Chapter 7

[24]The Author omits, in this place, all mention of molecular conditions affecting intensity, inasmuch as at the present time nothing positive has been determined with regard to them. It is however known that in the use of the protosalts of Iron as developing agents, the appearance of the image is much influenced by the rapidity with which the reduction is effected—the particles of Silver being larger and more metallic when the development is conducted slowly. The process of electro-plating and other chemical operations of a similar kind prove that the physical properties of metals precipitated from solutions of their salts, vary greatly with the degree of fineness and arrangement of their particles.

[24]The Author omits, in this place, all mention of molecular conditions affecting intensity, inasmuch as at the present time nothing positive has been determined with regard to them. It is however known that in the use of the protosalts of Iron as developing agents, the appearance of the image is much influenced by the rapidity with which the reduction is effected—the particles of Silver being larger and more metallic when the development is conducted slowly. The process of electro-plating and other chemical operations of a similar kind prove that the physical properties of metals precipitated from solutions of their salts, vary greatly with the degree of fineness and arrangement of their particles.

ON THE VARIOUS AGENCIES DESTRUCTIVE TO PHOTOGRAPHIC PRINTS.

Action of Sulphuretting Compounds upon Positive Prints.—It was first noticed by Mr. T. A. Malone, that the most intense Photograph might be destroyed by acting upon it with solution of Sulphuretted Hydrogen or a soluble Sulphuret, for a sufficient length of time.

The changes produced by a sulphuretting compound acting upon the red image of a simply fixed print are these:—the colour is first darkened, and a degree of brilliancy imparted to it; this is the effect termed "toning." Then the warm tint by degrees alters to a colder shade, theintensityof the whole image is lessened, and the half-tones turn yellow. Lastly, the full shadows pass also from black to yellow, and the print fades.

Now in this peculiar reaction we notice the following points of interest. If at that particular stage at which the print has reached its maximum of blackness, it be raised partially out of the liquid and allowed to project into the air, the part so treated becomes yellow before that which remains immersed. Again, if a print toned by Sulphur be placed in a pan of water to wash, after the lapse of several hours it is apt to assume a faded appearance in the half-tones. The full shadows, in which the reducedSilver salt is thicker and more abundant, retain their black colour for a longer time, but if the action of the sulphuretting Bath be continued, every portion of the print becomes yellow.

These facts prove thatOxygenhas an influence in accelerating the destructive action of the Sulphur compounds upon Positive prints; and this idea is borne out by the results of further experiments, for it is found that moist Sulphuretted Hydrogen has little or no effect in darkening the colour when every trace of air is excluded. When prints are washed in water they are exposed to the influence of the dissolved air which water always contains, and hence the change from black to yellow is produced.[25]

[25]Further remarks upon the action of damp air upon Positives toned by Sulphur are given atp. 153.

[25]Further remarks upon the action of damp air upon Positives toned by Sulphur are given atp. 153.

There are some substances which facilitate the yellow degeneration of Positives toned by Sulphur, a knowledge of which will be useful: they are—1st, powerful oxidizers, such as Chlorine, Permanganate of Potash, and Chromic Acid; these, even when highly diluted, act with great rapidity: 2nd, bodies which dissolve Oxide of Silver, as soluble Cyanides, Hyposulphites, Ammonia; alsoacidsof various kinds, and hence the frequency of yellow finger impressions upon old sulphuretted prints, which are probably caused by a trace of organic (Lactic?) Acid left by contact with the warm hand.

It was at one time supposed that the Photograph in the stage at which it appearsblackenedby Sulphur, consisted of Sulphuret of Silver, and that this black Sulphuret became yellow by absorption of Oxygen and conversion into Sulphate. MM. Davanne and Girard, who examined the subject, thought that there might be two isomeric forms of Sulphuret of Silver, a black and a yellow form; the former of which passing gradually into the latter produced the fading of the impression. But neither of these views are correct; for it is proved by careful experiment, that the Sulphuret of Silver is a highly stable compound, not prone to oxidize, and, further, that the change of colour from black to yellow has no reference to a modification of this salt. The truth appears to be that the image whilst in the black stage contains other elements besides Sulphur and Silver, but when it has become yellow by the continued action of the sulphuretting compound, it is then a true Sulphuret.

Comparative permanence of Photographs under the action of Sulphur.—DevelopedPositives, as a rule, stand better than those printed by direct exposure to light; but much depends upon the nature of the negative process followed; and hence no general statement can be made which will not be liable to many exceptions. The mode of conducting the development must not be overlooked. The prints, which become very red in the Hyposulphite fixing Bath from the action of the developer having been stopped at too early a period, are often sulphuretted and destroyed even more readily than a vigorous sun-print obtained by direct exposure to light.

