Fig. 1.Fig. 2.
Fig. 1.Fig. 2.
The preceding diagrams exhibit the appearance of a bust as seen by each eye successively.
Observe that the second figure, which represents the impression received by the right eye, is more of a full face than fig. 1, which, being viewed from a point removed a little to the left, partakes of the character of a profile.
The human eyes are placed about 2½ inches, or from that to 25/8inches, asunder; hence it follows that, the points of sight being separated, adissimilarimage of a solid object is formed by each eye. We do not however see two images, but a single one, which is stereoscopic.
In looking at a picture painted on a flat surface the case is different: the eyes, as before, form two images, but these images are in every respect similar; consequently the impression of solidity is wanting. A single picture, therefore, cannot be made to appear stereoscopic. To convey the illusiontwopictures must be employed, the one being a right and the other a left perspective projection of the object. The pictures must also be so arranged, that each is presented to its own eye, and that the two appear to proceed from the same spot.
The reflecting stereoscope, employed to effect this, formsluminous imagesof the binocular pictures, and throws these images together, so that, on looking into the instrument, only a single image is seen, in a central position. It should, however, be understood, that no optical arrangement of any kind is indispensably required, since it is quite possible, with a little effort, to combine the two images by the unaided organs of vision. The following diagram will make this obvious:—
The circles A and B represent two wafers, which are stuck on paper at a distance of about three inches from each other. They are then viewed bysquintingstrongly,or turning the eyes inwards towards the nose, until the right eye looks at the left wafer, and the left eye at the right wafer. Each wafer will then appear to become double, four images being seen, the two central of which will gradually approach each other until they coalesce. Stereoscopic pictures, properly arranged, may be examined in the same manner; and it will be found that the resultant solid image is formed midway, at a point where two lines, drawn across from the eyes to the pictures, cut one another. The experiment here mentioned is sometimes a painful one, and cannot easily be made if the eyes are not of equal strength; but it will serve to show that the essential principle resides in the binocular representation of the object, and not in the instrument employed to view it.
In Mr. Wheatstone's reflecting Stereoscopemirrorsare used. The principle of the instrument is as follows:— objects placed in front of a mirror have their reflected images apparentlybehindthe mirror. By arranging two mirrors at a certain inclination to each other, the images of the double picture may be made to approach until they coalesce, and the eye perceives a single one only. The following diagram will explain this.
The rays proceeding from the star on either side pass in the direction of the arrows, being thrown off from the mirror (represented by the thick black line) and enteringthe eyes at R and L. The reflected images appear behind the mirror, uniting at the point A.
The reflecting Stereoscope is adapted principally for viewing large pictures. It is a very perfect instrument, and admits of a variety of adjustments, by which the apparent size and distance of the Stereoscopic image may be varied almost at pleasure.
The "lenticular" Stereoscope of Sir David Brewster is a more portable form of apparatus. A sectional view is given in the diagram.
The brass tubes to which the eyes of the observer are applied contain each a semi-lens, formed by dividing a common lens through the centre and cutting each half into a circular form (fig. 1 in the following page). The half-lens viewed in section (fig. 2) is therefore of a prismatic shape, and when placed with its sharp edge as in the diagram above, alters the direction of the rays of light proceeding from the picture, bending them outwards or away from the centre, so that in accordance with well-knownoptical laws they appear to come in the direction of the dotted lines in the diagram (in the last page), and the two images coalesce at their point of junction. In the instrument as it is often sold, one of the lenses is made movable, and by turning it round with the finger and thumb it will be seen that the positions of the images may be shifted at pleasure.
Fig. 1.Fig. 2.
Fig. 1.
Fig. 2.
Rules for taking Binocular Photographs.—In viewing very distant objects with the eyes, the images formed on the retinæ are not sufficiently dissimilar to produce a very Stereoscopic effect; hence it is often required, in taking binocular pictures, to separate the Cameras more widely than the two eyes are separated, in order to give a sufficient appearance of relief. Mr. Wheatstone's original directions were, to allow about one foot of separation for each twenty-five feet of distance, but considerable latitude may be permitted.
If the Cameras be not placed far enough apart, the dimensions of the stereoscopic image from before backwards will be too small,—statues looking like bas-reliefs, and the circular trunks of trees appearing oval, with the long diameter transverse. On the other hand, when the separation is too wide, the reverse obtains,—objects for instance which are square, assuming an oblong shape pointing towards the observer.
To understand the cause of this, the following law in optics should be studied:—"The distance of objects isestimated by the extent to which the axes of the eyes must be converged to view them." If we have to turn our eyes strongly inwards, we judge the object to be near; but if the eyes remain nearly parallel, we suppose it to be distant.
The above figures represent six-sided truncated pyramids, each with its apex towards the observer, the centres of the two smaller interior hexagons being more widely separated than those of the larger exterior ones. By converging the eyes upon them so as to unite the central images in the manner represented inpage 68a greater amount of convergence will be required to bring together the two summits than the bases, and hence the summits will appear the nearest to the eye; that is to say, the resultant central figure will acquire the additional dimension ofheight, and appear as a solid cone, standing perpendicularly upon its base: further, the more widely the summits are separated in relation to the bases, the taller will the cone be, although a greater effort will be required to coalesce the figures.
