PYROLIGNOUS or PYROXILIC SPIRIT, improperly called naphtha. This is employed, as well as pyroacetic ether, to dissolve the sandarach, mastic, and other resinous substances, which, under the name of gums, are used for stiffening the bodies of hats. I have already described, in the articlePyrolignous Acid, how this spirit is obtained. Berzelius has found that the crude spirit may be best purified by agitating it with a fat oil, in order to abstract the empyreumatic oil; then to decant the spirit, distil it, first with fresh calcined charcoal, and next with chloride of calcium. The pyrolignous spirit, thus purified, is colourless, and limpid like alcohol; has an ethereous smell, somewhat resembling that of ants. Its taste is hot, and analogous to that of oil of peppermint. Its specific gravity, by my experiments, is 0·824. It readily takes fire, and burns with a blue flame, without smoke. It combines with water in any proportion; a property which distinguishes it from pyroacetic ether and spirit.It is not easy to say what is the real chemical nature of pyroxilic spirit. There is no ultimate analysis of it that can be depended upon. The properties of the spirit examined by MM. Marcet and Macaire, differ from those of our spirit, in refusing to combine with water, like alcohol. The article on sale in this country readily unites with water, and in all proportions with alcohol.
PYROLIGNOUS or PYROXILIC SPIRIT, improperly called naphtha. This is employed, as well as pyroacetic ether, to dissolve the sandarach, mastic, and other resinous substances, which, under the name of gums, are used for stiffening the bodies of hats. I have already described, in the articlePyrolignous Acid, how this spirit is obtained. Berzelius has found that the crude spirit may be best purified by agitating it with a fat oil, in order to abstract the empyreumatic oil; then to decant the spirit, distil it, first with fresh calcined charcoal, and next with chloride of calcium. The pyrolignous spirit, thus purified, is colourless, and limpid like alcohol; has an ethereous smell, somewhat resembling that of ants. Its taste is hot, and analogous to that of oil of peppermint. Its specific gravity, by my experiments, is 0·824. It readily takes fire, and burns with a blue flame, without smoke. It combines with water in any proportion; a property which distinguishes it from pyroacetic ether and spirit.
It is not easy to say what is the real chemical nature of pyroxilic spirit. There is no ultimate analysis of it that can be depended upon. The properties of the spirit examined by MM. Marcet and Macaire, differ from those of our spirit, in refusing to combine with water, like alcohol. The article on sale in this country readily unites with water, and in all proportions with alcohol.
PYROMETER, is the name of an instrument for measuring high degrees of heat above the range of the mercurial thermometer. Wedgewood’s is the one commonly referred to by writers upon porcelain and metallurgy; but a better one might be easily contrived.
PYROMETER, is the name of an instrument for measuring high degrees of heat above the range of the mercurial thermometer. Wedgewood’s is the one commonly referred to by writers upon porcelain and metallurgy; but a better one might be easily contrived.
PYROPHORUS, is the generic name of any chemical preparation, generally a powder, which inflames spontaneously when exposed to the air.
PYROPHORUS, is the generic name of any chemical preparation, generally a powder, which inflames spontaneously when exposed to the air.
PYROTECHNY. SeeFire-works.
PYROTECHNY. SeeFire-works.
PYROXILINE, is a name which I have ventured to give to a substance detected in pyroxilic spirit, by Mr. Scanlan, while residing in Dublin, and therefore called by himEblanin. I am indebted to that ingenious chemist for the following facts.If potash water be added to raw wood-spirit (pyrolignous), as long as it throws down any thing, a precipitate is produced, which ispyroxiline, mixed with tarry matter. This precipitate is to be collected on a filter cloth, and submitted to strong pressure between folds of blotting-paper; it is next to be washed with cold alcohol, spec. grav. 0·840, in order to free it from any adhering tarry matter; when the pyroxiline is left nearly pure. If it be dissolved in boiling alcohol, or hot oil of turpentine, it crystallizes regularly on cooling, in right square prisms, of a fine yellow colour, that look opaque to the naked eye, but when examined under the microscope, have the transparency and colour of ferroprussiate of potash. Its turpentine solution affords crystals of a splendid orange-red colour, having the appearance of minute plates, whose form is not discernible by the naked eye, but when examined by the microscope, they are seen to be thin right rectangular prisms. The orange-red colour is only the effect of aggregation; for when ground to powder, these crystals become yellow; and under the microscope, the difference in colour between the two is very slight. Its melting point is 318° F. It sublimes at 300° in free air; heated in a close tube in a bath of mercury, it emits vapour at 400°; it then begins to decompose, and is totally decomposed at 500°. Sulphuric acid decomposes it, producing a beautiful blue colour, which passes into crimson, as the acid attracts water from the atmosphere, and it totally disappears on plentiful dilution with water, leaving carbon of a dirty-brown colour. Its alcoholic or turpentine solution imparts a permanent yellow dye to vegetable or animal matter.Pyroxiline consists, according to the analysis of Drs. Apjohn and Gregory, of—carbon, 75·275; hydrogen, 5·609; oxygen, 19·116, in 100 parts.
PYROXILINE, is a name which I have ventured to give to a substance detected in pyroxilic spirit, by Mr. Scanlan, while residing in Dublin, and therefore called by himEblanin. I am indebted to that ingenious chemist for the following facts.
If potash water be added to raw wood-spirit (pyrolignous), as long as it throws down any thing, a precipitate is produced, which ispyroxiline, mixed with tarry matter. This precipitate is to be collected on a filter cloth, and submitted to strong pressure between folds of blotting-paper; it is next to be washed with cold alcohol, spec. grav. 0·840, in order to free it from any adhering tarry matter; when the pyroxiline is left nearly pure. If it be dissolved in boiling alcohol, or hot oil of turpentine, it crystallizes regularly on cooling, in right square prisms, of a fine yellow colour, that look opaque to the naked eye, but when examined under the microscope, have the transparency and colour of ferroprussiate of potash. Its turpentine solution affords crystals of a splendid orange-red colour, having the appearance of minute plates, whose form is not discernible by the naked eye, but when examined by the microscope, they are seen to be thin right rectangular prisms. The orange-red colour is only the effect of aggregation; for when ground to powder, these crystals become yellow; and under the microscope, the difference in colour between the two is very slight. Its melting point is 318° F. It sublimes at 300° in free air; heated in a close tube in a bath of mercury, it emits vapour at 400°; it then begins to decompose, and is totally decomposed at 500°. Sulphuric acid decomposes it, producing a beautiful blue colour, which passes into crimson, as the acid attracts water from the atmosphere, and it totally disappears on plentiful dilution with water, leaving carbon of a dirty-brown colour. Its alcoholic or turpentine solution imparts a permanent yellow dye to vegetable or animal matter.
Pyroxiline consists, according to the analysis of Drs. Apjohn and Gregory, of—carbon, 75·275; hydrogen, 5·609; oxygen, 19·116, in 100 parts.
QUARTATION, is the alloying of one part of gold that is to be refined, along with three parts of silver, so that the gold shall constitute onequarterof the whole, and thereby have its particles too far separated to be able to protect the other metals originally associated with it, such as silver, copper, lead, tin, palladium, &c., from the action of the nitric or sulphuric acid employed in the subsequent parting process. SeeRefining.
QUARTATION, is the alloying of one part of gold that is to be refined, along with three parts of silver, so that the gold shall constitute onequarterof the whole, and thereby have its particles too far separated to be able to protect the other metals originally associated with it, such as silver, copper, lead, tin, palladium, &c., from the action of the nitric or sulphuric acid employed in the subsequent parting process. SeeRefining.
QUARTZ, has been described in the articleLapidary.
QUARTZ, has been described in the articleLapidary.
QUASSIA, is the wood of the root of theQuassia excelsa, a tree which grows in Surinam, the East Indies, &c. It affords to water an intensely bitter decoction, which is occasionally used in medicine, and was formerly substituted by some brewers for hops, but is now prohibited under severe penalties. It affords a safe and efficacious fly-water, or poison for flies.
QUASSIA, is the wood of the root of theQuassia excelsa, a tree which grows in Surinam, the East Indies, &c. It affords to water an intensely bitter decoction, which is occasionally used in medicine, and was formerly substituted by some brewers for hops, but is now prohibited under severe penalties. It affords a safe and efficacious fly-water, or poison for flies.
QUEEN’s WARE. SeePottery.
QUEEN’s WARE. SeePottery.
QUEEN’s YELLOW, is an antient name of Turbith Mineral, or yellow subsulphate of mercury.
QUEEN’s YELLOW, is an antient name of Turbith Mineral, or yellow subsulphate of mercury.
QUERCITRON, is the bark of theQuercus nigra, or yellow oak, a tree which grows in North America, The colouring principle of this yellow dye-stuff has been calledQuercitrin, by its discoverer Chevreul. It forms small pale yellow spangles, like those ofAurum musivum, has a faint acid reaction, is pretty soluble in alcohol, hardly in ether, and little in water. Solution of alum developes from it, by degrees, a beautiful yellow dye. SeeCalico-printingandYellow Dye.
QUERCITRON, is the bark of theQuercus nigra, or yellow oak, a tree which grows in North America, The colouring principle of this yellow dye-stuff has been calledQuercitrin, by its discoverer Chevreul. It forms small pale yellow spangles, like those ofAurum musivum, has a faint acid reaction, is pretty soluble in alcohol, hardly in ether, and little in water. Solution of alum developes from it, by degrees, a beautiful yellow dye. SeeCalico-printingandYellow Dye.
QUICKLIME; seeLime.
QUICKLIME; seeLime.
QUICKSILVER; seeMercury.
QUICKSILVER; seeMercury.
QUILL; seeFeathers.
QUILL; seeFeathers.
