S.

ROSIN, or COLOPHANY (Galipot, Fr.;Fichtenharz, Germ.); is the rosin left after distilling off the volatile oil from the different species of turpentine. Yellow rosin contains some water, which black rosin does not. SeeTurpentine.

ROSIN, or COLOPHANY (Galipot, Fr.;Fichtenharz, Germ.); is the rosin left after distilling off the volatile oil from the different species of turpentine. Yellow rosin contains some water, which black rosin does not. SeeTurpentine.

ROSIN GAS.Fig.952.exhibits the retort and its appendages, as erected by Messrs. Taylor and Martineau, under the direction of the patentee, Professor Daniel, F.R.S.I have introduced this manufacturing project, not as a pattern to imitate, but as an example to deter; as affording a very instructive lesson of the danger of rushing headlong into most extensive enterprises, without fully verifying, upon a moderate scale, the probability of their ultimate success. The capital, labour, and time annually wasted upon visionary schemes of this sort, got up by chamber chemists, are incalculably great. No more essential service could be rendered to the cause of productive industry, than to unmask the thousand and one chimerical inventions which disgrace our lists of patents during the last thirty years. These remarks have been suggested by the circumstance, that 50,000l.were squandered upon the rosin-gas concern; a fact communicated to me by an eminent capitalist, who was induced by fallacious statements to embark largely in the speculation. Had 100l.been employed beforehand, by a dispassionate practical man, in making judicious trials, and in calculating the chances of eventual profit and loss, it would have been demonstrated, as clearly as noonday, that rosin could never compete with pitcoal in the production of gas-light. Whatever ingenuity was expended in getting up the following apparatus, may be regarded as an additionalignis fatuusto mislead the public, and divert their thoughts from the abyss that lay before them. The main preliminary to be settled, in all new undertakings, is the soundness of the principle. By neglecting this point, projectors perpetually realize the expiatory fable of the Danaïds.Rosin gas retortThe retorte,e,fig.952., is seen charged with coke, which is in the first instance raised to a bright red heat, by means of the furnace beneath. The common brown rosin of commerce, which is deposited in the tanka, is to be mixed with the essential oil (condensed from the rosin vapours in a preceding operation) in the proportion of one hundred pounds of the former to ten gallons of the latter. The influence of the flame and heated air beneath serves to preserve this in a fluid state, and by a damper passing across the aperture in the chimney the temperature of the fluid may be exactly regulated. A wire-gauze screen atf, reaches to the bottom of the tank, and prevents the solid rosin, or any impurity with which it may be mixed, from choking the stopcock.The melted rosin having passed by the stopcockb, funnelc, and syphond, into the retort, falls on the coke, and in its passage through the ignited mass, becomes decomposed. On arriving at the other end of the retort, a large portion of the oil of turpentine, inthe form of condensable vapour, is separated by the refrigeratorg; this is supplied with water from a cistern above, and the non-condensable vapour or gas passes up the tubeh, and dips beneath the surface of the fluid in the vesseli. This completes the condensation; and the gas proceeds in a perfectly pure state, by the pipek, to the gasometer, or rather to the floating reservoir, for use.The essential oil, when it leaves the refrigerator, is conveyed, by the syphonl, to a cistern beneath. The necessity for employing a syphon will be apparent, when it is borne in mind that the tube prevents the escape of the gas, which would otherwise pass away from the box with the essential oil. Another pipe and syphonm,n, serve to convey the condensed essential oil from the top cistern.

ROSIN GAS.Fig.952.exhibits the retort and its appendages, as erected by Messrs. Taylor and Martineau, under the direction of the patentee, Professor Daniel, F.R.S.

I have introduced this manufacturing project, not as a pattern to imitate, but as an example to deter; as affording a very instructive lesson of the danger of rushing headlong into most extensive enterprises, without fully verifying, upon a moderate scale, the probability of their ultimate success. The capital, labour, and time annually wasted upon visionary schemes of this sort, got up by chamber chemists, are incalculably great. No more essential service could be rendered to the cause of productive industry, than to unmask the thousand and one chimerical inventions which disgrace our lists of patents during the last thirty years. These remarks have been suggested by the circumstance, that 50,000l.were squandered upon the rosin-gas concern; a fact communicated to me by an eminent capitalist, who was induced by fallacious statements to embark largely in the speculation. Had 100l.been employed beforehand, by a dispassionate practical man, in making judicious trials, and in calculating the chances of eventual profit and loss, it would have been demonstrated, as clearly as noonday, that rosin could never compete with pitcoal in the production of gas-light. Whatever ingenuity was expended in getting up the following apparatus, may be regarded as an additionalignis fatuusto mislead the public, and divert their thoughts from the abyss that lay before them. The main preliminary to be settled, in all new undertakings, is the soundness of the principle. By neglecting this point, projectors perpetually realize the expiatory fable of the Danaïds.

Rosin gas retort

The retorte,e,fig.952., is seen charged with coke, which is in the first instance raised to a bright red heat, by means of the furnace beneath. The common brown rosin of commerce, which is deposited in the tanka, is to be mixed with the essential oil (condensed from the rosin vapours in a preceding operation) in the proportion of one hundred pounds of the former to ten gallons of the latter. The influence of the flame and heated air beneath serves to preserve this in a fluid state, and by a damper passing across the aperture in the chimney the temperature of the fluid may be exactly regulated. A wire-gauze screen atf, reaches to the bottom of the tank, and prevents the solid rosin, or any impurity with which it may be mixed, from choking the stopcock.

The melted rosin having passed by the stopcockb, funnelc, and syphond, into the retort, falls on the coke, and in its passage through the ignited mass, becomes decomposed. On arriving at the other end of the retort, a large portion of the oil of turpentine, inthe form of condensable vapour, is separated by the refrigeratorg; this is supplied with water from a cistern above, and the non-condensable vapour or gas passes up the tubeh, and dips beneath the surface of the fluid in the vesseli. This completes the condensation; and the gas proceeds in a perfectly pure state, by the pipek, to the gasometer, or rather to the floating reservoir, for use.

The essential oil, when it leaves the refrigerator, is conveyed, by the syphonl, to a cistern beneath. The necessity for employing a syphon will be apparent, when it is borne in mind that the tube prevents the escape of the gas, which would otherwise pass away from the box with the essential oil. Another pipe and syphonm,n, serve to convey the condensed essential oil from the top cistern.

ROTTEN-STONE. SeeTripoli.

ROTTEN-STONE. SeeTripoli.

ROUGE. (Fard, Fr.) The only cosmetic which can be applied without injury to brighten a lady’s complexion, is that prepared, by the following process, from safflower (Carthamus tinctorius). The flowers, after being washed with pure water till it comes off colourless, are dried, pulverized, and digested with a weak solution of crystals of soda, which assumes thereby a yellow colour. Into this liquor a quantity of finely carded white cotton wool is plunged, and then so much lemon juice or pure vinegar is added as to supersaturate the soda. The colouring matter is disengaged, and falls down in an impalpable powder upon the cotton filaments. The cotton, after being washed in cold water, to remove some yellow colouring particles, is to be treated with a fresh solution of carbonate of soda, which takes up the red colouring matter in a state of purity. Before precipitating this pigment a second time by the acid of lemons, some soft powdered talc should be laid in the bottom of the vessel, for the purpose of absorbing the fine rouge, in proportion as it is separated from the carbonate of soda, which now holds it dissolved. The coloured mixture must be finally triturated with a few drops of olive-oil, in order to make it smooth and marrowy. Upon the fineness of the talc, and the proportion of the safflower precipitate which it contains, depend the beauty and value of the cosmetic. The rouge of the above second precipitation is received sometimes upon bits of fine-twisted woollen stuff, calledcrepons, which ladies rub upon their cheeks.

ROUGE. (Fard, Fr.) The only cosmetic which can be applied without injury to brighten a lady’s complexion, is that prepared, by the following process, from safflower (Carthamus tinctorius). The flowers, after being washed with pure water till it comes off colourless, are dried, pulverized, and digested with a weak solution of crystals of soda, which assumes thereby a yellow colour. Into this liquor a quantity of finely carded white cotton wool is plunged, and then so much lemon juice or pure vinegar is added as to supersaturate the soda. The colouring matter is disengaged, and falls down in an impalpable powder upon the cotton filaments. The cotton, after being washed in cold water, to remove some yellow colouring particles, is to be treated with a fresh solution of carbonate of soda, which takes up the red colouring matter in a state of purity. Before precipitating this pigment a second time by the acid of lemons, some soft powdered talc should be laid in the bottom of the vessel, for the purpose of absorbing the fine rouge, in proportion as it is separated from the carbonate of soda, which now holds it dissolved. The coloured mixture must be finally triturated with a few drops of olive-oil, in order to make it smooth and marrowy. Upon the fineness of the talc, and the proportion of the safflower precipitate which it contains, depend the beauty and value of the cosmetic. The rouge of the above second precipitation is received sometimes upon bits of fine-twisted woollen stuff, calledcrepons, which ladies rub upon their cheeks.

RUBY. SeeLapidary.

RUBY. SeeLapidary.