Binocular Photographs taken with too much separation of the Cameras, are distorted from a similar cause,—so strong a convergence being required to unite them that certain parts of the picture appear to approach near to the eye; and the depth of the solid image is increased.
This effect is most observable when the picture embraces a variety of objects, situated in different planes. In the case of views which are quite distant, no near objects being admitted, the Cameras may be placed with especial reference to them, even as far as twelve feet apart, without producing distortion.
It is sometimes observable, in looking at Stereoscopicpictures, that they convey an erroneous impression of the real size and distance of the object. For instance, in using the large reflecting Stereoscope, if, when the adjustments have been made and the images properly united, the two pictures be moved slowly forward, the eyes remaining fixed upon the mirrors, the Stereoscopic image will gradually change its character, the various objects it embraces appearing to become diminished in size, and approaching near to the observer: whilst if the pictures be pushedbackwards, the image will enlarge and recede to a distance. So, again, if an ordinary slide for the lenticular Stereoscope be divided in the centre, and, looking into the instrument until the images coalesce, the two halves be slowly separated from each other, the solid picture will seem to become larger and to recede from the eye.
It is easy to understand the cause of this. When the pictures in the reflecting Stereoscope are movedforwards, the convergence of the optic axes is increased: the image therefore appearsnearer, in accordance with the last-mentioned law. But to convey the impression of nearness is equivalent to an apparent diminution in size, for we judge of the dimensions of a body very much in relation to its supposed distance. Of two figures, for instance, appearing of the same height, one known to be a hundred yards off might be considered colossal, whilst the other, obviously near at hand, would be viewed as a statuette.
These facts, with others not mentioned, are of great interest and importance, but their further consideration does not fall within the bounds originally prescribed to us. The practical details of Stereoscopic Photography have been arranged in a distinct Section, and will be found included in the Second Part of the Work.[11]
[11]For a more full and detailed explanation of the Stereoscopic phenomena, see an abstract of Professor Tyndall's lectures in the third volume of the 'Photographic Journal.'
[11]For a more full and detailed explanation of the Stereoscopic phenomena, see an abstract of Professor Tyndall's lectures in the third volume of the 'Photographic Journal.'
THE PHOTOGRAPHIC PROPERTIES OF IODIDE OF SILVER UPON COLLODION.
Inthe preceding part of this Work the physical and chemical properties of Chloride and Iodide of Silver have been described, with the changes which they experience by the action of Light. Nothing however has been said of the surface used to support the Iodide of Silver, and to expose it in a finely divided state to the influence of the actinic radiations. This omission will now be supplied, and the use of Collodion will engage our attention.
The sensibility of Iodide of Silver upon Collodion is greatly superior to that of the same salt employed in conjunction with any other vehicle at present known. Hence the Collodio-Iodide film will supersede the paper and Albumen processes in all cases where objects liable to move are to be copied. The causes of this superior sensitiveness, as far as ascertained, may be referred to the state ofloose coagulationof a Collodion film and other particulars presently to be noticed. It must however be allowed that there are yet some points affecting the sensitiveness of Iodide of Silver, both mechanical and chemical, of the exact nature of which we are ignorant.
The present Chapter may be divided into four Sections:—the nature of Collodion; the chemistry of the Nitrate Bath; the causes affecting the formation and developmentof the Image upon Collodion; the various irregularities in the development of the Image.
SECTION I.
Collodion.
Collodion (so named from the Greek word κολλἁω, tostick) is a glutinous, transparent fluid, procured, as generally said, by dissolving Gun-Cotton in Ether. It was originally used for surgical purposes only, being smeared over wounds and raw surfaces, to preserve them from contact with the air by the tough film which it leaves on evaporation. Photographers employ it to support a delicate film of Iodide of Silver upon the surface of a smooth glass plate.
Two elements enter into the composition of Collodion: first, the Gun-Cotton; second, the fluids used to dissolve it. Each of these will be treated in succession.
CHEMISTRY OF PYROXYLINE.
Gun-Cotton orPyroxylineis Cotton or Paper which has been altered in composition and properties by treatment with strong acids.
Both Cotton and Paper are, chemically, the same. They consist of fibres which are found on analysis to have a constant composition, containing three elementary bodies, Carbon, Hydrogen, and Oxygen, united together in fixed proportions. To this combination the termLignineorCellulose[12]has been applied.
[12]Lignine and Cellulose are not precisely identical substances. The latter is the material composing the cell-wall; the former, the contained matter in the cell.
[12]Lignine and Cellulose are not precisely identical substances. The latter is the material composing the cell-wall; the former, the contained matter in the cell.
Cellulose is a definite chemical compound, in the same sense as Starch or Sugar, and consequently, when treated with various reagents, it exhibits properties peculiar to itself. It is insoluble in most liquids, such as Water, Alcohol, Ether, etc., and also in dilute acids; but whenacted upon by Nitric Acid of a certain strength it liquefies and dissolves.