QUININA. This medicine is now prepared in such quantities as to constitute a chemical manufacture. Quinina and cinchonina are two vegetable alkalis, which exist in Peruvian bark or cinchona; the pale or gray bark contains most cinchonina, and the yellow bark most quinina. The methods of extracting these bases are very various. In general, water does not take them out completely, because it transforms the neutral salts in the barks into more soluble acidulous salts, and into less soluble sub-salts. To exhaust the bark completely, one or other of the following solvents is employed:1.Alcohol.—An extract by this menstruum, is to be treated with very dilute warm muriatic acid, in order to dissolve every thing thus soluble; the acid liquor is to be saturated with magnesia, by boiling it with an excess of this earth; the precipitate is to be dried, filtered, and then exhausted by boiling-hot alcohol.2.Dilute acids.—Boil the bark, coarsely pounded, with eight times its weight of water, containing 5 per cent. of the weight of the bark of sulphuric acid. This treatment is to be repeated with a fresh quantity of dilute acid. The whole liquors must be filtered, the residuum strained, and the solution mixed with quicklime, equal to one fourth of the bark employed. This mixture, after having been well stirred, is to be strained, whenever it acquires an alkaline reaction, that is, tinges reddened litmus paper blue, or turmeric brown. The calcareous mass is to be now washed with a little water, and dried, and then boiled thrice with spirit of wine of sp. grav. 0·836. This solution being filtered, is to be mixed with a little water, and distilled. The bases, cinchonina and quinina, remain under the form of a brown viscid mass, and must be purified by subsequent crystallization, after being converted into sulphates.3.An alkali, and then an acid.—The object of this process is, to retain the vegetable alkalis in the bark, while with the alkaline water we dissolve out the acids, the colouring matters, the extractive, the gum, &c. Boil for an hour one pound of the bark with six pounds of water, adding by degrees a little solution of potash, so that the liquor may have still an alkaline taste when the boiling is over. Allow it to cool, filter, wash the residuum with a little water, and squeeze it. Diffuse it next in tepid water, to which add by degrees a little muriatic acid, till after a prolonged digestion the mixture shall perceptibly redden litmus paper. Filter the liquor, and boil it with magnesia. The precipitate being washed and dried, is to be treated with hot alcohol, which dissolves the quinina and cinchonina.Obtained by any of the above methods, the quinina and cinchonina are more or less coloured, and may be blanched by dissolving them in dilute muriatic acid, and treating the solution with animal charcoal.There are several methods of separating these two vegetable alkalis.1. When their solution in spirit of wine is evaporated by heat to a certain point, the greater part of the cinchonina crystallizes on cooling, while the quinina remains dissolved.2. Digestion in ether dissolves the quinina, and leaves the cinchonina.3. We may supersaturate slightly the two bases with sulphuric acid. Now as the supersulphate of quinina is sparingly soluble, the liquor need only to be evaporated to a proper point to crystallize out that salt, while the supersulphate of cinchonina continues in solution with very little of the other salt. Even this may be separated by precipitating the bases, and treating them, as above prescribed, with alcohol or ether.One pound of bark rarely yields more than 2 drams of the bases. One pound of red bark afforded, to Pelletier and Caventou, 74 grains of cinchonina, and 107 grains of quinina.Quinina is composed of 75·76 carbon, 7·52 hydrogen, 8·11 azote, and 8·61 oxygen.The salts of quinina are distinguished by their strong taste of Peruvian bark, and if crystallized, by their pearly lustre. Most of them are soluble in water, and some also in ether and alcohol. The soluble salts are precipitated by the oxalic, gallic, and tartaric acids, and by the salts of these acids. Infusion of nutgalls also precipitates them.The sulphate of quinina is the only object of manufacturing operations. Upon the brownish viscid mass obtained in any of the above processes for obtaining quinina, pour very dilute sulphuric acid, in sufficient quantity to produce saturation. The solution must be then treated with animal charcoal, filtered, evaporated, allowed to cool, when it deposits crystals. 1000 parts of bark afford, upon an average, 12 parts of sulphate. The sulphate of cinchonina, which is formed at the same time, remains dissolved in the mother-waters.The neutral sulphate of quinina occurs in small transparent right prismatic needles. By spontaneous evaporation of their solution, larger crystals may be procured. They contain 242⁄3per cent. of water; and, therefore, melt when exposed to heat. They dissolve in 11 parts of water at ordinary temperatures; are much more soluble in hot spirit of wine, somewhat dilute, than in cold; and are nearly insoluble in anhydrous alcohol. If they be well dried, they possess the property of becoming luminous when heated a little above the boiling point of water, especially when they are rubbed. The sulphate is, in this case, charged with vitreous electricity.There is a sub-sulphate, but it is applied to no use. The effloresced sulphate, called by some bisulphate, is preferred for medical practice. The extensive sale and high price of sulphate of quinina, have given rise to many modes of adulteration. It has been mixed with boracic acid, margaric acid, sugar, sugar of manna, gypsum, &c. By incinerating a little of the salt upon a slip of platina, the boracic acid and gypsum remain, while the quinine is dissipated; sugar and margaric acid exhale their peculiar smoke and smell; or they may be dissolved out by a few drops of water. Cinchonina may be detected by adding ammonia to the solution, and treating the precipitate with ether, which leaves that vegeto-alkali.
QUININA. This medicine is now prepared in such quantities as to constitute a chemical manufacture. Quinina and cinchonina are two vegetable alkalis, which exist in Peruvian bark or cinchona; the pale or gray bark contains most cinchonina, and the yellow bark most quinina. The methods of extracting these bases are very various. In general, water does not take them out completely, because it transforms the neutral salts in the barks into more soluble acidulous salts, and into less soluble sub-salts. To exhaust the bark completely, one or other of the following solvents is employed:
1.Alcohol.—An extract by this menstruum, is to be treated with very dilute warm muriatic acid, in order to dissolve every thing thus soluble; the acid liquor is to be saturated with magnesia, by boiling it with an excess of this earth; the precipitate is to be dried, filtered, and then exhausted by boiling-hot alcohol.
2.Dilute acids.—Boil the bark, coarsely pounded, with eight times its weight of water, containing 5 per cent. of the weight of the bark of sulphuric acid. This treatment is to be repeated with a fresh quantity of dilute acid. The whole liquors must be filtered, the residuum strained, and the solution mixed with quicklime, equal to one fourth of the bark employed. This mixture, after having been well stirred, is to be strained, whenever it acquires an alkaline reaction, that is, tinges reddened litmus paper blue, or turmeric brown. The calcareous mass is to be now washed with a little water, and dried, and then boiled thrice with spirit of wine of sp. grav. 0·836. This solution being filtered, is to be mixed with a little water, and distilled. The bases, cinchonina and quinina, remain under the form of a brown viscid mass, and must be purified by subsequent crystallization, after being converted into sulphates.
3.An alkali, and then an acid.—The object of this process is, to retain the vegetable alkalis in the bark, while with the alkaline water we dissolve out the acids, the colouring matters, the extractive, the gum, &c. Boil for an hour one pound of the bark with six pounds of water, adding by degrees a little solution of potash, so that the liquor may have still an alkaline taste when the boiling is over. Allow it to cool, filter, wash the residuum with a little water, and squeeze it. Diffuse it next in tepid water, to which add by degrees a little muriatic acid, till after a prolonged digestion the mixture shall perceptibly redden litmus paper. Filter the liquor, and boil it with magnesia. The precipitate being washed and dried, is to be treated with hot alcohol, which dissolves the quinina and cinchonina.
Obtained by any of the above methods, the quinina and cinchonina are more or less coloured, and may be blanched by dissolving them in dilute muriatic acid, and treating the solution with animal charcoal.
There are several methods of separating these two vegetable alkalis.
1. When their solution in spirit of wine is evaporated by heat to a certain point, the greater part of the cinchonina crystallizes on cooling, while the quinina remains dissolved.
2. Digestion in ether dissolves the quinina, and leaves the cinchonina.
3. We may supersaturate slightly the two bases with sulphuric acid. Now as the supersulphate of quinina is sparingly soluble, the liquor need only to be evaporated to a proper point to crystallize out that salt, while the supersulphate of cinchonina continues in solution with very little of the other salt. Even this may be separated by precipitating the bases, and treating them, as above prescribed, with alcohol or ether.
One pound of bark rarely yields more than 2 drams of the bases. One pound of red bark afforded, to Pelletier and Caventou, 74 grains of cinchonina, and 107 grains of quinina.
Quinina is composed of 75·76 carbon, 7·52 hydrogen, 8·11 azote, and 8·61 oxygen.
The salts of quinina are distinguished by their strong taste of Peruvian bark, and if crystallized, by their pearly lustre. Most of them are soluble in water, and some also in ether and alcohol. The soluble salts are precipitated by the oxalic, gallic, and tartaric acids, and by the salts of these acids. Infusion of nutgalls also precipitates them.
The sulphate of quinina is the only object of manufacturing operations. Upon the brownish viscid mass obtained in any of the above processes for obtaining quinina, pour very dilute sulphuric acid, in sufficient quantity to produce saturation. The solution must be then treated with animal charcoal, filtered, evaporated, allowed to cool, when it deposits crystals. 1000 parts of bark afford, upon an average, 12 parts of sulphate. The sulphate of cinchonina, which is formed at the same time, remains dissolved in the mother-waters.
The neutral sulphate of quinina occurs in small transparent right prismatic needles. By spontaneous evaporation of their solution, larger crystals may be procured. They contain 242⁄3per cent. of water; and, therefore, melt when exposed to heat. They dissolve in 11 parts of water at ordinary temperatures; are much more soluble in hot spirit of wine, somewhat dilute, than in cold; and are nearly insoluble in anhydrous alcohol. If they be well dried, they possess the property of becoming luminous when heated a little above the boiling point of water, especially when they are rubbed. The sulphate is, in this case, charged with vitreous electricity.
There is a sub-sulphate, but it is applied to no use. The effloresced sulphate, called by some bisulphate, is preferred for medical practice. The extensive sale and high price of sulphate of quinina, have given rise to many modes of adulteration. It has been mixed with boracic acid, margaric acid, sugar, sugar of manna, gypsum, &c. By incinerating a little of the salt upon a slip of platina, the boracic acid and gypsum remain, while the quinine is dissipated; sugar and margaric acid exhale their peculiar smoke and smell; or they may be dissolved out by a few drops of water. Cinchonina may be detected by adding ammonia to the solution, and treating the precipitate with ether, which leaves that vegeto-alkali.
QUINTESSENCE. The alchemists understood by this term, now no longer in scientific use, the solution in alcohol of the principles which this menstruum can extract from aromatic plants or flowers, by digestion, during some days, in the sun, a stove, or upon a sand-bath slightly warmed. A quintessence, therefore, corresponds to the alcoholic tincture or essence (not essential oil) of the present day. SeePerfumery.
QUINTESSENCE. The alchemists understood by this term, now no longer in scientific use, the solution in alcohol of the principles which this menstruum can extract from aromatic plants or flowers, by digestion, during some days, in the sun, a stove, or upon a sand-bath slightly warmed. A quintessence, therefore, corresponds to the alcoholic tincture or essence (not essential oil) of the present day. SeePerfumery.