RUM, is a variety of ardent spirits, distilled in the West Indies, from the fermented skimmings of the sugar teaches, mixed with molasses, and diluted with water to the proper degree. A sugar plantation in Jamaica or Antigua, which makes 200 hogsheads of sugar, of about 16 cwt. each, requires, for the manufacture of its rum two copper stills; one of 1000 gallons for the wash, and one of 600 gallons for the low wines, with corresponding worm refrigeratories. It also requires two cisterns, one of 3000 gallons for the lees or spent wash of former distillations, called dunder (Quasi redundar, Span.), another for the skimmings of the clarifiers and teaches of the sugar-house; along with twelve, or more, fermenting cisterns or tuns.Lees that have been used more than three or four times, are not considered to be equally fit for exciting fermentation, when mixed with the sweets, as fresher lees. The wort is made, in Jamaica, by adding to 1000 gallons of dunder, 120 gallons of molasses, 720 gallons of skimmings (= 120 of molasses in sweetness), and 160 gallons of water; so that there may be in the liquid nearly 12 per cent. of solid saccharum. Another proportion, often used, is 100 gallons of molasses, 200 gallons of lees, 300 gallons of skimmings, and 400 of water; the mixture containing, therefore, 15 per cent. of sweets. These two formulæ prescribe so much spent wash, according to my opinion, as would be apt to communicate an unpleasant flavour to the spirits. Both the fermenting and flavouring principles reside chiefly in the fresh cane juice, and in the skimmings of the clarifier; because, after the syrup has been boiled, they are in a great measure dissipated. I have made many experiments upon fermentation and distillation from West India molasses, and always found the spirits to be perfectly exempt from any rum flavour.The fermentation goes on most uniformly and kindly in very large masses, and requires from 9 to 15 days to complete; the difference of time depending upon the strength of the wort, the condition of its fermentable stuff, and the state of the weather. The progress of the attenuation of the wash should be examined from day to day with a hydrometer, as I have described in the articleDistillation. When it has reached nearly to itsmaximum, the wash should be as soon as possible transferred by pumps into the still, and worked off by a properly regulated heat; for if allowed to stand over, it will deteriorate by acetification. Dr. Higgins’s plan, of suspending a basket full of limestone in the wash-tuns, to counteract the acidity, has not, I believe, been found to be of much use. It would be better to cover up the wash from the contact of atmospheric air, and to add perhaps a very littlesulphiteof lime to it, both of which means would tend to arrest the acetous fermentation. But one of the best precautions against the wash becoming sour, is to preserve the utmost cleanliness among all the vessels in the distillery. They should be scalded at the end of every round with boiling water and quicklime.About 115 gallons of proof rum are usually obtained from 1200 gallons of wash. The proportion which the product of rum bears to that of sugar, in very rich moist plantations, is rated, by Edwards, at 82 gallons of the former to 16 cwt. of the latter; but the more usual ratio is 200 gallons of rum to 3 hogsheads of sugar. But this proportion will necessarily vary with the value of rum and molasses in the market, since whichever fetches the most remunerating price, will be brought forward in the greatest quantity. In one considerable estate in the island of Grenada, 92 gallons of rum were made for every hogshead (16 cwts.) of sugar. SeeStill.Rum imported, inRetained for Home Consumption.—Duty9s.per Imp. Gallon.1835.1836.1837.1835.1836.1837.Galls.5,540,170;4,993,942;4,612,416.3,416,966;3,325,068;3,184,599.

RUM, is a variety of ardent spirits, distilled in the West Indies, from the fermented skimmings of the sugar teaches, mixed with molasses, and diluted with water to the proper degree. A sugar plantation in Jamaica or Antigua, which makes 200 hogsheads of sugar, of about 16 cwt. each, requires, for the manufacture of its rum two copper stills; one of 1000 gallons for the wash, and one of 600 gallons for the low wines, with corresponding worm refrigeratories. It also requires two cisterns, one of 3000 gallons for the lees or spent wash of former distillations, called dunder (Quasi redundar, Span.), another for the skimmings of the clarifiers and teaches of the sugar-house; along with twelve, or more, fermenting cisterns or tuns.

Lees that have been used more than three or four times, are not considered to be equally fit for exciting fermentation, when mixed with the sweets, as fresher lees. The wort is made, in Jamaica, by adding to 1000 gallons of dunder, 120 gallons of molasses, 720 gallons of skimmings (= 120 of molasses in sweetness), and 160 gallons of water; so that there may be in the liquid nearly 12 per cent. of solid saccharum. Another proportion, often used, is 100 gallons of molasses, 200 gallons of lees, 300 gallons of skimmings, and 400 of water; the mixture containing, therefore, 15 per cent. of sweets. These two formulæ prescribe so much spent wash, according to my opinion, as would be apt to communicate an unpleasant flavour to the spirits. Both the fermenting and flavouring principles reside chiefly in the fresh cane juice, and in the skimmings of the clarifier; because, after the syrup has been boiled, they are in a great measure dissipated. I have made many experiments upon fermentation and distillation from West India molasses, and always found the spirits to be perfectly exempt from any rum flavour.

The fermentation goes on most uniformly and kindly in very large masses, and requires from 9 to 15 days to complete; the difference of time depending upon the strength of the wort, the condition of its fermentable stuff, and the state of the weather. The progress of the attenuation of the wash should be examined from day to day with a hydrometer, as I have described in the articleDistillation. When it has reached nearly to itsmaximum, the wash should be as soon as possible transferred by pumps into the still, and worked off by a properly regulated heat; for if allowed to stand over, it will deteriorate by acetification. Dr. Higgins’s plan, of suspending a basket full of limestone in the wash-tuns, to counteract the acidity, has not, I believe, been found to be of much use. It would be better to cover up the wash from the contact of atmospheric air, and to add perhaps a very littlesulphiteof lime to it, both of which means would tend to arrest the acetous fermentation. But one of the best precautions against the wash becoming sour, is to preserve the utmost cleanliness among all the vessels in the distillery. They should be scalded at the end of every round with boiling water and quicklime.

About 115 gallons of proof rum are usually obtained from 1200 gallons of wash. The proportion which the product of rum bears to that of sugar, in very rich moist plantations, is rated, by Edwards, at 82 gallons of the former to 16 cwt. of the latter; but the more usual ratio is 200 gallons of rum to 3 hogsheads of sugar. But this proportion will necessarily vary with the value of rum and molasses in the market, since whichever fetches the most remunerating price, will be brought forward in the greatest quantity. In one considerable estate in the island of Grenada, 92 gallons of rum were made for every hogshead (16 cwts.) of sugar. SeeStill.

RUST, is the orange-yellow coat of peroxide which forms upon the surface of iron exposed to moist air. Oil-paint, varnish, plumbago, or a film of caoutchouc, may be employed, according to circumstances, to prevent the rusting of iron utensils.

RUST, is the orange-yellow coat of peroxide which forms upon the surface of iron exposed to moist air. Oil-paint, varnish, plumbago, or a film of caoutchouc, may be employed, according to circumstances, to prevent the rusting of iron utensils.

RYE, consists, according to the analysis of Einhof, of 24·2 of husk, 65·6 of flour, and 10·2 of water, in 100 parts. This chemist found in 100 parts of the flour, 61·07 of starch, 9·48 of gluten, 3·28 of vegetable albumen, 3·28 of uncrystallizable sugar, 11·09 of gum, 6·38 of vegetable fibre, and the loss was 5·62, including a vegetable acid not yet investigated. Some phosphate of lime and magnesia are also present. SeeGin.

RYE, consists, according to the analysis of Einhof, of 24·2 of husk, 65·6 of flour, and 10·2 of water, in 100 parts. This chemist found in 100 parts of the flour, 61·07 of starch, 9·48 of gluten, 3·28 of vegetable albumen, 3·28 of uncrystallizable sugar, 11·09 of gum, 6·38 of vegetable fibre, and the loss was 5·62, including a vegetable acid not yet investigated. Some phosphate of lime and magnesia are also present. SeeGin.