It has been already shown (p. 12) that when a body dissolves in Nitric Acid the solution is not usually of the same nature as an aqueous solution; and so in this case—the Nitric Acid imparts Oxygen first to the Cotton, and afterwards dissolves it.
Preparation of Pyroxyline.—If, instead of treating Cotton with Nitric Acid, a mixture of Nitric and Sulphuric Acids in certain proportions be used, the effect is peculiar. The fibres contract slightly, but undergo no other visible alteration. Hence we are at first disposed to think the mixed Acids ineffectual. This idea however is not correct, since on making the experiment the properties of the cotton are found to be changed. Its weight has increased by more than one-half; it has become soluble in various liquids, such as Acetic Ether, Ether and Alcohol, etc., and, what is more remarkable, it no longer burns in the air quietly, but explodes on the application of flame with greater or less violence.
This change of properties clearly shows, that although the fibrous structure of the material is unaffected, it is no longer the same substance, and consequently chemists have assigned it a different name, viz. Pyroxyline.
To produce the peculiar change by which Cotton is converted into Pyroxyline, both Nitric and Sulphuric Acids are, as a rule, required; but of the two the former is the most important. On analyzing Pyroxyline, Nitric Acid, or a body analogous to it, is detected in considerable quantity, but not Sulphuric Acid. The latter Acid, in fact, serves but a temporary purpose, viz. to prevent the Nitric Acid from dissolving the pyroxyline, which it would be liable to do if employed alone. The Sulphuric Acid prevents the solution by removing water from the Nitric Acid, and so producing a higher degree of concentration; Pyroxyline, although soluble in a dilute, is not so in the strong Acid, and hence it is preserved.
The property possessed by Oil of Vitriol of removing water from other bodies, is one with which it is well to be acquainted. A simple experiment will serve to illustrate it. Let a small vessel of any kind be filled to about two-thirds with Oil of Vitriol, and set aside for a few days; at the end of that time, and especially if the atmosphere be damp, it will have absorbed sufficient moisture to cause it to flow over the edge.
Now even the strongest reagents employed in chemistry contain, almost invariably, water in greater or lesser quantity. Pure Anhydrous Nitric Acid is a white, solid substance; Hydrochloric Acid is a gas: and the liquids sold under those names are merely solutions. The effect then of mixing strong Oil of Vitriol with aqueous Nitric Acid is to remove water in proportion to the amount used, and to produce a liquid containing Nitric Acid in a high state of concentration, and Sulphuric Acid more or less diluted. This liquid is the Nitro-Sulphuric Acid employed in the preparation of Pyroxyline.
Various forms of Pyroxyline.—Very soon after the first announcement of the discovery of Pyroxyline, most animated discussions arose amongst chemists with regard to its solubility and general properties. Some spoke of a "solution of Gun-Cotton in Ether;" whilst others denied its solubility in that menstruum; a third class, by following the process described, obtained a substance which was not explosive, and therefore could scarcely be termed Gun-Cotton.
On further investigations some of these anomalies were cleared up, and it was found that there were varieties of Pyroxyline, depending mainly upon the degree of strength of the Nitro-Sulphuric Acid employed in the preparation. Still the subject was obscure until the publication of researches by Mr. E. A. Hadow. These investigations, conducted in the Laboratory of King's College, London, were published in the Journal of the Chemical Society. Constant reference will be made to them in the following remarks.
We notice—first, the chemical constitution of Pyroxyline; secondly, its varieties; and thirdly, the means adopted to procure a Nitro-Sulphuric Acid of the proper strength.
a.Constitution of Pyroxyline.—Pyroxyline has been sometimes spoken of as a Salt of Nitric Acid, a Nitrate of Lignine. This view however is erroneous, since it can be shown that the substance present is not Nitric Acid, although analogous to it. It is the Peroxide of Nitrogen, which is intermediate in composition between Nitrous Acid (NO3) and Nitric Acid (NO5). Peroxide of Nitrogen (NO4) is a gaseous body of a dark red colour; it possesses no acid properties, and is incapable of forming a class of salts. In order to understand in what state this body is combined with cotton fibre to form Pyroxyline, it will be necessary to digress for a short time.
Law of Substitution.—By the careful study of the action of Chlorine, and of Nitric Acid, upon various organic substances, a remarkable series of compounds has been discovered, containing a portion of Chlorine or of Peroxide of Nitrogen in the place of Hydrogen. The peculiarity of these substances is, that they strongly resemble the originals in their physical, and often in their chemical properties. It might have been supposed that agents of such active chemical affinities as Chlorine and Oxide of Nitrogen would, by their mere presence in a body, produce a marked effect; yet it is not so in the case before us. The primitive type or constitution of the substance modified remains the same, even the crystalline form being often unaffected. It seems as if the body by which the Hydrogen had been displaced had stepped in quietly and taken up its position in the framework of the whole without disturbance. Many compounds of this kind are known; they are termed by chemists "substitution compounds." The law invariably observed is, that the substitution takes place in equal atoms: a single atom of Chlorine, for instance, displaces one of Hydrogen; two of Chlorine displacetwo of Hydrogen, and so on, until, in some cases, the whole of the latter element is separated.
