SUMACH (Eng. and Fr.;Schmack, Germ.); is the powder of the leaves, peduncles, and young branches of theRhus coriaria, andRhus cotinus, shrubs which grow in Hungary, the Bannat, and the Illyrian provinces. Both kinds contain tannin, with a little yellow colouring-matter, and are a good deal employed for tanning light-coloured leathers; but the first is the best. With mordants, it dyes nearly the same colours as galls. In calico-printing, sumach affords, with a mordant of tin, a yellow colour; with acetate of iron, weak or strong, a gray or black; and with sulphate of zinc, a brownish-yellow. A decoction of sumach reddens litmus paper strongly; gives white flocks with the protomuriate of tin; pale-yellow flocks with alum; blue flocks with red sulphate of iron, with an abundant precipitate. In the south of France, the twigs and leaves of theCoriaria myrthifoliaare used for dyeing, under the name ofrédoul, orrodou.
SUMACH (Eng. and Fr.;Schmack, Germ.); is the powder of the leaves, peduncles, and young branches of theRhus coriaria, andRhus cotinus, shrubs which grow in Hungary, the Bannat, and the Illyrian provinces. Both kinds contain tannin, with a little yellow colouring-matter, and are a good deal employed for tanning light-coloured leathers; but the first is the best. With mordants, it dyes nearly the same colours as galls. In calico-printing, sumach affords, with a mordant of tin, a yellow colour; with acetate of iron, weak or strong, a gray or black; and with sulphate of zinc, a brownish-yellow. A decoction of sumach reddens litmus paper strongly; gives white flocks with the protomuriate of tin; pale-yellow flocks with alum; blue flocks with red sulphate of iron, with an abundant precipitate. In the south of France, the twigs and leaves of theCoriaria myrthifoliaare used for dyeing, under the name ofrédoul, orrodou.
SWEEP-WASHER, is the person who extracts from the sweepings, potsherds, &c., of refineries of silver and gold, the small residuum of precious metal.
SWEEP-WASHER, is the person who extracts from the sweepings, potsherds, &c., of refineries of silver and gold, the small residuum of precious metal.
SYNTHESIS, is a Greek word, which signifies combination, and is applied to the chemical action which unites dissimilar bodies into a uniform compound; as sulphuric acid and lime, into gypsum; or chlorine and sodium, into culinary salt.
SYNTHESIS, is a Greek word, which signifies combination, and is applied to the chemical action which unites dissimilar bodies into a uniform compound; as sulphuric acid and lime, into gypsum; or chlorine and sodium, into culinary salt.
SYRUP, is a solution of sugar in water. Cane-juice, concentrated to a density of 1·300, forms a syrup which does not ferment in the transport home from the West Indies, and may be boiled and refined at one step into superior sugar-loaves, with eminent advantage to the planter, the refiner, and the revenue.
SYRUP, is a solution of sugar in water. Cane-juice, concentrated to a density of 1·300, forms a syrup which does not ferment in the transport home from the West Indies, and may be boiled and refined at one step into superior sugar-loaves, with eminent advantage to the planter, the refiner, and the revenue.
TABBYING, or WATERING, is the process of giving stuffs a wavy appearance with the calender.
TABBYING, or WATERING, is the process of giving stuffs a wavy appearance with the calender.
TACAMAHAC, is a resin obtained from theFagura octandra, a tree which grows in Mexico and the West Indies. It occurs in yellowish pieces, of a strong smell, and a bitterish aromatic taste. That from the island of Madagascar has a greenish tint.
TACAMAHAC, is a resin obtained from theFagura octandra, a tree which grows in Mexico and the West Indies. It occurs in yellowish pieces, of a strong smell, and a bitterish aromatic taste. That from the island of Madagascar has a greenish tint.
TAFFETY, is a light silk fabric, with a considerable lustre or gloss.
TAFFETY, is a light silk fabric, with a considerable lustre or gloss.
TAFIA, is a variety of rum.
TAFIA, is a variety of rum.
TALC, is a mineral genus, which is divided into two species, the common and the indurated. The first occurs massive, disseminated in plates, imitative, or crystallized in small six-sided tables. It is splendent, pearly, or semi-metallic, translucent, flexible, but not elastic. It yields to the nail; spec. gray. 2·77. Before the blowpipe, it first whitens, and then fuses into an enamel globule. It consists of—silica, 62; magnesia, 27; alumina, 1·5; oxide of iron, 3·5; water, 6. Klaproth found 21⁄2per cent. of potash in it. It is found in beds of clay-slate and mica-slate, in Aberdeenshire, Banffshire, Perthshire, Salzburg, the Tyrol, and St. Gothard. It is an ingredient in rouge for the toilette, communicating softness to the skin. It gives the flesh polish to soft alabaster figures, and is also used in porcelain paste.The second species, or talc-slate, has a greenish-gray colour; is massive, with tabular fragments, translucent on the edges, soft, with a white streak; easily cut or broken, but is not flexible; and has a greasy feel. It occurs in the same localities as the preceding. It is employed in the porcelain and crayon manufactures; as also as a crayon itself, by carpenters, tailors, and glaziers.
TALC, is a mineral genus, which is divided into two species, the common and the indurated. The first occurs massive, disseminated in plates, imitative, or crystallized in small six-sided tables. It is splendent, pearly, or semi-metallic, translucent, flexible, but not elastic. It yields to the nail; spec. gray. 2·77. Before the blowpipe, it first whitens, and then fuses into an enamel globule. It consists of—silica, 62; magnesia, 27; alumina, 1·5; oxide of iron, 3·5; water, 6. Klaproth found 21⁄2per cent. of potash in it. It is found in beds of clay-slate and mica-slate, in Aberdeenshire, Banffshire, Perthshire, Salzburg, the Tyrol, and St. Gothard. It is an ingredient in rouge for the toilette, communicating softness to the skin. It gives the flesh polish to soft alabaster figures, and is also used in porcelain paste.
The second species, or talc-slate, has a greenish-gray colour; is massive, with tabular fragments, translucent on the edges, soft, with a white streak; easily cut or broken, but is not flexible; and has a greasy feel. It occurs in the same localities as the preceding. It is employed in the porcelain and crayon manufactures; as also as a crayon itself, by carpenters, tailors, and glaziers.
TALLOW (Suif, Fr.;Talg, Germ.); is the concrete fat of quadrupeds and man. That of the ox consists of 76 parts of stearine, and 24 of oleine; that of the sheep contains somewhat more stearine. SeeFatandStearine.Tallow imported into the United Kingdom, in 1836, 1,186,364 cwts. 1 qr. 4 lbs.; in 1837, 1,308,734 cwts. 1 qr. 4 lbs. Retained for home consumption, in 1836, 1,318,678 cwts. 1 qr. 25 lbs.; in 1837, 1,294,009 cwts. 2 qrs. 21 lbs. Duty received, in 1836,£208,284; in 1837,£204,377.
TALLOW (Suif, Fr.;Talg, Germ.); is the concrete fat of quadrupeds and man. That of the ox consists of 76 parts of stearine, and 24 of oleine; that of the sheep contains somewhat more stearine. SeeFatandStearine.
Tallow imported into the United Kingdom, in 1836, 1,186,364 cwts. 1 qr. 4 lbs.; in 1837, 1,308,734 cwts. 1 qr. 4 lbs. Retained for home consumption, in 1836, 1,318,678 cwts. 1 qr. 25 lbs.; in 1837, 1,294,009 cwts. 2 qrs. 21 lbs. Duty received, in 1836,£208,284; in 1837,£204,377.
TALLOW, PINEY. SeePiney Tallow.
TALLOW, PINEY. SeePiney Tallow.
TAMPING, is a term used by miners to express the filling up of the hole which they have bored in a rock, for the purpose of blasting it with gunpowder. SeeMines.
TAMPING, is a term used by miners to express the filling up of the hole which they have bored in a rock, for the purpose of blasting it with gunpowder. SeeMines.
TAN, or TANNIC ACID. (Tannin, Fr.;Gerbstoff, Germ.) See its preparation and properties described underGalls.The barks replete with this principle should be stripped with hatchets and bills, from the trunk and branches of trees, not less than 30 years of age, in spring, when their sap flows most freely. Trees are also sometimes barked in autumn, and left standing, whereby they cease to vegetate, and perish ere long; but afford, it is thought, a more compact timber. This operation is, however, too troublesome to be generally practised, and therefore the bark is commonly obtained from felled trees; and it is richer in tannin the older they are. The bark mill is described in Gregory’sMechanics, and other similar works.The followingTableshows the quantity of extractive matter and tan in 100 parts of the several substances:—Substances.In 480, byDavy.In about8 oz., byBiggins.In 100 parts,by Cadet deGassincourt.White inner bark of old7221Do. young oak77Do. Spanish chestnut6330Do. Leicester willow79Coloured or middle bark of oak19Do. Spanish chestnut14Do. Leicester willow16Entire bark of oak29Do. Spanish chestnut21Do. Leicester willow33109Do. Elm1328Do. Common willow11boughs, 31Sicilian sumach78158Malaga sumach79Souchong tea48Green tea41Bombay catechu261Bengal catechu231Nut-galls12746Bark of oak, cut in winter—30Do. beech—31Do. Elder—41Do. Plum-tree—58Bark of the trunk of Willow—52Do. Sycamore—5316Bark of Birch—54Bark of Cherry-tree—5924Do. Sallow—59Do. Poplar—76Do. Hazel—79Do. Ash—82Do. trunk of Span. chestnut—98Do. Smooth oak—104Do. Oak, cut in spring—108Root of Tormentil—46Cornus sanguinea of Canada—44Bark of Alder—36Do. Apricot—32Do. Pomegranate—32Do. Cornish cherry-tree—19Do. Weeping willow—16Do. Bohemian olive—14Do. Tan shrub with myrtle leaves—13Do. Virginian sumach—10Do. Green oak—10Do. Service-tree—8Do. Rose chestnut of Amer.—8Do. Rose chestnut—6Do. Rose chestnut of Carolina—6Do. Sumach of Carolina—5
TAN, or TANNIC ACID. (Tannin, Fr.;Gerbstoff, Germ.) See its preparation and properties described underGalls.
The barks replete with this principle should be stripped with hatchets and bills, from the trunk and branches of trees, not less than 30 years of age, in spring, when their sap flows most freely. Trees are also sometimes barked in autumn, and left standing, whereby they cease to vegetate, and perish ere long; but afford, it is thought, a more compact timber. This operation is, however, too troublesome to be generally practised, and therefore the bark is commonly obtained from felled trees; and it is richer in tannin the older they are. The bark mill is described in Gregory’sMechanics, and other similar works.
