CHAPTER XI.

Fig. 106.Valley of the Mississippi.1. Alluvium.2. Loess.3.f. Eocene.4. Cretaceous.

Fig. 106.

Valley of the Mississippi.

I have endeavoured to show that the deposits forming the delta and alluvial plain of the Mississippi consist of sedimentary matter, extending over an area of 30,000 square miles, and known in some parts to be several hundred feet deep. Although we cannot estimate correctly how many years it may have required for the river to bring down from the upper country so large a quantity of earthy matter—the data for such a computation being as yet incomplete—we may still approximate to a minimum of the time which such an operation must have taken, by ascertaining experimentally the annual discharge of water by the Mississippi, and the mean annual amount of solid matter contained in its waters. The lowest estimate of the time required would lead us to assign a high antiquity, amounting to many tens ofthousands of years to the existing delta, the origin of which is nevertheless an event of yesterday when contrasted with those terraces,c, andd e,fig. 106., formed of the loam No. 2. above mentioned. These materials of the bluffsaanddwere produced, the reader will observe, during the first part of that great oscillation of level which depressed to a depth of 200 feet a larger area than the modern delta and plain of the Mississippi, and then restored the region to its former position.[117-A]

Loess of the Valley of the Rhine.—A similar succession of geographical changes, attended by the production of a fluviatile formation, singularly resembling that which bounds the great plain of the Mississippi, seems to have occurred in the hydrographical basin of the Rhine, since the time when that basin had already acquired its present outline of hill and valley. I allude to the deposit provincially termedloessin part of Germany, orlehmin Alsace, filled with land and freshwater shells of existing species. It is a finely comminuted sand or pulverulent loam of a yellowish grey colour, consisting chiefly of argillaceous matter combined with a sixth part of carbonate of lime, and a sixth of quartzose and micaceous sand. It often contains calcareous sandy concretions or nodules, rarely exceeding the size of a man's head. Its entire thickness amounts, in some places, to between 200 and 300 feet; yet there are often no signs of stratification in the mass, except here and there at the bottom, where there is occasionally a slight intermixture of drifted materials derived from subjacent rocks. Unsolidified as it is, and of so perishable a nature, that every streamlet flowing over it cuts out for itself a deep gully, it usually terminates in a vertical cliff, from the surface of which land shells are seen here and there to project in relief. In all these features it presents a precise counterpart to the loess of the Mississippi. It is so homogeneous as generally to exhibit no signs of stratification, owing, probably, to its materials having been derived from a common source, and having been accumulated by a uniform action. Yet it displays in some few places decided marks of successive deposition, where coarser and finer materials alternate, especially near the bottom. Calcareous concretions, also enclosing land-shells, are sometimes arranged in horizontal layers. It is a remarkable deposit, from its position, wide extent, and thickness, its homogeneous mineral composition, and freshwater origin. Its distribution clearly shows that after the great valley of the Rhine, from Schaffhausen to Bonn, had acquired its present form, having its bottom strewed over with coarse gravel, a period arrived when it became filled up from side to side with fine mud, which was also thrown down in the valleys of the principal tributaries of the Rhine.

Thus, for example, it may be traced far into Würtemberg, up the valley of the Neckar, and from Frankfort, up the valley of the Main, to above Dettelbach. I have also seen it spreading over the country of Mayence, Eppelsheim, and Worms, on the left bank of the Rhine, and on the opposite side on the table-land above the Bergstrasse, betweenWiesloch and Bruchsal, where it attains a thickness of 200 feet. Near Strasburg, large masses of it appear at the foot of the Vosges on the left bank, and at the base of the mountains of the Black Forest on the right bank. The Kaiserstuhl, a volcanic mountain which stands in the middle of the plain of the Rhine near Freiburg, has been covered almost everywhere with this loam, as have the extinct volcanos between Coblentz and Bonn. Near Andernach, in the Kirchweg, the loess containing the usual shells alternates with volcanic matter; and over the whole are strewed layers of pumice, lapilli, and volcanic sand, from 10 to 15 feet thick, very much resembling the ejections under which Pompeii lies buried. There is no passage at this upper junction from the loess into the pumiceous superstratum; and this last follows the slope of the hill, just as it would have done had it fallen in showers from the air on a declivity partly formed of loess.

But, in general, the loess overlies all the volcanic products, even those between Neuwied and Bonn, which have the most modern aspect; and it has filled up in part the crater of the Roderberg, an extinct volcano near Bonn. In 1833 a well was sunk at the bottom of this crater, through 70 feet of loess, in part of which were the usual calcareous concretions.

The interstratification above alluded to, of loess with layers of pumice and volcanic ashes, has led to the opinion that both during and since its deposition some of the last volcanic eruptions of the Lower Eifel have taken place. Should such a conclusion be adopted, we should be called upon to assign a very modern date to these eruptions. This curious point, therefore, deserves to be reconsidered; since it may possibly have happened that the waters of the Rhine, swollen by the melting of snow and ice, and flowing at a great height through a valley choked up with loess, may have swept away the loose superficial scoriæ and pumice of the Eifel volcanos, and spread them out occasionally over the yellow loam. Sometimes, also, the melting of snow on the slope of small volcanic cones may have given rise to local floods, capable of sweeping down light pumice into the adjacent low grounds.