In illustration of these remarks, take the following instances:—Acetic Acid contains Carbon, Hydrogen, and Oxygen; by the action of Chlorine the Hydrogen may be removed in the form of Hydrochloric Acid, and an equal number of atoms of Chlorine be substituted. In this way a new compound is formed, termedChloracetic Acid, resembling in many important particulars the Acetic Acid itself. Notice particularly that the peculiar properties characteristic of Chlorine are completely masked in the substitution body, and no indication of its presence is obtained by the usual tests! A solubleChloridegives with Nitrate of Silver a white precipitate of Chloride of Silver, unaffected by Acids, but the Chloracetic Acid does not; hence it is plain that the Chlorine exists in a peculiar and Ultimate state of combination different from what is usual.
The substance we have been previously considering, viz. Pyroxyline, affords another illustration of the Law of Substitution. Omitting, for the sake of simplicity, the number of atoms concerned in the change, the action of concentrated Nitric Acid upon ligneous fibre may be thus explained:—
{
equals
{
Or in symbols:—
CH11O + NO5= C (Hn-1NO4) O + HO
By a reference to the formula, it is seen that the fifth atom of Oxygen contained in the Nitric Acid takes one ofHydrogen, and forms an atom of Water; the NO4then steps in, to fill the gap which the atom of Hydrogen has left. All this is done with so little disturbance that even the fibrous structure of the cotton remains as before.
b.Chemical Composition of the varieties of Pyroxyline.—Mr. Hadow has succeeded in establishingfourdifferent substitution compounds, which, as no distinctive nomenclature has been at present proposed, may be termed compounds A, B, C, and D.
Compound Ais the most explosive Gun-Cotton, and contains the largest amount of Peroxide of Nitrogen. It dissolvesonly in Acetic Ether, and is left on evaporation as a white powder. It is produced by the strongest Nitro-Sulphuric Acid which can be made.
Compounds B and C, either separate or in a state of mixture, form the soluble material employed by the Photographer. They both dissolve in Acetic Ether, and also in a mixture of Ether and Alcohol. The latter, viz. C, also dissolves in glacial Acetic Acid. They are produced by a Nitro-Sulphuric Acid slightly weaker than that used for A, and contain a smaller amount of Peroxide of Nitrogen.
Compound Dresembles what has been termedXyloidine, that is, the substance produced by acting with Nitric Acid upon Starch. It contains less Peroxide of Nitrogen than the others, and dissolves in Ether and Alcohol, and also in Acetic Acid. The ethereal solution leaves, on evaporation, an opaque film, which is highly combustible, but not explosive.
By bearing in mind the properties of these compounds, many of the anomalies complained of in the manufacture of Gun-Cotton disappear. If the Nitro-Sulphuric Acid employed is too strong, the product will be insoluble in Ether; whilst if it is too weak, the fibres are gelatinized by the Acid and partly dissolved.
c.Means adopted to procure a Nitro-Sulphuric Acid of the requisite strength for preparing Pyroxyline.—This is a point of more difficulty than would at first appear. Itis easy to determine an exact formula for the mixture, but not so easy to hit upon the proper proportions of the acids required to produce that formula; and a very slight departure from them altogether modifies the result. The main difficulty lies inthe uncertain strength of commercial Nitric Acid. Oil of Vitriol is more to be depended upon, and has a tolerably uniform Sp. Gr. of 1·836;[13]but Nitric Acid is constantly liable to variation; hence it becomes necessary to make a preliminary determination of its real strength, which is done either by taking the specific gravity and referring to tables, or, better still, by a direct analysis. As each atom of Sulphuric Acid removes only a given quantity of water, it follows that the weaker the Nitric Acid, the larger the amount of Sulphuric which will be required to bring it up to the proper degree of concentration.
[13]The later experience of the writer induces him to believe, that the specific gravity of Oil of Vitriol cannot always be taken as an indication of its real strength; which is best ascertained by analysis.
[13]The later experience of the writer induces him to believe, that the specific gravity of Oil of Vitriol cannot always be taken as an indication of its real strength; which is best ascertained by analysis.
To avoid the trouble necessarily attendant upon these preliminary operations, many prefer to use, in place of Nitric Acid itself, one of the salts formed by the combination of Nitric Acid with an alkaline base. The composition of these salts, provided they are pure and nicely crystallized, can be depended on.
Nitrate of Potash, orSaltpetre, contains a single atom of Nitric Acid united with one of Potash. It is ananhydroussalt, that is, it has no water of crystallization. When strong Sulphuric Acid is poured upon Nitrate of Potash in a state of fine powder, in virtue of its superior chemical affinities it appropriates to itself the Alkali and liberates the Nitric Acid. If care be taken to add a sufficient excess of the Sulphuric Acid, a solution is obtained containing Sulphate of Potash dissolved in Sulphuric Acid, and free Nitric Acid. The presence of the Sulphate of Potash (or, more strictly speaking, of theBi-Sulphate) does not in any way interfere with the result, and the effect is the same as if the mixed acids themselves had been used.
The reaction may be thus represented:—
CHEMISTRY OF THE SOLUTION OF PYROXYLINE IN ETHER AND ALCOHOL, OR "COLLODION."