RAISINS, are grapes allowed to ripen and dry upon the vine. The best come from the south of Europe, as from Roquevaire in Provence, Calabria, Spain, and Portugal. Fine raisins are also imported from Smyrna, Damascus, and Egypt. Sweet fleshy grapes are selected for maturing into raisins, and such as grow upon the sunny slopes of hills sheltered from the north winds. The bunches are pruned, and the vine is stripped of its leaves, when the fruit has become ripe; the sun then beaming full upon the grapes, completes their saccharification, and expels the superfluous water. The raisins are plucked, cleansed, and dipped for a few seconds in a boiling lye of wood ashes and quicklime, at 12 or 13 degrees of Baumé’s areometer. The wrinkled fruit is lastly drained, dried, and exposed in the sun upon hurdles of basket-work during 14 or 15 days.The finest raisins are those of the sun, so called; being the plumpest bunches, which are left to ripen fully upon the vine, after their stalks have been half cut through.The amount of raisins imported for home consumption was, in the year 1836, 156,495 cwts.; in 1837, 152,635 cwts.
RAISINS, are grapes allowed to ripen and dry upon the vine. The best come from the south of Europe, as from Roquevaire in Provence, Calabria, Spain, and Portugal. Fine raisins are also imported from Smyrna, Damascus, and Egypt. Sweet fleshy grapes are selected for maturing into raisins, and such as grow upon the sunny slopes of hills sheltered from the north winds. The bunches are pruned, and the vine is stripped of its leaves, when the fruit has become ripe; the sun then beaming full upon the grapes, completes their saccharification, and expels the superfluous water. The raisins are plucked, cleansed, and dipped for a few seconds in a boiling lye of wood ashes and quicklime, at 12 or 13 degrees of Baumé’s areometer. The wrinkled fruit is lastly drained, dried, and exposed in the sun upon hurdles of basket-work during 14 or 15 days.
The finest raisins are those of the sun, so called; being the plumpest bunches, which are left to ripen fully upon the vine, after their stalks have been half cut through.
The amount of raisins imported for home consumption was, in the year 1836, 156,495 cwts.; in 1837, 152,635 cwts.
RAPE-SEED, imported for home consumption in 1836, 561,457 bushels; in 1837, 937,526 bushels. SeeOils, unctuous.
RAPE-SEED, imported for home consumption in 1836, 561,457 bushels; in 1837, 937,526 bushels. SeeOils, unctuous.
RASP, MECHANICAL, is the name given by the French to an important machine much used for mashing beet-roots. SeeSugar.
RASP, MECHANICAL, is the name given by the French to an important machine much used for mashing beet-roots. SeeSugar.
RATAFIA, is the generic name, in France, ofliqueurscompounded with alcohol, sugar, and the odoriferous or flavouring principles of vegetables. Bruised cherries with their stones are infused in spirit of wine to make the ratafia of Grenoblede Teyssère. The liquor being boiled and filtered, is flavoured, when cold, with spirit ofnoyau, made by distilling water off the bruised bitter kernels of apricots, and mixing it with alcohol. Syrup of bay laurel and galango are also added.
RATAFIA, is the generic name, in France, ofliqueurscompounded with alcohol, sugar, and the odoriferous or flavouring principles of vegetables. Bruised cherries with their stones are infused in spirit of wine to make the ratafia of Grenoblede Teyssère. The liquor being boiled and filtered, is flavoured, when cold, with spirit ofnoyau, made by distilling water off the bruised bitter kernels of apricots, and mixing it with alcohol. Syrup of bay laurel and galango are also added.
REALGAR,Red Orpiment. (Arsenic rouge sulphuré, Fr.;Rothes schwefelarsenik, Germ.) This ore occurs in primitive mountains, associated sometimes with native arsenic, under the form of veins, efflorescences, very rarely crystalline; as also in volcanic districts; for example, at Solfatara near Naples; or sublimed in the shape of stalactites, in the rents and craters of Etna, Vesuvius, and other volcanoes. Its spec. grav. varies from 3·3 to 3·6. It has a fine scarlet colour in mass, but orange-red in powder, whereby it is distinguishable from cinnabar. It is soft, sectile, readily scratched by the nail; its fracture is vitreous and conchoidal. It volatilizes easily before the blowpipe, emitting the garlic smell of arsenic, along with that of burning sulphur. It consists of, arsenic 70, sulphur 30, in 100 parts. It is employed sometimes as a pigment. Factitious orpiment is made by distilling, in an earthen retort, a mixture of sulphur and arsenic, of orpiment and sulphur, or of arsenious acid, sulphur, and charcoal. It has not the rich colour of the native pigment, and is much more poisonous; since, like factitious orpiment, it always contains more or less arsenious acid.
REALGAR,Red Orpiment. (Arsenic rouge sulphuré, Fr.;Rothes schwefelarsenik, Germ.) This ore occurs in primitive mountains, associated sometimes with native arsenic, under the form of veins, efflorescences, very rarely crystalline; as also in volcanic districts; for example, at Solfatara near Naples; or sublimed in the shape of stalactites, in the rents and craters of Etna, Vesuvius, and other volcanoes. Its spec. grav. varies from 3·3 to 3·6. It has a fine scarlet colour in mass, but orange-red in powder, whereby it is distinguishable from cinnabar. It is soft, sectile, readily scratched by the nail; its fracture is vitreous and conchoidal. It volatilizes easily before the blowpipe, emitting the garlic smell of arsenic, along with that of burning sulphur. It consists of, arsenic 70, sulphur 30, in 100 parts. It is employed sometimes as a pigment. Factitious orpiment is made by distilling, in an earthen retort, a mixture of sulphur and arsenic, of orpiment and sulphur, or of arsenious acid, sulphur, and charcoal. It has not the rich colour of the native pigment, and is much more poisonous; since, like factitious orpiment, it always contains more or less arsenious acid.
RECTIFICATION, is a second distillation of alcoholic liquors, to free them from whatever impurities may have passed over in the first.
RECTIFICATION, is a second distillation of alcoholic liquors, to free them from whatever impurities may have passed over in the first.
RED LIQUOR, is a crude acetate of alumina, employed in calico-printing, and prepared frompyrolignous acid; which see.
RED LIQUOR, is a crude acetate of alumina, employed in calico-printing, and prepared frompyrolignous acid; which see.
REED, is the well-known implement of the weaver, made of parallel slips of metal or reeds, called dents. A thorough knowledge of the adaptation of yarn of a proper degree of fineness to any given measure of reed, constitutes one of the principal objects of the manufacturer of cloths; as upon this depends entirely the appearance, and in a great degree the durability, of the cloth when finished. The art of performing this properly, is known by the names ofexamining,setting, orsleying, which are used indiscriminately, and mean exactly the same thing. The reed consists of two parallel pieces of wood, set a few inches apart, and they are of any given length, as a yard, a yard and a quarter, &c. The division of the yard being into halves, quarters, eighths, and sixteenths; the breadth of a web is generally expressed by a vulgar fraction, as1⁄4,4⁄4,5⁄4,6⁄4; and the subdivisions by the eighths or sixteenths, ornails, as they are usually called, as7⁄8,9⁄8,11⁄8, &c., or13⁄16,15⁄16,19⁄16, &c. In Scotland, the splits of cane which pass between the longitudinal pieces or ribs of the reed, are expressed by hundreds, porters, and splits. The porter is 20 splits, or1⁄5th of an hundred.In Lancashire and Cheshire a different mode is adopted, both as to the measure and divisions of the reed. The Manchester and Bolton reeds are counted by the number of splits, or, as they are there called, dents, contained in 241⁄4inches of the reed. These dents, instead of being arranged in hundreds, porters, and splits, as in Scotland, are calculated by what is there termedharesorbears, each containing 20 dents, or the same number as the porter in the Scotch reeds. The Cheshire or Stockport reeds, again, receive their designation from the number of ends or threads contained in one inch, two ends being allowed for everydent, that being the almost universal number in every species and description of plain cloth, according to the modern practice of weaving, and also for a great proportion of fanciful articles.The number of threads in the warp of a web is generally ascertained with considerable precision by means of a small magnifying glass, fitted into a socket of brass, under which is drilled a small round hole in the bottom plate of the standard. The number of threads visible in this perforation, ascertains the number of threads in the standard measure of the reed. Those used in Scotland have sometimes four perforations, over any one of which the glass may be shifted. The first perforation is1⁄4of an inch in diameter, and is therefore well adapted to the Stockport mode of counting; that is to say, for ascertaining the number of ends or threads per inch; the second is adapted for the Holland reed, being1⁄200th part of 40 inches; the third is1⁄700th of 37 inches, and is adapted for the now almost universal construction of Scotch reeds; and the fourth, being1⁄200th of 34 inches, is intended for the French cambrics. Every thread appearing in these respective measures, of course represents 200 threads, or 100 splits, in the standard breadth; and thus the quality of the fabric may be ascertained with considerable precision, even after the cloth has undergone repeated wettings, either at the bleaching-ground or dye-work. By counting the other way, the proportion which the woof bears to the warp is also known, and this forms the chief use of the glass to the manufacturer and operative weaver, both of whom are previously acquainted with the exact measure of the reed.ComparativeTableof 37-inch reeds, being the standard used throughout Europe, for linens, with the Lancashire and Cheshire reeds, and the foreign reeds used for holland and cambric.Scotch.Lanca-shire.Chesh-ire.Dutchholland.Frenchcambric.6002034550653700243865076180026447408709003050832979100034549251089110036601014119712004064111013001300427012021414140046761295146415005080138716021600528614801752170056921571182018005896166519581900621041757206720006611018502176In the above table, the 37-inch is placed first. It is called Scotch, not because it either originated or is exclusively used in that country. It is the general linen reed of all Europe; but in Scotland it has also been adopted as the regulator of her cotton manufactures.
REED, is the well-known implement of the weaver, made of parallel slips of metal or reeds, called dents. A thorough knowledge of the adaptation of yarn of a proper degree of fineness to any given measure of reed, constitutes one of the principal objects of the manufacturer of cloths; as upon this depends entirely the appearance, and in a great degree the durability, of the cloth when finished. The art of performing this properly, is known by the names ofexamining,setting, orsleying, which are used indiscriminately, and mean exactly the same thing. The reed consists of two parallel pieces of wood, set a few inches apart, and they are of any given length, as a yard, a yard and a quarter, &c. The division of the yard being into halves, quarters, eighths, and sixteenths; the breadth of a web is generally expressed by a vulgar fraction, as1⁄4,4⁄4,5⁄4,6⁄4; and the subdivisions by the eighths or sixteenths, ornails, as they are usually called, as7⁄8,9⁄8,11⁄8, &c., or13⁄16,15⁄16,19⁄16, &c. In Scotland, the splits of cane which pass between the longitudinal pieces or ribs of the reed, are expressed by hundreds, porters, and splits. The porter is 20 splits, or1⁄5th of an hundred.