The first idea which has occurred to most geologists, after examining the loess between Mayence and Basle, is to imagine that a great lake once extended throughout the valley of the Rhine between those two places. Such a lake may have sent off large branches up the course of the Main, Neckar, and other tributary valleys, in all of which large patches of loess are now seen. The barrier of the lake might be placed somewhere in the narrow and picturesque gorge of the Rhine between Bingen and Bonn. But this theory fails altogether to explain the phenomena; when we discover that that gorge itself has once been filled with loess, which must have been tranquilly deposited in it, as also in the lateral valley of the Lahn, communicating with the gorge. The loess has also overspread the high adjoining platform near the village of Plaidt above Andernach. Nay, on proceeding farther down to the north, we discover that thehills which skirt the great valley between Bonn and Cologne have loess on their flanks, which also covers here and there the gravel of the plain as far as Cologne, and the nearest rising grounds.

Besides these objections to the lake theory, the loess is met with near Basle, capping hills more than 1200 feet above the sea; so that a barrier of land capable of separating the supposed lake from the ocean would require to be, at least, as high as the mountains called the Siebengebirge, near Bonn, the loftiest summit of which, the Oehlberg, is 1209 feet above the Rhine and 1369 feet above the sea. It would be necessary, moreover, to place this lofty barrier somewhere below Cologne, or precisely where the level of the land is now lowest.

Instead, therefore, of supposing one continuous lake of sufficient extent and depth to allow of the simultaneous accumulation of the loess, at various heights, throughout the whole area where it now occurs, I formerly suggested that, subsequently to the period when the countries now drained by the Rhine and its tributaries had nearly acquired their actual form and geographical features, they were again depressed gradually by a movement like that now in progress on the west coast of Greenland.[119-A]In proportion as the whole district was lowered, the general fall of the waters between the Alps and the ocean was lessened; and both the main and lateral valleys, becoming more subject to river inundations, were partially filled up with fluviatile silt, containing land and freshwater shells. When a thickness of many hundred feet of loess had been thrown down slowly by this operation, the whole region was once more upheaved gradually. During this upward movement most of the fine loam would be carried off by the denuding power of rains and rivers; and thus the original valleys might have been re-excavated, and the country almost restored to its pristine state, with the exception of some masses and patches of loess such as still remain, and which, by their frequency and remarkable homogeneousness of composition and fossils, attest the ancient continuity and common origin of the whole. By imagining these oscillations of level, we dispense with the necessity of erecting and afterwards removing a mountain barrier sufficiently high to exclude the ocean from the valley of the Rhine during the period of the accumulation of the loess.

The proportion of land shells of the generaHelix,Pupa, andBulimus, is very large in the loess; but in many places aquatic species of the generaLymnea,Paludina, andPlanorbisare also found. These may have been carried away during floods from shallow pools and marshes bordering the river; and the great extent of marshy ground caused by the wide overflowings of rivers above supposed would favour the multiplication of amphibious mollusks, such as theSuccinea(fig. 107.), which is almost everywhere characteristic of this formation, and is sometimes accompanied, as near Bonn, by another species,S. amphibia(fig. 34.p. 29.). Among other abundantfossils areHelix plebeiumandPupa muscorum. (See Figures.) Both the terrestrial and aquatic shells preserved in the loess are of most fragile and delicate structure, and yet they are almost invariably perfect and uninjured. They must have been broken to pieces had they been swept along by a violent inundation. Even the colour of some of the land shells, as that ofHelix nemoralis, is occasionally preserved.

Fig. 107.Succinea elongata.

Fig. 107.

Succinea elongata.

Fig. 108.Pupa muscorum.

Fig. 108.

Pupa muscorum.

Fig. 109.Helix plebeium.

Fig. 109.

Helix plebeium.

Bones of vertebrated animals are rare in the loess, but those of the mammoth, horse, and some other quadrupeds have been met with. At the village of Binningen, and the hills called Bruderholz, near Basle, I found the vertebræ of fish, together with the usual shells. These vertebræ, according to M. Agassiz, belong decidedly to the Shark family, perhaps to the genusLamna. In explanation of their occurrence among land and freshwater shells, it may be stated that certain fish of this family ascend the Senegal, Amazon, and other great rivers, to the distance of several hundred miles from the ocean.[120-A]

At Cannstadt, near Stuttgart, in a valley also belonging to the hydrographical basin of the Rhine, I have seen the loess pass downwards into beds of calcareous tuff and travertin. Several valleys in northern Germany, as that of the Ilm at Weimar, and that of the Tonna, north of Gotha, exhibit similar masses of modern limestone filled with recent shells of the generaPlanorbis,Lymnea,Paludina, &c., from 50 to 80 feet thick, with a bed of loess much resembling that of the Rhine, occasionally incumbent on them. In these modern limestones used for building, the bones ofElephas primigenius,Rhinoceros tichorinus,Ursus spelæus,Hyæna spelæa, with the horse, ox, deer, and other quadrupeds, occur; and in 1850 Mr. H. Credner and I obtained in a quarry at Tonna, at the depth of 15 feet, inclosed in the calcareous rock and surrounded with dicotyledonous leaves and petrified leaves, four eggs of a snake of the size of the largest European Coluber, which, with three others, had been found lying in a series, or string.