The substitution compounds B and C, already alluded to as forming the Soluble Cotton of Photographers, are both abundantly soluble in Acetic Ether. This liquid however is not adapted for the purpose required, inasmuch as on evaporation it leaves the Pyroxyline in the form of a white powder, and not as a transparent layer.
The rectified Ether of commerce has been found to answer better than any other liquid as a solvent for Pyroxyline.
If the sp. gravity be about ·750, it contains invariably a small proportion ofAlcohol, which appears to be necessary; the solution not taking place with absolutely pure Ether. The Pyroxyline, if properly prepared, begins almost immediately to gelatinize by the action of the Ether, and is soon completely dissolved. In this state it forms a slimy solution, which, when poured out on a glass plate, dries up into a horny transparent layer.
In preparing Collodion for Photographic purposes, we find that its physical properties are liable to considerable variation. Sometimes it appears very thin and fluid, flowing on the glass almost like water, whilst at others it is thick and glutinous. The causes of these differences will now engage our attention. They may be divided into two classes: first, those relating to the Pyroxyline; second, to the solvents employed.
a.Variation of Properties in different Samples of soluble Pyroxyline.—The substitution compounds A, B, C, and D differ, as already shown, in the percentage amount of Peroxide of Nitrogen present, and the former are more explosive and insoluble than the latter. But it oftenhappens in preparing Pyroxyline, that two portions of Nitro-Sulphuric Acid taken from the same bottle yield products which vary in properties, although they are necessarily the same in composition.
Takingextremesin illustration, we notice two principal modifications of soluble Pyroxyline.
The first, when treated with the mixture of Ether and Alcohol, sinks down to a gummy or gelatinous mass, which gradually dissolves on agitation The solution is very fluid in proportion to the number of grains used, and when poured out spreads into a beautifully smooth and glassy surface, which is quite structureless, even when highly magnified. The film adheres tightly to the glass, and when the finger is drawn across it, separates in short fragments, and broken pieces.
The second variety produces a Collodion which is thick and glutinous, flowing over the glass in a slimy manner, and soon setting into numerous small waves and cellular spaces. The film lies loose upon the glass, is apt to contract on drying, and may be pushed off by the finger in the form of a connected skin.
This subject is not thoroughly understood, but it is known that thetemperatureof the Nitro-Sulphuric Acid at the time of immersing the Cotton influences the result. The soluble variety is produced byhotacids; the second, or glutinous, by the same acids employed cold, or only slightly warm. The best temperature appears to be from 130° to 155° Fahrenheit; if it rises much beyond that point, the acids act upon and dissolve the Cotton.
b.The physical properties of Collodion affected by the proportions and purity of the Solvents.—Pyroxyline of the varieties termed B and C dissolves freely in a mixture of Ether and Alcohol; but the characters of the resulting solution vary with the relative proportions of the two solvents.
When the Ether is in large excess, the film is inclined to be strong and tough, so that it can often be raised byone corner and lifted completely off the plate without tearing. It is also very contractile, so that a portion of the Collodion poured on the hand draws together and puckers the skin as it dries. If spread upon a glass plate in the usual way, the same property of contractility causes it to retract and separate from the sides of the glass.
These properties, produced by Ether in large proportion, disappear entirely on the addition of more Alcohol. The transparent layer is now soft and easily torn, possessing but little coherency. It adheres to the surface of the glass more firmly, and exhibits no tendency to contract and separate from the sides.
From these remarks it will be gathered that an excess of Ether, and a low temperature in preparing the Pyroxyline, both favour the production of a contractile Collodion; whilst on the other hand an abundance of Alcohol, and a hot Nitro-Sulphuric Acid, tend to produce a short and non-contractile Collodion.
The physical properties of Collodion are affected by another cause, viz. by thestrengthand purity of the solvents, or, in other words, their freedom from dilution with water. If a few drops of water be purposely added to a sample of Collodion, the effect is seen to be to precipitate the Pyroxyline in flakes to the bottom of the bottle. There are many substances known in chemistry which are soluble in spirituous liquids, but behave in the same manner as Pyroxyline in this respect.
The manner in which water gains entrance into the Photographic Collodion is usually by the employment of Alcohol or Spirit of Wine which has not been highly rectified. In that case the Collodion is thicker, and flows less readily than if the Alcohol were stronger. Sometimes the texture of the film left upon evaporation is injured; it is no longer homogeneous and transparent, but semi-opaque, reticulated, or honeycombed, and so rotten that a stream of water projected upon the plate washes it away.
These effects are to be attributed not to the Alcohol, butto the water introduced with it; and the remedy will be to procure a stronger spirit, or, if that cannot be done, to increase the amount of Ether. Collodion prepared with a large proportion of Ether, and water, but a small quantity of Alcohol, is often very fluid and structureless at first, adhering to the glass with some tenacity and having a short texture; but it tends to become rotten when used to coat many plates successively, the water on account of its lesser volatility accumulating in injurious quantity in the last portions.
THE COLORATION OF IODIZED COLLODION EXPLAINED.
