystalline matter, consisting almost entirely of gallic acid. For procuring this acid in a perfectly pure state, it is merely necessary to treat that solution thus changed with animal charcoal, and to filter it in a boiling state, through paper previously washed with dilute muriatic acid. The gallic acid will fall down in crystals as the liquid cools.

If the preceding experiment be made in a graduated glass tube containing oxygen over mercury, this gas will be absorbed, and a corresponding volume of carbonic acid gas will be disengaged. In this case the liquor will appear in the course of a few weeks as if traversed with numerous crystalline colourless needles of gallic acid.

Tannin or tannic acid consists of carbon 51·56; hydrogen 4·20; oxygen 44·24.

From the above facts it is obvious that gallic acid does not exist ready formed in gall nuts, but that it is produced by the reaction of atmospheric oxygen upon the tannin of these concretions.

Gallic acid is a solid, feebly acidulous and styptic to the taste, inodorous, crystallizing in silky needles of the greatest whiteness; soluble in about 100 times its weight of cold, and in a much smaller quantity of boiling water; more soluble in alcohol than in water, but little so in sulphuric ether.

Gallic acid does not decompose the salts of protoxide of iron, but it forms, with the sulphate of the peroxide, a dark blue precipitate, much less insoluble than the tannate of iron. Gallic acid takes the oxide from the acetate and nitrate of lead, and throwsdown a white gallate unchangeable in the air, when it is mixed with that acetate and nitrate. It occasions no precipitate in solutions of gelatine (isinglass or glue), by which criterion its freedom from tannin is verified.

Gallic acid occurs but seldom in nature; and always united to brucine, veratrine, or lime. Its constituents are, carbon 49·89; hydrogen 3·49; oxygen 46·62. In the crystalline state it contains one atom of water, which it loses by drying.

Scheele obtained gallic acid by infusing pounded galls for 3 or 4 days in 8 times their weight of water, and exposing the infusion to the air, in a vessel covered loosely with paper. At the end of two months, the liquor had almost all evaporated, leaving some mouldiness mixed with a crystalline precipitate. The former being removed, the deposit was squeezed in a linen cloth, and then treated with boiling water. The solution being gradually evaporated, yielded crystals of gallic acid, granular or star-like, of a grayish colour. These crystals might be whitened by boiling their solution along with a little animal charcoal. About one fifth of gallic acid may be obtained by Scheele’s process from good gall-nuts.

From a decoction of 500 parts of galls, Sir H. Davy obtained 185 parts of solid extract; which consisted of 130 parts of tannin; 31 parts of gallic acid with extractive; 13 parts of mucilage; 12 parts of lime and salts. Hence gall-nuts would seem to contain, by this statement, more than two-thirds of their weight of tannin. This result is now seen, from the above experiments of Pelouze, to have been incorrect, in consequence of the admixture of yellow extractive in Davy’s tannin.

The uses of galls in many processes of dyeing, and in makingblack ink, are detailed under their respective heads.

GALL OF ANIMALS, or OX-GALL,purification of. Painters in water colours, scourers of clothes, and many others employ ox-gall or bile, but when it is not purified, it is apt to do harm from the greenness of its own tint. It becomes therefore an important object to clarify it, and to make it limpid and transparent like water. The following process has been given for that purpose. Take the gall of newly killed oxen, and after having allowed it to settle for 12 or 15 hours in a basin, pour the supernatant liquor off the sediment into an evaporating dish of stone ware, and expose it to a boiling heat in a water bath, till it is somewhat thick. Then spread it upon a dish, and place it before a fire till it becomes nearly dry. In this state it may be kept for years in jelly pots covered with paper, without undergoing any alteration. When it is to be used, a piece of it of the size of a pea is to be dissolved in a table spoonful of water.Another and probably a better mode of purifying ox-gall is the following. To a pint of the gall boiled and skimmed, add one ounce of fine alum in powder, and leave the mixture on the fire till the alum be dissolved. When cooled, pour into a bottle, which is to be loosely corked. Now take a like quantity of gall also boiled and skimmed, add an ounce of common salt to it, and dissolve with heat; put it when cold into a bottle, which is likewise to be loosely corked. Either of these preparations may be kept for several years without their emitting a bad smell. After remaining three months, at a moderate temperature, they deposit a thick sediment, and become clearer, and fit for ordinary uses, but not for artists in water colours and miniatures, on account of their yellowish-green colour. To obviate this inconvenience, each of the above liquors is to be decanted apart, after they have become perfectly settled, and the clear portion of both mixed together in equal parts. The yellow colouring matter still retained by the mixture coagulates immediately and precipitates, leaving the ox-gall perfectly purified and colourless. If wished to be still finer, it may be passed through filtering paper; but it becomes clearer with age, and never acquires a disagreeable smell, nor loses any of its good qualities.Clarified ox-gall combines readily with colouring matters or pigments, and gives them solidity either by being mixed with or passed over them upon paper. It increases the brilliancy and the durability of ultramarine, carmine, green, and in general of all delicate colours, whilst it contributes to make them spread more evenly upon the paper, ivory, &c. When mixed with gum Arabic, it thickens the colours without communicating to them a disagreeable glistering appearance; it prevents the gum from cracking, and fixes the colours so well that others may be applied over them without degradation. Along with lamp black and gum, it forms a good imitation of China ink. When a coat of ox-gall is put upon drawings made with black lead or crayons, the lines can no longer be effaced, but may be painted over safely with a variety of colours previously mixed up with the same ox-gall.Miniature painters find a great advantage in employing it; by passing it over ivory, it removes completely the unctuous matter from its surface; and when ground with the colours, it makes them spread with the greatest ease, and renders them fast.It serves also for transparencies. It is first passed over the varnished or oiled paper, and is allowed to dry. The colours mixed with the gall are then applied, and cannot afterwards be removed by any means.It is adapted finally for taking out spots of grease and oil.