The followingTableshows the quantity of extractive matter and tan in 100 parts of the several substances:—
TANNING (Tanner, Fr.;Gärberei, Germ.); is the art of converting skin intoLeather, which see. It has been ascertained, beyond a doubt, that “the saturated infusions of astringent barks contain much less extractive matter, in proportion to their tannin, than the weak infusions; and when skin is quickly tanned (in the former), common experience shows that it produces leather less durable than leather slowly formed.”[66]The older tanners, who prided themselves on producing a substantial article, were so much impressed with the advantages of slowly impregnating skin with astringent matter, that they employed no concentrated infusion (ooze) in their pits, but stratified the skins with abundance of ground bark, and covered them with soft water, knowing that its active principles are very soluble, and that, by being gradually extracted, they would penetrate uniformly the whole of the animal fibres, instead of acting chiefly upon the surface, and making brittle leather, as the strong infusions never fail to do. In fact, 100 pounds of skin, quickly tanned in a strong infusion of bark, produce 137 of leather; while 100 pounds, slowly tanned in a weak infusion, produce only 1171⁄2. The additional 191⁄2pounds weight in the former case serve merely to swell the tanner’s bill, while they deteriorate his leather, and cause it to contain much less of the textile animal solid. Leather thus highly charged with tannin, is, moreover, so spongy as to allow moisture to pass readily through its pores, to the great discomfort and danger of persons who wear shoes made of it. That the saving of time, and the increase of product, are temptations strong enough to induce many modern tanners to steep their skins in a succession of strong infusions of bark, is sufficiently intelligible; but that any shoemaker should be so ignorant or so foolish as to proclaim that his leather is made by a process so injurious to its quality, is unaccountably stupid.[66]Sir H. Davy, on the Operation of Astringent Vegetables in Tanning.—Phil. Trans.1803.
TANNING (Tanner, Fr.;Gärberei, Germ.); is the art of converting skin intoLeather, which see. It has been ascertained, beyond a doubt, that “the saturated infusions of astringent barks contain much less extractive matter, in proportion to their tannin, than the weak infusions; and when skin is quickly tanned (in the former), common experience shows that it produces leather less durable than leather slowly formed.”[66]The older tanners, who prided themselves on producing a substantial article, were so much impressed with the advantages of slowly impregnating skin with astringent matter, that they employed no concentrated infusion (ooze) in their pits, but stratified the skins with abundance of ground bark, and covered them with soft water, knowing that its active principles are very soluble, and that, by being gradually extracted, they would penetrate uniformly the whole of the animal fibres, instead of acting chiefly upon the surface, and making brittle leather, as the strong infusions never fail to do. In fact, 100 pounds of skin, quickly tanned in a strong infusion of bark, produce 137 of leather; while 100 pounds, slowly tanned in a weak infusion, produce only 1171⁄2. The additional 191⁄2pounds weight in the former case serve merely to swell the tanner’s bill, while they deteriorate his leather, and cause it to contain much less of the textile animal solid. Leather thus highly charged with tannin, is, moreover, so spongy as to allow moisture to pass readily through its pores, to the great discomfort and danger of persons who wear shoes made of it. That the saving of time, and the increase of product, are temptations strong enough to induce many modern tanners to steep their skins in a succession of strong infusions of bark, is sufficiently intelligible; but that any shoemaker should be so ignorant or so foolish as to proclaim that his leather is made by a process so injurious to its quality, is unaccountably stupid.
[66]Sir H. Davy, on the Operation of Astringent Vegetables in Tanning.—Phil. Trans.1803.
[66]Sir H. Davy, on the Operation of Astringent Vegetables in Tanning.—Phil. Trans.1803.
TANTALUM, is the rare metal; also calledColumbium.
TANTALUM, is the rare metal; also calledColumbium.
TAPESTRY, is an ornamental figured textile fabric of worsted or silk, for lining the walls of apartments; of which the most famous is that of the Gobelins Royal Manufactory, near Paris.
TAPESTRY, is an ornamental figured textile fabric of worsted or silk, for lining the walls of apartments; of which the most famous is that of the Gobelins Royal Manufactory, near Paris.
TAPIOCA, is a modification of starch, partially converted into gum, by heating and stirring cassava upon iron plates. SeeCassavaandStarch.
TAPIOCA, is a modification of starch, partially converted into gum, by heating and stirring cassava upon iron plates. SeeCassavaandStarch.
TAR (Goudron, Fr.;Ther, Germ.); is the viscid, brown-black, resino-oleaginous compound, obtained by distilling wood in close vessels, or in ovens of a peculiar construction. SeeCharcoal,Pitcoal, coking of, andPyrolignous Acid. According to Reichenbach, tar contains the peculiar proximate principles,paraffine,eupion,creosote,picamar,pittacal, besides pyrogenous resin, orpyretine, pyrogenous oil, orpyroleine, and vinegar. The resin, oil, and vinegar are called empyreumatic, in common language.Tar imported into the United Kingdom, in 1836, 9,797 lsts. 8 brls.; in 1837,11,480 lsts. 1 brl. Retained for home consumption, in 1836, 9,639 lsts. 8 brls.; in 1837, 11,686 lsts. 8 brls. Duty received, in 1836,£7,231; in 1837,£8,775.
TAR (Goudron, Fr.;Ther, Germ.); is the viscid, brown-black, resino-oleaginous compound, obtained by distilling wood in close vessels, or in ovens of a peculiar construction. SeeCharcoal,Pitcoal, coking of, andPyrolignous Acid. According to Reichenbach, tar contains the peculiar proximate principles,paraffine,eupion,creosote,picamar,pittacal, besides pyrogenous resin, orpyretine, pyrogenous oil, orpyroleine, and vinegar. The resin, oil, and vinegar are called empyreumatic, in common language.
Tar imported into the United Kingdom, in 1836, 9,797 lsts. 8 brls.; in 1837,11,480 lsts. 1 brl. Retained for home consumption, in 1836, 9,639 lsts. 8 brls.; in 1837, 11,686 lsts. 8 brls. Duty received, in 1836,£7,231; in 1837,£8,775.
TARRAS; seeCement, andMortar, hydraulic.
TARRAS; seeCement, andMortar, hydraulic.
TARTAR (Tartre, Fr.;Weinstein, Germ.); called also argal or argol; is the crude bitartrate of potassa, which exists in the juice of the grape, and is deposited from wines in their fermenting casks, being precipitated in proportion as the alcohol is formed, in consequence of its insolubility in that liquid. There are two sorts of argal known in commerce, the white, and the red; the former, which is of a pale-pinkish colour, is the crust let fall by white wines; the latter is a dark-red, from red wines.The crude tartar is purified, or converted into cream of tartar, at Montpellier, by the following process:—The argal having been ground under vertical mill-stones, and sifted, one part of it is boiled with 15 of water, in conical copper kettles, tinned on the inside. As soon as it is dissolved, 31⁄2parts of ground pipe-clay are introduced. The solution being well stirred, and then settled, is drawn off into crystallizing vessels, to cool; the crystals found concreted on the sides and bottom are picked out, washed with water, and dried. The mother-water is employed upon a fresh portion of argal. The crystals of the first crop are re-dissolved, re-crystallized, and exposed upon stretched canvas to the sun and air, to be bleached. The clay serves to abstract the colouring-matter. The crystals formed upon the surface are the whitest, whence the name cream of tartar is derived.Purified tartar, the bitartrate of potassa, is thus obtained in hard clusters of small colourless crystals, which, examined by a lens, are seen to be transparent 4-sided prisms. It has no smell, but a feebly acid taste; is unchangeable in the air, has a specific gravity of 1·953, dissolves in 16 parts of boiling water, and in 200 parts at 60° F. It is insoluble in alcohol. It consists of 24·956 potassa, 70·276 tartaric acid, and 4·768 water. It affords, by dry distillation, pyrotartaric acid, and an empyreumatic oil; while carbonate of potassa remains associated with much charcoal in the retort, constituting black flux. Tartar is used in dyeing, medicine, and for extracting—
TARTAR (Tartre, Fr.;Weinstein, Germ.); called also argal or argol; is the crude bitartrate of potassa, which exists in the juice of the grape, and is deposited from wines in their fermenting casks, being precipitated in proportion as the alcohol is formed, in consequence of its insolubility in that liquid. There are two sorts of argal known in commerce, the white, and the red; the former, which is of a pale-pinkish colour, is the crust let fall by white wines; the latter is a dark-red, from red wines.
The crude tartar is purified, or converted into cream of tartar, at Montpellier, by the following process:—
The argal having been ground under vertical mill-stones, and sifted, one part of it is boiled with 15 of water, in conical copper kettles, tinned on the inside. As soon as it is dissolved, 31⁄2parts of ground pipe-clay are introduced. The solution being well stirred, and then settled, is drawn off into crystallizing vessels, to cool; the crystals found concreted on the sides and bottom are picked out, washed with water, and dried. The mother-water is employed upon a fresh portion of argal. The crystals of the first crop are re-dissolved, re-crystallized, and exposed upon stretched canvas to the sun and air, to be bleached. The clay serves to abstract the colouring-matter. The crystals formed upon the surface are the whitest, whence the name cream of tartar is derived.
Purified tartar, the bitartrate of potassa, is thus obtained in hard clusters of small colourless crystals, which, examined by a lens, are seen to be transparent 4-sided prisms. It has no smell, but a feebly acid taste; is unchangeable in the air, has a specific gravity of 1·953, dissolves in 16 parts of boiling water, and in 200 parts at 60° F. It is insoluble in alcohol. It consists of 24·956 potassa, 70·276 tartaric acid, and 4·768 water. It affords, by dry distillation, pyrotartaric acid, and an empyreumatic oil; while carbonate of potassa remains associated with much charcoal in the retort, constituting black flux. Tartar is used in dyeing, medicine, and for extracting—
TARTARIC ACID. (Acide tartarique, Fr.;Weinsteinsäure, Germ.) This is prepared by adding gradually to a boiling-hot solution of 100 parts of tartar, in a large copper boiler, 26 of chalk, made into a smooth pap with water. A brisk effervescence ensues, by the disengagement of the carbonic acid of the chalk, while its base combines with the acid excess in the tartar, and forms an insoluble precipitate of tartrate of lime. The supernatant liquor, which is a solution of neutral tartrate of potassa, must be drawn off by a syphon, and decomposed by a solution of chloride of calcium (muriate of lime). 281⁄2parts of the dry chloride are sufficient for 100 of tartar. The tartrate of lime, from both processes, is to be washed with water, drained, and then subjected, in a leaden cistern, to the action of 49 parts of sulphuric acid, previously diluted with 8 times its weight of water: 100 of dry tartrate take 75 of oil of vitriol. This mixture, after digestion for a few days, is converted into sulphate of lime and tartaric acid. The latter is to be separated from the former by decantation, filtration through canvas, and edulcoration of the sulphate of lime upon the filter.The clear acid is to be concentrated in leaden pans, by a moderate heat, till it acquires the density of 40° B. (spec. grav. 1·38), and then it is run off, clear from any sediment, into leaden or stoneware vessels, which are set in a dry stove-room for it to crystallize. The crystals, being re-dissolved and re-crystallized, become colourless 6-sided prisms. In decomposing the tartrate of lime, a very slight excess of sulphuric acid must be employed; because pure tartaric acid would dissolve any tartrate of lime that may escape decomposition. Bone black, previously freed from its carbonate and phosphate of lime, by muriatic acid, is sometimes employed to blanch the coloured solutions of the first crystals. Tartaric acid contains nearly 9 per cent. of combined water. It is soluble in two parts of water at 60°, and in its own weight of boiling water. In its dry state, as it exists in the tartrate of lime or lead, it consists of 36·8 of carbon, 3 of hydrogen, and 60·2 of oxygen. It is much employed in calico-printing, and for making sodaic powders.