Collodion iodized with the Iodides of Potassium, Ammonium, or Zinc, soon assumes a yellow tint, which in the course of a few days or weeks, according to the temperature of the atmosphere, deepens to a full brown. This gradual coloration, due to a development of Iodine, is caused partly by the Ether and partly by the Pyroxyline.
Ether may, with proper precautions, be preserved for a long time in a pure state, but on exposure to the joint action of air and light it undergoes a slow process of oxidation, attended with formation of Acetic Acid and a peculiar principle resembling in properties ozone, or Oxygen in an allotropic and active condition. Iodide of Potassium or Ammonium is decomposed by Ether in this state. Acetate of the Alkali, and Hydriodic Acid (HI), being first produced. The ozonized substance then removes Hydrogen from the latter compound, and liberates Iodine, which dissolves and tinges the liquid yellow.
A simple solution of an Alkaline Iodide in Alcohol and Ether does not, however, become so quickly coloured as Iodized Collodion; and hence it is evident that the presence of the Pyroxyline produces an effect. It may be shown that Alkaline Iodides slowly decompose Pyroxyline, and that a portion of Peroxide of Nitrogen is set free: this body, containing loosely combined oxygen, tends powerfully to eliminate Iodine, as may be seen by addinga few drops of the yellow commercial Nitrous acid to a solution of Iodide of Potassium.
Thestabilityof the particular Iodide used in Iodizing Collodion, influences mainly the rate of coloration, though elevation of temperature and exposure to light are not without effect. Iodide of Ammonium is the least stable, and Iodide of Cadmium the most so; Iodide of Potassium being intermediate. Collodion iodized withpureIodide of Cadmium usually remains nearly colourless to the last drop, if kept in a cool and dark place.
As the presence of free Iodine in Collodion affects its photographic properties, it may sometimes be necessary to remove it. This is done by inserting a strip of Silver-foil; which decolorizes the liquid, by forming Iodide of Silver, soluble in the excess of Alkaline Iodide (p. 42). Metallic Cadmium, and metallic Zinc, have the same effect.
When Methylated Spirits are employed in the manufacture of Collodion, the Iodine first liberated is afterwards either partially or entirely reabsorbed, the liquid acquiring at the same time an acid reaction to test-paper.
SECTION II.
The Chemistry of the Nitrate Bath.
The solution of Nitrate of Silver in which the plate coated with iodized Collodion is dipped, to form the layer of Iodide of Silver, is known technically asthe Nitrate Bath. The chemistry of Nitrate of Silver has been explained atpage 13, but there are some points relating to the properties of its aqueous solution which require a further notice.
Solubility of Iodide of Silver in the Nitrate Bath.—Aqueous solution of Nitrate of Silver may be mentioned in the list of solvents of Iodide of Silver. The proportion dissolved is in all cases small, but it increases with thestrengthof the solution. If no attention were paid to thispoint, and the precaution of previously saturating the Nitrate Bath with Iodide of Silver neglected, the film would be dissolved when left too long in the liquid.
This solvent power of Nitrate of Silver on the Iodide is well shown by taking the excited Collodion plate out of the Bath, and allowing it to dry spontaneously. The layer of Nitrate on the surface, becoming concentrated by evaporation, eats away the film, so as to produce a transparent, spotted appearance.
In the solution of Iodide of Silver by Nitrate of Silver adouble saltis formed, which corresponds in properties to the double Iodide of Potassium and Silver in beingdecomposedby the addition of water. Consequently, in order to saturate a Bath with Iodide of Silver it is only necessary to dissolve the total weight of Nitrate of Silver in a small bulk of water, and to add to it a few grains of an Iodide; perfect solution takes place, and on subsequent dilution with the full amount of water, the excess of Iodide of Silver is precipitated in the form of a milky deposit.
Acid condition of Nitrate of Silver.—A solution ofpure Nitrate of Silveris neutral to blue litmus-paper, but that prepared from the commercial Nitrate has usually an acid reaction; the crystals having been imperfectly drained from the acid mother-liquor in which they were formed. Hence, in making a new Bath it is often advisable not only to saturate it with Iodide of Silver, but to neutralize the free Nitric acid it contains.
There is also a peculiar condition of Nitrate of Silver crystallized from a solution of the metal in Nitric Acid, which renders it quite unfit for photographic purposes (seep. 101). It is thought to depend upon the presence of an oxide of Nitrogen, possibly of Nitrous Acid, and the remedy is to dry the crystals very strongly, or, better still, to fuse them at a moderate heat: mere neutralization with Carbonate of Soda does not suffice.
In melting Nitrate of Silver great care should be taken not to raise the heat so high as to decompose the salt,or a basic Nitrite will be formed, which affects the properties of the solution (p. 13): fused Nitrate of Silver ought, when cold, to be quite white, and to dissolve perfectly in water without leaving any residue. The only objection to the employment of Nitrate of Silver in this form is the facility with which it may be adulterated with Nitrates of Potash and Soda, the presence of which would lessen the available strength of the Bath.