In Lancashire and Cheshire a different mode is adopted, both as to the measure and divisions of the reed. The Manchester and Bolton reeds are counted by the number of splits, or, as they are there called, dents, contained in 241⁄4inches of the reed. These dents, instead of being arranged in hundreds, porters, and splits, as in Scotland, are calculated by what is there termedharesorbears, each containing 20 dents, or the same number as the porter in the Scotch reeds. The Cheshire or Stockport reeds, again, receive their designation from the number of ends or threads contained in one inch, two ends being allowed for everydent, that being the almost universal number in every species and description of plain cloth, according to the modern practice of weaving, and also for a great proportion of fanciful articles.
The number of threads in the warp of a web is generally ascertained with considerable precision by means of a small magnifying glass, fitted into a socket of brass, under which is drilled a small round hole in the bottom plate of the standard. The number of threads visible in this perforation, ascertains the number of threads in the standard measure of the reed. Those used in Scotland have sometimes four perforations, over any one of which the glass may be shifted. The first perforation is1⁄4of an inch in diameter, and is therefore well adapted to the Stockport mode of counting; that is to say, for ascertaining the number of ends or threads per inch; the second is adapted for the Holland reed, being1⁄200th part of 40 inches; the third is1⁄700th of 37 inches, and is adapted for the now almost universal construction of Scotch reeds; and the fourth, being1⁄200th of 34 inches, is intended for the French cambrics. Every thread appearing in these respective measures, of course represents 200 threads, or 100 splits, in the standard breadth; and thus the quality of the fabric may be ascertained with considerable precision, even after the cloth has undergone repeated wettings, either at the bleaching-ground or dye-work. By counting the other way, the proportion which the woof bears to the warp is also known, and this forms the chief use of the glass to the manufacturer and operative weaver, both of whom are previously acquainted with the exact measure of the reed.
ComparativeTableof 37-inch reeds, being the standard used throughout Europe, for linens, with the Lancashire and Cheshire reeds, and the foreign reeds used for holland and cambric.
In the above table, the 37-inch is placed first. It is called Scotch, not because it either originated or is exclusively used in that country. It is the general linen reed of all Europe; but in Scotland it has also been adopted as the regulator of her cotton manufactures.
REFINING OF GOLD AND SILVER; called alsoParting. (Affinage d’argent,Départ, Fr.;Scheidung in die quart, Germ.) For several uses in the arts, these precious metals are required in an absolutely pure state, in which alone they possess their malleability and peculiar properties in the most eminent degree. Thus, for example, neither gold nor silver leaf can be made of the requisite fineness, if the metals contain the smallest portion of copper alloy. Till within these ten or twelve years, the parting of silver from gold was effected every where by nitric acid; it is still done so in all the establishments of this country, except the Royal Mint; and in the small refining-houses abroad. The following apparatus may be advantageously employed in this operation. It will serve the double purpose of manufacturing nitric acid of the utmost purity, and of separating silver from gold by its means.Alembic1.On procuring nitric acid for parting.—ais a platinum retort or alembic;bis its capital, terminating above in a tubulure, to which a kneed tube of platinum, about 2 feet long, is adapted;cis the tubulure of the retort, for supplying acid during the process, and for inspecting its progress. It is furnished with a lid ground air-tight, which may be secured in its place by a weight.eis a stoneware pipe, about two inches diameter, and several feet long, according to the locality in which the operation is to be carried on. It is made in lengths fitted to one another, and secured at the joints with loam-lute. The one bend of this earthenware hard salt-glazed pipe is adapted to receive the platinum tube, and the other bend is inserted into a tubulure in the top of the stoneware drumf. The openingl,l, in the middle of the top off, isfor inspecting the progress of the condensation of acid; and the third tubulure terminates in a prolonged pipei,i, consisting of several pieces, each of which enters from above conically into the one below. The joinings of the upper pieces need not be tightly luted, as it is desirable that some atmospherical oxygen should enter, to convert the relatively light nitrous gas into nitrous or nitric acid vapour, which when supplied with moisture will condense and fall down in a liquid state. To supply this moisture in the most diffusive form, the upright stoneware pipesi,i,l,l, (at least 3 inches diameter, and 12 feet high,) should be obstructed partially with flint nodules, or with siliceous pebbles; and water should be allowed to trickle upon the top pebble from a cistern placed above. Care must be taken to let the water drop so slowly as merely to preserve the pebbles in a state of humidity.his a stopcock, of glass or stoneware, for drawing off the acid from the cisternf.kis a section of a small air-furnace, covered in at top with an iron ring, on which the flat iron ring of the platinum frame rests.g,g, is a tub in which the stoneware cistern stands, surrounded with water, kept constantly as cold as possible by passing a stream through it; the spring water entering by a pipe that dips near to the bottom, and the hot water escaping at the upper edge.With the above apparatus, the manufacture of pure nitric acid is comparatively easy and economical. Into the alembica, 100 pounds (or thereby) of pure nitre, coarsely bruised if the crystals be large, are to be put; the capital is then to be adapted, and the platinum tube (the only movable one) luted into its place. Twenty pounds of strong sulphuric acid are now to be introduced by the tubulurec, and then its lid must be put on. No heat must yet be applied to the alembic. In about an hour, another ten pounds of acid may be poured in, and so every hour, till 60 pounds of acid have been added. A few hours after the affusion of the last portion of acid, a slight fire may be kindled in the furnacek.By judicious regulation of the heat, the whole acid may be drawn off in 24 hours; its final expulsion being aided by the dexterous introduction of a quart or two of boiling water, in small successive portions, by the tubulurec, whose lid must be instantly shut after every inspersion. The most convenient strength of acid for the parting process, is when its specific gravity is about 1·320, or when a vessel that contains 16 ounces of pure water, will contain 211⁄8of the aquafortis. To this strength it should be brought very exactly by the aid of a hydrometer.Its purity is easily ascertained by letting fall into it a few drops of solution of silver; and if no perceptible milkiness ensues, it may be accounted good. Should a white cloud appear, a few particles of silver may be introduced, to separate whatever muriatic acid may be present, in the form of chloride of silver. Though a minute quantity of sulphuric acid should exist in the nitric, it will be of no consequence in the operation of parting.2.On parting by the nitric acid, called by the Mexicans, “Il apartado.”—The principle on which this process is founded, is the fact of silver being soluble in nitric acid, while gold is insoluble in that menstruum. If the proportion of gold to that of silver be greater than one to two, then the particles of the former metal so protect or envelop those of the latter, that the nitric acid, even at a boiling heat, remains quite inactive on the alloy. It is indispensable, therefore, that the weight of the silver be at least double that of the gold. 100 pounds of silver take 38 pounds of nitric acid, of specific gravity 1·320, for oxidizement, and 111 for solution of the oxide; being together 149; but the refiner often consumes, in acid of the above strength, more than double the weight of silver, which shows great waste, owing to the imperfect means of condensation employed for recovering the vapours of the boiling and very volatile acid.By the apparatus above delineated, the 38 pounds of acid expended in oxidizing the silver, become nitrous gas in the first place, and are afterwards reconverted in a great measure into nitric acid by absorption of atmospherical oxygen; so that not one-fifth need be lost, under good management. As the acid must be boiled on the granulatedgarble, or alloy, to effect the solution of the silver, by proper arrangements the vapours may be entirely condensed, and nearly the whole acid be recovered, except the 111 parts indispensable to constitute nitrate of silver. Hence, with economical management, 120 pounds of such acid may be assigned as adequate to dissolve 100 of silver associated with 50 of gold.It must here be particularly observed, that 100 pounds of copper require 130 pounds of the above acid for oxidizement; and 390 for solution of the oxide; being 520 pounds in whole, of which less than1⁄4part could be recovered by the above apparatus. It is therefore manifest that it is desirable to employ silver pretty well freed from copper by a previous process; and always, if practicable, a silver containing some gold.These data being assumed as the bases of the parting operation, 60 pounds of gold and silver alloy orgarblefinely granulated, containing not less than 40 pounds of silver, are to be introduced into the ten-gallon alembic of platinum,fig.931., and 80 pounds of nitric acid, of 1·320, is to be poured over the alloy; a quantity which will measure 6 gallons imperial. As for the bulk of the alloy, it is considerably less than half a gallon. Abundanceof space therefore remains in the alembic for effervescence and ebullition, provided the fire be rightly tempered.By the extent of stoneware conducting pipee, which should not be less than 40 feet, by the dimensions and coldness of the cisternf, and by the regenerating influence of the vertical aerial pipe filled with moist pebblesi,i, it is clear, that out of the 80 pounds of nitric acid, specific gravity 1·320, introduced at first, from 20 to 30 will be recovered.Whenever the effervescence and disengagement of nitrous red fumes no longer appear on opening the orificec, the fire must be removed, and the vessel may be cooled by the application of moist cloths. The alembic may be then disengaged from the platinum tube, and lifted out of its seat. Its liquid contents must be cautiously decanted off, through the orificec, into a tub nearly filled with soft water. On the heavy pulverulent gold which remains in the vessel, some more acid should be boiled, to carry off any residuary silver. This metallic powder, after being well washed with water, is to be dried, fused along with a little nitre or borax, and cast into ingots.Plates of copper being immersed in the nitric solution contained in wooden or stoneware cisterns, will throw metallic silver down, while a solution of nitrate of copper, called blue water, will float above. The pasty silver precipitate is to be freed from the nitrate of copper, first, by washing with soft water, and next, by strong hydraulic pressure in cast-iron cylinders. The condensed mass, when now melted in a crucible along with a little nitre and borax, is fine silver.The above apparatus has the further advantage of enabling the operator to recover a great portion of his nitric acid, by evaporating the blue water to a state approaching to dryness, with the orifices atc, and at the top of the capital, open. In the progress of this evaporation, nothing but aqueous vapour escapes. Whenever the whole liquid is dissipated, the pipedis to be re-adjusted, and the lid applied closely toc. The heat being now continued, and gradually increased, thewholenitric acid will be expelled from the copper oxide, which will remain in a black mass at the bottom of the alembic. The contrivance for letting water trickle upon the pebbles, must be carefully kept in play, otherwise much of the evolved acid would be dissipated in nitrous fumes. With due attention to the regenerative plan, a great part of the acid may be recovered, at no expense but that of a little fuel.The black oxide of copper thus obtained, is an economical form of employing that metal for the production of the sulphate; 100 pounds of it, with 1221⁄2of sulphuric acid diluted with water, produce 3121⁄2pounds of crystallized sulphate of copper. A leaden boiler is best adapted for that operation. 