They are, I believe, the first reptilian remains which have been met with in strata of this age.

The agreement of the shells in these cases with recent European species enables us to refer to a very modern period the filling up and re-excavation of the valleys; an operation which doubtless consumed a long period of time, since which the mammiferous fauna has undergone a considerable change.

Drift of Scandinavia, northern Germany, and Russia — Its northern origin — Not all of the same age — Fundamental rocks polished, grooved, and scratched — Action of glaciers and icebergs — Fossil shells of glacial period — Drift of eastern Norfolk — Associated freshwater deposit — Bent and folded strata lying on undisturbed beds — Shells on Moel Tryfane — Ancient glaciers of North Wales — Irish drift.

Drift of Scandinavia, northern Germany, and Russia — Its northern origin — Not all of the same age — Fundamental rocks polished, grooved, and scratched — Action of glaciers and icebergs — Fossil shells of glacial period — Drift of eastern Norfolk — Associated freshwater deposit — Bent and folded strata lying on undisturbed beds — Shells on Moel Tryfane — Ancient glaciers of North Wales — Irish drift.

Amongthe different kinds of alluvium described in the seventh chapter, mention was made of the boulder formation in the north of Europe, the peculiar characters of which may now be considered, as it belongs in part to the post-pliocene, and partly to the newer pliocene, period. I shall first allude briefly to that portion of it which extends from Finland and the Scandinavian mountains to the north of Russia, and the low countries bordering the Baltic, and which has been traced southwards as far as the eastern coast of England. This formation consists of mud, sand, and clay, sometimes stratified, but often wholly devoid of stratification, for a depth of more than a hundred feet. To this unstratified form of the deposit, the name oftillhas been applied in Scotland. It generally contains numerous fragments of rocks, some angular and others rounded, which have been derived from formations of all ages, both fossiliferous, volcanic, and hypogene, and which have often been brought from great distances. Some of the travelled blocks are of enormous size, several feet or yards in diameter; their average dimensions increasing as we advance northwards. The till is almost everywhere devoid of organic remains, unless where these have been washed into it from older formations; so that it is chiefly from relative position that we must hope to derive a knowledge of its age.

Although a large proportion of the boulder deposit, or "northern drift," as it has sometimes been called, is made up of fragments brought from a distance, and which have sometimes travelled many hundred miles, the bulk of the mass in each locality consists of the ruins of subjacent or neighbouring rocks; so that it is red in a region of red sandstone, white in a chalk country, and grey or black in a district of coal and coal-shale.

The fundamental rock on which the boulder formation reposes, if it consist of granite, gneiss, marble, or other hard stone capable of permanently retaining any superficial markings which may have been imprinted upon it, is smoothed or polished, and usually exhibits parallel striæ and furrows having a determinate direction. This direction, both in Europe and North America, is evidently connected with the course taken by the erratic blocks in the same district being north or south, or 20 or 30 degrees to the east or west of north, according as the large angular and rounded stones have travelled.These stones themselves also are often furrowed and scratched on more than one side.

Fig. 110.Limestone polished, furrowed, and scratched by the glacier of Rosenlaui, inSwitzerland. (Agassiz.)a a.White streaks or scratches, caused by small grains of flint frozen into the ice.b b.Furrows.

Fig. 110.

Limestone polished, furrowed, and scratched by the glacier of Rosenlaui, inSwitzerland. (Agassiz.)

In explanation of such phenomena I may refer the student to what was said of the action of glaciers and icebergs in the Principles of Geology.[122-A]It is ascertained that hard stones, frozen into a moving mass of ice, and pushed along under the pressure of that mass, scoop out long rectilinear furrows or grooves parallel to each other on the subjacent solid rock. (Seefig. 110.) Smaller scratches and striæ are made on the polished surface by crystals or projecting edges of the hardest minerals, just as a diamond cuts glass. The recent polishing and striation of limestone by coast-ice carrying boulders even as far south as the coast of Denmark, has been observed by Dr. Forchhammer, and helps us to conceive how large icebergs, running aground on the bed of the sea, may produce similar furrows on a grander scale. An account was given so long ago as the year 1822, by Scoresby, of icebergs seen by him drifting along in latitudes 69° and 70° N., which rose above the surface from 100 to 200 feet, and measured from a few yards to a mile in circumference. Many of them were loaded with beds of earth and rock, of such thickness that the weight was conjectured to be from 50,000 to 100,000 tons.[122-B]A similar transportation of rocks is known to be in progress in the southern hemisphere, where boulders included in ice are far more frequent than in the north. One of these icebergs was encountered in 1839, in mid-ocean, in the antarctic regions, many hundred miles from any known land, sailing northwards, with a large erratic blockfirmly frozen into it. In order to understand in what manner long and straight grooves may be cut by such agency, we must remember that these floating islands of ice have a singular steadiness of motion, in consequence of the larger portion of their bulk being sunk deep under water, so that they are not perceptibly moved by the winds and waves even in the strongest gales. Many had supposed that the magnitude commonly attributed to icebergs by unscientific navigators was exaggerated, but now it appears that the popular estimate of their dimensions has rather fallen within than beyond the truth. Many of them, carefully measured by the officers of the French exploring expedition of the Astrolabe, were between 100 and 225 feet high above water, and from 2 to 5 miles in length. Captain d'Urville ascertained one of them which he saw floating in the Southern Ocean to be 13 miles long and 100 feet high, with walls perfectly vertical. The submerged portions of such islands must, according to the weight of ice relatively to sea-water, be from six to eight times more considerable than the part which is visible, so that the mechanical power they might exert when fairly set in motion must be prodigious.[123-A]