SAFETY LAMP. I have reserved for this place an account of the patented improvement made upon Davy’s lamp by Messrs. Upton and Roberts; the latter of whom, having worked in coal mines from a boy, and having observed, that in peculiar circumstances, the Davy was insecure, was led to contrive certain modifications of it, for which he received, some years ago, a reward from the Society of Arts. It appears from undoubted experiments, that if a jet of carburetted hydrogen (coal gas for example) be impelled with very moderate force against the side of the Davy, it will first fill the wire cylinder of the burning lamp with flame, and then take fire itself exteriorly. This passage of the flame of explosive gases through the meshes of wire gauze of the fineness prescribed for safety lamps by Sir H. Davy, was demonstrated in several trials before the select committee of the House Commons on accidents in mines, by Mr. Pereira, at the London University.[49]While the gas is at rest, relatively to Davy’s lamp, the explosion has never been known to pass; but “if,” says Mr. Pereira, “a lamp be held before a jet of gas until it becomes hot (a red heat is not essential), and then gently moved, the flame will pass, and the experiment may be repeated successively a number of times in the minute.” Two layers of wire gauze, though they greatly impede the transmission of light, will still permit that of flame, in the above circumstances. In Upton and Roberts’ lamp, there is but one coat of wire gauze, but it is enclosed in a glass cylinder, in such a manner as to admit the air which feeds the flame only under its bottom, first through an annular range of holes, and next through one disc, or several, of wire gauze, fixed a little way below the wick. The explosive air, after passing up through these wire-gauze discs, enters a little brass cupola, and is reflected inwards from the orifice at its top upon the flame, whereby it is completely burned before it reaches the cavity of the surmounting cylinder. By this reverberatory action of the air upon the wick, the intensity of the light is at the same time greatly augmented. Since the feed orifices of the lamp are small in comparison with the capacity of the surmounting cage, the latter does not get filled with flame on being plunged in an explosive gaseous mixture, as happens to the naked cage of Davy. The wire gauze can never, therefore, become very hot, far less ignited, in the new lamp. There are, in fact, three impediments to the passage of the flameout of the lamp; first, the stratum of carbonic acid round the light; secondly, the wire-gauze cylinder; and thirdly, the glass cylinder. The entrance at the bottom may be made secure in any desired degree, by multiplying the layers of wire cloth. The top is protected, moreover, by a brass hood, through which the currents of carbonic acid and nitrogen gases, continually ascending from the burning wick, oppose certain obstacles to the transmission of flame downwards. Even should the glass be accidentally broken, the lamp is still a complete Davy.[49]On the 30th of July, 1835.In the experiments made before the honourable committee at the London University, Mr. Pereira showed, first, that when a jet of coal-gas alone, or an explosive mixture of coal-gas and air, impinged upon the wire-gauze cylinder of one of Davy’s lamps with a certain force, the flame generally passed through the meshes, of which there were from 950 to 1024 in the square inch. When a mixture of four parts of hydrogen, and one of coal-gas was directed in a jet upon the lighted lamps of Davy, Stevenson, Dillon, Wood of Killingworth (called the refrigerating lamp), Robson, and Clanny, the flame readily passed; but when thrown upon the lamp of Upton and Roberts, it did not once pass, causing merely slight detonations within the lamp. When the force of the jet was augmented, it extinguished the light. This lamp was finally subjected to the still severer test of a mixture of four parts of atmospherical air, and one of hydrogen; yet it did not explode it. When exposed to a mixture of two-thirds of air, and one of hydrogen, the lamp was immediately extinguished.The following, out of many certificates, appears to me decisive in favour of this improvement of Davy’s lamp. It comes from an experienced pitman, in a very deep and extensive coal mine, which I know to be replete with explosive gas, as I have myself visited it in company with its accomplished engineer, John Buddle, Esq.“I hereby certify that I have this day tried Messrs. Upton and Roberts’ new patent safety lamp, in the Jarrow colliery; and I state, as an experienced pitman, having been thirty-two years master wasteman in that colliery, that I greatly prefer this new lamp to the common Davy lamp. I had it between five and six hours on trial in the pit. I consider that it gives about three times the light of the Davy lamp, as I could see at least ten yards before me in a straight line; and of its great safety I can have no doubt, as it does not fill with flame, as the Davy does. And although I had this extra light, there was much less oil consumed. I consider it a good working lamp.“Jarrow Colliery, near Newcastle on Tyne, March 31, 1836.” (Signed)“ROBERT FAIRLY.”Safety lampFig.953., is a vertical section through the middle of the lamp.a,a, is the oil-cistern, showing the fold of the wick; it is covered at top withb,b,several layers of wire gauze;c,c, is the perforated brass ring, under these layers, for admitting air, which is reverberated upon the burning wick by the cupolac;d,d, is the cylinder of glass, surrounding the wire-cloth one;e,e, is the safety brass hood, which screws down in the frame, so as to cover in the top of the glass chimney;f, is the arched wire for suspending the lamp to the girdle of the miner;g, is the bent tube for supplying oil to the cistern; andhis the safety-trimmer, shown more distinctly in the figure illustrative of theLampofDavy.Between the glass and the cage there should be a space of about one-tenth of an inch, forming an annular chimney for the free ventilation of the flame; and between the under edge of the hoode, and the upper rim of the glass, there should likewise be an interval, as also vent-holes in the top of the hood, for the free escape of the smoke. The orifice of the little tubeg, should be rather lower than the ring of holesc, otherwise the oil, when incautiously poured into it, might overflow them, and prevent the lamp from burning.The figure is drawn somewhat in perspective.As the naked cage of Davy often gets red-hot with flame; as it is sometimes used for hours by miners in this most hazardous state; as this lamp gives so little light as to tempt rash men to remove its safety-cage;[50]as “it is upon record, that taking the average of ten years previous to the introduction of Sir H. Davy’s safety lamp, and allowing one clear year for its introduction, and of ten years after it was properly introduced, there had been double the number of accidents, and at least double the number of deaths, ofwhat took place in the ten years previous to its introduction;[51]as his lamp in explosive air-courses needs to be carried close upon the bosom, or under the coat of the miner; as it was declared by its illustrious inventor to be dangerous when exposed to such currents of explosive gas; and as the above described modification of it is free from all these defects and dangers,—I humbly apprehend that no conscientious proprietor or viewer of coal-mines will delay to substitute the lamp of Upton and Roberts for the naked Davy, for otherwise he will certainly stand in a very painful predicament before a coroner’s inquest, at the next mortal casualty from explosion.”[50]At Rowpit Harraton, June 30, 1817, thirty-eight lives were lost by the wilfulness of one man unscrewing it, though he was well forewarned of the danger. He said, “he could not see with that thing,” meaning the Davy.—Buddle, in Report of House of Commons, p. 215.[51]Dr. Reid Clanny, in Report on Accidents in Mines, p. 32. I observe that in Sykes’Local Recordsof the counties of Durham and Northumberland, corrected by J. Buddle, Esq., there are 540 deaths by explosions, between June, 1817, and June, 1835. What a mass of misery to the families of the sufferers!The patentees have, I am told, been put to so much trouble and expense in trying to introduce this life-protector into our coal-mines, that they have in a great measure abandoned the business. Messrs. Smith of Birmingham have meanwhile undertaken to make the lamps.

SAFETY LAMP. I have reserved for this place an account of the patented improvement made upon Davy’s lamp by Messrs. Upton and Roberts; the latter of whom, having worked in coal mines from a boy, and having observed, that in peculiar circumstances, the Davy was insecure, was led to contrive certain modifications of it, for which he received, some years ago, a reward from the Society of Arts. It appears from undoubted experiments, that if a jet of carburetted hydrogen (coal gas for example) be impelled with very moderate force against the side of the Davy, it will first fill the wire cylinder of the burning lamp with flame, and then take fire itself exteriorly. This passage of the flame of explosive gases through the meshes of wire gauze of the fineness prescribed for safety lamps by Sir H. Davy, was demonstrated in several trials before the select committee of the House Commons on accidents in mines, by Mr. Pereira, at the London University.[49]While the gas is at rest, relatively to Davy’s lamp, the explosion has never been known to pass; but “if,” says Mr. Pereira, “a lamp be held before a jet of gas until it becomes hot (a red heat is not essential), and then gently moved, the flame will pass, and the experiment may be repeated successively a number of times in the minute.” Two layers of wire gauze, though they greatly impede the transmission of light, will still permit that of flame, in the above circumstances. In Upton and Roberts’ lamp, there is but one coat of wire gauze, but it is enclosed in a glass cylinder, in such a manner as to admit the air which feeds the flame only under its bottom, first through an annular range of holes, and next through one disc, or several, of wire gauze, fixed a little way below the wick. The explosive air, after passing up through these wire-gauze discs, enters a little brass cupola, and is reflected inwards from the orifice at its top upon the flame, whereby it is completely burned before it reaches the cavity of the surmounting cylinder. By this reverberatory action of the air upon the wick, the intensity of the light is at the same time greatly augmented. Since the feed orifices of the lamp are small in comparison with the capacity of the surmounting cage, the latter does not get filled with flame on being plunged in an explosive gaseous mixture, as happens to the naked cage of Davy. The wire gauze can never, therefore, become very hot, far less ignited, in the new lamp. There are, in fact, three impediments to the passage of the flameout of the lamp; first, the stratum of carbonic acid round the light; secondly, the wire-gauze cylinder; and thirdly, the glass cylinder. The entrance at the bottom may be made secure in any desired degree, by multiplying the layers of wire cloth. The top is protected, moreover, by a brass hood, through which the currents of carbonic acid and nitrogen gases, continually ascending from the burning wick, oppose certain obstacles to the transmission of flame downwards. Even should the glass be accidentally broken, the lamp is still a complete Davy.

[49]On the 30th of July, 1835.

[49]On the 30th of July, 1835.