100 pounds of silver are precipitable from its solution in nitric acid, by 29 of copper. If more be needed, it is a proof that a wasteful excess of acid has existed in the solution.In parting by nitric acid, the gold generally retains a little silver; as is proved by the cloud of chloride of silver which it affords, at the end of some hours, when dissolved in aqua regia. And on the other hand, the silver retains a little gold. These facts induced M. Dizé, when he was inspector of the French mint, to adopt some other process, which would give more accurate analytical results; and after numerous experiments, he ascertained that sulphuric acid presented great advantages in this point of view, since with it he succeeded in detecting, in silver, quantities of gold which had eluded the other plan of parting. The suggestion of M. Dizé has been since universally adopted in France. M. Costell, about nine or ten years ago, erected in Pomeroy-street, Old Kent-road, a laboratory upon the French plan, for parting by sulphuric acid; but he was not successful in his enterprise; and since he relinquished the business, Mr. Matheson introduced the same system into our Royal Mint, under the management of M. Costell’s French operatives. In the Parisian refineries, gold, to the amount of one-thousandth part of the weight, has been extracted from all the silver which had been previously parted by the nitric acid process; being 3500 francs in value upon every thousand kilogrammes of silver.I shall give first a general outline of the method of parting by sulphuric acid, and then describe its details as I have lately seen them executed upon a magnificent scale in an establishment near Paris.The most suitable alloy for refining gold, by the sulphuric-acid process, is the compound of gold, silver, and copper, having a standard quality, by the cupel, of from 900 to 950 millièmes, and containing one-fifth of its weight of gold. The best proportions of the three metals are the following:—silver, 725; gold, 200; copper, 75; = 1000. It has been found that alloys which contain more copper, afford solutions that hold some anhydrous sulphate of that metal in solution, which prevents the gold from being readily separated; and that alloys containing more gold, are not acted on easily by the sulphuric acid. The refiner ought, therefore, when at all convenient, to reduce the alloys that he has to treat, to the above-stated proportions. He may effect this purpose either by fusing the coarser alloys with nitre in a crucible, or by adding finer alloy, or even fine silver, or finally, by subjecting the coarser alloys to a previous cupellation with lead onthe great scale. As to gold or silver bullion, which contains lead and other easily oxidizable metals besides copper, the refiner ought always to avoid treating them by sulphuric acid; and should separate, first of all, these foreign metals by the agency of nitre, if they exist in minute quantity; but if in larger, he should have recourse to the cupel. Great advantage will therefore be derived from the judicious preparation of the alloy to be refined.For an alloy of the above description, the principal Parisian refiners are in the habit of employing thrice its weight of sulphuric acid, in order to obtain a clear solution of sulphate of silver, which does not too suddenly concrete on cooling, so as to obstruct its discharge from the alembic by decantation. A small increase in the quantity of copper, calls for a considerable increase in the quantity of acid.Generally speaking, one-half of the sulphuric acid strictly required for converting the silver and copper into sulphates, is decomposed into sulphurous acid, which is lost to the manufacturer, unless he has recourse to the agency of nitrous acid.The process for silver containing but little gold, consists of five different operations.1. Upon several furnaces, one foot in diameter, egg-shaped alembics of platinum are mounted, into each of which are put 3 kilogrammes (8 lbs. troy) of the granulated silver, containing a few grains of gold per pound, and 6 kilogrammes of concentrated sulphuric acid. The alembics are covered with conical capitals, ending in bent tubes, which conduct the acid vapours into lead pipes of condensation; and the furnaces are erected under a proper hood. As the cold acid is inoperative, it must be set a boiling, at which temperature it gives up one atom of its oxygen to the metal, and is transformed into sulphurous acid, which escapes in a gaseous state. Some of the undecomposed sulphuric acid immediately combines with the oxide into a sulphate, which subsides, in the state of a crystalline powder, to the bottom of the vessel. The solution goes on vigorously, with a copious disengagement of sulphurous acid gas, only during the two or three first hours; after which it proceeds slowly, and is not completed till after a digestion of nearly twelve hours more. During the ebullition a considerable quantity of sulphuric acid vapour escapes along with the sulphurous acid gas; the former of which is readily condensed in a large leaden receiver immersed in a cistern of cold water, if need be. It has been proposed to condense the sulphurous acid, by leading it over extensive surfaces of lime-pap, as in the coal-gas purifiers.2. When the whole silver has been converted into sulphate, this is to be emptied out of the alembic into water contained in a round-bottomed receiver lined with lead, and diluted till the density of the solution marks from 15° to 20° Baumé. The small portion of gold, in the form of a brown powder, which remains undissolved, having been allowed to settle to the bottom, the supernatant solution of silver is to be decanted carefully off into a leaden cistern, and the powder being repeatedly edulcorated with water, the washings are to be added to it. The silver is now to be precipitated by plunging plates of copper in the solution, and the magma which falls is to be well washed, and freed from the residuary particles of sulphate of copper by powerful compression.3. The silver, precipitated and dried as above described, is melted in a crucible, and cast into an ingot.4. The gold powder is also dried and cast into an ingot, a little nitre being added in the fusion, to oxidize and separate any minute particles of copper that may perchance have been protected from the solvent action of the acid.5. As the sulphate of copper is of considerable value, its solution is to be neutralized, evaporated in leaden pans to a proper strength, and set aside to crystallize in leaden cisterns. The farmers throughout France consume an immense quantity of this salt. They sprinkle a weak solution of it (at 2° or 3° Baumé) over their grain before sowing it, in order to protect it against the ravages of birds and insects.The pure gold, at the instant of its separation from the alloy by the action of sulphuric acid, being in a very fine powder, and lying in close contact with the platinum, under the influence of a boiling menstruum, which brightens the surfaces of the two metals, and raises their temperature to fully the 600th degree of Fahrenheit’s scale, tends to become partially soldered to the platinum, and may thus progressively thicken the bottom of the still. The importance of preserving this vessel entire, and of economizing the fuel requisite to heat its contents, induces the refiner to detach the crust of gold from time to time, by passing over the bottom of the still, in small quantities, a dilute nitro-muriatic acid, which acts readily on gold, but not on platinum. But as this operation is a very delicate one, it must be conducted with great circumspection. The danger of such adhering deposits is much increased by using too high a heat, and too small a body of acid, relatively to the metals dissolved. Hence it is advantageous to employ alembics of large size. Should any lead or tin get into the platinum still, while the hot acid is in it, the precious vessel would be speedily destroyed; an accident which has not unfrequently happened. Each operation may be conveniently finished in twelve hours;so that each alembic may refine with ease 160 marcs daily. Some persons work more rapidly, but such haste is hazardous.The Parisian refiners restore to the owners the whole of the gold and silver contained in the ingots, reserving to themselves the copper which formed the alloy, and charging only the sum of 51⁄2francs per kilogramme (2·68 lbs. troy) for the expense of the parting of the metals.If they are employed to refine an ingot of silver containing less than one-tenth of gold, they retain for themselves a two-thousandth part of the gold, and all the copper, existing in the alloy; return all the rest of the gold, with the whole of the silver, in the ingot; and give, besides, to the owners apremiumorbonus, which amounted lately to3⁄4of a franc on the kilogramme of metal. Should the owner desire to have the whole of the gold and silver contained in his ingot, the refiner then demands from him 2 francs and 68 centimes per kilogramme, retaining the copper of the alloy. As to silver ingots of low standard, the perfection of the refining processes is such, that the mere copper contained in them pays all the costs; for in this case, the refiner restores to the proprietor of the ingot as much fine silver as the assay indicated to exist in the ingot, contenting himself with the copper of the alloy. Seeinfrà.The chemical works of M. Poizat, calledaffinage d’argent, on the bank of thecanal de l’Ourcq, in the vicinity of Paris, are undoubtedly the most spacious and best arranged for refining the precious metals, which exist in the world. On being introduced to this gentleman, by my friend and companion M. Clement-Desormes, he immediately expressed his readiness to conduct me through hisfabrique, politely alluding to the French translation of my Dictionary of Chemistry, which lay upon the desk of hisbureau. The principal room is 240 feet long, 40 feet wide, and about 30 feet high. A lofty chimney rises up through the middle of the apartment, and another at each of its ends. The one space, 120 feet long, to the right of the central chimney, is allotted to the processes of dissolving the silver, and parting the gold; the other, to the left, to the evaporation and crystallization of the sulphate of copper, and the concentration of the recovered sulphuric acid.M. Poizat melts his great masses of silver in pots made of malleable iron, capable of holding several cwts. each; and granulates it by pouring it into water contained in large iron pans. The granulated silver is dried with heat, and carried into a well lighted office enclosed by glazed casements, to be weighed, registered, and divided into determinate portions. Each of these is put into a cast-iron pot, of a flattened hemispherical shape, about 2 feet in diameter, covered with an iron lid, made in halves, and hinged together in the middle line. From the top of the fixed lid a bent pipe issues, and proceeds downwards into an oblong leaden chest sunk beneath the floor. Four of the above cast-iron pots stand in a line across the room, divided into two ranges, with an intervening space for passing between them. The bottoms of the pots are directly heated by the flame, one fire serving for two pots. Two parts of concentrated sulphuric acid by weight are poured upon every part of granulated silver, and kept gently boiling till the whole silver be converted into a pasty sulphate.From the underground leaden chests, a leaden pipe, 4 inches in diameter, rises vertically, and enters the side of a leaden chamber, which is supported upon strong cross-beams or rafters, a little way beneath the roof of the apartment. This chamber, which is 30 feet long, 10 feet wide, and 6 feet high, is intended to condense the sulphuric acid vapours, along with some of the sulphurous acid; that of the latter being promoted by the admission of nitrous gas and air, which convert it into sulphuric acid. From the further end of this chamber, a large square leaden pipe returns with a slight slope towards the middle of the room, and terminates at the right-hand side of the central chimney, in a small leaden chest, for receiving the drops of acid which are condensed in the pipe. From that chest a pipe issues, to discharge into the high central chimney the incondensable gases, and also to maintain a constant draught through the whole series of leaden chambers back to the cast-iron hemispherical pots.Besides the above cast-iron pots, destined to dissolve only the coarse cupreous silver, containing a few grains of gold per pound, there are, in the centre of the apartment, at the right-hand side of the chimney, 6 alembics of platinum, in which the rich alloys of gold and silver are treated in the process of refining gold.The pasty sulphate of silver obtained in the iron pots, is transferred by cast-iron ladles with long handles into large leaden cisterns, adjoining the pots, and there diluted with a little water to the density of 36° Baumé. Into this liquor, steam is admitted through a series of upright leaden pipes arranged along the side of the cistern, which speedily causes ebullition, and dilutes the solution eventually to the 22d degree of Baumé. In this state, the liquid supersulphate is run off by leaden syphons into large oblong leaden cisterns, rounded at the bottom; and is there exposed to the action of