Glaciers formed in mountainous regions become laden with mud and stones, and if they melt away at their lower extremity before they reach the sea, they leave wherever they terminate a confused heap of unstratified rubbish, called "a moraine," composed of mud and pieces of all the rocks with which they were loaded. We may expect, therefore, to find a formation of the same kind, resulting from the liquefaction of icebergs, in tranquil water. But, should the action of a current intervene at certain points or at certain seasons, then the materials will be sorted as they fall, and arranged in layers according to their relative weight and size. Hence there will be passages fromtill, as it is called in Scotland, to stratified clay, gravel, and sand, and intercalations of one in the other.

I have yet to mention another appearance connected with the boulder formation, which has justly attracted much attention in Norway and other parts of Europe. Abrupt pinnacles and outstanding ridges of rock are often observed to be polished and furrowed on the north, or "strike" side as it is called, or on the side facing the region from which the erratics have come; while, on the other side, which is usually steeper and often perpendicular, called the "lee-side," such superficial markings are wanting. There is usually a collection on this lee-side of boulders and gravel, or of large angular fragments. In explanation we may suppose that the north side was exposed, when still submerged, to the action of icebergs, and afterwards, when the land was upheaved, of coast-ice, which ran aground upon shoals, or waspackedon the beach; so that there would be great wear and tear on the seaward slope, while, on the other, gravel and boulders might be heaped up in a sheltered position.

Northern origin of erratics.—That the erratics of northern Europehave been carried southward cannot be doubted; those of granite, for example, scattered over large districts of Russia and Poland, agree precisely in character with rocks of the mountains of Lapland and Finland; while the masses of gneiss, syenite, porphyry, and trap, strewed over the low sandy countries of Pomerania, Holstein, and Denmark, are identical in mineral characters with the mountains of Norway and Sweden.

It is found to be a general rule in Russia, that the smaller blocks are carried to greater distances from their point of departure than the larger; the distance being sometimes 800 and even 1000 miles from the nearest rocks from which they were broken off; the direction having been from N.W. to S.E., or from the Scandinavian mountains over the seas and low lands to the south-east. That its accumulation throughout this area took place in part during the post-pliocene period is proved by its superposition at several points to strata containing recent shells. Thus, for example, in European Russia, MM. Murchison and De Verneuil found in 1840, that the flat country between St. Petersburg and Archangel, for a distance of 600 miles, consisted of horizontal strata, full of shells similar to those now inhabiting the arctic sea, on which rested the boulder formation, containing large erratics.

In Sweden, in the immediate neighbourhood of Upsala, I observed, in 1834, a ridge of stratified sand and gravel, in the midst of which is a layer of marl, evidently formed originally at the bottom of the Baltic, by the slow growth of the mussel, cockle, and other marine shells, intermixed with some of freshwater species. The marine shells are all of dwarfish size, like those now inhabiting the brackish waters of the Baltic; and the marl, in which myriads of them are imbedded, is now raised more than 100 feet above the level of the Gulf of Bothnia. Upon the top of this ridge repose several huge erratics, consisting of gneiss for the most part unrounded, from 9 to 16 feet in diameter, and which must have been brought into their present position since the time when the neighbouring gulf was already characterized by its peculiar fauna.[124-A]Here, therefore, we have proof that the transport of erratics continued to take place, not merely when the sea was inhabited by the existing testacea, but when the north of Europe had already assumed that remarkable feature of its physical geography, which separates the Baltic from the North Sea, and causes the Gulf of Bothnia to have only one fourth of the saltness belonging to the ocean. In Denmark, also, recent shells have been found in stratified beds, closely associated with the boulder clay.

It was stated that in Russia the erratics diminished generally in size in proportion as they are traced farther from their source. The same observation holds true in regard to the average bulk of the Scandinavian boulders, when we pursue them southwards, from the south of Norway and Sweden through Denmark and Westphalia.This phenomenon is in perfect harmony with the theory of ice-islands floating in a sea of variable depth; for the heavier erratics require icebergs of a larger size to buoy them up; and, even when there are no stones frozen in, more than seven eighths, and often nine tenths, of a mass of drift ice is under water. The greater, therefore, the volume of the iceberg, the sooner would it impinge on some shallower part of the sea; while the smaller and lighter floes, laden with finer mud and gravel, may pass freely over the same banks, and be carried to much greater distances. In those places, also, where in the course of centuries blocks have been carried southwards by coast-ice, having been often stranded and again set afloat in the direction of a prevailing current, the blocks will be worn and diminish in size the farther they travel from their point of departure.