In the experiments made before the honourable committee at the London University, Mr. Pereira showed, first, that when a jet of coal-gas alone, or an explosive mixture of coal-gas and air, impinged upon the wire-gauze cylinder of one of Davy’s lamps with a certain force, the flame generally passed through the meshes, of which there were from 950 to 1024 in the square inch. When a mixture of four parts of hydrogen, and one of coal-gas was directed in a jet upon the lighted lamps of Davy, Stevenson, Dillon, Wood of Killingworth (called the refrigerating lamp), Robson, and Clanny, the flame readily passed; but when thrown upon the lamp of Upton and Roberts, it did not once pass, causing merely slight detonations within the lamp. When the force of the jet was augmented, it extinguished the light. This lamp was finally subjected to the still severer test of a mixture of four parts of atmospherical air, and one of hydrogen; yet it did not explode it. When exposed to a mixture of two-thirds of air, and one of hydrogen, the lamp was immediately extinguished.

The following, out of many certificates, appears to me decisive in favour of this improvement of Davy’s lamp. It comes from an experienced pitman, in a very deep and extensive coal mine, which I know to be replete with explosive gas, as I have myself visited it in company with its accomplished engineer, John Buddle, Esq.

“I hereby certify that I have this day tried Messrs. Upton and Roberts’ new patent safety lamp, in the Jarrow colliery; and I state, as an experienced pitman, having been thirty-two years master wasteman in that colliery, that I greatly prefer this new lamp to the common Davy lamp. I had it between five and six hours on trial in the pit. I consider that it gives about three times the light of the Davy lamp, as I could see at least ten yards before me in a straight line; and of its great safety I can have no doubt, as it does not fill with flame, as the Davy does. And although I had this extra light, there was much less oil consumed. I consider it a good working lamp.

“Jarrow Colliery, near Newcastle on Tyne, March 31, 1836.” (Signed)“ROBERT FAIRLY.”

Safety lamp

Fig.953., is a vertical section through the middle of the lamp.a,a, is the oil-cistern, showing the fold of the wick; it is covered at top withb,b,several layers of wire gauze;c,c, is the perforated brass ring, under these layers, for admitting air, which is reverberated upon the burning wick by the cupolac;d,d, is the cylinder of glass, surrounding the wire-cloth one;e,e, is the safety brass hood, which screws down in the frame, so as to cover in the top of the glass chimney;f, is the arched wire for suspending the lamp to the girdle of the miner;g, is the bent tube for supplying oil to the cistern; andhis the safety-trimmer, shown more distinctly in the figure illustrative of theLampofDavy.

Between the glass and the cage there should be a space of about one-tenth of an inch, forming an annular chimney for the free ventilation of the flame; and between the under edge of the hoode, and the upper rim of the glass, there should likewise be an interval, as also vent-holes in the top of the hood, for the free escape of the smoke. The orifice of the little tubeg, should be rather lower than the ring of holesc, otherwise the oil, when incautiously poured into it, might overflow them, and prevent the lamp from burning.The figure is drawn somewhat in perspective.

As the naked cage of Davy often gets red-hot with flame; as it is sometimes used for hours by miners in this most hazardous state; as this lamp gives so little light as to tempt rash men to remove its safety-cage;[50]as “it is upon record, that taking the average of ten years previous to the introduction of Sir H. Davy’s safety lamp, and allowing one clear year for its introduction, and of ten years after it was properly introduced, there had been double the number of accidents, and at least double the number of deaths, ofwhat took place in the ten years previous to its introduction;[51]as his lamp in explosive air-courses needs to be carried close upon the bosom, or under the coat of the miner; as it was declared by its illustrious inventor to be dangerous when exposed to such currents of explosive gas; and as the above described modification of it is free from all these defects and dangers,—I humbly apprehend that no conscientious proprietor or viewer of coal-mines will delay to substitute the lamp of Upton and Roberts for the naked Davy, for otherwise he will certainly stand in a very painful predicament before a coroner’s inquest, at the next mortal casualty from explosion.”

[50]At Rowpit Harraton, June 30, 1817, thirty-eight lives were lost by the wilfulness of one man unscrewing it, though he was well forewarned of the danger. He said, “he could not see with that thing,” meaning the Davy.—Buddle, in Report of House of Commons, p. 215.

[50]At Rowpit Harraton, June 30, 1817, thirty-eight lives were lost by the wilfulness of one man unscrewing it, though he was well forewarned of the danger. He said, “he could not see with that thing,” meaning the Davy.—Buddle, in Report of House of Commons, p. 215.

[51]Dr. Reid Clanny, in Report on Accidents in Mines, p. 32. I observe that in Sykes’Local Recordsof the counties of Durham and Northumberland, corrected by J. Buddle, Esq., there are 540 deaths by explosions, between June, 1817, and June, 1835. What a mass of misery to the families of the sufferers!

[51]Dr. Reid Clanny, in Report on Accidents in Mines, p. 32. I observe that in Sykes’Local Recordsof the counties of Durham and Northumberland, corrected by J. Buddle, Esq., there are 540 deaths by explosions, between June, 1817, and June, 1835. What a mass of misery to the families of the sufferers!

The patentees have, I am told, been put to so much trouble and expense in trying to introduce this life-protector into our coal-mines, that they have in a great measure abandoned the business. Messrs. Smith of Birmingham have meanwhile undertaken to make the lamps.

SAFFLOWER. This dye-stuff has been fully described underCarthamusandRouge.

SAFFLOWER. This dye-stuff has been fully described underCarthamusandRouge.

SAFFRON (Saffran, Fr. and Germ.); is a filamentous cake, composed of the stigmata of the flowers of theCrocus sativus. It contains a yellow matter calledpolychroïte, because a small quantity of it is capable of colouring a great body of water. This is obtained by evaporating the watery infusion of saffron to the consistence of an extract, digesting the extract with alcohol, and concentrating the alcoholic solution. The polychroïte remains in the form of a brilliant mass, of a reddish-yellow colour, transparent, and of the consistence of honey. It has the agreeable smell, with the bitter pungent taste, of saffron. It is very soluble in water; and if it be stove-dried, it deliquesces speedily in the air. According to M. Henrypère, polychroïte consists of 80 parts of colouring matter, combined with 20 parts of a volatile oil, which cannot be separated by distillation till the colouring matter has been combined with an alkali. By mixing one part of shred saffron with eight parts of saturated brine, and one-half part of caustic lye, and distilling the mixture, the oil comes over into the receiver, and leaves the colouring matter in the retort, which may be precipitated from the alkaline solution by an acid. The pure colouring matter, when dried, is of a scarlet hue, and then readily dissolves in alcohol, as also in the fat and volatile oils, but sparingly in water. Light blanches the reddish-yellow of saffron, even when it is contained in a full phial well corked. Polychroïte, when combined with fat oil, and subjected to dry distillation, affords ammonia, which shows that azote is one of its constituents. Sulphuric acid colours the solution of polychroïte indigo blue, with a lilac cast; nitric acid turns it green, of various shades, according to the state of dilution. Protochloride (muriate) of tin produces a reddish precipitate.Saffron is employed as a seasoning in French cookery. It is also used to tinge confectionary articles, liqueurs, and varnishes; but rarely as a pigment.

SAFFRON (Saffran, Fr. and Germ.); is a filamentous cake, composed of the stigmata of the flowers of theCrocus sativus. It contains a yellow matter calledpolychroïte, because a small quantity of it is capable of colouring a great body of water. This is obtained by evaporating the watery infusion of saffron to the consistence of an extract, digesting the extract with alcohol, and concentrating the alcoholic solution. The polychroïte remains in the form of a brilliant mass, of a reddish-yellow colour, transparent, and of the consistence of honey. It has the agreeable smell, with the bitter pungent taste, of saffron. It is very soluble in water; and if it be stove-dried, it deliquesces speedily in the air. According to M. Henrypère, polychroïte consists of 80 parts of colouring matter, combined with 20 parts of a volatile oil, which cannot be separated by distillation till the colouring matter has been combined with an alkali. By mixing one part of shred saffron with eight parts of saturated brine, and one-half part of caustic lye, and distilling the mixture, the oil comes over into the receiver, and leaves the colouring matter in the retort, which may be precipitated from the alkaline solution by an acid. The pure colouring matter, when dried, is of a scarlet hue, and then readily dissolves in alcohol, as also in the fat and volatile oils, but sparingly in water. Light blanches the reddish-yellow of saffron, even when it is contained in a full phial well corked. Polychroïte, when combined with fat oil, and subjected to dry distillation, affords ammonia, which shows that azote is one of its constituents. Sulphuric acid colours the solution of polychroïte indigo blue, with a lilac cast; nitric acid turns it green, of various shades, according to the state of dilution. Protochloride (muriate) of tin produces a reddish precipitate.

Saffron is employed as a seasoning in French cookery. It is also used to tinge confectionary articles, liqueurs, and varnishes; but rarely as a pigment.

SAGO (Sagou, Fr. and Germ.); is a species of starch, extracted from the pith of the sago palm, a tree which grows to the height of 30 feet in the Moluccas and the Philippines. The tree is cut down, cleft lengthwise, and deprived of its pith, which being washed with water upon a sieve, the starchy matter comes out, and soon forms a deposit. This is dried to the consistence of dough, pressed through a metal sieve to corn it (which is calledpearling), and then dried over a fire with agitation in a shallow copper pan. Sago is sometimes imported in the pulverulent state, in which it can be distinguished from arrow-root only by microscopic examination of its particles. These are uniform and spherical, not unequal and ovoid, like those of arrow-root.