ribands of copper, like thin wood shavings. The metallic silver precipitates in a pasty form; and thesupernatant sulphate of copper is then run off into a cistern, upon a somewhat lower level, where it is left to settle and become clear.The precipitate of silver, called by the English, water-silver, and by the French,chaux d’argent, is drained, then strongly squeezed in a square box of cast iron, by the action of a hydraulic press; in which 60 pounds of silver are operated upon at once.The silver lumps are dried, melted in black lead crucibles, in a furnace built near the silver end of the room, where the superintendent sits in hisbureau—a closet enclosed by glazed casements, like a green-house. The whole course of the operations is so planned, that they are made to commence near the centre with the mixed metals, and progressively approach towards the office end of the apartment as the parting processes advance. Here the raw material, after being granulated and weighed, was given out, and here the pure gold and silver are finally eliminated in a separate state.In the other half of the hall, the solutions of sulphate of copper are evaporated in large shallow leaden pans, placed over a range of furnaces; from which, at the proper degree of concentration, they are run off by syphons into crystallizing pans of the same metal. From the mother-waters, duly evaporated, a second crop of crystals is obtained; and also a third, the last being anhydrous, from the great affinity for water possessed by the strong sulphuric acid with which they are now surrounded. The acid in this way parts with almost the whole of the cupreous oxide, and is then transferred into a large alembic of platinum (value 1000l.), to be rendered fit, by re-concentration, for acting upon fresh portions of granulated silver. The capital of that alembic is connected with a leaden-worm, which traverses an oblong vessel, through which a stream of cold water flows.The crystallized sulphate of copper fetched, two years ago, 30l.a ton. It is almost all sold to the grocers in the towns of the agricultural districts of France. In the above establishment of M. Poizat, silver to the value of 10,000l.can be operated upon daily.There is a steam engine of 6-horse power placed in a small glazed chamber at one side of the parting hall, which serves to work all his leaden pumps for lifting the dilute sulphuric acid and acidulous solutions of copper into their appropriate cisterns of concentration, as also to grind his old crucibles, and drive his amalgamation mill, consisting of a pair of vertical round-edged wheels, working upon one shaft, in a groove formed round a central hemisphere—of cast iron. After the mercury has dissolved out of the ground crucibles all the particles of silver which it can find, the residuary earthy matter is sold to thesweep-washers. The floor of the hall around the alembics, pots, and cisterns, is covered with an iron grating, made of bars having one of their angles uppermost, to act as scrapers upon the shoes of the operatives. The dust collects in a vacant space left beneath the grating, whence it is taken to the amalgamation mill. The processes are so well arranged and conducted by M. Poizat, that he can execute as much business in his establishment with 10 workmen as is elsewhere done with from 40 to 50; and with less than 3 grains of gold, in one Paris pound or 7561 grains of silver, he can defray the whole expenses of the parting or refining.Since 26 parts of copper afford 100 of the crystallized sulphate, the tenth of copper present in the dollars, and most foreign coins, will yield nearly four times its weight of blue vitriol; a subsidiary product of considerable value to the refiner.The works of M. Poizat are so judiciously fitted up as to be quite salubrious, and have not those “very mischievous effects upon the trachea,” which Mr. Matheson states as being common in his refinery works in the Royal Mint.[48]But, in fact, as refining by sulphuric acid is always a nuisance to a neighbourhood, it is not suffered in theMonnaie Royaleof Paris; but is best and most economically performed by private enterprise and fair competition, which is impossible in London, on account of the anomalous privilege, worth at least 2000l.a year, possessed by Mr. Matheson, who works most extensively for private profit on a public plant, fitted up with a lofty chimney, platinum vessels to the value of 3000l., and other apparatus, at the cost of the government. His charge to the crown for refining gold per lb. troy, is 6s.6d.; that of the refiners in London, who are obliged, for fear of prosecution, to employ the more expensive, but more condensable, nitric acid, is only 4s.That of the Parisian refiners is regulated as follows. For the dealers in the precious metals:—[48]Report of Committee of House of Commons on the Mint, in 1837, p. 91.For gold bullion containing silver, and more than100⁄1000of gold, 6 fr. 12 c. per kilogramme, = 2 fr. 29 c. per lb. troy.For silver bullion, containing from1⁄1000to100⁄1000of gold (calleddorés), 3 fr. 27 c. per kilogramme, = 1 fr. 22 c. per lb. troy.For theMonnaie, the charges are—For gold refined by sulphuric acid, when alloyed with copper only, from898⁄1000to1⁄1000, 5 fr. per kilogramme, = 1 fr. 86 c. per lb. troy.For gold alloyed with copper and silver, whatever be the quantity of silver, 5 fr. 75 c. per kilogramme, = 2 fr. 12 c. per lb. troy.There are about ten bullion refiners by sulphuric acid in the environs of Paris; two of whom, M. Poizat St. André, and M. Chauvière, are by far the most considerable; the former working about 300 kilogrammes (= 804 lbs. troy) daily, and the latter about two-thirds of that quantity. In former times, when competition was open in London, Messrs. Browne and Brinde were wont to treat 6 cwts. of silver, or 9 cwts. of gold alloy, daily, for several months in succession.The result offree tradein refining bullion at Paris is, that the silver bars imported into London from South America, &c., are mostly sent off to Paris to be stripped of the few grains of gold which they may contain, and are then brought back to be sold here. Three grains of gold in one Paris lb. of silver, pay the refiners there for taking them out. What a disgrace is thus brought upon our manufacturing industry and skill, by the monopoly charges in refining and assaying granted to two individuals in our Royal Mint.Mr. Bingley’s charges for assaying at the Royal Mint in London, are—For an assay of gold, 4s.; for a parting assay of gold and silver, 6s.; for a silver assay, 2s.6d.—charges which absorb the profits of many a transaction.The charges at the Royal Mint of Paris, for assays made under the following distinguished chemicalsavants—Darcet,Directeur; Bréant,Verificateur; Chevillot and Pelouze,Essayeurs; are—For an assay ofgold,ordoré, (a parting assay,)3 francs.—silver——0. 80 c. = 8d.English.M. Gay Lussac is the assayer of theBureau de Garantieat theMonnaie Royale, an office which corresponds to the Goldsmiths’ Hall at London. The silver assays in all the official establishments of Europe, except the two in London, are made by thehumidmethod, and are free from those errors and blunders which daily annoy and despoil the British bullion merchant, who is compelled by the Mint and Bank of England to buy and sell by thecupellationassay of Mr. Bingley. SeeAssayandSilver.
REFINING OF GOLD AND SILVER; called alsoParting. (Affinage d’argent,Départ, Fr.;Scheidung in die quart, Germ.) For several uses in the arts, these precious metals are required in an absolutely pure state, in which alone they possess their malleability and peculiar properties in the most eminent degree. Thus, for example, neither gold nor silver leaf can be made of the requisite fineness, if the metals contain the smallest portion of copper alloy. Till within these ten or twelve years, the parting of silver from gold was effected every where by nitric acid; it is still done so in all the establishments of this country, except the Royal Mint; and in the small refining-houses abroad. The following apparatus may be advantageously employed in this operation. It will serve the double purpose of manufacturing nitric acid of the utmost purity, and of separating silver from gold by its means.
Alembic
1.On procuring nitric acid for parting.—ais a platinum retort or alembic;bis its capital, terminating above in a tubulure, to which a kneed tube of platinum, about 2 feet long, is adapted;cis the tubulure of the retort, for supplying acid during the process, and for inspecting its progress. It is furnished with a lid ground air-tight, which may be secured in its place by a weight.eis a stoneware pipe, about two inches diameter, and several feet long, according to the locality in which the operation is to be carried on. It is made in lengths fitted to one another, and secured at the joints with loam-lute. The one bend of this earthenware hard salt-glazed pipe is adapted to receive the platinum tube, and the other bend is inserted into a tubulure in the top of the stoneware drumf. The openingl,l, in the middle of the top off, isfor inspecting the progress of the condensation of acid; and the third tubulure terminates in a prolonged pipei,i, consisting of several pieces, each of which enters from above conically into the one below. The joinings of the upper pieces need not be tightly luted, as it is desirable that some atmospherical oxygen should enter, to convert the relatively light nitrous gas into nitrous or nitric acid vapour, which when supplied with moisture will condense and fall down in a liquid state. To supply this moisture in the most diffusive form, the upright stoneware pipesi,i,l,l, (at least 3 inches diameter, and 12 feet high,) should be obstructed partially with flint nodules, or with siliceous pebbles; and water should be allowed to trickle upon the top pebble from a cistern placed above. Care must be taken to let the water drop so slowly as merely to preserve the pebbles in a state of humidity.his a stopcock, of glass or stoneware, for drawing off the acid from the cisternf.kis a section of a small air-furnace, covered in at top with an iron ring, on which the flat iron ring of the platinum frame rests.
g,g, is a tub in which the stoneware cistern stands, surrounded with water, kept constantly as cold as possible by passing a stream through it; the spring water entering by a pipe that dips near to the bottom, and the hot water escaping at the upper edge.
With the above apparatus, the manufacture of pure nitric acid is comparatively easy and economical. Into the alembica, 100 pounds (or thereby) of pure nitre, coarsely bruised if the crystals be large, are to be put; the capital is then to be adapted, and the platinum tube (the only movable one) luted into its place. Twenty pounds of strong sulphuric acid are now to be introduced by the tubulurec, and then its lid must be put on. No heat must yet be applied to the alembic. In about an hour, another ten pounds of acid may be poured in, and so every hour, till 60 pounds of acid have been added. A few hours after the affusion of the last portion of acid, a slight fire may be kindled in the furnacek.
By judicious regulation of the heat, the whole acid may be drawn off in 24 hours; its final expulsion being aided by the dexterous introduction of a quart or two of boiling water, in small successive portions, by the tubulurec, whose lid must be instantly shut after every inspersion. The most convenient strength of acid for the parting process, is when its specific gravity is about 1·320, or when a vessel that contains 16 ounces of pure water, will contain 211⁄8of the aquafortis. To this strength it should be brought very exactly by the aid of a hydrometer.
Its purity is easily ascertained by letting fall into it a few drops of solution of silver; and if no perceptible milkiness ensues, it may be accounted good. Should a white cloud appear, a few particles of silver may be introduced, to separate whatever muriatic acid may be present, in the form of chloride of silver. Though a minute quantity of sulphuric acid should exist in the nitric, it will be of no consequence in the operation of parting.
2.On parting by the nitric acid, called by the Mexicans, “Il apartado.”—The principle on which this process is founded, is the fact of silver being soluble in nitric acid, while gold is insoluble in that menstruum. If the proportion of gold to that of silver be greater than one to two, then the particles of the former metal so protect or envelop those of the latter, that the nitric acid, even at a boiling heat, remains quite inactive on the alloy. It is indispensable, therefore, that the weight of the silver be at least double that of the gold. 100 pounds of silver take 38 pounds of nitric acid, of specific gravity 1·320, for oxidizement, and 111 for solution of the oxide; being together 149; but the refiner often consumes, in acid of the above strength, more than double the weight of silver, which shows great waste, owing to the imperfect means of condensation employed for recovering the vapours of the boiling and very volatile acid.