The "northern drift" of the most southern latitudes is usually of the highest antiquity. In Scotland it rests immediately on the older rocks, and is covered by stratified sand and clay, usually devoid of fossils, but in which, at certain points near the east and west coast, as, for example, in the estuaries of the Tay and Clyde, marine shells have been discovered. The same shells have also been met with in the north, at Wick in Caithness, and on the shores of the Moray Frith. The principal deposit on the Clyde occurs at the height of about 70 feet, but a few shells have been traced in it as high as 554 feet above the sea. Although a proportion of between 85 or 90 in 100 of the imbedded shells are of recent species, the remainder are unknown; and even many which are recent now inhabit more northern seas, where we may, perhaps, hereafter find living representatives of some of the unknown fossils. The distance to which erratic blocks have been carried southwards in Scotland, and the course they have taken, which is often wholly independent of the present position of hill and valley, favours the idea that ice-rafts rather than glaciers were in general the transporting agents. The Grampians in Forfarshire and in Perthshire are from 3000 to 4000 feet high. To the southward lies the broad and deep valley of Strathmore, and to the south of this again rise the Sidlaw Hills[125-A]to the height of 1500 feet and upwards. On the highest summits of this chain, formed of sandstone and shale, and at various elevations, are found huge angular fragments of mica schist, some 3 and others 15 feet in diameter, which have been conveyed for a distance of at least 15 miles from the nearest Grampian rocks from which they could have been detached. Others have been left strewed over the bottom of the large intervening vale of Strathmore.

Still farther south on the Pentland Hills, at the height of 1100 feet above the sea, Mr. Maclaren has observed a fragment of mica-schist weighing from 8 to 10 tons, the nearest mountain composed of this formation being 50 miles distant.[125-B]

The testaceous fauna of the boulder period, in Scotland, England, and Ireland, has been shown by Prof. E. Forbes to contain a muchsmaller number of species than that now belonging to the British seas, and to have been also much less rich in species than the Older Pliocene fauna of the crag which preceded it. Yet the species are nearly all of them now living either in the British or more northern seas, the shells of more arctic latitudes being the most abundant and the most wide spread throughout the entire area of the drift from north to south.

This extensive range of the fossils can by no means be explained by imagining the mollusca of the drift to have been inhabitants of a deep sea, where a more uniform temperature prevailed. On the contrary, many species were littoral, and others belonged to a shallow sea, not above 100 feet deep, and very few of them lived, according to Prof. E. Forbes, at greater depths than 300 feet.

From what was before stated it will appear that the boulder formation displays almost everywhere, in its mineral ingredients, a strange heterogeneous mixture of the ruins of adjacent lands, with stones both angular and rounded, which have come from points often very remote. Thus we find it in our eastern counties, as in Norfolk, Suffolk, Cambridge, Huntingdon, Bedford, Hertford, Essex, and Middlesex, containing stones from the Silurian and Carboniferous strata, and from the lias, oolite, and chalk, all with their peculiar fossils, together with trap, syenite, mica-schist, granite, and other crystalline rocks. A fine example of this singular mixture extends to the very suburbs of London, being seen on the summit of Muswell Hill, Highgate. But south of London the northern drift is wanting, as, for example, in the Wealds of Surrey, Kent, and Sussex.

Norfolk drift.—The drift can nowhere be studied more advantageously in England than in the cliffs of the Norfolk coast between Happisburgh and Cromer. Vertical sections, having an ordinary height of from 50 to 70 feet, are there exposed to view for a distance of about 20 miles. The name of diluvium was formerly given to it by those who supposed it to have been produced by the violent action of a sudden and transient deluge, but the term drift has been substituted by those who reject this hypothesis. Here, as elsewhere, it consists for the most part of clay, loam, and sand, in part stratified, in part devoid of stratification. Pebbles, together with some large boulders of granite, porphyry, greenstone, lias, chalk, and other transported rocks, are interspersed, especially through the till. That some of the granitic and other fragments came from Scandinavia I have no doubt, after having myself traced the course of the continuous stream of blocks from Norway and Sweden to Denmark, and across the Elbe, through Westphalia, to the borders of Holland. We need not be surprised to find them reappear on our eastern coast, between the Tweed and the Thames, regions not half so remote from parts of Norway as are many Russian erratics from the sources whence they came.

White chalk rubble, unmixed with foreign matter, and even huge fragments of solid chalk, also occur in many localities in these Norfolk cliffs. No fossils have been detected in this drift, which can positivelybe referred to the era of its accumulation; but at some points it overlies a freshwater formation containing recent shells, and at others it is blended with the same in such a manner as to force us to conclude that both were contemporaneously deposited.

Fig. 111.The shaded portion consists of Freshwater beds. Intercalation of freshwater beds and of boulder clay and sand at Mundesley.

Fig. 111.

The shaded portion consists of Freshwater beds. Intercalation of freshwater beds and of boulder clay and sand at Mundesley.

This interstratification is expressed in the annexed figure, the dark mass indicating the position of the freshwater beds, which contain much vegetable matter, and are divided into thin layers. The imbedded shells belong to the generaPlanorbis,Lymnea,Paludina,Unio,Cyclas, and others, all of British species, except a minutePaludinanow inhabiting France. (Seefig. 112.)