GALL OF ANIMALS, or OX-GALL,purification of. Painters in water colours, scourers of clothes, and many others employ ox-gall or bile, but when it is not purified, it is apt to do harm from the greenness of its own tint. It becomes therefore an important object to clarify it, and to make it limpid and transparent like water. The following process has been given for that purpose. Take the gall of newly killed oxen, and after having allowed it to settle for 12 or 15 hours in a basin, pour the supernatant liquor off the sediment into an evaporating dish of stone ware, and expose it to a boiling heat in a water bath, till it is somewhat thick. Then spread it upon a dish, and place it before a fire till it becomes nearly dry. In this state it may be kept for years in jelly pots covered with paper, without undergoing any alteration. When it is to be used, a piece of it of the size of a pea is to be dissolved in a table spoonful of water.

Another and probably a better mode of purifying ox-gall is the following. To a pint of the gall boiled and skimmed, add one ounce of fine alum in powder, and leave the mixture on the fire till the alum be dissolved. When cooled, pour into a bottle, which is to be loosely corked. Now take a like quantity of gall also boiled and skimmed, add an ounce of common salt to it, and dissolve with heat; put it when cold into a bottle, which is likewise to be loosely corked. Either of these preparations may be kept for several years without their emitting a bad smell. After remaining three months, at a moderate temperature, they deposit a thick sediment, and become clearer, and fit for ordinary uses, but not for artists in water colours and miniatures, on account of their yellowish-green colour. To obviate this inconvenience, each of the above liquors is to be decanted apart, after they have become perfectly settled, and the clear portion of both mixed together in equal parts. The yellow colouring matter still retained by the mixture coagulates immediately and precipitates, leaving the ox-gall perfectly purified and colourless. If wished to be still finer, it may be passed through filtering paper; but it becomes clearer with age, and never acquires a disagreeable smell, nor loses any of its good qualities.

Clarified ox-gall combines readily with colouring matters or pigments, and gives them solidity either by being mixed with or passed over them upon paper. It increases the brilliancy and the durability of ultramarine, carmine, green, and in general of all delicate colours, whilst it contributes to make them spread more evenly upon the paper, ivory, &c. When mixed with gum Arabic, it thickens the colours without communicating to them a disagreeable glistering appearance; it prevents the gum from cracking, and fixes the colours so well that others may be applied over them without degradation. Along with lamp black and gum, it forms a good imitation of China ink. When a coat of ox-gall is put upon drawings made with black lead or crayons, the lines can no longer be effaced, but may be painted over safely with a variety of colours previously mixed up with the same ox-gall.

Miniature painters find a great advantage in employing it; by passing it over ivory, it removes completely the unctuous matter from its surface; and when ground with the colours, it makes them spread with the greatest ease, and renders them fast.

It serves also for transparencies. It is first passed over the varnished or oiled paper, and is allowed to dry. The colours mixed with the gall are then applied, and cannot afterwards be removed by any means.

It is adapted finally for taking out spots of grease and oil.

GALL OF GLASS, called also sandiver, is the neutral salt skimmed off the surface of melted crown glass; which, if allowed to remain too long, is apt to be reabsorbed in part, and to injure the quality of themetal, as the workmen call it.

GALL OF GLASS, called also sandiver, is the neutral salt skimmed off the surface of melted crown glass; which, if allowed to remain too long, is apt to be reabsorbed in part, and to injure the quality of themetal, as the workmen call it.