SAGO (Sagou, Fr. and Germ.); is a species of starch, extracted from the pith of the sago palm, a tree which grows to the height of 30 feet in the Moluccas and the Philippines. The tree is cut down, cleft lengthwise, and deprived of its pith, which being washed with water upon a sieve, the starchy matter comes out, and soon forms a deposit. This is dried to the consistence of dough, pressed through a metal sieve to corn it (which is calledpearling), and then dried over a fire with agitation in a shallow copper pan. Sago is sometimes imported in the pulverulent state, in which it can be distinguished from arrow-root only by microscopic examination of its particles. These are uniform and spherical, not unequal and ovoid, like those of arrow-root.

SAL AMMONIAC. The manufacture of this salt may be traced to the remotest era. Its name is derived from Ammonia, or the temple of Jupiter Ammon, in Egypt, near to which the salt was originally made. Sal ammoniac exists ready formed in several animal products. The dung and urine of camels contain a sufficient quantity to have rendered its extraction from them a profitable Egyptian art in former times, in order to supply Europe with the article. In that part of Africa, fuel being very scarce, recourse is had to the dung of these animals, which is dried for that purpose, by plastering it upon the walls. When this is afterwards burned in a peculiar kind of furnace, it exhales a thick smoke, replete with sal ammoniac in vapour; the soot of course contains a portion of that salt, condensed along with other products of combustion. In every part of Egypt, but especially in the Delta, peasants are seen driving asses loaded with bags of that soot, on their way to the sal ammoniac works.Here it is extracted in the following manner. Glass globes coated with loam are filled with the soot pressed down by wooden rammers, a space of only two or three inches being left vacant, near their mouths. These globes are set in round orifices formed in the ridge of a long vault, or large horizontal furnace flue. Heat is gradually applied by a fire of dry camels’ dung, and it is eventually increased till the globes become obscurelyred. As the muriate of ammonia is volatile at a temperature much below ignition, it rises out of the soot in vapour, and gets condensed into a cake upon the inner surface of the top of the globe. A considerable portion, however, escapes into the air; and another portion concretes in the mouth, which must be cleared from time to time by an iron rod. Towards the end, the obstruction becomes very troublesome, and must be most carefully attended to and obviated, otherwise the globes would explode by the uncondensed vapours. In all cases, when the subliming process approaches to a conclusion, the globes crack or split; and when they come to be removed, after the heat has subsided, they usually fall to pieces. The upper portion of the mass is separated, because to it the white salt adheres; and on detaching the pieces of glass with a hatchet, it is ready for the market. At the bottom of each balloon a nucleus of salt remains, surrounded with fixed pulverulent matter. This is reserved, and after being bruised, is put in along with the charge of soot in a fresh operation.The sal ammoniac obtained by this process is dull, spongy, and of a grayish hue; but nothing better was for a long period known in commerce. Forty years ago, it fetched 2s.6d.a pound; now, perfectly pure sal ammoniac may be had at one-fifth part of that price.Various animal offals develope during their spontaneous putrefactive fermentation, or their decomposition by heat, a large quantity of free or carbonated ammonia, among their volatile products. Upon this principle many sal ammoniac works have been established. In the destructive distillation of pitcoal, there is a considerable quantity of ammoniacal products, which are also worked up into sal ammoniac.The first attempts made in France to obtain sal ammoniac profitably in this manner, failed. A very extensive factory of the kind, which experienced the same fate, was under the superintendence of the celebrated Baumé, and affords one out of a thousand instances where theoretical chemists have shown their total incapacity for conducting operations on the scale of manufacturing economy. It was established at Gravelle near Charenton, and caused a loss to the shareholders in the speculation of upwards of 400,000 francs. This result closed the concern in 1787, after a foolish manipulation of 27 years. For ten years after that event, all the sal ammoniac consumed in France was imported into it from foreign countries. Since then the two works of MM. Payen and Pluvinet were mounted, and seem to have been tolerably successful. Coal soot was, prior to the introduction of the gas-works, a good deal used in Great Britain for obtaining sal ammoniac. In France, bones and other animal matters are distilled in large iron retorts, for the manufacture of both animal charcoal and sal ammoniac.Sal ammoniac retortsThese retorts are iron cylinders, 2 or 3 feet in diameter, and 6 feet long.Figs.954.and955.show the form of the furnace, and the manner in which the cylinders are arranged; the first being a longitudinal, the second a transverse section of it.A, the ash-pits under the grates;B, the fireplaces, arched over at top;C, the vault or bench of fire-bricks, perforated inside with eight flues for distributing the flame;D, a great arch, with a triple voussoirD,d′,d′′, under which the retorts are set. The first archD, is perforated with twenty vent-holes; the second, with four vent-holes; through which the flame passes to the third arch, and thence to the common chimney-stalk. The retortse, are shut by the doore′(fig.955.), luted, and made fast with screw-bolts. Their other endse′′terminate in tubesf,f,f, which all enter the main pipeh. The condensing pipe proceeds slantingly downwards from the further end ofh, and dips into a large sloping iron cylinder immersed in cold water. SeeGas-lightandStove, for a better plan of furnace.FiltersThe filters used in the large sal ammoniac works in France are represented infig.956.The apparatus consists——1. of a wooden chesta, lined with lead, and which is turned over at the edges; a socket of leadb, soldered into the lowest part of the bottom, serves to discharge the liquid; 2. of a wooden crib or grating formed of rounded rods,as shown in the sectionc,c, and the pland; this grating is supported one inch at least above the bottom, and set truly horizontal, by a series of wedges; 3. of an open fabric of canvas or strong calico, laid on the grating, and secured over the edges, so as to keep it tense. A large wooden reservoirf, lined with lead, furnished with a cover, is placed under each of the filters; a pump throws back once or twice upon the filters what has already passed through. A common reservoirg, below the others, may be made to communicate at pleasure with one of them, by means of intermediate stopcocks.The two boilers for evaporating and decomposing are made of lead, about one quarter of an inch thick, set upon a fire-brick vault, to protect them from the direct action of the flame. Through the whole extent of their bottoms above the vault, horizontal cast-iron plates, supported by ledges and brick compartments, compel the flame and burned air, as they issue from the arch, to percur many sinuosities before they pass up the chimney. This floor of cast iron is intended to support the bottom of the boiler, and to diffuse the heat more equably. The leaden boilers are surrounded with brickwork, and supported at their edges with a wooden frame. They may be emptied at pleasure into lower receivers, called crystallizers, by means of leaden syphons and long-necked funnels.The crystallizers are wooden chests lined with lead, 15 inches deep, 3 or 4 feet broad, and from 6 to 8 feet long; and may be inclined to one side at pleasure. A round cistern receives the drainings of the mother-waters. The pump is made of lead, hardened with antimony and tin.Subliming furnaceThe subliming furnace is shown infigs.957.and958.by a transverse and longitudinal section.ais the ash-pit;b, the grate and fireplace;c, the arch above them. This arch, destined to protect the bottles from the direct action of the fire, is perforated with vent-holes, to give a passage to the products of combustion between the subliming vessels.d,d, are bars of iron, upon which the bottoms of the bottles rest;e, stoneware bottles, protected by a coating of loam from the flame.Fig.959.shows the cast-iron plates,a,b,c, which, placed above the vaults, receive each two bottles in a double circular opening.At the extremity of the above furnace, a second one, called the drier,fig.960., receives the products of the combustion of the first, atA, under horizontal cast-iron plates, and upon which the bottom of a rather shallow boilerB, rests. After passing twice under these plates, round a longitudinal brick partitionb,b′,b′′, the products of combustion enter the smoke chimneyC. See plan,fig.961.The boiler set over this furnace should have no soldered joints. It may be 31⁄2feetbroad, 9 or 10 feet long, and 1 foot deep. The concrete sal ammoniac may be crushed under a pair of edge mill-stones, when it is to be sold in powder.Bones, blood, flesh, horns, hoofs, woollen rags, silk, hair, scrapings of hides and leather, &c., may be distilled for procuring ammonia. When bones are used, the residuum in the retort is bone black. The charcoal from the other substances will serve for the manufacture of prussian blue. The bones should undergo a degree of calcination beyond what the ammoniacal process requires, in order to convert them into the best bone black; but the other animal matters should not be calcined up to that point, otherwise they are of little use in the prussian blue works. If the bones be calcined, however, so highly as to become glazed, their decolouring power on syrups is nearly destroyed. The other substances should not be charred beyond a red-brown heat.The condensed vapours from the cylinder retorts afford a compound liquor holding carbonate of ammonia in solution, mixed with a large quantity of empyreumatic oil, which floats at top. Lest incrustations of salt should at any time tend to obstruct the tubes, a pipe should be inserted within them, and connected with a steam boiler, so as to blow steam through them occasionally.The whole liquors mixed have usually a density of 8° or 9° Baumé (1·060). The simplest process for converting their carbonate of ammonia into muriate, is to saturate them with muriatic acid, to evaporate the solution in a leaden boiler till a pellicle appears, to run it off into crystallizers, and to drain the crystals. Another process is, to decompose the carbonate of ammonia, by passing its crude liquor through a layer of sulphate of lime, 3 or 4 inches thick, spread upon the filters,fig.956.The liquor may be laid on with a pump; it should never stand higher than 1 or 2 inches above the surface of the bruised gypsum, and it should be closely covered with boards, to prevent the dissipation of the volatile alkali in the air. When the liquor has passed through the first filter, it must be pumped upon the second; or the filters being placed in a terrace form, the liquor from the first may flow down upon the second, and thus in succession. The last filter should be formed of nearly fresh gypsum, so as to ensure the thorough conversion of the carbonate into sulphate. The resulting layers of carbonate of lime should be washed with a little water, to extract the sulphate of ammonia interposed among its particles. The ammoniacal liquor thus obtained must be completely saturated, by adding the requisite quantity of sulphuric acid; even a slight excess of acid can do no harm. It is then to be evaporated, and the oil must be skimmed off in the course of the concentration. When the liquid sulphate has acquired the density of about 1·160, sea salt should be added, with constant stirring, till the whole quantity equivalent to the double decomposition be introduced into the lead boiler.The fluid part must now be drawn off by a syphon into a somewhat deep reservoir, where the impurities are allowed to subside; it is then evaporated by boiling, till the sulphate of soda falls down in granular crystals, as the result of the mutual reaction of the sulphate of ammonia and muriate of soda; while the more soluble muriate of ammonia remains in the liquor. During this precipitation, the whole must be occasionally agitated with wooden paddles; the precipitate being in the intervals removed to the cooler portion of the pan, in order to be taken out by copper rakes and shovels, and thrown into draining-hoppers, placed near the edges of the pan. The drained sulphate of soda must be afterwards washed with cold water, to extract all the adhering sal ammoniac.The liquor thus freed from the greater part of the sulphate, when sufficiently concentrated, is to be drawn off by a lead syphon, into the crystallizers, where, at the end of 20 or 30 hours, it affords an abundant crop of crystals of sal ammoniac. The mother-water may then be run off, the crystallizers set aslope to drain the salt, and the salt itself must be washed, first by a weak solution of sal ammoniac, and lastly with water. It must be next desiccated, by the apparatusfig.960., into a perfectly dry powder, then put into the subliming stoneware balloons, by means of a funnel, and well rammed down. The mouth of the bottle is to be closed with a plate or inverted pot of any kind. The fire must be nicely regulated, so as to effect the sublimation of the pure salt from the under part of the bottle, with due regularity, into a white cake in the upper part. The neck of the bottle should be cleared from time to time with a long steel skewer, to prevent the risk of choking, and consequent bursting; but in spite of every precaution, several of the bottles crack almost in every operation. In Scotland, sal ammoniac is sublimed in cast-iron pots lined with thin fire-tiles, made in segments accommodated to the internal surface of the pots; the vapour being received and condensed into cakes, within balloons of green glass set over their mouths. The salt, when taken out, and freed by scraping from any adhering ochreous or other impurities, is ready for the market, being sold in hollow spherical masses. The residuum in the pots or bottles may be partially worked up in another operation. The greatest evil is produced by the mixture or even contact of iron, because its peroxide readily rises in vapour with the sal ammoniac, and tinges it of a red or yellow colour.The most ordinary process for converting the ammoniacal liquor of the gas works intosal ammoniac, is to saturate it with sulphuric acid, and to decompose the sulphate, thus formed, by the processes above described. But muriatic acid will be preferred, where it is as cheap as sulphuric of equivalent saturating power; because a tolerably pure sal ammoniac is thereby directly obtained. As the coal-gas liquor contains a good deal of sulphuretted hydrogen, the saturation of it with acid should be so conducted as to burn the disengaged noxious gases in a chimney. Formerly human urine was very extensively employed, both in this country and in France, in the manufacture of sal ammoniac; but since the general establishment of gas-works it has been, I believe, abandoned. The process was exceedingly offensive.The best white sal ammoniac is in spheroidal cakes of about one foot diameter, three or four inches thick in the middle, somewhat thinner at the edges, and is semi-transparent or translucent. Each lump weighs about one quarter of a cwt. As it is easily volatilized by heat, it may be readily examined as to its sophistication with other salts. Sal ammoniac has a certain tenacity, and is flexible under the hammer or pestle. It is principally used in tinning of cast-iron, wrought iron, copper, brass, and for making the various ammoniacal preparations of pharmacy.In a chemical factory near Glasgow, 7200 gallons of ammoniacal liquor, obtained weekly from the gas-works, are treated as follows:—The liquor is first rectified by distillation from a waggon-shaped wrought-iron boiler, into a square cistern of iron lined with lead. 4500 lbs. of sulphuric acid, of specific gravity 1·625, are then slowly added to the somewhat concentrated distilled water of ammonia. The produce is 2400 gallons of sulphate of ammonia, slightly acidulous, of specific gravity 1·150, being of such strength as to deposit a few crystals upon the sides of the lead-lined iron tank in which the saline combination is made. It is decomposed by common salt.From the 7200 gallons of the first crude liquor, 900 gallons of tar are got by subsidence, and 200 gallons of petroleum are skimmed off the surface. The tar is converted, by a moderate boiling in iron pans, into good pitch.