The Nitrate Bath, although perfectly neutral when first prepared, may becomeacidby continued use, if Collodion containing muchfree Iodinebe constantly employed. In that case a portion of Nitric Acid is liberated, thus:—
When Collodion is iodized entirely with alkaline Iodides, it liberates Iodine by keeping; and hence the occasional use of Ammonia may be required to remove acidity from the Bath. But since the introduction of the Iodide of Cadmium, which preserves the Collodion nearly or quite colourless, the necessity for neutralizing Nitric Acid in the Bath has ceased.
Alkaline condition of the Bath.—By "alkalinity" of the Bath is meant a condition in which the blue tint is rapidly restored to reddened litmus-paper. This indicates that an Oxide of some kind is present in solution, which, by combining with the acid in the reddened paper, neutralizes it and removes the red colour.
If a small portion of caustic Potash or Ammonia be added to a strong solution of Nitrate of Silver, it produces a brown precipitate, which is Oxide of Silver.
The solution however, from which the precipitate has separated, is not left in a neutral state, but possesses a faint alkaline reaction. Oxide of Silver and Carbonate of Silver are alsoabundantlysoluble in water containing Nitrate of Ammonia; which salt is continually accumulatingin the Bath when compounds of Ammonium are used for iodizing.
An alkaline Bath is perhaps of all conditions the one most fatal to success in photography. It leads to that universal darkening of the film on applying the developer to which the name of "fogging" has been given. Hence care must be used in adding to the Bath substances which tend to make it alkaline.
Collodion containing free Ammonia, often sold in the shops, gradually does so. The use of Potash, Carbonate of Soda, Chalk, or Marble, to remove free Nitric Acid from the Bath, has the same effect; and hence, when they are employed, a trace of Acetic acid must afterwards be added.
The mode of testing a bath for alkalinity is as follows:— a strip of porous blue litmus-paper is taken and held to the mouth of a bottle of glacial Acetic acid until it becomes reddened; it is then placed in the liquid to be examined and left for ten minutes or a quarter of an hour. If Oxide of Silver be present in solution, the original blue colour of the paper will slowly but gradually be restored.
Occasional formation of Acetate of Silver in the Nitrate Bath.—In preparing a new Bath, if the crystals of Nitrate of Silver are acid, it is usual to add an alkali in small quantity. This removes the Nitric Acid, but leaves the solution faintly alkaline. Acetic Acid is then dropped in, which, by combining with the Oxide of Silver, forms Acetate of Silver.
Acetate of Silver is not formed by the simple addition of Acetic Acid to the Bath, because its production under such circumstances would imply the liberation of Nitric Acid; but if an alkali be present to neutralize the Nitric Acid, then the double decomposition takes place, thus—
Acetate of Silver is a white flaky salt, sparingly soluble in water. It dissolves in the Bath only in small proportion, but yet sufficiently to affect the Photographicproperties of the film (see p.111and117). The observance of the following simple rules will obviate its production in injurious quantity:—First, when it is required to remove free Nitric Acid from a bathnot containing Acetic Acida solution of Potash or Carbonate of Soda may be dropped infreely; but the liquid must be filtered before adding any Acetic Acid, otherwise the brown deposit of Oxide of Silver will be taken up by the Acetic Acid, and the Bath will be charged with Acetate of Silver.Secondly, in dealing with a Bath containing both Nitric and Acetic Acids, employ an alkalimuch diluted(Liquor Ammoniæ with 10 parts of Water), and add a single drop at a time, coating and trying a plate between each addition; the Nitric Acid will neutralize itself before the Acetic, and with care there will be no formation of Acetate of Silver in quantity.
Substances which decompose the Nitrate Bath.—Most of the common metals, having superior affinity for Oxygen, separate the Silver from a solution of the Nitrate; hence the Bath must be kept in glass, porcelain, or gutta-percha, and contact with Iron, Copper, Mercury, etc., must be avoided, or the liquid will be discoloured, and a black deposit of metallic Silver precipitated.
All developing agents, such as Gallic and Pyrogallic Acids, the Protosalts of Iron, etc., blacken the Nitrate Bath, and render it useless by reducing metallic Silver.
Chlorides, Iodides, and Bromides produce a deposit in the Bath; but the solution, although weakened, may again be used after passing through a filter.
Hyposulphites, Cyanides, and all fixing agents decompose Nitrate of Silver.
Organic matters, generally, reduce Nitrate of Silver, either with or without the aid of light. Grape Sugar, Albumen, Serum of Milk containing caseine, etc., blacken the Bath, even in the dark. Alcohol and Ether act more slowly, and produce no injurious effect unless the liquid is constantly exposed to light.
These facts indicate that the Nitrate Bath containingvolatile organic matters must be preserved in a dark place; also that it should be kept exclusively for sensitizing the Collodion plates, and not used in floating papers intended for the printing process.
Changes in the Nitrate Bath by use.—The solution of Nitrate of Silver employed in exciting the Collodion film gradually decreases in strength, but not so quickly as the Bath used in sensitizing papers for printing. If the amount of Nitrate be allowed to fall as low as twenty grains to the ounce of water, the decomposition will be imperfect, and the film will be pale and blue, even with a highly iodized Collodion.