Fig. 112.Paludina marginata, Michaud. (P. minuta, Strickland.) The middle figure is of the natural size.

Fig. 112.

Paludina marginata, Michaud. (P. minuta, Strickland.) The middle figure is of the natural size.

TheCyclas(fig. 113.) is merely a remarkable variety of the common English species. The scales and teeth of fish of the genera Pike, Perch, Roach, and others, accompany these shells; but the species are not considered by M. Agassiz to be identical with known British or European kinds.

Fig. 113.Cyclas(Pisidium)amnica, var.? The two middle figures are of the natural size.

Fig. 113.

Cyclas(Pisidium)amnica, var.? The two middle figures are of the natural size.

The series of formations in the cliffs of eastern Norfolk, now under consideration, beginning with the lowest, is as follows:—First, chalk; secondly, patches of a marine tertiary formation, called the Norwich Crag, hereafter to be described; thirdly, the freshwater beds already mentioned; and lastly, the drift. Immediately above the chalk, or crag, when that is present, is found here and there a buried forest, or a stratum in which the stools and roots of trees standin their natural position, the trunks having been broken short off and imbedded with their branches and leaves. It is very remarkable that the strata of the overlying boulder formation have often undergone great derangement at points where the subjacent forest bed and chalk remain undisturbed. There are also cases where the upper portion of the boulder deposit has been greatly deranged, while the lower beds of the same have continued horizontal. Thus the annexed section (fig. 114.) represents a cliff about 50 feet high, at the bottom of which istill, or unstratified clay, containing boulders, having an even horizontal surface, on which repose conformably beds of laminated clay and sand about 5 feet thick, which, in their turn, are succeeded by vertical, bent, and contorted layers of sand and loam 20 feet thick, the whole being covered by flint gravel. Now the curves of the variously coloured beds of loose sand, loam, and pebbles are so complicated that not only may we sometimes find portions of them which maintain their verticality to a height of 10 or 15 feet, but they have also been folded upon themselves in such a manner that continuous layers might be thrice pierced in one perpendicular boring.

Fig. 114.Cliff 50 feet high between Bacton Gap and Mundesley.

Fig. 114.

Cliff 50 feet high between Bacton Gap and Mundesley.

Fig. 115.Folding of the strata between East and West Runton.

Fig. 115.

Folding of the strata between East and West Runton.

Fig. 116.Section of concentric beds west of Cromer.1. Blue clay.2. White sand.3. Yellow Sand.4. Striped loam and clay.5. Laminated blue clay.

Fig. 116.

Section of concentric beds west of Cromer.

At some points there is an apparent folding of the beds round a central nucleus, as ata,fig. 115., where the strata seem bent round a small mass of chalk; or, as infig. 116., where the blue clay, No. 1., is in the centre; and where the other strata, 2, 3, 4, 5, are coiledround it; the entire mass being 20 feet in perpendicular height. This appearance of concentric arrangement around a nucleus is, nevertheless, delusive, being produced by the intersection of beds bent into a convex shape; and that which seems the nucleus being, in fact, the innermost bed of the series, which has become partially visible by the removal of the protuberant portions of the outer layers.

To the north of Cromer are other fine illustrations of contorted drift reposing on a floor of chalk horizontally stratified and having a level surface. These phenomena, in themselves sufficiently difficult of explanation, are rendered still more anomalous by the occasional inclosure in the drift of huge fragments of chalk many yards in diameter. One striking instance occurs west of Sherringham, where an enormous pinnacle of chalk, between 70 and 80 feet in height, is flanked on both sides by vertical layers of loam, clay, and gravel. (Fig. 117.)

Fig. 117.Included pinnacle of chalk at Old Hythe point, west of Sherringham.d.Chalk with regular layers of chalk flints.c.Layer called "the pan," of loose chalk, flints, and marine shells of recent species, cemented by oxide of iron.

Fig. 117.

Included pinnacle of chalk at Old Hythe point, west of Sherringham.

This chalky fragment is only one of many detached masses which have been included in the drift, and forced along with it into their present position. The level surface of the chalkin situ(d) may be traced for miles along the coast, where it has escaped the violent movements to which the incumbent drift has been exposed.[129-A]

We are called upon, then, to explain how any force can have been exerted against the upper masses, so as to produce movements in which the subjacent strata have not participated. It may be answered that, if we conceive thetilland its boulders to have been drifted to their present place by ice, the lateral pressure may have been supplied by the stranding of ice-islands. We learn, from the observations of Messrs. Dease and Simpson in the polar regions, that such islands, when they run aground, push before them large mounds of shingle and sand. It is therefore probable that they often cause great alterations in the arrangement of pliant and incoherent strata formingthe upper part of shoals or submerged banks, the inferior portions of the same remaining unmoved. Or many of the complicated curvatures of these layers of loose sand and gravel may have been due to another cause, the melting on the spot of icebergs and coast ice in which successive deposits of pebbles, sand, ice, snow, and mud, together with huge masses of rock fallen from cliffs, may have become interstratified. Ice-islands so constituted often capsize when afloat, and gravel once horizontal may have assumed, before the associated ice was melted, an inclined or vertical position. The packing of ice forced up on a coast may lead to similar derangement in a frozen conglomerate of sand or shingle, and, as Mr. Trimmer has suggested[130-A], alternate layers of earthy matter may have sunk down slowly during the liquefaction of the intercalated ice, so as to assume the most fantastic and anomalous positions, while the aqueous strata below, and those afterwards thrown down above, may be perfectly horizontal.