SAL AMMONIAC. The manufacture of this salt may be traced to the remotest era. Its name is derived from Ammonia, or the temple of Jupiter Ammon, in Egypt, near to which the salt was originally made. Sal ammoniac exists ready formed in several animal products. The dung and urine of camels contain a sufficient quantity to have rendered its extraction from them a profitable Egyptian art in former times, in order to supply Europe with the article. In that part of Africa, fuel being very scarce, recourse is had to the dung of these animals, which is dried for that purpose, by plastering it upon the walls. When this is afterwards burned in a peculiar kind of furnace, it exhales a thick smoke, replete with sal ammoniac in vapour; the soot of course contains a portion of that salt, condensed along with other products of combustion. In every part of Egypt, but especially in the Delta, peasants are seen driving asses loaded with bags of that soot, on their way to the sal ammoniac works.

Here it is extracted in the following manner. Glass globes coated with loam are filled with the soot pressed down by wooden rammers, a space of only two or three inches being left vacant, near their mouths. These globes are set in round orifices formed in the ridge of a long vault, or large horizontal furnace flue. Heat is gradually applied by a fire of dry camels’ dung, and it is eventually increased till the globes become obscurelyred. As the muriate of ammonia is volatile at a temperature much below ignition, it rises out of the soot in vapour, and gets condensed into a cake upon the inner surface of the top of the globe. A considerable portion, however, escapes into the air; and another portion concretes in the mouth, which must be cleared from time to time by an iron rod. Towards the end, the obstruction becomes very troublesome, and must be most carefully attended to and obviated, otherwise the globes would explode by the uncondensed vapours. In all cases, when the subliming process approaches to a conclusion, the globes crack or split; and when they come to be removed, after the heat has subsided, they usually fall to pieces. The upper portion of the mass is separated, because to it the white salt adheres; and on detaching the pieces of glass with a hatchet, it is ready for the market. At the bottom of each balloon a nucleus of salt remains, surrounded with fixed pulverulent matter. This is reserved, and after being bruised, is put in along with the charge of soot in a fresh operation.

The sal ammoniac obtained by this process is dull, spongy, and of a grayish hue; but nothing better was for a long period known in commerce. Forty years ago, it fetched 2s.6d.a pound; now, perfectly pure sal ammoniac may be had at one-fifth part of that price.

Various animal offals develope during their spontaneous putrefactive fermentation, or their decomposition by heat, a large quantity of free or carbonated ammonia, among their volatile products. Upon this principle many sal ammoniac works have been established. In the destructive distillation of pitcoal, there is a considerable quantity of ammoniacal products, which are also worked up into sal ammoniac.

The first attempts made in France to obtain sal ammoniac profitably in this manner, failed. A very extensive factory of the kind, which experienced the same fate, was under the superintendence of the celebrated Baumé, and affords one out of a thousand instances where theoretical chemists have shown their total incapacity for conducting operations on the scale of manufacturing economy. It was established at Gravelle near Charenton, and caused a loss to the shareholders in the speculation of upwards of 400,000 francs. This result closed the concern in 1787, after a foolish manipulation of 27 years. For ten years after that event, all the sal ammoniac consumed in France was imported into it from foreign countries. Since then the two works of MM. Payen and Pluvinet were mounted, and seem to have been tolerably successful. Coal soot was, prior to the introduction of the gas-works, a good deal used in Great Britain for obtaining sal ammoniac. In France, bones and other animal matters are distilled in large iron retorts, for the manufacture of both animal charcoal and sal ammoniac.

Sal ammoniac retorts

These retorts are iron cylinders, 2 or 3 feet in diameter, and 6 feet long.Figs.954.and955.show the form of the furnace, and the manner in which the cylinders are arranged; the first being a longitudinal, the second a transverse section of it.A, the ash-pits under the grates;B, the fireplaces, arched over at top;C, the vault or bench of fire-bricks, perforated inside with eight flues for distributing the flame;D, a great arch, with a triple voussoirD,d′,d′′, under which the retorts are set. The first archD, is perforated with twenty vent-holes; the second, with four vent-holes; through which the flame passes to the third arch, and thence to the common chimney-stalk. The retortse, are shut by the doore′(fig.955.), luted, and made fast with screw-bolts. Their other endse′′terminate in tubesf,f,f, which all enter the main pipeh. The condensing pipe proceeds slantingly downwards from the further end ofh, and dips into a large sloping iron cylinder immersed in cold water. SeeGas-lightandStove, for a better plan of furnace.