TARTARIC ACID. (Acide tartarique, Fr.;Weinsteinsäure, Germ.) This is prepared by adding gradually to a boiling-hot solution of 100 parts of tartar, in a large copper boiler, 26 of chalk, made into a smooth pap with water. A brisk effervescence ensues, by the disengagement of the carbonic acid of the chalk, while its base combines with the acid excess in the tartar, and forms an insoluble precipitate of tartrate of lime. The supernatant liquor, which is a solution of neutral tartrate of potassa, must be drawn off by a syphon, and decomposed by a solution of chloride of calcium (muriate of lime). 281⁄2parts of the dry chloride are sufficient for 100 of tartar. The tartrate of lime, from both processes, is to be washed with water, drained, and then subjected, in a leaden cistern, to the action of 49 parts of sulphuric acid, previously diluted with 8 times its weight of water: 100 of dry tartrate take 75 of oil of vitriol. This mixture, after digestion for a few days, is converted into sulphate of lime and tartaric acid. The latter is to be separated from the former by decantation, filtration through canvas, and edulcoration of the sulphate of lime upon the filter.
The clear acid is to be concentrated in leaden pans, by a moderate heat, till it acquires the density of 40° B. (spec. grav. 1·38), and then it is run off, clear from any sediment, into leaden or stoneware vessels, which are set in a dry stove-room for it to crystallize. The crystals, being re-dissolved and re-crystallized, become colourless 6-sided prisms. In decomposing the tartrate of lime, a very slight excess of sulphuric acid must be employed; because pure tartaric acid would dissolve any tartrate of lime that may escape decomposition. Bone black, previously freed from its carbonate and phosphate of lime, by muriatic acid, is sometimes employed to blanch the coloured solutions of the first crystals. Tartaric acid contains nearly 9 per cent. of combined water. It is soluble in two parts of water at 60°, and in its own weight of boiling water. In its dry state, as it exists in the tartrate of lime or lead, it consists of 36·8 of carbon, 3 of hydrogen, and 60·2 of oxygen. It is much employed in calico-printing, and for making sodaic powders.
TARTRATES, are salts composed of tartaric acid, and oxidized bases, in equivalent proportions.
TARTRATES, are salts composed of tartaric acid, and oxidized bases, in equivalent proportions.
TAWING, is the process of preparing the white skins of the sheep doe, &c. SeeLeather.
TAWING, is the process of preparing the white skins of the sheep doe, &c. SeeLeather.
TEA,green, contains 34·6 parts of tannin, 5·9 of gum, 5·7 of vegetable albumine, 51·3 of ligneous fibre, with 2·5 of loss; andblacktea contains 40·6 of tannin, 6·3 of gum, 6·4 of vegetable albumine, 44·8 of ligneous fibre, with 2 of loss. The ashes contain silica, carbonate of lime, magnesia, and chloride of potassium.—Frank.Davy obtained 32·5 of extract from Souchong tea; of which 10 were precipitated by gelatine. He found 8·5 only of tannin in green tea. The latter chemist is most to be depended upon. Chemical analysis has not yet discovered that principle in tea, to which its exciting property is due.The Chinese method of making Black Tea in Upper Assam.[67]—In the first place, the youngest and most tender leaves are gathered; but when there are many hands and a great quantity of leaves to be collected, the people employed nip off with the forefinger and thumb the fine end of the branch with about four leaves on, and sometimes even more, if they look tender. These are all brought to the place where they are to be converted into tea; they are then put into a large, circular, open-worked bamboo basket, having a rim all round, two fingers broad. The leaves are thinly scattered in these baskets, and then placed in a framework of bamboo, in all appearance like the side of an Indian hut without grass, resting on posts, 2 feet from the ground, with an angle of about 25°. The baskets with leaves are put in this frame to dry in the sun, and are pushed up and brought down by a long bamboo with a circular piece of wood at the end. The leaves are permitted to dry about two hours, being occasionally turned; but the time required for this process depends on the heat of the sun. When they begin to have a slightly withered appearance, they are taken down and brought into the house, where they are placed on a frame to cool for half an hour. They are then put into smaller baskets of the same kind as the former, and placed on a stand. People are now employed to soften the leaves still more, by gently clapping them between their hands, with their fingers and thumb extended, and tossing them up and letting them fall, for about five or ten minutes. They are then again put on the frame during half an hour, and brought down and clapped with the hands as before. This is done three successive times, until the leaves become to the touch like soft leather; the beating and putting away being said to give the tea the black colour and bitter flavour. After this the tea is put into hot cast-iron pans, which are fixed in a circular mud fireplace, so that the flame cannot ascend round the pan to incommode the operator. This pan is well heated by a straw or bamboo fire to a certain degree. About two pounds of the leaves are then put into each hot pan, and spread in such a manner that all the leaves may get the same degree of heat. They are every now and then briskly turned with the naked hand, to prevent a leaf from being burnt. When the leaves become inconveniently hot to the hand, they are quickly taken out and delivered to another man with a close-worked bamboo basket ready to receive them. A few leaves that may have been left behind are smartly brushed out with a bamboo broom; all this time a brisk fire is kept up under the pan. After the pan has been used in this manner three or four times, a bucket of cold water is thrown in, and a soft brickbat and bamboo broom used, to give it a good scouring out; the water is thrown out of the pan by the brush on one side, the pan itself being never taken off. The leaves, all hot on the bamboo basket, are laid on a table that has a narrow rim on its back, to prevent these baskets from slipping off when pushed against it. The two pounds of hot leaves are now divided into two or three parcels, and distributed to as many men, who stand up to the table with the leaves right before them, and each placing his legs close together; the leaves are next collected into a ball, which he gently grasps in his left hand, with the thumb extended, the fingers close together, and the hand resting on the little finger. The right hand must be extended in the same manner as the left, but with the palm turned downwards, resting on the top of the ball of tea leaves. Both hands are now employed to roll and propel the ball along; the left hand pushing it on, and allowing it to revolve as it moves; the right hand also pushes it forward, resting on it with some force, and keeping it down to express the juice which the leaves contain. The art lies here in giving the ball a circular motion, and permitting it to turn under and in the hand two or three whole revolutions, before the arms are extended to their full length, and drawing the ball of leaves quickly back without leaving a leaf behind, being rolled for about five minutes in this way. The ball of tea leaves is from time to time gently and delicately opened with the fingers, lifted as high as the face, and then allowed to fall again. This is done two or three times, to separate the leaves; and afterwards the basket with the leaves is lifted up as often, and receives a circular shake to bring these towards the centre. The leaves are now taken back to the hot pans, and spread out in them as before, being again turned with the naked hand, and when hot taken out and rolled; after which they are put into the drying basket, and spread on a sieve which is in the centre of the basket, and the whole placed over a charcoal fire. The fire is very nicely regulated; there must not be the least smoke, and the charcoal should be well picked.[67]By C. A. Bruce, superintendent of tea culture.When the fire is lighted, it is fanned until it gets a fine red glare, and the smoke is all gone off; being every now and then stirred and the coals brought into the centre, so as to leave the outer edge low. When the leaves are put into the drying basket, they are gently separated by lifting them up with the fingers of both hands extended far apart, and allowing them to fall down again; they are placed 3 or 4 inches deep on the sieve, leaving a passage in the centre for the hot air to pass. Before it is put over the fire, the drying basket receives a smart slap with both hands in the act of lifting it up, which is done to shake down any leaves that might otherwise drop through the sieve, or to preventthem from falling into the fire and occasioning a smoke, which would affect and spoil the tea. This slap on the basket is invariably applied throughout the stages of the tea manufacture. There is always a large basket underneath to receive the small leaves that fall, which are afterwards collected, dried, and added to the other tea; in no case are the baskets or sieves permitted to touch or remain on the ground, but always laid on a receiver with three legs. After the leaves have been half dried in the drying basket, and while they are still soft, they are taken off the fire and put into large open-worked baskets, and then put on the shelf, in order that the tea may improve in colour.Next day the leaves are all sorted into large, middling, and small; sometimes there are four sorts. All these, the Chinese informed me, become so many different kinds of teas; the smallest leaves they called Pha-ho, the second Pow-chong, the third Su-chong, and the fourth, or the largest leaves, Toy-chong. After this assortment they are again put on the sieve in the drying basket (taking great care not to mix the sorts), and on the fire, as on the preceding day; but now very little more than will cover the bottom of the sieve is put in at one time, the same care of the fire is taken as before, and the same precaution of tapping the drying basket every now and then. The tea is taken off the fire with the nicest care, for fear of any particle of the tea falling into it. Whenever the drying basket is taken off, it is put on the receiver, the sieve in the drying basket taken out, the tea turned over, the sieve replaced, the tap given, and the basket placed again over the fire. As the tea becomes crisp, it is taken out and thrown into a large receiving basket, until all the quantity on hand has become alike dried and crisp; from which basket it is again removed into the drying basket, but now in much larger quantities. It is then piled up eight and ten inches high on the sieve in the drying basket; in the centre a small passage is left for the hot air to ascend; the fire that was before bright and clear, has now ashes thrown on it to deaden its effect, and the shakings that have been collected are put on the top of all; the tap is given, and the basket with the greatest care is put over the fire. Another basket is placed over the whole, to throw back any heat that may ascend. Now and then it is taken off, and put on the receiver; the hands, with the fingers wide apart, are run down the sides of the basket to the sieve, and the tea gently turned over, the passage in the centre again made, &c., and the basket again placed on the fire. It is from time to time examined, and when the leaves have become so crisp that they break by the slightest pressure of the fingers, it is taken off, when the tea is ready. All the different kinds of leaves underwent the same operation. The tea is now little by little put into boxes, and first pressed down with the hands and then with the feet (clean stockings having been previously put on).There is a small room inside of the tea-house, 7 cubits square and 5 high, having bamboos laid across on the top to support a net work of bamboo, and the sides of the room smeared with mud to exclude the air. When there is wet weather, and the leaves cannot be dried in the sun, they are laid out on the top of this room, on the network, on an iron pan, the same as is used to heat the leaves; some fire is put into it, either of grass or bamboo, so that the flame may ascend high; the pan is put on a square wooden frame, that has wooden rollers on its legs, and pushed round and round this little room by one man, while another feeds the fire, the leaves on the top being occasionally turned; when they are a little withered, the fire is taken away, and the leaves brought down and manufactured into tea, in the same manner as if it had been dried in the sun. But this is not a good plan, and never had recourse to, if it can possibly be avoided.Tea imported into the United Kingdom, in 1836, 49,307,701 lbs.; in 1837, 36,765,735 lbs. Retained for home consumption, in 1836, 49,841,507 lbs.; in 1837, 31,872 lbs. Duty received, in 1836,£4,728,600; in 1837,£3,319,665.
TEA,green, contains 34·6 parts of tannin, 5·9 of gum, 5·7 of vegetable albumine, 51·3 of ligneous fibre, with 2·5 of loss; andblacktea contains 40·6 of tannin, 6·3 of gum, 6·4 of vegetable albumine, 44·8 of ligneous fibre, with 2 of loss. The ashes contain silica, carbonate of lime, magnesia, and chloride of potassium.—Frank.Davy obtained 32·5 of extract from Souchong tea; of which 10 were precipitated by gelatine. He found 8·5 only of tannin in green tea. The latter chemist is most to be depended upon. Chemical analysis has not yet discovered that principle in tea, to which its exciting property is due.