GALVANIZED IRON, is the somewhat fantastic name newly given in France to iron tinned by a peculiar patent process, whereby it resists the rusting influence of damp air, and even moisture, much longer than ordinary tin plate. The following is the prescribed process. Clean the surface of the iron perfectly by the joint action of dilute acid and friction, plunge it into a bath of melted zinc, and stir it about till it be alloyed superficially with this metal; then take it out, and immerse it in a bath of tin, such as is used for making tin plate. The tin forms an exterior coat of alloy. When the metal thus prepared is exposed to humidity, the zinc is said to oxidize slowly by a galvanic action, and to protect the iron from rusting within it, whereby the outer tinned surface remains for a long period perfectly white, in circumstances under which iron tinned in the usual way would have been superficially browned and corroded with rust.

GALVANIZED IRON, is the somewhat fantastic name newly given in France to iron tinned by a peculiar patent process, whereby it resists the rusting influence of damp air, and even moisture, much longer than ordinary tin plate. The following is the prescribed process. Clean the surface of the iron perfectly by the joint action of dilute acid and friction, plunge it into a bath of melted zinc, and stir it about till it be alloyed superficially with this metal; then take it out, and immerse it in a bath of tin, such as is used for making tin plate. The tin forms an exterior coat of alloy. When the metal thus prepared is exposed to humidity, the zinc is said to oxidize slowly by a galvanic action, and to protect the iron from rusting within it, whereby the outer tinned surface remains for a long period perfectly white, in circumstances under which iron tinned in the usual way would have been superficially browned and corroded with rust.

GAMBOGE; (Gomme Gutte, Fr.;Gutti, Germ.) is a gum resin, concreted in the air, from the milky juice which exudes from several trees. Thegambogia gutta, a tree which grows wild upon the coasts of Ceylon and Malabar, produces the coarsest kind of gamboge; theguttaefera vera(Stalagmites cambogioides) of Ceylon and Siam affords the best. It comes to us in cylindrical lumps, which are outwardly brown yellow, but reddish yellow within, as also in cakes; it is opaque, easily reducible to powder, of specific gravity 1·207, scentless, and nearly devoid of taste, but leaves an acrid feeling in the throat. Its powder and watery emulsion are yellow. It consists of 80 parts of a hyacinth red resin, soluble in alcohol; and 20 parts of gum; but by another analysis, of 89 of resin, and 10·5 of gum. Gamboge is used as a pigment, and in miniature painting, to tinge gold varnish; in medicine as a powerful purge. It should never be employed by confectioners to colour theirliqueurs, as they sometimes do.

GAMBOGE; (Gomme Gutte, Fr.;Gutti, Germ.) is a gum resin, concreted in the air, from the milky juice which exudes from several trees. Thegambogia gutta, a tree which grows wild upon the coasts of Ceylon and Malabar, produces the coarsest kind of gamboge; theguttaefera vera(Stalagmites cambogioides) of Ceylon and Siam affords the best. It comes to us in cylindrical lumps, which are outwardly brown yellow, but reddish yellow within, as also in cakes; it is opaque, easily reducible to powder, of specific gravity 1·207, scentless, and nearly devoid of taste, but leaves an acrid feeling in the throat. Its powder and watery emulsion are yellow. It consists of 80 parts of a hyacinth red resin, soluble in alcohol; and 20 parts of gum; but by another analysis, of 89 of resin, and 10·5 of gum. Gamboge is used as a pigment, and in miniature painting, to tinge gold varnish; in medicine as a powerful purge. It should never be employed by confectioners to colour theirliqueurs, as they sometimes do.

GANGUE. A word derived from the Germangang, a vein or channel. It signifies the mineral substance which either encloses or usually accompanies any metallic ore in the vein. Quartz, lamellar carbonate of lime, sulphate of baryta, sulphate and fluate of lime, generally form the gangues; but a great many other substances become such when they predominate in a vein. In metallurgic works the first thing is to break the mixed ore into small pieces, in order to separate the valuable from the useless parts, by processes called stamping, picking, sorting. SeeMetallurgyandMines.

GANGUE. A word derived from the Germangang, a vein or channel. It signifies the mineral substance which either encloses or usually accompanies any metallic ore in the vein. Quartz, lamellar carbonate of lime, sulphate of baryta, sulphate and fluate of lime, generally form the gangues; but a great many other substances become such when they predominate in a vein. In metallurgic works the first thing is to break the mixed ore into small pieces, in order to separate the valuable from the useless parts, by processes called stamping, picking, sorting. SeeMetallurgyandMines.