A gradual accumulation of Ether and Alcohol also takes place in the Bath after long use, in consequence of which the developing solutions flow less readily upon the Collodionized plates, and oily stains are apt to be produced.
Diminished sensitiveness of the Iodide film is sometimes traced to impurities in the Bath, when it is very old, and has been much used. These are probably of an organic nature and may often be partially removed by agitation with kaolin, or animal charcoal. The latter however is objectionable, being usually contaminated withCarbonate of Lime, which makes the Bath alkaline; or (in the case ofpurifiedanimal charcoal) with traces of Hydrochloric Acid, which liberate Nitric Acid in the Bath. Even the kaolin may as a preliminary precaution be washed with dilute Acetic Acid to remove Carbonate of Lime if any should be present.
SECTION III.
The Conditions which affect the Formation and Development of the Latent Image in the Collodion process.
It will be necessary to preface the observations contained in this Section by defining two terms which are frequently confounded with each other, but are in reality of distinct meaning. These terms are "Sensitiveness" and "Intensity."
By Sensitiveness is meant a facility of receiving impression from very feeble rays of light, or of receiving it quickly from brighter rays.
Intensity, on the other hand, relates to the appearance of the finished Photograph, independently of the time taken to produce it,—to the degree of opacity of the image, and the extent to which it obstructs transmitted light.
It will be seen as we proceed that the conditions necessary to obtain extreme sensitiveness of the Iodide film are different from, and often opposed to, those which give the maximum intensity of image.
CAUSES WHICH INFLUENCE THE SENSITIVENESS OF IODIDE OF SILVER ON COLLODION.
Some of the most important are as follows:—
a.The presence of free Nitrate of Silver.—When the sensitive film is removed from the Nitrate Bath, the Iodide of Silver is left in contact with excess of Nitrate of Silver. The presence of this compound is notessentialto the action of the light, since, if it be removed by washing in distilled water, the image may still be impressed. In such a case however the effect is produced slowly, and a longer exposure in the Camera is required.
The sensitiveness of the Iodide film does not increase uniformly with the amount of the excess of Nitrate of Silver, as measured by the strength of the Bath. It is found that no advantage in this respect can be gained by using a proportion of Nitrate of Silver greater than 30 or 35 grains to the ounce of water, although solutions of three times this strength have been sometimes employed.
It has been asserted that a chemically pure Iodide of Silver, which is unaffected in colour by the direct action of light, is also incapable of receiving the invisible image in the Camera; and that the sensitiveness of a washed Collodion film is due to a minute quantity of Nitrate of Silver still remaining. Iodide of Silver in the state in which it is thrown down on diluting with water a strongsolution of the salt known as the double Iodide of Potassium and Silver,—and which must, from the mode of its preparation, be free from Nitrate of Silver,—is quite insensitive; but this form of Iodide differs from the other in colour, and not only so, but is likely to contain an excess of Iodide of Potassium. The application of a solution of Nitrate of Silver to this compound at once renders it sensitive to light.
b.Free acids in the Nitrate Bath.—Strong oxidizing agents, such as Nitric Acid, greatly diminish the sensibility of the film, and hence the importance of removing the free acid often met with in commercial samples of the Nitrate of Silver. The effect of even a single drop of strong Nitric Acid in an eight-ounce Nitrate Bath will be appreciable; and when the proportion is increased to one drop per ounce, it will be difficult to obtain a rapid impression.
Acetic Acid has far less effect upon the sensitiveness than Nitric Acid, and being found useful during the development of the image is commonly employed; but when great rapidity is desired, it should be added cautiously, and in a proportion very much less than that in the solution known as the Aceto-Nitrate of Silver, which contains about one drop of the glacial acid to each grain of Nitrate of Silver.
c.Addition of certain organic matters.—It has long been remarked that the use of bodies like Albumen, Gelatine, Caseine, etc., which combine with Oxides of Silver, retard the action of light upon Iodide of Silver; and the recent observations of the Author enable him to confirm this statement. It is probable that one cause, amongst others, of the great sensibility of the Collodion film is due to the fact that Pyroxyline is a substance peculiarly indifferent to the Salts of Silver, exhibiting no tendency to reduce them to the metallic state; and it is proved by experiment that the addition of Grape Sugar, or of the resinous body, Glycyrrhizine, which resembles Albumen incausing a white precipitate in strong solution of Nitrate of Silver, renders necessary a longer exposure in the Camera. Alkaline Citrates have a still more marked effect, as also have Tartrates, Oxalates, etc.
d.Impurities in the soluble Iodides.—Commercial Iodide of Potassium often containsIodateof Potash, which is found to have a retarding effect upon the action of light; also Carbonate of Potash, which, in Collodion, produces Iodoform,[14]and in the paper processes, where "Aceto-Nitrate" is used for sensitizing, forms Acetate of Silver. Iodoform has a marked influence in diminishing the sensitiveness of Iodide of Silver; Acetate of Silver may perhaps increase it a little by securing the absence of free Nitric Acid (p. 117). Iodide of Potassium prepared by the process in which Sulphuretted Hydrogen and Alcohol are used, and having a smell of Garlic, contains probably Xanthate of Potash, and is nearly useless for Photography.