A point of even greater importance isthe nature of the sensitive surfacewhich receives the latent image. It is the printdeveloped upon Iodide of Silverwhich especially resists sulphuration. In that case, not only is the preliminary toning effect of the Sulphur more slow than usual, but the impression cannot be made to fade by any continuance of the action. It loses much of its brilliancy, and is reduced in intensity, but it is not so completely destroyed as to be useless. The reason of this, as shown in the last paper, depends upon the fact that the Talbotype proofs contain the largest amount of Silver in the image.

The employment of Gold in toning does not render an ordinary sun-print as permanent as a Positive developed upon Iodide of Silver. The deep shadows of the picture are protected by the Gold, but the lighter shades not so perfectly. Hence after the Sulphur has acted, in place of the universal yellow and faded aspect presented by the simple untoned print, the Positive fully toned by Gold has black shadows with yellow half-tones. Therefore, whilst recommending the use of Gold as a toning agent, it does not seem advisable to lay too much stress upon it as a preservative from the destructive action of Sulphur.

Exposure of Positive Prints to a Sulphuretting Atmosphere.—In testing the action of a solution of Sulphuretted Hydrogen upon paper Positives, it did not appear that the conditions under which the prints were placed bore a sufficiently close resemblance to the case of Positives exposed to an atmosphere contaminated withminute tracesof the gas; and this more particularly because it is known thatdrySulphuretted Hydrogen has comparatively little effect upon Photographic Prints.

The experiments were therefore repeated in a somewhat different form. A number of Positives (about three dozen) printed in various ways, were suspended in a glass case, measuring 2½ feet by 21 inches, and containing 7½ cubic feet of air; into which was introduced, occasionally, a few bubbles of Sulphuretted Hydrogen, just sufficient to keep the air of the chamber smelling perceptibly of the gas. A polished Daguerreotype plate was hung up in the centre, to serve as a guide to the progress of the sulphuretting action.

By the second day the metal plate had acquired a faint yellow hue, not easily seen except in certain positions; but the Positives were unaffected. At the expiration of three days the majority of the pictures exhibited no signs of change, but a few untoned prints of a pale red colour, some of which had been printed by development, and others by direct exposure to light, had perceptibly darkened.

After the eighth day, the action, appearing to progress more slowly than at first, was stopped, and the prints removed. The general results obtained were as follows:—

The Daguerreotype plate had become strongly tarnished with a film of Sulphuret of Silver, which appeared yellowish-brown in some parts and steel-blue in others. The Positives were, as a rule, toned to a slightly colder shade, but many of them had scarcely changed.

No obvious difference was observed between prints developed on paper prepared with Chloride of Silver, and others printed by direct exposure to light; but in all cases the prints obtained by those methods which give a very red image after fixing, were the first to show the change of colour due to sulphuration, the proofs submitted to the test having all been previously toned with Gold.

Effect of Oxidizing Agents upon Positive Prints.—It appeared of importance to ascertain to what extent Photographic Prints are susceptible of oxidation; on account of the atmospheric influences to which they are necessarily exposed. In experimenting upon this subject the following results have been obtained.

Powerful oxidizers destroy Positive Prints rapidly; the action usually commencing at the corners and edges of the paper, or at any isolated point, such as a metallic speck or particle of extraneous matter, which can serve as a centre of chemical action.This same fact is often noticed in the fading of Positives by long keeping, and therefore since other destructive actions (with the exception of that of Chlorine) do not appear to follow the same rule, it is an argument in addition to others which can be adduced, that Photographic Prints are frequently destroyed by oxidation.

Air which has beenOzonizedby Phosphorus, and in which blue litmus-paper becomes reddened, quickly bleaches the Positive image. Oxygen gas, obtained by voltaic decomposition of acidified water and which should contain Ozone, did not appear to have an equal amount of effect, the action being comparatively slight, or altogether wanting.

Peroxide of Hydrogenobtained in solution, and in conjunction with Acetate of Baryta, by adding Peroxide of Barium to dilute Acetic Acid,[26]bleaches darkened Positive paper; but the effect is slow, and does not take place to a very perceptible extent if the liquid be kept alkaline to test-paper.

[26]Hydrochloric Acid, which is usually recommended in place of Acetic Acid, cannot be employed in this experiment; it seems to cause a liberation of free Chlorine, which bleaches the print instantly.

[26]Hydrochloric Acid, which is usually recommended in place of Acetic Acid, cannot be employed in this experiment; it seems to cause a liberation of free Chlorine, which bleaches the print instantly.