Filters

The filters used in the large sal ammoniac works in France are represented infig.956.The apparatus consists——1. of a wooden chesta, lined with lead, and which is turned over at the edges; a socket of leadb, soldered into the lowest part of the bottom, serves to discharge the liquid; 2. of a wooden crib or grating formed of rounded rods,as shown in the sectionc,c, and the pland; this grating is supported one inch at least above the bottom, and set truly horizontal, by a series of wedges; 3. of an open fabric of canvas or strong calico, laid on the grating, and secured over the edges, so as to keep it tense. A large wooden reservoirf, lined with lead, furnished with a cover, is placed under each of the filters; a pump throws back once or twice upon the filters what has already passed through. A common reservoirg, below the others, may be made to communicate at pleasure with one of them, by means of intermediate stopcocks.

The two boilers for evaporating and decomposing are made of lead, about one quarter of an inch thick, set upon a fire-brick vault, to protect them from the direct action of the flame. Through the whole extent of their bottoms above the vault, horizontal cast-iron plates, supported by ledges and brick compartments, compel the flame and burned air, as they issue from the arch, to percur many sinuosities before they pass up the chimney. This floor of cast iron is intended to support the bottom of the boiler, and to diffuse the heat more equably. The leaden boilers are surrounded with brickwork, and supported at their edges with a wooden frame. They may be emptied at pleasure into lower receivers, called crystallizers, by means of leaden syphons and long-necked funnels.

The crystallizers are wooden chests lined with lead, 15 inches deep, 3 or 4 feet broad, and from 6 to 8 feet long; and may be inclined to one side at pleasure. A round cistern receives the drainings of the mother-waters. The pump is made of lead, hardened with antimony and tin.

Subliming furnace

The subliming furnace is shown infigs.957.and958.by a transverse and longitudinal section.ais the ash-pit;b, the grate and fireplace;c, the arch above them. This arch, destined to protect the bottles from the direct action of the fire, is perforated with vent-holes, to give a passage to the products of combustion between the subliming vessels.d,d, are bars of iron, upon which the bottoms of the bottles rest;e, stoneware bottles, protected by a coating of loam from the flame.

Fig.959.shows the cast-iron plates,a,b,c, which, placed above the vaults, receive each two bottles in a double circular opening.

At the extremity of the above furnace, a second one, called the drier,fig.960., receives the products of the combustion of the first, atA, under horizontal cast-iron plates, and upon which the bottom of a rather shallow boilerB, rests. After passing twice under these plates, round a longitudinal brick partitionb,b′,b′′, the products of combustion enter the smoke chimneyC. See plan,fig.961.

The boiler set over this furnace should have no soldered joints. It may be 31⁄2feetbroad, 9 or 10 feet long, and 1 foot deep. The concrete sal ammoniac may be crushed under a pair of edge mill-stones, when it is to be sold in powder.

Bones, blood, flesh, horns, hoofs, woollen rags, silk, hair, scrapings of hides and leather, &c., may be distilled for procuring ammonia. When bones are used, the residuum in the retort is bone black. The charcoal from the other substances will serve for the manufacture of prussian blue. The bones should undergo a degree of calcination beyond what the ammoniacal process requires, in order to convert them into the best bone black; but the other animal matters should not be calcined up to that point, otherwise they are of little use in the prussian blue works. If the bones be calcined, however, so highly as to become glazed, their decolouring power on syrups is nearly destroyed. The other substances should not be charred beyond a red-brown heat.

The condensed vapours from the cylinder retorts afford a compound liquor holding carbonate of ammonia in solution, mixed with a large quantity of empyreumatic oil, which floats at top. Lest incrustations of salt should at any time tend to obstruct the tubes, a pipe should be inserted within them, and connected with a steam boiler, so as to blow steam through them occasionally.

The whole liquors mixed have usually a density of 8° or 9° Baumé (1·060). The simplest process for converting their carbonate of ammonia into muriate, is to saturate them with muriatic acid, to evaporate the solution in a leaden boiler till a pellicle appears, to run it off into crystallizers, and to drain the crystals. Another process is, to decompose the carbonate of ammonia, by passing its crude liquor through a layer of sulphate of lime, 3 or 4 inches thick, spread upon the filters,fig.956.The liquor may be laid on with a pump; it should never stand higher than 1 or 2 inches above the surface of the bruised gypsum, and it should be closely covered with boards, to prevent the dissipation of the volatile alkali in the air. When the liquor has passed through the first filter, it must be pumped upon the second; or the filters being placed in a terrace form, the liquor from the first may flow down upon the second, and thus in succession. The last filter should be formed of nearly fresh gypsum, so as to ensure the thorough conversion of the carbonate into sulphate. The resulting layers of carbonate of lime should be washed with a little water, to extract the sulphate of ammonia interposed among its particles. The ammoniacal liquor thus obtained must be completely saturated, by adding the requisite quantity of sulphuric acid; even a slight excess of acid can do no harm. It is then to be evaporated, and the oil must be skimmed off in the course of the concentration. When the liquid sulphate has acquired the density of about 1·160, sea salt should be added, with constant stirring, till the whole quantity equivalent to the double decomposition be introduced into the lead boiler.

The fluid part must now be drawn off by a syphon into a somewhat deep reservoir, where the impurities are allowed to subside; it is then evaporated by boiling, till the sulphate of soda falls down in granular crystals, as the result of the mutual reaction of the sulphate of ammonia and muriate of soda; while the more soluble muriate of ammonia remains in the liquor. During this precipitation, the whole must be occasionally agitated with wooden paddles; the precipitate being in the intervals removed to the cooler portion of the pan, in order to be taken out by copper rakes and shovels, and thrown into draining-hoppers, placed near the edges of the pan. The drained sulphate of soda must be afterwards washed with cold water, to extract all the adhering sal ammoniac.

The liquor thus freed from the greater part of the sulphate, when sufficiently concentrated, is to be drawn off by a lead syphon, into the crystallizers, where, at the end of 20 or 30 hours, it affords an abundant crop of crystals of sal ammoniac. The mother-water may then be run off, the crystallizers set aslope to drain the salt, and the salt itself must be washed, first by a weak solution of sal ammoniac, and lastly with water. It must be next desiccated, by the apparatusfig.960., into a perfectly dry powder, then put into the subliming stoneware balloons, by means of a funnel, and well rammed down. The mouth of the bottle is to be closed with a plate or inverted pot of any kind. The fire must be nicely regulated, so as to effect the sublimation of the pure salt from the under part of the bottle, with due regularity, into a white cake in the upper part. The neck of the bottle should be cleared from time to time with a long steel skewer, to prevent the risk of choking, and consequent bursting; but in spite of every precaution, several of the bottles crack almost in every operation. In Scotland, sal ammoniac is sublimed in cast-iron pots lined with thin fire-tiles, made in segments accommodated to the internal surface of the pots; the vapour being received and condensed into cakes, within balloons of green glass set over their mouths. The salt, when taken out, and freed by scraping from any adhering ochreous or other impurities, is ready for the market, being sold in hollow spherical masses. The residuum in the pots or bottles may be partially worked up in another operation. The greatest evil is produced by the mixture or even contact of iron, because its peroxide readily rises in vapour with the sal ammoniac, and tinges it of a red or yellow colour.

The most ordinary process for converting the ammoniacal liquor of the gas works intosal ammoniac, is to saturate it with sulphuric acid, and to decompose the sulphate, thus formed, by the processes above described. But muriatic acid will be preferred, where it is as cheap as sulphuric of equivalent saturating power; because a tolerably pure sal ammoniac is thereby directly obtained. As the coal-gas liquor contains a good deal of sulphuretted hydrogen, the saturation of it with acid should be so conducted as to burn the disengaged noxious gases in a chimney. Formerly human urine was very extensively employed, both in this country and in France, in the manufacture of sal ammoniac; but since the general establishment of gas-works it has been, I believe, abandoned. The process was exceedingly offensive.

The best white sal ammoniac is in spheroidal cakes of about one foot diameter, three or four inches thick in the middle, somewhat thinner at the edges, and is semi-transparent or translucent. Each lump weighs about one quarter of a cwt. As it is easily volatilized by heat, it may be readily examined as to its sophistication with other salts. Sal ammoniac has a certain tenacity, and is flexible under the hammer or pestle. It is principally used in tinning of cast-iron, wrought iron, copper, brass, and for making the various ammoniacal preparations of pharmacy.