By the apparatus above delineated, the 38 pounds of acid expended in oxidizing the silver, become nitrous gas in the first place, and are afterwards reconverted in a great measure into nitric acid by absorption of atmospherical oxygen; so that not one-fifth need be lost, under good management. As the acid must be boiled on the granulatedgarble, or alloy, to effect the solution of the silver, by proper arrangements the vapours may be entirely condensed, and nearly the whole acid be recovered, except the 111 parts indispensable to constitute nitrate of silver. Hence, with economical management, 120 pounds of such acid may be assigned as adequate to dissolve 100 of silver associated with 50 of gold.
It must here be particularly observed, that 100 pounds of copper require 130 pounds of the above acid for oxidizement; and 390 for solution of the oxide; being 520 pounds in whole, of which less than1⁄4part could be recovered by the above apparatus. It is therefore manifest that it is desirable to employ silver pretty well freed from copper by a previous process; and always, if practicable, a silver containing some gold.
These data being assumed as the bases of the parting operation, 60 pounds of gold and silver alloy orgarblefinely granulated, containing not less than 40 pounds of silver, are to be introduced into the ten-gallon alembic of platinum,fig.931., and 80 pounds of nitric acid, of 1·320, is to be poured over the alloy; a quantity which will measure 6 gallons imperial. As for the bulk of the alloy, it is considerably less than half a gallon. Abundanceof space therefore remains in the alembic for effervescence and ebullition, provided the fire be rightly tempered.
By the extent of stoneware conducting pipee, which should not be less than 40 feet, by the dimensions and coldness of the cisternf, and by the regenerating influence of the vertical aerial pipe filled with moist pebblesi,i, it is clear, that out of the 80 pounds of nitric acid, specific gravity 1·320, introduced at first, from 20 to 30 will be recovered.
Whenever the effervescence and disengagement of nitrous red fumes no longer appear on opening the orificec, the fire must be removed, and the vessel may be cooled by the application of moist cloths. The alembic may be then disengaged from the platinum tube, and lifted out of its seat. Its liquid contents must be cautiously decanted off, through the orificec, into a tub nearly filled with soft water. On the heavy pulverulent gold which remains in the vessel, some more acid should be boiled, to carry off any residuary silver. This metallic powder, after being well washed with water, is to be dried, fused along with a little nitre or borax, and cast into ingots.
Plates of copper being immersed in the nitric solution contained in wooden or stoneware cisterns, will throw metallic silver down, while a solution of nitrate of copper, called blue water, will float above. The pasty silver precipitate is to be freed from the nitrate of copper, first, by washing with soft water, and next, by strong hydraulic pressure in cast-iron cylinders. The condensed mass, when now melted in a crucible along with a little nitre and borax, is fine silver.
The above apparatus has the further advantage of enabling the operator to recover a great portion of his nitric acid, by evaporating the blue water to a state approaching to dryness, with the orifices atc, and at the top of the capital, open. In the progress of this evaporation, nothing but aqueous vapour escapes. Whenever the whole liquid is dissipated, the pipedis to be re-adjusted, and the lid applied closely toc. The heat being now continued, and gradually increased, thewholenitric acid will be expelled from the copper oxide, which will remain in a black mass at the bottom of the alembic. The contrivance for letting water trickle upon the pebbles, must be carefully kept in play, otherwise much of the evolved acid would be dissipated in nitrous fumes. With due attention to the regenerative plan, a great part of the acid may be recovered, at no expense but that of a little fuel.
The black oxide of copper thus obtained, is an economical form of employing that metal for the production of the sulphate; 100 pounds of it, with 1221⁄2of sulphuric acid diluted with water, produce 3121⁄2pounds of crystallized sulphate of copper. A leaden boiler is best adapted for that operation. 100 pounds of silver are precipitable from its solution in nitric acid, by 29 of copper. If more be needed, it is a proof that a wasteful excess of acid has existed in the solution.
In parting by nitric acid, the gold generally retains a little silver; as is proved by the cloud of chloride of silver which it affords, at the end of some hours, when dissolved in aqua regia. And on the other hand, the silver retains a little gold. These facts induced M. Dizé, when he was inspector of the French mint, to adopt some other process, which would give more accurate analytical results; and after numerous experiments, he ascertained that sulphuric acid presented great advantages in this point of view, since with it he succeeded in detecting, in silver, quantities of gold which had eluded the other plan of parting. The suggestion of M. Dizé has been since universally adopted in France. M. Costell, about nine or ten years ago, erected in Pomeroy-street, Old Kent-road, a laboratory upon the French plan, for parting by sulphuric acid; but he was not successful in his enterprise; and since he relinquished the business, Mr. Matheson introduced the same system into our Royal Mint, under the management of M. Costell’s French operatives. In the Parisian refineries, gold, to the amount of one-thousandth part of the weight, has been extracted from all the silver which had been previously parted by the nitric acid process; being 3500 francs in value upon every thousand kilogrammes of silver.
I shall give first a general outline of the method of parting by sulphuric acid, and then describe its details as I have lately seen them executed upon a magnificent scale in an establishment near Paris.
The most suitable alloy for refining gold, by the sulphuric-acid process, is the compound of gold, silver, and copper, having a standard quality, by the cupel, of from 900 to 950 millièmes, and containing one-fifth of its weight of gold. The best proportions of the three metals are the following:—silver, 725; gold, 200; copper, 75; = 1000. It has been found that alloys which contain more copper, afford solutions that hold some anhydrous sulphate of that metal in solution, which prevents the gold from being readily separated; and that alloys containing more gold, are not acted on easily by the sulphuric acid. The refiner ought, therefore, when at all convenient, to reduce the alloys that he has to treat, to the above-stated proportions. He may effect this purpose either by fusing the coarser alloys with nitre in a crucible, or by adding finer alloy, or even fine silver, or finally, by subjecting the coarser alloys to a previous cupellation with lead onthe great scale. As to gold or silver bullion, which contains lead and other easily oxidizable metals besides copper, the refiner ought always to avoid treating them by sulphuric acid; and should separate, first of all, these foreign metals by the agency of nitre, if they exist in minute quantity; but if in larger, he should have recourse to the cupel. Great advantage will therefore be derived from the judicious preparation of the alloy to be refined.
For an alloy of the above description, the principal Parisian refiners are in the habit of employing thrice its weight of sulphuric acid, in order to obtain a clear solution of sulphate of silver, which does not too suddenly concrete on cooling, so as to obstruct its discharge from the alembic by decantation. A small increase in the quantity of copper, calls for a considerable increase in the quantity of acid.
Generally speaking, one-half of the sulphuric acid strictly required for converting the silver and copper into sulphates, is decomposed into sulphurous acid, which is lost to the manufacturer, unless he has recourse to the agency of nitrous acid.
The process for silver containing but little gold, consists of five different operations.
1. Upon several furnaces, one foot in diameter, egg-shaped alembics of platinum are mounted, into each of which are put 3 kilogrammes (8 lbs. troy) of the granulated silver, containing a few grains of gold per pound, and 6 kilogrammes of concentrated sulphuric acid. The alembics are covered with conical capitals, ending in bent tubes, which conduct the acid vapours into lead pipes of condensation; and the furnaces are erected under a proper hood. As the cold acid is inoperative, it must be set a boiling, at which temperature it gives up one atom of its oxygen to the metal, and is transformed into sulphurous acid, which escapes in a gaseous state. Some of the undecomposed sulphuric acid immediately combines with the oxide into a sulphate, which subsides, in the state of a crystalline powder, to the bottom of the vessel. The solution goes on vigorously, with a copious disengagement of sulphurous acid gas, only during the two or three first hours; after which it proceeds slowly, and is not completed till after a digestion of nearly twelve hours more. During the ebullition a considerable quantity of sulphuric acid vapour escapes along with the sulphurous acid gas; the former of which is readily condensed in a large leaden receiver immersed in a cistern of cold water, if need be. It has been proposed to condense the sulphurous acid, by leading it over extensive surfaces of lime-pap, as in the coal-gas purifiers.
2. When the whole silver has been converted into sulphate, this is to be emptied out of the alembic into water contained in a round-bottomed receiver lined with lead, and diluted till the density of the solution marks from 15° to 20° Baumé. The small portion of gold, in the form of a brown powder, which remains undissolved, having been allowed to settle to the bottom, the supernatant solution of silver is to be decanted carefully off into a leaden cistern, and the powder being repeatedly edulcorated with water, the washings are to be added to it. The silver is now to be precipitated by plunging plates of copper in the solution, and the magma which falls is to be well washed, and freed from the residuary particles of sulphate of copper by powerful compression.
3. The silver, precipitated and dried as above described, is melted in a crucible, and cast into an ingot.
4. The gold powder is also dried and cast into an ingot, a little nitre being added in the fusion, to oxidize and separate any minute particles of copper that may perchance have been protected from the solvent action of the acid.
5. As the sulphate of copper is of considerable value, its solution is to be neutralized, evaporated in leaden pans to a proper strength, and set aside to crystallize in leaden cisterns. The farmers throughout France consume an immense quantity of this salt. They sprinkle a weak solution of it (at 2° or 3° Baumé) over their grain before sowing it, in order to protect it against the ravages of birds and insects.
The pure gold, at the instant of its separation from the alloy by the action of sulphuric acid, being in a very fine powder, and lying in close contact with the platinum, under the influence of a boiling menstruum, which brightens the surfaces of the two metals, and raises their temperature to fully the 600th degree of Fahrenheit’s scale, tends to become partially soldered to the platinum, and may thus progressively thicken the bottom of the still. The importance of preserving this vessel entire, and of economizing the fuel requisite to heat its contents, induces the refiner to detach the crust of gold from time to time, by passing over the bottom of the still, in small quantities, a dilute nitro-muriatic acid, which acts readily on gold, but not on platinum. But as this operation is a very delicate one, it must be conducted with great circumspection. The danger of such adhering deposits is much increased by using too high a heat, and too small a body of acid, relatively to the metals dissolved. Hence it is advantageous to employ alembics of large size. Should any lead or tin get into the platinum still, while the hot acid is in it, the precious vessel would be speedily destroyed; an accident which has not unfrequently happened. Each operation may be conveniently finished in twelve hours;so that each alembic may refine with ease 160 marcs daily. Some persons work more rapidly, but such haste is hazardous.