Nitric Acid applied in a concentrated form acts immediately upon the darkened surface, bleaching every part of the print with the exception of the bronzed shadows, which usually retain a slight residual colour. A solution of Chromic Acid is still more active. This liquid may usefully be applied to distinguish prints toned by Sulphur from others toned by Gold; the presence of metallic Gold protecting the shadows of the picture in some measure from the action of the acid. The solution should be prepared as follows:—

A solution of Permanganate of Potash is an energetic destroyer of paper positives; and, as it is a neutral substance, may conveniently be employed in testing the relative capability of withstanding oxidation possessed by different Photographic Prints. The solution should be dilute, of a pale pink hue, and the Positives must be moved occasionally, as the first effect is to decolorize a great portion of the liquid, the Permanganate oxidizing the sizeand organic tissue of the paper. After an immersion of twenty minutes to half an hour, varying with the degree of dilution, the half-tones of the picture begin to die out, and the full shadows become darker in colour; the bronzed portions of the print withstand the action longer, but at length the whole is changed to a yellow image much resembling in appearance the Photograph faded by Sulphur.

Comparative permanence of Photographs treated with Permanganate of Potash.—Developed prints prepared by a Negative process withstand the action better than others. But to this rule there are exceptions; much depending upon the time of exposure to light, and the extent to which the development is carried. Those prints which, being exposed for a short time, and afterwards strongly developed, become dark in colour and vigorous in outline, are more permanent than others which having been over-exposed and under-developed, lose their dark colour and become red and comparatively faint in the Hyposulphite fixing Bath.

Positives developed upon a surface ofChlorideof Silver on plain paper do not resist the oxidizing action so perfectly as those on Iodide of Silver. Prints developed upon paper prepared with Serum of Milk containing Caseine stand better than those on plain paper.

Of prints obtained by the ordinary process of direct exposure to light, those on plain paper are the first to fade, the oxidizing action being most seen upon thehalf-tones. The use ofAlbumengives a great advantage. Developed prints on Albumen stand far better than the same upon plain paper; and even the Albuminized sun prints are less injured by the Permanganate than the best of the Negative prints prepared without Albumen. Caseine has the same effect, but to a less extent; and as Serum of Milk almost invariably contains uncoagulated Caseine, its efficacy is thus explained.

The manner of toning the print is a point of importance; previous sulphuration in an old Hyposulphite Bath always facilitating the oxidizing action.

Action of Chlorine upon Positive Prints.—Aqueous solution of Chlorine destroys the Photographic image, changing it first to a violet tint (probably Subchloride), and subsequently obliterating it by conversion into white Chloride of Silver. The impression,although invisible, remains in the paper, and may be developed in the form of yellow or brown Sulphuret of Silver by the action of Sulphuretted Hydrogen. It also becomes visible on exposure to light, and assumes considerable intensity if the paper be previously brushed with free Nitrate of Silver. Sulphate of Iron produces no effect upon the invisible image of Chloride of Silver; but Gallic or Pyrogallic Acid, rendered alkaline by Potash, converts it into a black deposit.

The Action of Chlorine water usually commences at the edges and corners of the print, in the same manner as that of oxidizing agents. The proofs upon Albumen are the least readily injured, and next, those developed on Iodide of Silver.

Hydrochloric Acid.—The liquid acid of sp. gr. ·116, even when free from Chlorine, acts immediately upon the half-tones of a positive print, and destroys the full shadows in the course of a few hours; a slight residual colour however usually remains in the darkest parts. The prints developed on Iodide of Silver are the most permanent.

Sulphuric, Acetic Acids, etc.—Acids of all kinds appear to exert an injurious influence upon Positive prints, and especially so upon the half-tones of the image, the effect varying with the strength of the acid and the degree of dilution with water. Even a vegetable acid like Acetic gradually darkens the colour and destroys partially or entirely the faint outlines of the picture.

Bichloride of Mercury.—The most important particulars relating to the action of this test upon Photographs are well known. The image is ultimately converted into a white powder, and hence, in the case of a Positive print, it becomes invisible; immersion in Ammonia or Hyposulphite of Soda however restores it in a form often resembling in tint the original impression. A point worthy of note is the protective effect of a deposit of Gold, which is very marked, the proof, after toning, resisting the action of the Bichloride for comparatively a long time.

Ammonia.—The effect of Ammonia upon a print is rather toreddenthe image than to destroy it; the half-tones become pale and faint, but they do not disappear. Toning with Gold enables the proof to resist the action of the strongest solution of Ammonia, and hence Ammonia may safely be employed as a fixing agent after the use of the Sel d'or Bath.

Hyposulphite of Soda.—A concentrated solution of Hyposulphite of Soda exercises a gradual solvent action upon the image of Photographic Prints, at the same time tending to communicate Sulphur and to darken the colour of the impression. A faint yellow outline of Sulphuret of Silver usually remains after the solution of the image is completed.