The Chinese method of making Black Tea in Upper Assam.[67]—In the first place, the youngest and most tender leaves are gathered; but when there are many hands and a great quantity of leaves to be collected, the people employed nip off with the forefinger and thumb the fine end of the branch with about four leaves on, and sometimes even more, if they look tender. These are all brought to the place where they are to be converted into tea; they are then put into a large, circular, open-worked bamboo basket, having a rim all round, two fingers broad. The leaves are thinly scattered in these baskets, and then placed in a framework of bamboo, in all appearance like the side of an Indian hut without grass, resting on posts, 2 feet from the ground, with an angle of about 25°. The baskets with leaves are put in this frame to dry in the sun, and are pushed up and brought down by a long bamboo with a circular piece of wood at the end. The leaves are permitted to dry about two hours, being occasionally turned; but the time required for this process depends on the heat of the sun. When they begin to have a slightly withered appearance, they are taken down and brought into the house, where they are placed on a frame to cool for half an hour. They are then put into smaller baskets of the same kind as the former, and placed on a stand. People are now employed to soften the leaves still more, by gently clapping them between their hands, with their fingers and thumb extended, and tossing them up and letting them fall, for about five or ten minutes. They are then again put on the frame during half an hour, and brought down and clapped with the hands as before. This is done three successive times, until the leaves become to the touch like soft leather; the beating and putting away being said to give the tea the black colour and bitter flavour. After this the tea is put into hot cast-iron pans, which are fixed in a circular mud fireplace, so that the flame cannot ascend round the pan to incommode the operator. This pan is well heated by a straw or bamboo fire to a certain degree. About two pounds of the leaves are then put into each hot pan, and spread in such a manner that all the leaves may get the same degree of heat. They are every now and then briskly turned with the naked hand, to prevent a leaf from being burnt. When the leaves become inconveniently hot to the hand, they are quickly taken out and delivered to another man with a close-worked bamboo basket ready to receive them. A few leaves that may have been left behind are smartly brushed out with a bamboo broom; all this time a brisk fire is kept up under the pan. After the pan has been used in this manner three or four times, a bucket of cold water is thrown in, and a soft brickbat and bamboo broom used, to give it a good scouring out; the water is thrown out of the pan by the brush on one side, the pan itself being never taken off. The leaves, all hot on the bamboo basket, are laid on a table that has a narrow rim on its back, to prevent these baskets from slipping off when pushed against it. The two pounds of hot leaves are now divided into two or three parcels, and distributed to as many men, who stand up to the table with the leaves right before them, and each placing his legs close together; the leaves are next collected into a ball, which he gently grasps in his left hand, with the thumb extended, the fingers close together, and the hand resting on the little finger. The right hand must be extended in the same manner as the left, but with the palm turned downwards, resting on the top of the ball of tea leaves. Both hands are now employed to roll and propel the ball along; the left hand pushing it on, and allowing it to revolve as it moves; the right hand also pushes it forward, resting on it with some force, and keeping it down to express the juice which the leaves contain. The art lies here in giving the ball a circular motion, and permitting it to turn under and in the hand two or three whole revolutions, before the arms are extended to their full length, and drawing the ball of leaves quickly back without leaving a leaf behind, being rolled for about five minutes in this way. The ball of tea leaves is from time to time gently and delicately opened with the fingers, lifted as high as the face, and then allowed to fall again. This is done two or three times, to separate the leaves; and afterwards the basket with the leaves is lifted up as often, and receives a circular shake to bring these towards the centre. The leaves are now taken back to the hot pans, and spread out in them as before, being again turned with the naked hand, and when hot taken out and rolled; after which they are put into the drying basket, and spread on a sieve which is in the centre of the basket, and the whole placed over a charcoal fire. The fire is very nicely regulated; there must not be the least smoke, and the charcoal should be well picked.
[67]By C. A. Bruce, superintendent of tea culture.
[67]By C. A. Bruce, superintendent of tea culture.
When the fire is lighted, it is fanned until it gets a fine red glare, and the smoke is all gone off; being every now and then stirred and the coals brought into the centre, so as to leave the outer edge low. When the leaves are put into the drying basket, they are gently separated by lifting them up with the fingers of both hands extended far apart, and allowing them to fall down again; they are placed 3 or 4 inches deep on the sieve, leaving a passage in the centre for the hot air to pass. Before it is put over the fire, the drying basket receives a smart slap with both hands in the act of lifting it up, which is done to shake down any leaves that might otherwise drop through the sieve, or to preventthem from falling into the fire and occasioning a smoke, which would affect and spoil the tea. This slap on the basket is invariably applied throughout the stages of the tea manufacture. There is always a large basket underneath to receive the small leaves that fall, which are afterwards collected, dried, and added to the other tea; in no case are the baskets or sieves permitted to touch or remain on the ground, but always laid on a receiver with three legs. After the leaves have been half dried in the drying basket, and while they are still soft, they are taken off the fire and put into large open-worked baskets, and then put on the shelf, in order that the tea may improve in colour.
Next day the leaves are all sorted into large, middling, and small; sometimes there are four sorts. All these, the Chinese informed me, become so many different kinds of teas; the smallest leaves they called Pha-ho, the second Pow-chong, the third Su-chong, and the fourth, or the largest leaves, Toy-chong. After this assortment they are again put on the sieve in the drying basket (taking great care not to mix the sorts), and on the fire, as on the preceding day; but now very little more than will cover the bottom of the sieve is put in at one time, the same care of the fire is taken as before, and the same precaution of tapping the drying basket every now and then. The tea is taken off the fire with the nicest care, for fear of any particle of the tea falling into it. Whenever the drying basket is taken off, it is put on the receiver, the sieve in the drying basket taken out, the tea turned over, the sieve replaced, the tap given, and the basket placed again over the fire. As the tea becomes crisp, it is taken out and thrown into a large receiving basket, until all the quantity on hand has become alike dried and crisp; from which basket it is again removed into the drying basket, but now in much larger quantities. It is then piled up eight and ten inches high on the sieve in the drying basket; in the centre a small passage is left for the hot air to ascend; the fire that was before bright and clear, has now ashes thrown on it to deaden its effect, and the shakings that have been collected are put on the top of all; the tap is given, and the basket with the greatest care is put over the fire. Another basket is placed over the whole, to throw back any heat that may ascend. Now and then it is taken off, and put on the receiver; the hands, with the fingers wide apart, are run down the sides of the basket to the sieve, and the tea gently turned over, the passage in the centre again made, &c., and the basket again placed on the fire. It is from time to time examined, and when the leaves have become so crisp that they break by the slightest pressure of the fingers, it is taken off, when the tea is ready. All the different kinds of leaves underwent the same operation. The tea is now little by little put into boxes, and first pressed down with the hands and then with the feet (clean stockings having been previously put on).
There is a small room inside of the tea-house, 7 cubits square and 5 high, having bamboos laid across on the top to support a net work of bamboo, and the sides of the room smeared with mud to exclude the air. When there is wet weather, and the leaves cannot be dried in the sun, they are laid out on the top of this room, on the network, on an iron pan, the same as is used to heat the leaves; some fire is put into it, either of grass or bamboo, so that the flame may ascend high; the pan is put on a square wooden frame, that has wooden rollers on its legs, and pushed round and round this little room by one man, while another feeds the fire, the leaves on the top being occasionally turned; when they are a little withered, the fire is taken away, and the leaves brought down and manufactured into tea, in the same manner as if it had been dried in the sun. But this is not a good plan, and never had recourse to, if it can possibly be avoided.
Tea imported into the United Kingdom, in 1836, 49,307,701 lbs.; in 1837, 36,765,735 lbs. Retained for home consumption, in 1836, 49,841,507 lbs.; in 1837, 31,872 lbs. Duty received, in 1836,£4,728,600; in 1837,£3,319,665.
TEASEL, the head of the thistle (Dipsacus), is employed to raise the nap of cloth. SeeWoollen Manufacture.
TEASEL, the head of the thistle (Dipsacus), is employed to raise the nap of cloth. SeeWoollen Manufacture.
TEETH. SeeBones.
TEETH. SeeBones.
TELLURIUM, is a metal, too rare and high-priced to be used in the arts.
TELLURIUM, is a metal, too rare and high-priced to be used in the arts.
TERRA-COTTA, literally baked clay, is the name given to statues, architectural decorations, figures, vases, &c., modelled or cast in a paste made of pipe or potter’s clay and a fine-grained colourless sand, from Ryegate, with pulverized potsherds, slowly dried in the air, and afterwards fired to a stony hardness in a proper kiln. SeeStone, artificial.
TERRA-COTTA, literally baked clay, is the name given to statues, architectural decorations, figures, vases, &c., modelled or cast in a paste made of pipe or potter’s clay and a fine-grained colourless sand, from Ryegate, with pulverized potsherds, slowly dried in the air, and afterwards fired to a stony hardness in a proper kiln. SeeStone, artificial.
TERRA DI SIENA, is a brown ferruginous ochre, employed in painting.
TERRA DI SIENA, is a brown ferruginous ochre, employed in painting.
TESTS, are chemical reagents of any kind, which indicate, by special characters, the nature of any substance, simple or compound. SeeAssay, the several metals, acids, &c.
TESTS, are chemical reagents of any kind, which indicate, by special characters, the nature of any substance, simple or compound. SeeAssay, the several metals, acids, &c.