The Parisian refiners restore to the owners the whole of the gold and silver contained in the ingots, reserving to themselves the copper which formed the alloy, and charging only the sum of 51⁄2francs per kilogramme (2·68 lbs. troy) for the expense of the parting of the metals.
If they are employed to refine an ingot of silver containing less than one-tenth of gold, they retain for themselves a two-thousandth part of the gold, and all the copper, existing in the alloy; return all the rest of the gold, with the whole of the silver, in the ingot; and give, besides, to the owners apremiumorbonus, which amounted lately to3⁄4of a franc on the kilogramme of metal. Should the owner desire to have the whole of the gold and silver contained in his ingot, the refiner then demands from him 2 francs and 68 centimes per kilogramme, retaining the copper of the alloy. As to silver ingots of low standard, the perfection of the refining processes is such, that the mere copper contained in them pays all the costs; for in this case, the refiner restores to the proprietor of the ingot as much fine silver as the assay indicated to exist in the ingot, contenting himself with the copper of the alloy. Seeinfrà.
The chemical works of M. Poizat, calledaffinage d’argent, on the bank of thecanal de l’Ourcq, in the vicinity of Paris, are undoubtedly the most spacious and best arranged for refining the precious metals, which exist in the world. On being introduced to this gentleman, by my friend and companion M. Clement-Desormes, he immediately expressed his readiness to conduct me through hisfabrique, politely alluding to the French translation of my Dictionary of Chemistry, which lay upon the desk of hisbureau. The principal room is 240 feet long, 40 feet wide, and about 30 feet high. A lofty chimney rises up through the middle of the apartment, and another at each of its ends. The one space, 120 feet long, to the right of the central chimney, is allotted to the processes of dissolving the silver, and parting the gold; the other, to the left, to the evaporation and crystallization of the sulphate of copper, and the concentration of the recovered sulphuric acid.
M. Poizat melts his great masses of silver in pots made of malleable iron, capable of holding several cwts. each; and granulates it by pouring it into water contained in large iron pans. The granulated silver is dried with heat, and carried into a well lighted office enclosed by glazed casements, to be weighed, registered, and divided into determinate portions. Each of these is put into a cast-iron pot, of a flattened hemispherical shape, about 2 feet in diameter, covered with an iron lid, made in halves, and hinged together in the middle line. From the top of the fixed lid a bent pipe issues, and proceeds downwards into an oblong leaden chest sunk beneath the floor. Four of the above cast-iron pots stand in a line across the room, divided into two ranges, with an intervening space for passing between them. The bottoms of the pots are directly heated by the flame, one fire serving for two pots. Two parts of concentrated sulphuric acid by weight are poured upon every part of granulated silver, and kept gently boiling till the whole silver be converted into a pasty sulphate.
From the underground leaden chests, a leaden pipe, 4 inches in diameter, rises vertically, and enters the side of a leaden chamber, which is supported upon strong cross-beams or rafters, a little way beneath the roof of the apartment. This chamber, which is 30 feet long, 10 feet wide, and 6 feet high, is intended to condense the sulphuric acid vapours, along with some of the sulphurous acid; that of the latter being promoted by the admission of nitrous gas and air, which convert it into sulphuric acid. From the further end of this chamber, a large square leaden pipe returns with a slight slope towards the middle of the room, and terminates at the right-hand side of the central chimney, in a small leaden chest, for receiving the drops of acid which are condensed in the pipe. From that chest a pipe issues, to discharge into the high central chimney the incondensable gases, and also to maintain a constant draught through the whole series of leaden chambers back to the cast-iron hemispherical pots.
Besides the above cast-iron pots, destined to dissolve only the coarse cupreous silver, containing a few grains of gold per pound, there are, in the centre of the apartment, at the right-hand side of the chimney, 6 alembics of platinum, in which the rich alloys of gold and silver are treated in the process of refining gold.
The pasty sulphate of silver obtained in the iron pots, is transferred by cast-iron ladles with long handles into large leaden cisterns, adjoining the pots, and there diluted with a little water to the density of 36° Baumé. Into this liquor, steam is admitted through a series of upright leaden pipes arranged along the side of the cistern, which speedily causes ebullition, and dilutes the solution eventually to the 22d degree of Baumé. In this state, the liquid supersulphate is run off by leaden syphons into large oblong leaden cisterns, rounded at the bottom; and is there exposed to the action of ribands of copper, like thin wood shavings. The metallic silver precipitates in a pasty form; and thesupernatant sulphate of copper is then run off into a cistern, upon a somewhat lower level, where it is left to settle and become clear.
The precipitate of silver, called by the English, water-silver, and by the French,chaux d’argent, is drained, then strongly squeezed in a square box of cast iron, by the action of a hydraulic press; in which 60 pounds of silver are operated upon at once.
The silver lumps are dried, melted in black lead crucibles, in a furnace built near the silver end of the room, where the superintendent sits in hisbureau—a closet enclosed by glazed casements, like a green-house. The whole course of the operations is so planned, that they are made to commence near the centre with the mixed metals, and progressively approach towards the office end of the apartment as the parting processes advance. Here the raw material, after being granulated and weighed, was given out, and here the pure gold and silver are finally eliminated in a separate state.
In the other half of the hall, the solutions of sulphate of copper are evaporated in large shallow leaden pans, placed over a range of furnaces; from which, at the proper degree of concentration, they are run off by syphons into crystallizing pans of the same metal. From the mother-waters, duly evaporated, a second crop of crystals is obtained; and also a third, the last being anhydrous, from the great affinity for water possessed by the strong sulphuric acid with which they are now surrounded. The acid in this way parts with almost the whole of the cupreous oxide, and is then transferred into a large alembic of platinum (value 1000l.), to be rendered fit, by re-concentration, for acting upon fresh portions of granulated silver. The capital of that alembic is connected with a leaden-worm, which traverses an oblong vessel, through which a stream of cold water flows.
The crystallized sulphate of copper fetched, two years ago, 30l.a ton. It is almost all sold to the grocers in the towns of the agricultural districts of France. In the above establishment of M. Poizat, silver to the value of 10,000l.can be operated upon daily.
There is a steam engine of 6-horse power placed in a small glazed chamber at one side of the parting hall, which serves to work all his leaden pumps for lifting the dilute sulphuric acid and acidulous solutions of copper into their appropriate cisterns of concentration, as also to grind his old crucibles, and drive his amalgamation mill, consisting of a pair of vertical round-edged wheels, working upon one shaft, in a groove formed round a central hemisphere—of cast iron. After the mercury has dissolved out of the ground crucibles all the particles of silver which it can find, the residuary earthy matter is sold to thesweep-washers. The floor of the hall around the alembics, pots, and cisterns, is covered with an iron grating, made of bars having one of their angles uppermost, to act as scrapers upon the shoes of the operatives. The dust collects in a vacant space left beneath the grating, whence it is taken to the amalgamation mill. The processes are so well arranged and conducted by M. Poizat, that he can execute as much business in his establishment with 10 workmen as is elsewhere done with from 40 to 50; and with less than 3 grains of gold, in one Paris pound or 7561 grains of silver, he can defray the whole expenses of the parting or refining.
Since 26 parts of copper afford 100 of the crystallized sulphate, the tenth of copper present in the dollars, and most foreign coins, will yield nearly four times its weight of blue vitriol; a subsidiary product of considerable value to the refiner.
The works of M. Poizat are so judiciously fitted up as to be quite salubrious, and have not those “very mischievous effects upon the trachea,” which Mr. Matheson states as being common in his refinery works in the Royal Mint.[48]But, in fact, as refining by sulphuric acid is always a nuisance to a neighbourhood, it is not suffered in theMonnaie Royaleof Paris; but is best and most economically performed by private enterprise and fair competition, which is impossible in London, on account of the anomalous privilege, worth at least 2000l.a year, possessed by Mr. Matheson, who works most extensively for private profit on a public plant, fitted up with a lofty chimney, platinum vessels to the value of 3000l., and other apparatus, at the cost of the government. His charge to the crown for refining gold per lb. troy, is 6s.6d.; that of the refiners in London, who are obliged, for fear of prosecution, to employ the more expensive, but more condensable, nitric acid, is only 4s.That of the Parisian refiners is regulated as follows. For the dealers in the precious metals:—
[48]Report of Committee of House of Commons on the Mint, in 1837, p. 91.
[48]Report of Committee of House of Commons on the Mint, in 1837, p. 91.
For gold bullion containing silver, and more than100⁄1000of gold, 6 fr. 12 c. per kilogramme, = 2 fr. 29 c. per lb. troy.
For silver bullion, containing from1⁄1000to100⁄1000of gold (calleddorés), 3 fr. 27 c. per kilogramme, = 1 fr. 22 c. per lb. troy.
For theMonnaie, the charges are—
For gold refined by sulphuric acid, when alloyed with copper only, from898⁄1000to1⁄1000, 5 fr. per kilogramme, = 1 fr. 86 c. per lb. troy.
For gold alloyed with copper and silver, whatever be the quantity of silver, 5 fr. 75 c. per kilogramme, = 2 fr. 12 c. per lb. troy.
There are about ten bullion refiners by sulphuric acid in the environs of Paris; two of whom, M. Poizat St. André, and M. Chauvière, are by far the most considerable; the former working about 300 kilogrammes (= 804 lbs. troy) daily, and the latter about two-thirds of that quantity. In former times, when competition was open in London, Messrs. Browne and Brinde were wont to treat 6 cwts. of silver, or 9 cwts. of gold alloy, daily, for several months in succession.
The result offree tradein refining bullion at Paris is, that the silver bars imported into London from South America, &c., are mostly sent off to Paris to be stripped of the few grains of gold which they may contain, and are then brought back to be sold here. Three grains of gold in one Paris lb. of silver, pay the refiners there for taking them out. What a disgrace is thus brought upon our manufacturing industry and skill, by the monopoly charges in refining and assaying granted to two individuals in our Royal Mint.
Mr. Bingley’s charges for assaying at the Royal Mint in London, are—
For an assay of gold, 4s.; for a parting assay of gold and silver, 6s.; for a silver assay, 2s.6d.—charges which absorb the profits of many a transaction.
The charges at the Royal Mint of Paris, for assays made under the following distinguished chemicalsavants—Darcet,Directeur; Bréant,Verificateur; Chevillot and Pelouze,Essayeurs; are—
M. Gay Lussac is the assayer of theBureau de Garantieat theMonnaie Royale, an office which corresponds to the Goldsmiths’ Hall at London. The silver assays in all the official establishments of Europe, except the two in London, are made by thehumidmethod, and are free from those errors and blunders which daily annoy and despoil the British bullion merchant, who is compelled by the Mint and Bank of England to buy and sell by thecupellationassay of Mr. Bingley. SeeAssayandSilver.