A buried forest has been adverted to as underlying the drift on the coast of Norfolk. At the time when the trees grew there must have been dry land over a large area, which was afterwards submerged, so as to allow a mass of stratified and unstratified drift, 200 feet and more in thickness, to be superimposed. The undermining of the cliffs by the sea in modern times has enabled us to demonstrate, beyond all doubt, the fact of this superposition, and that the forest was not formed along the present coast-line. Its situation implies a subsidence of several hundred feet since the commencement of the drift period, after which there must have been an upheaval of the same ground; for the forest bed of Norfolk is now again so high as to be exposed to view at many points at low water; and this same upward movement may explain why thetill, which is conceived to have been of submarine origin, is now met with far inland, and on the summit of hills.

The boulder formation of the west of England, observed in Lancashire, Cheshire, Shropshire, Staffordshire, and Worcestershire, contains in some places marine shells of recent species, rising to various heights, from 100 to 350 feet above the sea. The erratics have come partly from the mountains of Cumberland, and partly from those of Scotland.

But it is on the mountains of North Wales that the "Northern drift," with its characteristic marine fossils, reaches its greatest altitude. On Moel Tryfane, near the Menai Straits, Mr. Trimmer met with shells of the species commonly found in the drift at the height of 1392 feet above the level of the sea.

It is remarkable that in the same neighbourhood where there is evidence of so great a submergence of the land during part of the glacial period, we have also the most decisive proofs yet discovered in the British Isles of subaerial glaciers. Dr. Buckland published in 1842 his reasons for believing that the Snowdonian mountains in Caernarvonshire were formerly covered with glaciers, which radiated from the central heights through the seven principal valleysof that chain, where striæ and flutings are seen on the polished rocks directed towards as many different points of the compass. He also described the "moraines" of the ancient glaciers, and the rounded "bosses" or small flattened domes of polished rock, such as the action of moving glaciers is known to produce in Switzerland, when gravel, sand, and boulders, underlying the ice, are forced along over a foundation of hard stone. Mr. Darwin, and subsequently Prof. Ramsay, have confirmed Dr. Buckland's views in regard to these Welsh glaciers. Nor indeed was it to be expected that geologists should discover proofs of icebergs having abounded in the area now occupied by the British Isles in the Pleistocene period without sometimes meeting with the signs of contemporaneous glaciers which covered hills even of moderate elevation between the 50th and 60th degrees of latitude.

In Ireland the "drift" exhibits the same general characters and fossil remains as in Scotland and England; but in the southern part of that island, Prof. E. Forbes and Capt. James found in it some shells which show that the glacial sea communicated with one inhabited by a more southern fauna. Among other species in the south, they mention at Wexford and elsewhere the occurrence ofNucula Cobboldiæ(seefig. 120.p. 149.) andTurritella incrassata(a crag fossil); also a southern form ofFusus, and aMitraallied to a Spanish species.[131-A]

Difficulty of interpreting the phenomena of drift before the glacial hypothesis was adopted — Effects of intense cold in augmenting the quantity of alluvium — Analogy of erratics and scored rocks in North America and Europe — Bayfield on shells in drift of Canada — Great subsidence and re-elevation of land from the sea, required to account for glacial appearances — Why organic remains so rare in northern drift — Mastodon giganteus in United States — Many shells and some quadrupeds survived the glacial cold — Alps an independent centre of dispersion of erratics — Alpine blocks on the Jura — Whether transported by glaciers or floating ice — Recent transportation of erratics from the Andes to Chiloe — Meteorite in Asiatic drift.

Difficulty of interpreting the phenomena of drift before the glacial hypothesis was adopted — Effects of intense cold in augmenting the quantity of alluvium — Analogy of erratics and scored rocks in North America and Europe — Bayfield on shells in drift of Canada — Great subsidence and re-elevation of land from the sea, required to account for glacial appearances — Why organic remains so rare in northern drift — Mastodon giganteus in United States — Many shells and some quadrupeds survived the glacial cold — Alps an independent centre of dispersion of erratics — Alpine blocks on the Jura — Whether transported by glaciers or floating ice — Recent transportation of erratics from the Andes to Chiloe — Meteorite in Asiatic drift.

Itwill appear from what was said in the last chapter of the marine shells characterizing the boulder formation, that nine-tenths or more of them belong to species still living. The superficial position of "the drift" is in perfect accordance with its imbedded organic remains, leading us to refer its origin to a modern period. If, then, we encounter so much difficulty in the interpretation of monuments relating to times so near our own—if in spite of their recent date they are involved in so much obscurity—the student may ask, not without reasonable alarm, how we can hope to decipher the records of remote ages.