Weaving patternsTEXTILE FABRICS. The first business of the weaver is to adapt those parts of his loom which move the warp, to the formation of the various kinds of ornamental figures which the cloth is intended to exhibit. This subject is called thedraught, drawing or reading in, and the cording of looms. In every species of weaving, whether direct or cross, the whole difference of pattern or effect is produced, either by the succession in which thethreads of warp are introduced into the heddles, or by the succession in which those heddles are moved in the working. The heddles being stretched between two shafts of wood, all the heddles connected by the same shafts are called a leaf; and as the operation of introducing the warp into any number of leaves is called drawing a warp, the plan of succession is called the draught. When this operation has been performed correctly, the next part of the weaver’s business is to connect the different leaves with the levers or treddles by which they are to be moved, so that one or more may be raised or sunk by every treddle successively, as may be required to produce the peculiar pattern. These connections being made by coupling the different parts of the apparatus by cords, this operation is called the cording. In order to direct the operator in this part of his business, especially if previously unacquainted with the particular pattern upon which he is employed, plans are drawn upon paper, specimens of which will be found infigs.1103,1104., &c. These plans are horizontal sections of a loom, the heddles being represented across the paper ata, and the treddles under them, and crossing them at right angles, atb. Infigs.1103.and1104.they are represented as if they were distinct pieces of wood, those across being the under shaft of each leaf of heddles, and those at the left hand the treddles. SeeWeaving. In actual weaving, the treddles are placed at right angles to the heddles, the sinking cords descending perpendicularly as nearly as possible to the centre of the latter. Placing them at the left hand, therefore, is only for ready inspection, and for practical convenience. Atca few threads of warp are shown as they pass through the heddles, and the thick lines denote the leaf with which each thread is connected. Thus, infig.1103., the right-hand thread, next toa, passes through the eye of a heddle upon the back leaf, and is disconnected with all the other leaves; the next thread passes through a heddle on the second leaf; the third, through the third leaf; the fourth, through the fourth leaf; and the fifth, through the fifth or front leaf. One set of the draught being now completed, the weaver recommences with the back leaf, and proceeds in the same succession again to the front. Two sets of the draught are represented in thisfigure, and the same succession, it is understood by weavers (who seldom draw more than one set), must be repeated until all the warp is included. When they proceed to apply the cords, the right-hand part of the plan atbserves as a guide. In all the plans shown by these figures, excepting one which shall be noticed, a connexion must be formed, by cording, between every leaf of heddles and every treddle; for all the leaves must either rise or sink. The raising motion is effected by coupling the leaf to one end of its correspondent top lever; the other end of this lever is tied to the long march below, and this to the treddle. The sinking connexion is carried directly from under the leaf to the treddle. To direct a weaver which of these connexions is to be formed with each treddle, a black spot is placed when a leaf is to be raised, where the leaf and treddle intersect each other upon the plan, and the sinking connexions are left blank. For example, to cord, the treddle 1, to the back leaf, put a raising cord, and to each of the other four, sinking cords; for the treddle 2, raise the second leaf, and sink the remaining four, and so of the rest; the spot always denoting the leaf or leaves to be raised. Thefigs.1103.and1104.are drawn for the purpose of rendering the general principle of this kind of plans familiar to those who have not been previously acquainted with them; but those who have been accustomed to manufacture and weave ornamented cloths, never consume time by representing either heddles or treddles as solid or distinct bodies. They content themselves with ruling a number of lines across a piece of paper, sufficient to make the intervals between these lines represent the number of leaves required. Upon these intervals, they merely mark the succession of the draught, without producing every line to resemble a thread of warp. At the left hand, they draw as many lines across the former as will afford an interval for each treddle; and in the squares produced by the intersections of these lines, they place the dots, spots, or ciphers which denote the raising cords. It is also common to continue the cross lines which denote the treddle a considerable length beyond the intersections, and to mark by dots, placed diagonally in the intervals, the order or succession in which the treddles are to be pressed down in weaving. The former of these modes has been adopted in the remainingfigs.to1112.; but to save room, the latter has been avoided, and the succession marked by the order of the figures under the intervals which denote the treddles.Some explanation of the various kinds of fanciful cloths represented by these plans, may serve further to illustrate this subject, which is, perhaps, the most important of any connected with the manufacture of cloth, and will also enable a person who thoroughly studies them, readily to acquire a competent knowledge of the other varieties in weaving,which are boundless.Figs.1103.and1104.represent the draught and cording of the two varieties of tweeled cloth wrought with five leaves of heddles. The first is the regular or run tweel, which, as every leaf rises in regular succession, while the rest are sunk, interweaves the warp and woof only at every fifth interval, and as the succession is uniform, the cloth when woven, presents the appearance of parallel diagonal lines, at an angle of about 45° over the whole surface. A tweel may have the regularity of its diagonal lines broken by applying the cording as infig.1104.It will be observed, that in both figures the draught of the warp is precisely the same, and that the whole difference of the two plans consists in the order of placing the spots denoting the raising cords, the first being regular and successive, and the second alternate.Weaving patternsFigs.1105.and1106.are the regular and broken tweels which may be produced with eight leaves. This properly is the tweel denominated satin in the silk manufacture, although many webs of silk wrought with only five leaves receive that appellation. Some of the finest Florentine silks are tweeled with sixteen leaves. When the broken tweel of eight leaves is used, the effect is much superior to what could be produced by a smaller number; for in this, two leaves are passed in every interval, which gives a much nearer resemblance to plain cloth than the others. For this reason it is preferred in weaving the finest damasks. The draught of the eight-leaf tweel differs in nothing from the others, excepting in the number of leaves. The difference of the cording in the broken tweel, will appear by inspecting the cyphers which mark the raising cords, and comparing them with those of the broken tweel of five leaves.Fig.1107.represents the draught and cording of striped dimity of a tweel of five leaves. This is the most simple species of fanciful tweeling. It consists of ten leaves, or double the number of the common tweel. These ten leaves are moved by only five treddles, in the same manner as a common tweel. The stripe is formed by one set, of the leaves flushing the warp, and the other set, the woof. The figure represents a stripe formed by ten threads, alternately drawn through each of the two sets of leaves. In this case, the stripe and the intervals will be equally broad, and what is the stripe upon one side of the cloth, will be the interval upon the other, andvice versâ. But great variety of patterns may be introduced by drawing the warp in greater or smaller portions through either set. The tweel is of the regular kind, but may be broken by placing the cording as infig.1104.It will be observed that the cording-marks of the lower or front leaves are exactly the converse of the other set; for where a raising mark is placed upon one, it is marked for sinking in the other; that is to say, the mark is omitted; and all leaves which sink in the one, are marked for raising in the other: thus, one thread rises in succession in the back set, and four sink; but in the front set, four rise, and only one sinks. The woof, of course, passing over the four sunk threads, and under the raised one, in the first instance, is flushed above; but where the reverse takes place, as in the second, it is flushed below; and thus the appearance of a stripe is formed. The analogy subsisting between striped dimity and dornock, is so great, that before noticing the plan for fancy dimity, it may be proper to allude to the dornock, the plan of which is represented byfig.1108.The draught of dornock is precisely the same in every respect with that of striped dimity. It also consists of two sets of tweeling-heddles, whether three, four, or five leaves are used for each set. The right-hand set of treddles is also corded exactly in the same way, as will appear by comparing them. But as the dimity is a continued stripe from the beginning to the end of the web, only five treddles are required to move ten leaves. The dornock being checker-work, the weaver must possess the power of reversing this at pleasure. He therefore adds five more treddles, the cording of which is exactly the reverse of the former; that is to say, the back leaves, in the former case, having one leaf raised, and four sunk, have, by working with these additional treddles, one leaf sunk and four leaves raised. The front leaves are in the same manner reversed, and the mounting is complete. So long as the weaver continues to work with either set, a stripe will be formed, as in the dimity; but when he changes his feet from one setto the other, the whole effect is reversed, and the checkers formed. The dornock pattern upon the design-paper,fig.1108., may be thus explained: let every square of the design represent five threads upon either set of the heddles, which are said by weavers to be once over the draught, supposing the tweel to be one of five leaves; draw three parallel lines, as under, to form two intervals, each representing one of the sets; the draught will then be as follows:—41411414411144The above is exactly so much of the pattern as is there laid down, to show its appearance; but one whole range of the pattern is completed by the figure 1, nearest to the right hand upon the lower interval between the lines, and the remaining figures, nearer to the right, form the beginning of a second range or set. These are to be repeated in the same way across the whole warp. The lower interval represents the five front leaves; the upper interval, the five back ones. The first figure 4, denotes that five threads are to be successively drawn upon the back leaves, and this operation repeated four times. The first figure 4, in the lower interval, expresses that the same is to be done upon the front leaves; and each figure, by its diagonal position, shows how often, and in what succession, five threads are to be drawn upon the leaves which the interval in which it is placed represents.Dornocks of more extensive patterns are sometimes woven with 3, 4, 5, and even 6 sets of leaves; but after the leaves exceed 15 in number, they both occupy an inconvenient space, and are very unwieldy to work. For these reasons the diaper harness is in almost every instance preferred.Weaving patternFig.1109.represents the draught and cording of a fanciful species of dimity, in which it will be observed that the warp is not drawn directly from the back to the front leaf, as in the former examples; but when it has arrived at either external leaf, the draught is reversed, and returns gradually to the other. The same draught is frequently used in tweeling, when it is wished that the diagonal lines should appear upon the cloth in a zigzag direction. This plan exhibits the draught and cording which will produce the pattern upon the design-paper infig.1103.a. Were all the squares produced by the intersection of the lines denoting the leaves and treddles, where the raised dots are placed, filled the same as on the design, they would produce the effect of exactly one-fourth of that pattern. This is caused by the reversing of the draught, which gives the other side reversed as on the design; and when all the treddles, from 1 to 16, have been successively used in the working, one-half of the pattern will become complete. The weaver then goes again over his treddles, in the reversed order of the numbers, from 17 to 30, when the other half of the pattern will be completed. From this similarity of the cording to the design, it is easy, when a design is given, to make out the draught and cording proper to work it; and when the cording is given, to see its effect upon the design.Weaving patternFig.1110.represents the draught of the diaper mounting, and the cording of the front leaves, which are moved by treddles. From the plan, it will appear that 5 threads are included in every mail of the harness, and that these are drawn in single threads through the front leaves. The cording forms an exception to the general rules, that when one or more leaves are raised, all the rest must be sunk; for in this instance, one leaf rises, one sinks, and three remain stationary. An additional mark, therefore, is used in this plan. The dots, as formerly, denote raising cords; the blanks, sinking cords; and where the cord is to be totally omitted, the cross marks × are placed.Weaving patternFig.1111.is the draught and cording of a spot whose two sides are similar, but reversed. That upon the plan forms a diamond, similar to the one drawn upon the design paper in the diagram, but smaller in size. The draught here is reversed, as in the dimity plan, and the treading is also to be reversed, after arriving at 6, to complete the diamond. Like it, too, the raising marks form one-fourth of the pattern. In weaving spots, they are commonly placed at intervals, with a portion of plain cloth between them, and in alternate rows, the spots of one row being between those of the other. But as intervals of plain cloth must take place, both by the warp and woof, 2 leaves are added for that purpose. The front, or ground leaf, includes every second thread of the whole warp; the second, or plain leaf, that part which forms the intervalsby the warp. The remaining leaves form the spots; the first six being allotted to one row of spots, and the second six to the next row; where each spot is in the centre between the former. The reversed draught of the first is shown entire, and is succeeded by 12 threads of plain. One-half of the draught of the next row is then given, which is to be completed exactly like the first, and succeeded by 12 threads more of plain; when, one set of the pattern being finished, the same succession is to be repeated over the whole warp. As spots are formed by inserting woof of coarser dimensions than that which forms the fabric, every second thread only is allotted for the spotting. Those included in the front, or ground leaf, are represented by lines, and the spot threads between them, by marks in the intervals, as in the other plans.The treddles necessary to work this spot are, in