GARNET (Grenat, Fr.;Granat, Germ.); is a vitreous mineral of the cubic system, of which the predominating forms are the rhomboidal dodecahedron and the trapœzohedron; specific gravity varying from 3·35 to 4·24; fusible at the blowpipe. Its constituents are, silica, 42; alumina, 20·0; lime, 34·0; protoxide of iron, 4. Garnets are usually disseminated, and occur in all the primitive strata from gneiss to clay slate. The finer varieties, noble garnet or Almandine, and the reddish varieties of Grossulaire (Essonite), are employed in jewellery; the first are called the Syrian or oriental; the others, hyacinth. In some parts of Germany garnets are so abundant as to be used as fluxes to some iron ores; in others, the garnet gravel is washed, pounded, and employed as a substitute for emery. The garnets of Pegu are most highly valued. Factitious garnets may be made by the following composition:—Purest white glass, 2 ounces; glass of antimony, 1 ounce; powder of cassius, 1 grain; manganese, 1 grain.

GARNET (Grenat, Fr.;Granat, Germ.); is a vitreous mineral of the cubic system, of which the predominating forms are the rhomboidal dodecahedron and the trapœzohedron; specific gravity varying from 3·35 to 4·24; fusible at the blowpipe. Its constituents are, silica, 42; alumina, 20·0; lime, 34·0; protoxide of iron, 4. Garnets are usually disseminated, and occur in all the primitive strata from gneiss to clay slate. The finer varieties, noble garnet or Almandine, and the reddish varieties of Grossulaire (Essonite), are employed in jewellery; the first are called the Syrian or oriental; the others, hyacinth. In some parts of Germany garnets are so abundant as to be used as fluxes to some iron ores; in others, the garnet gravel is washed, pounded, and employed as a substitute for emery. The garnets of Pegu are most highly valued. Factitious garnets may be made by the following composition:—Purest white glass, 2 ounces; glass of antimony, 1 ounce; powder of cassius, 1 grain; manganese, 1 grain.

GAS (Eng. and Fr.;Gaz, Germ.); is the generic name of all those elastic fluids which are permanent under a considerable pressure, and at the temperature of zero of Fahrenheit. In many of them, however, by the joint influence of excessive cold and pressure, the repulsive state of the particles may be balanced or subverted, so as to transform the elastic gas into a liquid or a solid. For this most interesting discovery, we are indebted to the fine genius of Mr. Faraday.The following table exhibits the temperatures and pressures at which certain gases are liquefied.Name of the gas.Becomes liquidCalculatedboiling point;Barom. =30 inches.AtUnder a pressure ofSulphurous acid59°F.3atmospheres.-4°Fahr.Chlorine604-22Ammonia506·5-64Sulphuretted hydrogen5017-142Carbonic acid3236-229Hydrochloric or muriatic acid5050-249Deutoxide of azote4550-254Liquid carbonic acid becomes solidified, into a snowy-looking substance, by its own rapid evaporation. Oxygen, hydrogen, and azote, have hitherto resisted all attempts to divest them of their elastic form. For this purpose, it is probable that a condensing force equal to that of 650 atmospheres, will be required.The volume of any gas is, generally speaking, inversely as the pressure to which it is exposed; thus, under a double pressure its bulk becomes one-half; under a triple pressure, one-third; and so on. For the change of volume in gaseous bodies by heat, seeExpansion.Ammonia, carbonic acid, carburetted hydrogen, chlorine, muriatic acid, sulphurous acid, sulphuretted hydrogen, are the gases of most direct interest in the arts and manufactures. Their detailed examination belongs to a work on chemistry.

GAS (Eng. and Fr.;Gaz, Germ.); is the generic name of all those elastic fluids which are permanent under a considerable pressure, and at the temperature of zero of Fahrenheit. In many of them, however, by the joint influence of excessive cold and pressure, the repulsive state of the particles may be balanced or subverted, so as to transform the elastic gas into a liquid or a solid. For this most interesting discovery, we are indebted to the fine genius of Mr. Faraday.

The following table exhibits the temperatures and pressures at which certain gases are liquefied.

Liquid carbonic acid becomes solidified, into a snowy-looking substance, by its own rapid evaporation. Oxygen, hydrogen, and azote, have hitherto resisted all attempts to divest them of their elastic form. For this purpose, it is probable that a condensing force equal to that of 650 atmospheres, will be required.

The volume of any gas is, generally speaking, inversely as the pressure to which it is exposed; thus, under a double pressure its bulk becomes one-half; under a triple pressure, one-third; and so on. For the change of volume in gaseous bodies by heat, seeExpansion.

Ammonia, carbonic acid, carburetted hydrogen, chlorine, muriatic acid, sulphurous acid, sulphuretted hydrogen, are the gases of most direct interest in the arts and manufactures. Their detailed examination belongs to a work on chemistry.


Back to IndexNext