To remove from the mind as far as possible this natural feeling of discouragement, I shall endeavour in this chapter to prove that what seems most strikingly anomalous, in the "erratic formation," as some call it, is really the result of that glacial action which has already been alluded to. If so, it was to be expected that so long as the true origin of so singular a deposit remained undiscovered, erroneous theories and terms would be invented in the effort to solve the problem. These inventions would inevitably retard the reception of more correct views which a wider field of observation might afterwards suggest.

The term "diluvium" was for a time the popular name of the boulder formation, because it was referred by some geologists to the deluge. Others retained the name as expressive of their opinion that a series of diluvial waves raised by hurricanes and storms, or by earthquakes, or by the sudden upheaval of land from the bed of the sea, had swept over the continents, carrying with them vast masses of mud and heavy stones, and forcing these stones over rocky surfaces so as to polish and imprint upon them long furrows and striæ.

But no explanation was offered why such agency should have been developed more energetically in modern times than at former periods of the earth's history, or why it should be displayed in its fullest intensity in northern latitudes; for it is important to insist on the fact, that the boulder formation is anorthernphenomenon. Even the southern extension of the drift, or the large erratics found in the Alps and the surrounding lands, especially their occurrence round the highest parts of the chain, offers such an exception to the general rule as confirms the glacial hypothesis; for it shows that the transportation of stony fragments to great distances, and the striation, polishing, and grooving of solid floors of rock, are here again intimately connected with accumulations of perennial snow and ice.

That there is some intimate connection between a cold or northern climate and the various geological appearances now commonly called glacial, cannot be doubted by any one who has compared the countries bordering the Baltic with those surrounding the Mediterranean. The smoothing and striation of rocks, and the erratics, are traced from the sea-shore to the height of 3000 feet above the level of the Baltic, whereas such phenomena are wholly wanting in countries bordering the Mediterranean; and their absence is still more marked in the equatorial parts of Asia, Africa, and America; but when we cross the southern tropic, and reach Chili and Patagonia, we again encounter the boulder formation, between the latitude 41° S. and Cape Horn, with precisely the same characters which it assumes in Europe. The evidence as to climate derived from the organic remains of the drift is, as we have seen, in perfect harmony with the conclusions above alluded to, the former habits of the species of mollusca being accurately ascertainable, inasmuch as they belong to species still living, and known to have at present a wide range in northern seas.

But if we are correct in assuming that the northern hemisphere was considerably colder than now during the period under consideration,owing probably to the greater area and height of arctic lands, and to the quantity of icebergs which such a geographical state of things would generate, it may be well to reflect before we proceed farther on the entire modification which extreme cold would produce in the operation of those causes spoken of in the sixth chapter as most active in the formation of alluvium. A large part of the materials derived from the detritus of rocks, which in warm climates would go to form deltas, or would be regularly stratified by marine currents, would, under arctic influences, assume a superficial and alluvial character. Instead of mud being carried farther from a coast than sand, and sand farther out than pebbles,—instead of dense stratified masses being heaped up in limited areas,—nearly the whole materials, whether coarse or fine, would be conveyed by ice to equal distances, and huge fragments, which water alone could never move, would be borne for hundreds of miles without having their edges worn or fractured; and the earthy and stony masses, when melted out of the frozen rafts, would be scattered at random over the submarine bottom, whether on mountain tops or in low plains, with scarcely any relation to the inequalities of the ground, settling on the crests or ridges of hills in tranquil water as readily as in valleys and ravines. Occasionally, in those deep and uninhabited parts of the ocean, never reached by any but the finest sediment in a normal state of things, the bottom would become densely overspread by gravel, mud, and boulders.

In the Western Hemisphere, both in Canada and as far south as the 40th and even 38th parallel of latitude in the United States, we meet with a repetition of all the peculiarities which distinguish the European boulder formation. Fragments of rock have travelled for great distances from north to south; the surface of the subjacent rock is smoothed, striated, and fluted; unstratified mud ortillcontaining boulders is associated with strata of loam, sand, and clay, usually devoid of fossils. Where shells are present, they are of species still living in northern seas, and half of them identical with those already enumerated as belonging to European drift 10 degrees of latitude farther north. The fauna also of the glacial epoch in North America is less rich in species than that now inhabiting the adjacent sea, whether in the Gulf of St. Lawrence, or off the shores of Maine, or in the Bay of Massachusetts. At the southern extremity of its course, moreover, it presents an analogy with the drift of the south of Ireland, by blending with a more southern fauna, as for example at Brooklyn near New York, in lat. 41° N., where, according to MM. Redfield and Desor,Venus mercenariaand other southern species of shells begin to occur as fossils in the drift.

The extension on the American continent of the range of erratics during the Pleistocene period to lower latitudes than they reached in Europe, agrees well with the present southward deflection of the isothermal lines, or rather the lines of equal winter temperature. Formerly, as now, a more extreme climate and a more abundant supply of floating ice prevailed on the western side of the Atlantic.

Another resemblance between the distribution of the drift fossils in Europe and North America has yet to be pointed out. In Norway, Sweden, and Scotland, as in Canada and the United States, the marine shells are confined to very moderate elevations above the sea (between 100 and 700 feet), while the erratic blocks and the grooved and polished surfaces of rock extend to elevations of several thousand feet.


Back to IndexNext