number, 14. Of these, the two in the centre,a,b, when pressed alternately, will produce plain cloth; forbraises the front leaf, which includes half of the warp, and sinks all the rest; whileaexactly reverses the operation. The spot-treddles on the right hand work the row contained in the first six spot-leaves; and those upon the left hand, the row contained in the second six. In working spots, one thread, or shot of spotting-woof, and two of plain, are successively inserted, by means of two separate shuttles.Weaving patternDissimilar spots, are those whose sides are quite different from each other. The draught only of these is represented byfig.1112.The cording depends entirely upon the figure.Parts lashed togetherFig.1113.represents any solid body composed of partslashedtogether. If the darkened squares be supposed to be beams of wood, connected by cordage, they will give a precise idea of textile fabric. The beams cannot come into actual contact, because, if thelashingcords were as fine even as human hairs, they must still require space. The thickness is that of one beam and one cord; but if the cords touch each other, it may then be one beam and two cords; but it is not possible in practical weaving to bring every thread of weft into actual contact. It may therefore be assumed, that the thickness is equal to the diameter of one thread of the warp, added to that of one yarn of the weft; and when these are equal, the thickness of the cloth is double of that diameter. Denser cloth would not be sufficiently pliant or flexible.Open fabricFig.1114.is a representation of a section of cloth of an open fabric, where the round dots which represent the warp are placed at a considerable distance from each other.Dense fabricFig.1115.may be supposed a plain fabric of that description which approaches the most nearly to any idea we can form of the most dense or close contact of which yarn can be made susceptible. Here the warp is supposed to be so tightly stretched in the loom as to retain entirely the parallel state, without any curvature, and the whole flexure is therefore given to the woof. This mode of weaving can never really exist; but if the warp be sufficiently strong to bear any tight stretching, and the woof be spun very soft and flexible, something very near it may be produced. This way of making cloth is well fitted for those goods which require to give considerable warmth; but they are sometimes the means of very gross fraud and imposition; for if the warp is made of very slender threads, and the woof of slackly twisted cotton or woollen yarn, where the fibrils of the stuff, being but slightly brought into contact, are rough and oozy, a great appearance of thickness and strength may be given to the eye, when the cloth is absolutely so flimsy, that it may be torn asunder as easily as a sheet of writing-paper. Many frauds of this kind are practised.Sections of clothInfig.1116.is given a representation of the position of a fabric of cloth in section, as it is in the loom before the warp has been closed upon the woof, which still appears as a straight line. This figure may usefully illustrate the direction and ratio of contraction which must unavoidably take place in every kind of cloth, according to the density of the texture, the dimensions of the threads, and the description of the cloth. LetA,B, represent one thread of woof completely stretched by the velocity of the shuttle in passing betweenthe threads of warp which are represented by the round dots 1, 2, &c., and those distinguished by 8, 9, &c. When these threads are closed by the operation of the heddles to form the inner texture, the first tendency will be to move in the direction 1b, 2b, &c., for those above, and in that of 8a, 9a, &c., for those below; but the contraction forA,B, by its deviation from a straight to a curved line, in consequence of the compression of the warp threads 1b, 2b, &c., and 1a, 2a, &c., in closing, will produce, by the action of the two powers at right angles to each other, the oblique or diagonal direction denoted by the lines 1, 8-2, 9, to the left, for the threads above, and that expressed by the lines 2, 8-3, 9, &c., to the right, for the threads below. Now, as the whole deviation is produced by the flexure of the threadA,B, ifAis supposed to be placed at the middle of the cloth, equidistant from the two extremities, orselvagesas they are called by weavers, the thread at 1 may be supposed to move really in the direction 1b, and all the others to approach to it in the directions represented, whilst those to the right would approach in the same ratio, but the line of approximation would be inverted.Fig.1117.represents that common fabric used for lawns, muslins, and the middle kind of goods, the excellence of which neither consists in the greatest strength, nor in the greatest transparency. It is entirely a medium betweenfig.1114.andfig.1115.Section of clothIn the efforts to give great strength and thickness to cloth, it will be obvious that the common mode of weaving, by constant intersection of warp and woof, although it may be perhaps the best which can be devised for the former, presents invincible obstructions to the latter, beyond a certain limit. To remedy this, two modes of weaving are in common use, which, while they add to the power of compressing a great quantity of materials in a small compass, possess the additional advantage of affording much facility for adding ornament to the superficies of the fabric. The first of these is double cloth, or two webs woven together, and joined by the operation. This is chiefly used for carpets; and its geometrical principles are entirely the same as those of plain cloth, supposing the webs to be sewed together. A section of the cloth will be found infig.1118.SeeCarpet.Tweeled fabricOf the simplest kind of tweeled fabrics, a section is given infig.1119.The great and prominent advantage of the tweeled fabric, in point of texture, arises from the facility with which a very great quantity of materials may be put closely together. In the figure, the warp is represented by the dots in the same straight line as in the plain fabrics; but if we consider the direction and ratio of contraction, upon principles similar to those laid down in the explanation given offig.1116., we shall readily discover the very different way in which the tweeled fabric is affected.When the dotted lines are drawn ata,b,c,d, their direction of contraction, instead of being upon every second or alternate thread, is only upon every fifth thread, and the natural tendency would consequently be, to bring the whole into the form represented by the lines and dotted circles ata,b,c,d. In point, then, of thickness, from the upper to the under superficies, it is evident that the whole fabric has increased in the ratio of nearly three to one. On the other hand, it will appear, that four threads or cylinders being thus put together in one solid mass, might be supposed only one thread, or like the strands of a rope before it is twisted; but, to remedy this, the thread being shifted every time, the whole forms a body in which much aggregate matter is compressed; but where, being less firmly united, the accession of strength acquired by the accumulation of materials is partially counteracted by the want of equal firmness of junction.Tweeled fabricThe second quality of the tweeled fabric,susceptibility of receiving ornament, arises from its capability of being inverted at pleasure, as infig.1120.In this figure we have, as before, four threads, and one alternately intersected; but here the four threads marked 1 and 2 are under the woof, while those marked 3 and 4 are above.Tweeled fabricFig.1121.represents that kind of tweeled work which produces an ornamental effect, and adds even to the strength of a fabric, in so far as accumulation of matter can be considered in that light. The figure represents a piece of velvet cut in section, and of that kind which, being woven upon a tweeled ground, is known by the name of Genoa velvet. 1st. Because, by combining a great quantityof material in a small compass, they afford great warmth. 2nd. From the great resistance which they oppose to external friction, they are very durable. And, 3rd. Because, from the very nature of the texture, they afford the finest means of rich ornamental decoration.The use of velvet cloths in cold weather is a sufficient proof of the truth of the first. The manufacture of plush, corduroy, and other stuffs for the dress of those exposed to the accidents of laborious employment, evinces the second; and the ornamented velvets and Wilton carpeting, are demonstrative of the third of these positions.In thefigure, the diagonal form which both the warp and woof of cloth assume, is very apparent from the smallness of the scale. Besides what this adds to the strength of the cloth, the flushed part, which appears interwoven at the darkly shaded intervals 1, 2, &c., forms, when finished, the whole covering or upper surface. The principle, in so far as regards texture, is entirely the same as any other tweeled fabric.CorduroyFig.1122., which represents corduroy, or king’s cord, is merely striped velvet. The principle is the same, and the figure shows that the one is a copy of the other. The remaining figures represent those kinds of work which are of the most flimsy and open description of texture; those in which neither strength, warmth, nor durability are much required, and of which openness and transparency are the chief recommendations.Common gauzeFig.1123.represents common gauze, orlinau, a substance very much used for various purposes. The essential difference between this description of cloth and all others, consists in the warp being turned or twisted like a rope during the operation of weaving, and hence it bears a considerable analogy tolace. The twining of gauze is not continued in the same direction, but is alternately from right to left, andvice versâ, between every intersection of the woof. The fabric of gauze is always open, flimsy, and transparent; but, from the turning of the warp, it possesses an uncommon degree of strength and tenacity in proportion to the quantity of material which it contains. This quality, together with the transparency of the fabric, renders it peculiarly adapted for ornamental purposes of various kinds, particularly for flowering or figuring, either in the loom; or by the needle. In the warp of gauze; there arises a much greater degree of contraction during the weaving, than in any other species of cloth; and this is produced by the turning. The twisting between every intersection of weft amounts precisely to one complete revolution of both threads; hence this difference exists between this and every other species of weaving, namely, that the one thread of warp is always above the woof, and the contiguous thread is always below.CatgutFig.1124.represents a section of another species of twisted cloth, which is known by the name of catgut, and which differs from the gauze only, by being subjected to a greater degree of twine in weaving; for in place of one revolution between each intersection, a revolution and a half is always given; and thus the warp is alternately above and below, as in other kinds of weaving.Whip-netFig.1125.is a superficial representation of the most simple kind of ornamental network produced in the loom. It is called a whip-net by weavers, who use the term whip for any substance interwoven in cloth for ornamental purposes, when it is distinct from the ground of the fabric. In this, the difference is merely in the crossing of the warp; for it is very evident that the crossings at 1, 2, 3, 4, and 5, are of different threads from those at 6, 7, 8, and 9.Mail-netFig.1126.represents, superficially, what is called the mail-net, and is merely a combination of common gauze and the whip-net in the same fabric. The gauze here being in the same direction as the dotted line in the former figure, the whole fabric is evidently a continued succession of right-angled triangles, of which the woof forms the basis, the gauze part the perpendiculars, and the whip part the hypothenuses. The contraction here being very different, it is necessary that the gauze and whip parts should be stretched upon separate beams.Woven birdIn order to design ornamental figures upon cloths, the lines which are drawn from thetop to the bottom of the paper may be supposed to represent the warp; and those drawn across, the woof of the web; any number of threads being supposed to be included between every two lines. The paper thus forms a double scale, by which, in the first instance, the size and form of the pattern may be determined with great precision; and the whole subsequent operations of the weaver regulated, both in mounting and working his loom. To enable the projector of a new pattern to judge properly of its effects, when transferred from the paper to the cloth, it will be essentially necessary that he should bear constantly in his view the comparative scale of magnitude which the design will bear in each, regulating his ideas always by square or superficial measurement. Thus, in the large design,fig.1127., representing a bird perched upon the branch of a tree, it will be proper, in the first place, to count the number of spaces from the point of the bill to the extremity of the tail; and to render this the more easy, it is to be observed that every tenth line is drawn considerably bolder than the others. This number in the design is 135 spaces. Counting again, from the stem of the branch to the upper part of the bird’s head, he will find 76 spaces. Between these spaces, therefore, the whole superficial measure of the pattern is contained. By the measure of the paper, this may be easily tried with a pair of compasses, and will be found to be nearly 65⁄10inches in length, by 33⁄16inches in breadth. Now, if this is to be woven in a reed containing 800 intervals in 37 inches, and if every interval contains five threads, supposed to be contained between every two parallel lines, the length will be 6·24 inches, and the breadth 3·52 inches nearly; so that the figure upon the cloth would be very nearly of the same dimensions as that upon the paper; but if a 1200 reed were used, instead of an 800, the dimensions would be proportionally contracted.A correct idea being formed of the design, the weaver may proceed to mount his loom according to the pattern; and this is done by two persons, one of whom takes from the design the instructions necessary for the other to follow in tying his cords.Table linen and handkerchiefFig.1128.is a representation of the most simple species of table-linen, which is merely an imitation of checker-work of various sizes; and is known in Scotland, where the manufacture is chiefly practised, by the name of Dornock. When a pattern is formed upon tweeled cloth, by reversing the flushing, the two sides of the fabric being dissimilar, one may be supposed to be represented by the black marks, and the other by the part of the figure which is left uncoloured. For such a pattern as this, two sets of common tweel-heddles, moved in the ordinary way, by a double succession of heddles, are sufficient. The other part offig.1128.is a design of that intermediate kind of ornamental work which is called diaper, and which partakes partly of the nature of the dornock, and partly of that of the damask and tapestry. The principle upon which all these descriptions of goods are woven is entirely the same, and the only difference is in the extent of the design, and the means by which it is executed.Fig.1129.is a design for a border of a handkerchief or napkin, which may be executed either in the manner of damask, or as the spotting is practised in the lighter fabrics.