In a chemical factory near Glasgow, 7200 gallons of ammoniacal liquor, obtained weekly from the gas-works, are treated as follows:—The liquor is first rectified by distillation from a waggon-shaped wrought-iron boiler, into a square cistern of iron lined with lead. 4500 lbs. of sulphuric acid, of specific gravity 1·625, are then slowly added to the somewhat concentrated distilled water of ammonia. The produce is 2400 gallons of sulphate of ammonia, slightly acidulous, of specific gravity 1·150, being of such strength as to deposit a few crystals upon the sides of the lead-lined iron tank in which the saline combination is made. It is decomposed by common salt.

From the 7200 gallons of the first crude liquor, 900 gallons of tar are got by subsidence, and 200 gallons of petroleum are skimmed off the surface. The tar is converted, by a moderate boiling in iron pans, into good pitch.

SALAMSTONE. SeeLapidary.

SALAMSTONE. SeeLapidary.

SALEP, or SALOUP, is the name of the dried tuberous roots of theOrchis, imported from Persia and Asia Minor, which are the product of a great many species of the plant, but especially of theOrchis mascula. Salep occurs in commerce in small oval grains, of a whitish-yellow colour, at times semi-transparent, of a horny aspect, very, hard, with a faint peculiar smell, and a taste like that of gum tragacanth, but slightly saline. These are composed almost entirely of starchy matter, well adapted for making a thick pap with water or milk, and are hence in great repute in the Levant, as restorers of the animal forces. Their aphrodisiacal properties are apocryphal. If the largest roots of theOrchis masculaof our own country were cleaned, scraped, steeped for a short time in hot, and then for a few minutes in boiling water, to extract their rank flavour, afterwards suspended upon strings to dry in the air, they would afford as nourishing and palatable an article as the Turkey saloup, and at a vastly lower price.

SALEP, or SALOUP, is the name of the dried tuberous roots of theOrchis, imported from Persia and Asia Minor, which are the product of a great many species of the plant, but especially of theOrchis mascula. Salep occurs in commerce in small oval grains, of a whitish-yellow colour, at times semi-transparent, of a horny aspect, very, hard, with a faint peculiar smell, and a taste like that of gum tragacanth, but slightly saline. These are composed almost entirely of starchy matter, well adapted for making a thick pap with water or milk, and are hence in great repute in the Levant, as restorers of the animal forces. Their aphrodisiacal properties are apocryphal. If the largest roots of theOrchis masculaof our own country were cleaned, scraped, steeped for a short time in hot, and then for a few minutes in boiling water, to extract their rank flavour, afterwards suspended upon strings to dry in the air, they would afford as nourishing and palatable an article as the Turkey saloup, and at a vastly lower price.

SALICINE, is a febrifuge substance, which may be obtained in white pearly crystals from the bark of the white willow (Salix alba), of the aspen tree (Salix helix), as also of some other willows, and some poplars. It has a very bitter taste.

SALICINE, is a febrifuge substance, which may be obtained in white pearly crystals from the bark of the white willow (Salix alba), of the aspen tree (Salix helix), as also of some other willows, and some poplars. It has a very bitter taste.

SAL PRUNELLA, is fused nitre cast into cakes or balls.

SAL PRUNELLA, is fused nitre cast into cakes or balls.

SAL VOLATILE, is sesquicarbonate of ammonia.

SAL VOLATILE, is sesquicarbonate of ammonia.

SALT, EPSOM, issulphate of magnesia.

SALT, EPSOM, issulphate of magnesia.

SALT, MICROCOSMIC, is the triple phosphate of soda and ammonia.

SALT, MICROCOSMIC, is the triple phosphate of soda and ammonia.

SALT OF AMBER, issuccinic acid.

SALT OF AMBER, issuccinic acid.

SALT OF LEMONS, iscitric acid.

SALT OF LEMONS, iscitric acid.

SALT OF SATURN, is acetate of lead.

SALT OF SATURN, is acetate of lead.

SALT OF SODA, iscarbonate of soda.

SALT OF SODA, iscarbonate of soda.

SALT OF SORREL, is bi-oxalate of potassa.

SALT OF SORREL, is bi-oxalate of potassa.

SALT OF TARTAR, is carbonate of potassa.

SALT OF TARTAR, is carbonate of potassa.

SALT OF VITRIOL, issulphate of zinc.

SALT OF VITRIOL, issulphate of zinc.

SALT PERLATE, is phosphate of soda.

SALT PERLATE, is phosphate of soda.

SALTPETRE, is nitre, or nitrate of potassa.

SALTPETRE, is nitre, or nitrate of potassa.

SALT, SEDATIVE, is boracic acid.

SALT, SEDATIVE, is boracic acid.

SALTS, are an important class of chemical compounds, antiently studied under the Greek title ofHalurgy. At one period every inorganic substance readily soluble in water, was regarded as a salt; and afterwards, every substance soluble in five hundred times its weight of water. Thus both acid and alkaline bodies came to be enrolled among salts; but latterly, the combinations of the acids with alkalis, earths, and metallic calces (now styled oxides), were alone thought to be entitled to the denomination of salts, in consequence of their resemblance in appearance, and supposed analogy in composition, to culinary salt. Since Sir H. Davy demonstrated that this substance contained neither acid nor alkaline matter, but that it consisted of chlorine and the metal sodium, the generality of chemists found it impossible to include salts under one category of constitution;while a few have rashly offered to cut the knot, by excluding from the saline family, chloride of sodium, the patriarch of the whole.Salts, may be justly divided into three orders:1. The binary, consisting of two single members; such as the bromides, chlorides, cyanides, fluorides, iodides, carburets, phosphurets, sulphurets, &c.2. The bi-binary, consisting of two double members; such as the borates, bromates, carbonates, chlorates, sulphates, sulphites, hyposulphites, sulphohydrates, &c.3. The ternary, consisting of two single members of one genus, and one member of another; such as the boro-fluorides, silico-fluorides, sulpho-cyanides, chloriodides, &c.The species of each order may exist in three states, constituting neutral salts; supersalts; and subsalts; as for example, the chloride of sodium, the bisulphate of potassa, the subnitrate of lead, &c.In the above arrangement, cyanogen is allowed to represent a simple substance, from its forming analogous compounds with chlorine and iodine. The neutral state of salts is commonly indicated by their solutions not changing the colours of litmus, violets, or red cabbage; the sub-state of salts, by their turning the violet and cabbage green; and the super-state of salts, by their changing the purple of litmus, violets, and cabbage, red; but to the generality of this criterion there are some exceptions. The atomic theory may be advantageously resorted to, in this predicament. 1. When one prime equivalent of the one member (whether single or double) of a salt, combines with one prime of the other member, a neutral salt is the result, as in chloride of sodium or nitrate of potassa. 2. When two primes of the electro-negative member combine with one prime of the electro-positive, a supersalt is formed, as bichloride of tin, or bisulphate of potassa. 3. When one prime of the electro-negative member combines with two or more primes of the electro-positive, a subsalt is produced, as the subacetate and subchromate of lead, &c.

SALTS, are an important class of chemical compounds, antiently studied under the Greek title ofHalurgy. At one period every inorganic substance readily soluble in water, was regarded as a salt; and afterwards, every substance soluble in five hundred times its weight of water. Thus both acid and alkaline bodies came to be enrolled among salts; but latterly, the combinations of the acids with alkalis, earths, and metallic calces (now styled oxides), were alone thought to be entitled to the denomination of salts, in consequence of their resemblance in appearance, and supposed analogy in composition, to culinary salt. Since Sir H. Davy demonstrated that this substance contained neither acid nor alkaline matter, but that it consisted of chlorine and the metal sodium, the generality of chemists found it impossible to include salts under one category of constitution;while a few have rashly offered to cut the knot, by excluding from the saline family, chloride of sodium, the patriarch of the whole.

Salts, may be justly divided into three orders:

1. The binary, consisting of two single members; such as the bromides, chlorides, cyanides, fluorides, iodides, carburets, phosphurets, sulphurets, &c.

2. The bi-binary, consisting of two double members; such as the borates, bromates, carbonates, chlorates, sulphates, sulphites, hyposulphites, sulphohydrates, &c.

3. The ternary, consisting of two single members of one genus, and one member of another; such as the boro-fluorides, silico-fluorides, sulpho-cyanides, chloriodides, &c.

The species of each order may exist in three states, constituting neutral salts; supersalts; and subsalts; as for example, the chloride of sodium, the bisulphate of potassa, the subnitrate of lead, &c.

In the above arrangement, cyanogen is allowed to represent a simple substance, from its forming analogous compounds with chlorine and iodine. The neutral state of salts is commonly indicated by their solutions not changing the colours of litmus, violets, or red cabbage; the sub-state of salts, by their turning the violet and cabbage green; and the super-state of salts, by their changing the purple of litmus, violets, and cabbage, red; but to the generality of this criterion there are some exceptions. The atomic theory may be advantageously resorted to, in this predicament. 1. When one prime equivalent of the one member (whether single or double) of a salt, combines with one prime of the other member, a neutral salt is the result, as in chloride of sodium or nitrate of potassa. 2. When two primes of the electro-negative member combine with one prime of the electro-positive, a supersalt is formed, as bichloride of tin, or bisulphate of potassa. 3. When one prime of the electro-negative member combines with two or more primes of the electro-positive, a subsalt is produced, as the subacetate and subchromate of lead, &c.


Back to IndexNext