Weaving patterns
TEXTILE FABRICS. The first business of the weaver is to adapt those parts of his loom which move the warp, to the formation of the various kinds of ornamental figures which the cloth is intended to exhibit. This subject is called thedraught, drawing or reading in, and the cording of looms. In every species of weaving, whether direct or cross, the whole difference of pattern or effect is produced, either by the succession in which thethreads of warp are introduced into the heddles, or by the succession in which those heddles are moved in the working. The heddles being stretched between two shafts of wood, all the heddles connected by the same shafts are called a leaf; and as the operation of introducing the warp into any number of leaves is called drawing a warp, the plan of succession is called the draught. When this operation has been performed correctly, the next part of the weaver’s business is to connect the different leaves with the levers or treddles by which they are to be moved, so that one or more may be raised or sunk by every treddle successively, as may be required to produce the peculiar pattern. These connections being made by coupling the different parts of the apparatus by cords, this operation is called the cording. In order to direct the operator in this part of his business, especially if previously unacquainted with the particular pattern upon which he is employed, plans are drawn upon paper, specimens of which will be found infigs.1103,1104., &c. These plans are horizontal sections of a loom, the heddles being represented across the paper ata, and the treddles under them, and crossing them at right angles, atb. Infigs.1103.and1104.they are represented as if they were distinct pieces of wood, those across being the under shaft of each leaf of heddles, and those at the left hand the treddles. SeeWeaving. In actual weaving, the treddles are placed at right angles to the heddles, the sinking cords descending perpendicularly as nearly as possible to the centre of the latter. Placing them at the left hand, therefore, is only for ready inspection, and for practical convenience. Atca few threads of warp are shown as they pass through the heddles, and the thick lines denote the leaf with which each thread is connected. Thus, infig.1103., the right-hand thread, next toa, passes through the eye of a heddle upon the back leaf, and is disconnected with all the other leaves; the next thread passes through a heddle on the second leaf; the third, through the third leaf; the fourth, through the fourth leaf; and the fifth, through the fifth or front leaf. One set of the draught being now completed, the weaver recommences with the back leaf, and proceeds in the same succession again to the front. Two sets of the draught are represented in thisfigure, and the same succession, it is understood by weavers (who seldom draw more than one set), must be repeated until all the warp is included. When they proceed to apply the cords, the right-hand part of the plan atbserves as a guide. In all the plans shown by these figures, excepting one which shall be noticed, a connexion must be formed, by cording, between every leaf of heddles and every treddle; for all the leaves must either rise or sink. The raising motion is effected by coupling the leaf to one end of its correspondent top lever; the other end of this lever is tied to the long march below, and this to the treddle. The sinking connexion is carried directly from under the leaf to the treddle. To direct a weaver which of these connexions is to be formed with each treddle, a black spot is placed when a leaf is to be raised, where the leaf and treddle intersect each other upon the plan, and the sinking connexions are left blank. For example, to cord, the treddle 1, to the back leaf, put a raising cord, and to each of the other four, sinking cords; for the treddle 2, raise the second leaf, and sink the remaining four, and so of the rest; the spot always denoting the leaf or leaves to be raised. Thefigs.1103.and1104.are drawn for the purpose of rendering the general principle of this kind of plans familiar to those who have not been previously acquainted with them; but those who have been accustomed to manufacture and weave ornamented cloths, never consume time by representing either heddles or treddles as solid or distinct bodies. They content themselves with ruling a number of lines across a piece of paper, sufficient to make the intervals between these lines represent the number of leaves required. Upon these intervals, they merely mark the succession of the draught, without producing every line to resemble a thread of warp. At the left hand, they draw as many lines across the former as will afford an interval for each treddle; and in the squares produced by the intersections of these lines, they place the dots, spots, or ciphers which denote the raising cords. It is also common to continue the cross lines which denote the treddle a considerable length beyond the intersections, and to mark by dots, placed diagonally in the intervals, the order or succession in which the treddles are to be pressed down in weaving. The former of these modes has been adopted in the remainingfigs.to1112.; but to save room, the latter has been avoided, and the succession marked by the order of the figures under the intervals which denote the treddles.
Some explanation of the various kinds of fanciful cloths represented by these plans, may serve further to illustrate this subject, which is, perhaps, the most important of any connected with the manufacture of cloth, and will also enable a person who thoroughly studies them, readily to acquire a competent knowledge of the other varieties in weaving,which are boundless.Figs.1103.and1104.represent the draught and cording of the two varieties of tweeled cloth wrought with five leaves of heddles. The first is the regular or run tweel, which, as every leaf rises in regular succession, while the rest are sunk, interweaves the warp and woof only at every fifth interval, and as the succession is uniform, the cloth when woven, presents the appearance of parallel diagonal lines, at an angle of about 45° over the whole surface. A tweel may have the regularity of its diagonal lines broken by applying the cording as infig.1104.It will be observed, that in both figures the draught of the warp is precisely the same, and that the whole difference of the two plans consists in the order of placing the spots denoting the raising cords, the first being regular and successive, and the second alternate.
Weaving patterns
Figs.1105.and1106.are the regular and broken tweels which may be produced with eight leaves. This properly is the tweel denominated satin in the silk manufacture, although many webs of silk wrought with only five leaves receive that appellation. Some of the finest Florentine silks are tweeled with sixteen leaves. When the broken tweel of eight leaves is used, the effect is much superior to what could be produced by a smaller number; for in this, two leaves are passed in every interval, which gives a much nearer resemblance to plain cloth than the others. For this reason it is preferred in weaving the finest damasks. The draught of the eight-leaf tweel differs in nothing from the others, excepting in the number of leaves. The difference of the cording in the broken tweel, will appear by inspecting the cyphers which mark the raising cords, and comparing them with those of the broken tweel of five leaves.Fig.1107.represents the draught and cording of striped dimity of a tweel of five leaves. This is the most simple species of fanciful tweeling. It consists of ten leaves, or double the number of the common tweel. These ten leaves are moved by only five treddles, in the same manner as a common tweel. The stripe is formed by one set, of the leaves flushing the warp, and the other set, the woof. The figure represents a stripe formed by ten threads, alternately drawn through each of the two sets of leaves. In this case, the stripe and the intervals will be equally broad, and what is the stripe upon one side of the cloth, will be the interval upon the other, andvice versâ. But great variety of patterns may be introduced by drawing the warp in greater or smaller portions through either set. The tweel is of the regular kind, but may be broken by placing the cording as infig.1104.It will be observed that the cording-marks of the lower or front leaves are exactly the converse of the other set; for where a raising mark is placed upon one, it is marked for sinking in the other; that is to say, the mark is omitted; and all leaves which sink in the one, are marked for raising in the other: thus, one thread rises in succession in the back set, and four sink; but in the front set, four rise, and only one sinks. The woof, of course, passing over the four sunk threads, and under the raised one, in the first instance, is flushed above; but where the reverse takes place, as in the second, it is flushed below; and thus the appearance of a stripe is formed. The analogy subsisting between striped dimity and dornock, is so great, that before noticing the plan for fancy dimity, it may be proper to allude to the dornock, the plan of which is represented byfig.1108.
The draught of dornock is precisely the same in every respect with that of striped dimity. It also consists of two sets of tweeling-heddles, whether three, four, or five leaves are used for each set. The right-hand set of treddles is also corded exactly in the same way, as will appear by comparing them. But as the dimity is a continued stripe from the beginning to the end of the web, only five treddles are required to move ten leaves. The dornock being checker-work, the weaver must possess the power of reversing this at pleasure. He therefore adds five more treddles, the cording of which is exactly the reverse of the former; that is to say, the back leaves, in the former case, having one leaf raised, and four sunk, have, by working with these additional treddles, one leaf sunk and four leaves raised. The front leaves are in the same manner reversed, and the mounting is complete. So long as the weaver continues to work with either set, a stripe will be formed, as in the dimity; but when he changes his feet from one setto the other, the whole effect is reversed, and the checkers formed. The dornock pattern upon the design-paper,fig.1108., may be thus explained: let every square of the design represent five threads upon either set of the heddles, which are said by weavers to be once over the draught, supposing the tweel to be one of five leaves; draw three parallel lines, as under, to form two intervals, each representing one of the sets; the draught will then be as follows:—
The above is exactly so much of the pattern as is there laid down, to show its appearance; but one whole range of the pattern is completed by the figure 1, nearest to the right hand upon the lower interval between the lines, and the remaining figures, nearer to the right, form the beginning of a second range or set. These are to be repeated in the same way across the whole warp. The lower interval represents the five front leaves; the upper interval, the five back ones. The first figure 4, denotes that five threads are to be successively drawn upon the back leaves, and this operation repeated four times. The first figure 4, in the lower interval, expresses that the same is to be done upon the front leaves; and each figure, by its diagonal position, shows how often, and in what succession, five threads are to be drawn upon the leaves which the interval in which it is placed represents.
Dornocks of more extensive patterns are sometimes woven with 3, 4, 5, and even 6 sets of leaves; but after the leaves exceed 15 in number, they both occupy an inconvenient space, and are very unwieldy to work. For these reasons the diaper harness is in almost every instance preferred.
Weaving pattern
Fig.1109.represents the draught and cording of a fanciful species of dimity, in which it will be observed that the warp is not drawn directly from the back to the front leaf, as in the former examples; but when it has arrived at either external leaf, the draught is reversed, and returns gradually to the other. The same draught is frequently used in tweeling, when it is wished that the diagonal lines should appear upon the cloth in a zigzag direction. This plan exhibits the draught and cording which will produce the pattern upon the design-paper infig.1103.a. Were all the squares produced by the intersection of the lines denoting the leaves and treddles, where the raised dots are placed, filled the same as on the design, they would produce the effect of exactly one-fourth of that pattern. This is caused by the reversing of the draught, which gives the other side reversed as on the design; and when all the treddles, from 1 to 16, have been successively used in the working, one-half of the pattern will become complete. The weaver then goes again over his treddles, in the reversed order of the numbers, from 17 to 30, when the other half of the pattern will be completed. From this similarity of the cording to the design, it is easy, when a design is given, to make out the draught and cording proper to work it; and when the cording is given, to see its effect upon the design.
Weaving pattern
Fig.1110.represents the draught of the diaper mounting, and the cording of the front leaves, which are moved by treddles. From the plan, it will appear that 5 threads are included in every mail of the harness, and that these are drawn in single threads through the front leaves. The cording forms an exception to the general rules, that when one or more leaves are raised, all the rest must be sunk; for in this instance, one leaf rises, one sinks, and three remain stationary. An additional mark, therefore, is used in this plan. The dots, as formerly, denote raising cords; the blanks, sinking cords; and where the cord is to be totally omitted, the cross marks × are placed.
Weaving pattern
Fig.1111.is the draught and cording of a spot whose two sides are similar, but reversed. That upon the plan forms a diamond, similar to the one drawn upon the design paper in the diagram, but smaller in size. The draught here is reversed, as in the dimity plan, and the treading is also to be reversed, after arriving at 6, to complete the diamond. Like it, too, the raising marks form one-fourth of the pattern. In weaving spots, they are commonly placed at intervals, with a portion of plain cloth between them, and in alternate rows, the spots of one row being between those of the other. But as intervals of plain cloth must take place, both by the warp and woof, 2 leaves are added for that purpose. The front, or ground leaf, includes every second thread of the whole warp; the second, or plain leaf, that part which forms the intervalsby the warp. The remaining leaves form the spots; the first six being allotted to one row of spots, and the second six to the next row; where each spot is in the centre between the former. The reversed draught of the first is shown entire, and is succeeded by 12 threads of plain. One-half of the draught of the next row is then given, which is to be completed exactly like the first, and succeeded by 12 threads more of plain; when, one set of the pattern being finished, the same succession is to be repeated over the whole warp. As spots are formed by inserting woof of coarser dimensions than that which forms the fabric, every second thread only is allotted for the spotting. Those included in the front, or ground leaf, are represented by lines, and the spot threads between them, by marks in the intervals, as in the other plans.
The treddles necessary to work this spot are, in number, 14. Of these, the two in the centre,a,b, when pressed alternately, will produce plain cloth; forbraises the front leaf, which includes half of the warp, and sinks all the rest; whileaexactly reverses the operation. The spot-treddles on the right hand work the row contained in the first six spot-leaves; and those upon the left hand, the row contained in the second six. In working spots, one thread, or shot of spotting-woof, and two of plain, are successively inserted, by means of two separate shuttles.
Weaving pattern
Dissimilar spots, are those whose sides are quite different from each other. The draught only of these is represented byfig.1112.The cording depends entirely upon the figure.
Parts lashed together
Fig.1113.represents any solid body composed of partslashedtogether. If the darkened squares be supposed to be beams of wood, connected by cordage, they will give a precise idea of textile fabric. The beams cannot come into actual contact, because, if thelashingcords were as fine even as human hairs, they must still require space. The thickness is that of one beam and one cord; but if the cords touch each other, it may then be one beam and two cords; but it is not possible in practical weaving to bring every thread of weft into actual contact. It may therefore be assumed, that the thickness is equal to the diameter of one thread of the warp, added to that of one yarn of the weft; and when these are equal, the thickness of the cloth is double of that diameter. Denser cloth would not be sufficiently pliant or flexible.
Open fabric
Fig.1114.is a representation of a section of cloth of an open fabric, where the round dots which represent the warp are placed at a considerable distance from each other.
Dense fabric
Fig.1115.may be supposed a plain fabric of that description which approaches the most nearly to any idea we can form of the most dense or close contact of which yarn can be made susceptible. Here the warp is supposed to be so tightly stretched in the loom as to retain entirely the parallel state, without any curvature, and the whole flexure is therefore given to the woof. This mode of weaving can never really exist; but if the warp be sufficiently strong to bear any tight stretching, and the woof be spun very soft and flexible, something very near it may be produced. This way of making cloth is well fitted for those goods which require to give considerable warmth; but they are sometimes the means of very gross fraud and imposition; for if the warp is made of very slender threads, and the woof of slackly twisted cotton or woollen yarn, where the fibrils of the stuff, being but slightly brought into contact, are rough and oozy, a great appearance of thickness and strength may be given to the eye, when the cloth is absolutely so flimsy, that it may be torn asunder as easily as a sheet of writing-paper. Many frauds of this kind are practised.
Sections of cloth
Infig.1116.is given a representation of the position of a fabric of cloth in section, as it is in the loom before the warp has been closed upon the woof, which still appears as a straight line. This figure may usefully illustrate the direction and ratio of contraction which must unavoidably take place in every kind of cloth, according to the density of the texture, the dimensions of the threads, and the description of the cloth. LetA,B, represent one thread of woof completely stretched by the velocity of the shuttle in passing betweenthe threads of warp which are represented by the round dots 1, 2, &c., and those distinguished by 8, 9, &c. When these threads are closed by the operation of the heddles to form the inner texture, the first tendency will be to move in the direction 1b, 2b, &c., for those above, and in that of 8a, 9a, &c., for those below; but the contraction forA,B, by its deviation from a straight to a curved line, in consequence of the compression of the warp threads 1b, 2b, &c., and 1a, 2a, &c., in closing, will produce, by the action of the two powers at right angles to each other, the oblique or diagonal direction denoted by the lines 1, 8-2, 9, to the left, for the threads above, and that expressed by the lines 2, 8-3, 9, &c., to the right, for the threads below. Now, as the whole deviation is produced by the flexure of the threadA,B, ifAis supposed to be placed at the middle of the cloth, equidistant from the two extremities, orselvagesas they are called by weavers, the thread at 1 may be supposed to move really in the direction 1b, and all the others to approach to it in the directions represented, whilst those to the right would approach in the same ratio, but the line of approximation would be inverted.Fig.1117.represents that common fabric used for lawns, muslins, and the middle kind of goods, the excellence of which neither consists in the greatest strength, nor in the greatest transparency. It is entirely a medium betweenfig.1114.andfig.1115.
Section of cloth
In the efforts to give great strength and thickness to cloth, it will be obvious that the common mode of weaving, by constant intersection of warp and woof, although it may be perhaps the best which can be devised for the former, presents invincible obstructions to the latter, beyond a certain limit. To remedy this, two modes of weaving are in common use, which, while they add to the power of compressing a great quantity of materials in a small compass, possess the additional advantage of affording much facility for adding ornament to the superficies of the fabric. The first of these is double cloth, or two webs woven together, and joined by the operation. This is chiefly used for carpets; and its geometrical principles are entirely the same as those of plain cloth, supposing the webs to be sewed together. A section of the cloth will be found infig.1118.SeeCarpet.
Tweeled fabric
Of the simplest kind of tweeled fabrics, a section is given infig.1119.
The great and prominent advantage of the tweeled fabric, in point of texture, arises from the facility with which a very great quantity of materials may be put closely together. In the figure, the warp is represented by the dots in the same straight line as in the plain fabrics; but if we consider the direction and ratio of contraction, upon principles similar to those laid down in the explanation given offig.1116., we shall readily discover the very different way in which the tweeled fabric is affected.
When the dotted lines are drawn ata,b,c,d, their direction of contraction, instead of being upon every second or alternate thread, is only upon every fifth thread, and the natural tendency would consequently be, to bring the whole into the form represented by the lines and dotted circles ata,b,c,d. In point, then, of thickness, from the upper to the under superficies, it is evident that the whole fabric has increased in the ratio of nearly three to one. On the other hand, it will appear, that four threads or cylinders being thus put together in one solid mass, might be supposed only one thread, or like the strands of a rope before it is twisted; but, to remedy this, the thread being shifted every time, the whole forms a body in which much aggregate matter is compressed; but where, being less firmly united, the accession of strength acquired by the accumulation of materials is partially counteracted by the want of equal firmness of junction.
Tweeled fabric
The second quality of the tweeled fabric,susceptibility of receiving ornament, arises from its capability of being inverted at pleasure, as infig.1120.In this figure we have, as before, four threads, and one alternately intersected; but here the four threads marked 1 and 2 are under the woof, while those marked 3 and 4 are above.
Tweeled fabric
Fig.1121.represents that kind of tweeled work which produces an ornamental effect, and adds even to the strength of a fabric, in so far as accumulation of matter can be considered in that light. The figure represents a piece of velvet cut in section, and of that kind which, being woven upon a tweeled ground, is known by the name of Genoa velvet. 1st. Because, by combining a great quantityof material in a small compass, they afford great warmth. 2nd. From the great resistance which they oppose to external friction, they are very durable. And, 3rd. Because, from the very nature of the texture, they afford the finest means of rich ornamental decoration.
The use of velvet cloths in cold weather is a sufficient proof of the truth of the first. The manufacture of plush, corduroy, and other stuffs for the dress of those exposed to the accidents of laborious employment, evinces the second; and the ornamented velvets and Wilton carpeting, are demonstrative of the third of these positions.
In thefigure, the diagonal form which both the warp and woof of cloth assume, is very apparent from the smallness of the scale. Besides what this adds to the strength of the cloth, the flushed part, which appears interwoven at the darkly shaded intervals 1, 2, &c., forms, when finished, the whole covering or upper surface. The principle, in so far as regards texture, is entirely the same as any other tweeled fabric.
Corduroy
Fig.1122., which represents corduroy, or king’s cord, is merely striped velvet. The principle is the same, and the figure shows that the one is a copy of the other. The remaining figures represent those kinds of work which are of the most flimsy and open description of texture; those in which neither strength, warmth, nor durability are much required, and of which openness and transparency are the chief recommendations.
Common gauze
Fig.1123.represents common gauze, orlinau, a substance very much used for various purposes. The essential difference between this description of cloth and all others, consists in the warp being turned or twisted like a rope during the operation of weaving, and hence it bears a considerable analogy tolace. The twining of gauze is not continued in the same direction, but is alternately from right to left, andvice versâ, between every intersection of the woof. The fabric of gauze is always open, flimsy, and transparent; but, from the turning of the warp, it possesses an uncommon degree of strength and tenacity in proportion to the quantity of material which it contains. This quality, together with the transparency of the fabric, renders it peculiarly adapted for ornamental purposes of various kinds, particularly for flowering or figuring, either in the loom; or by the needle. In the warp of gauze; there arises a much greater degree of contraction during the weaving, than in any other species of cloth; and this is produced by the turning. The twisting between every intersection of weft amounts precisely to one complete revolution of both threads; hence this difference exists between this and every other species of weaving, namely, that the one thread of warp is always above the woof, and the contiguous thread is always below.
Catgut
Fig.1124.represents a section of another species of twisted cloth, which is known by the name of catgut, and which differs from the gauze only, by being subjected to a greater degree of twine in weaving; for in place of one revolution between each intersection, a revolution and a half is always given; and thus the warp is alternately above and below, as in other kinds of weaving.
Whip-net
Fig.1125.is a superficial representation of the most simple kind of ornamental network produced in the loom. It is called a whip-net by weavers, who use the term whip for any substance interwoven in cloth for ornamental purposes, when it is distinct from the ground of the fabric. In this, the difference is merely in the crossing of the warp; for it is very evident that the crossings at 1, 2, 3, 4, and 5, are of different threads from those at 6, 7, 8, and 9.
Mail-net
Fig.1126.represents, superficially, what is called the mail-net, and is merely a combination of common gauze and the whip-net in the same fabric. The gauze here being in the same direction as the dotted line in the former figure, the whole fabric is evidently a continued succession of right-angled triangles, of which the woof forms the basis, the gauze part the perpendiculars, and the whip part the hypothenuses. The contraction here being very different, it is necessary that the gauze and whip parts should be stretched upon separate beams.
Woven bird
In order to design ornamental figures upon cloths, the lines which are drawn from thetop to the bottom of the paper may be supposed to represent the warp; and those drawn across, the woof of the web; any number of threads being supposed to be included between every two lines. The paper thus forms a double scale, by which, in the first instance, the size and form of the pattern may be determined with great precision; and the whole subsequent operations of the weaver regulated, both in mounting and working his loom. To enable the projector of a new pattern to judge properly of its effects, when transferred from the paper to the cloth, it will be essentially necessary that he should bear constantly in his view the comparative scale of magnitude which the design will bear in each, regulating his ideas always by square or superficial measurement. Thus, in the large design,fig.1127., representing a bird perched upon the branch of a tree, it will be proper, in the first place, to count the number of spaces from the point of the bill to the extremity of the tail; and to render this the more easy, it is to be observed that every tenth line is drawn considerably bolder than the others. This number in the design is 135 spaces. Counting again, from the stem of the branch to the upper part of the bird’s head, he will find 76 spaces. Between these spaces, therefore, the whole superficial measure of the pattern is contained. By the measure of the paper, this may be easily tried with a pair of compasses, and will be found to be nearly 65⁄10inches in length, by 33⁄16inches in breadth. Now, if this is to be woven in a reed containing 800 intervals in 37 inches, and if every interval contains five threads, supposed to be contained between every two parallel lines, the length will be 6·24 inches, and the breadth 3·52 inches nearly; so that the figure upon the cloth would be very nearly of the same dimensions as that upon the paper; but if a 1200 reed were used, instead of an 800, the dimensions would be proportionally contracted.
A correct idea being formed of the design, the weaver may proceed to mount his loom according to the pattern; and this is done by two persons, one of whom takes from the design the instructions necessary for the other to follow in tying his cords.
Table linen and handkerchief
Fig.1128.is a representation of the most simple species of table-linen, which is merely an imitation of checker-work of various sizes; and is known in Scotland, where the manufacture is chiefly practised, by the name of Dornock. When a pattern is formed upon tweeled cloth, by reversing the flushing, the two sides of the fabric being dissimilar, one may be supposed to be represented by the black marks, and the other by the part of the figure which is left uncoloured. For such a pattern as this, two sets of common tweel-heddles, moved in the ordinary way, by a double succession of heddles, are sufficient. The other part offig.1128.is a design of that intermediate kind of ornamental work which is called diaper, and which partakes partly of the nature of the dornock, and partly of that of the damask and tapestry. The principle upon which all these descriptions of goods are woven is entirely the same, and the only difference is in the extent of the design, and the means by which it is executed.Fig.1129.is a design for a border of a handkerchief or napkin, which may be executed either in the manner of damask, or as the spotting is practised in the lighter fabrics.