Developed prints of all kinds, but in particular the Talbotype proofs upon Iodide of Silver, are less readily dissolved by Hyposulphite of Soda than those obtained by the direct action of light. There is also a slight difference between plain and Albuminized prints, which is in favour of the former, the albuminized paper always losing somewhat more by immersion in the Hyposulphite Bath than plain Chloride paper sensitized by Nitrate of Silver.

Cyanide of Potassium.—The solvent action of Cyanide of Potassium is most energetic upon Photographs formed on paper. These images, whether developed or not, do not withstand the test so well as the impressions on Collodion. Albuminized proofs are also somewhat more easily affected than prints on simple Chloride paper sensitized with Nitrate or Ammonio-Nitrate of Silver.

Heat, moist and dry.—Long-continued boiling in distilled water has a reddening action upon Positive Prints. The image becomes at length pale and faint, resembling a print treated with Ammonia before toning. A deposit of Gold upon the image lessens, but does not altogether neutralize, the effect of the hot water. If the boiling be long continued, the violet-purple tone often imparted by the Gold invariably gives place to a chocolate-brown, which appears to be the most permanent colour. Printsdevelopedby Gallic Acid upon paper prepared with Serum of Milk or with a Citrate, suffer as much as others obtained by direct action of light. Ammonio-Nitrate prints on highly salted paper, which become nearly black when toned with Gold, retain their original appearance the most perfectly; a slight diminution of brightness being the only observable difference after long boiling in water. Albumen proofs, and prints on English papers, or foreign papers prepared with Serum of Milk, Citrates, Tartrates, or any of those bodies whichreddenthe reduced Salt, are, as a rule, rendered lighter in colour, and pass from purple to brown when boiled in water.

Dry heat has an opposite effect to that of hot water, usuallydarkeningthe colour of the image. On exposing a plain paper print simply fixed, and thoroughly freed from Hyposulphite of Soda by washing, to a current of heated air, it changes gradually from red to dark brown, in which state it continues until the temperature rises to the point at which the paper begins to char, when it resumes its original red tone, becoming at the same time faint and indistinct.

The Products of Combustion of Coal-gas a cause of Fading.—Coal-gas contains Sulphur compounds, which in combustion are oxidized into Sulphurous and Sulphuric Acids; other substances of a deleterious nature may also be present. A plate of polished silver suspended in a glass tube, through which was directed the current of heated air rising from a small gas jet, became tarnished with a white film in the course of twenty-four hours. Positive prints exposed to the same, absorbed moisture and faded; the action resembling that of oxidation, in being preceded by a general darkening in colour. Of four prints exposed, an Iodide-developed print was the least injured, and next, a print upon Albuminized paper.

ON THE ACTION OF DAMP AIR UPON POSITIVE PRINTS.

In order to ascertain this point, more than six dozen Positives, printed on every variety of paper, were mounted in new and perfectly clean stoppered glass bottles, at the bottom of each of which was placed a little distilled water, to keep the contained air always moist. They were removed at the expiration of three months, having been kept during that time, some in the dark, and others exposed to the light. As the prints were prepared by various methods, toned in different ways, and mounted with or without substances likely to exercise a deleterious action, this series of experiments will possess considerable value in determining some of the intrinsic causes of fading of Positives.[27]

[27]For a more detailed account of the experiments, see the original paper in the 'Photographic Journal,' vol. iii.

[27]For a more detailed account of the experiments, see the original paper in the 'Photographic Journal,' vol. iii.

The general results obtained were as follows:—Positives which had beensimply fixedin Hyposulphite of Soda remained quite uninjured. Whether developed by Gallic Acid on either of thethree Salts of Silver usually employed, or printed by direct action of light, the result was the same. Hence we may infer that the darkened material which forms the image of Photographic Prints does not readily oxidize in a damp atmosphere.

TonedPositives were found in many cases to be less permanent than Positives simply fixed. This was especially the case when the toning had been effected bySulphur; all the sulphuretted prints, fixed in solution of Hyposulphite which had been long used, became yellow in the half-tones when exposed to moisture. Positives fixed and toned in Hyposulphite containing Gold were variously affected; some prepared when the solution was in an active state being unchanged, others losing a little half-tone, and others, again, fading badly. These latter were prepared in a Bath which had lost Gold and acquired sulphuretting properties; and it was noticed that they were more injured by the action of boiling water than those Positives which proved to be permanent under the influence of the moisture.

Toning by means of Chloride of Gold appeared to be highly satisfactory, but the number of prints operated upon was small. The Sel d'or process also did not injure the integrity of the image, no commencing yellowness or bleaching of half-tones being visible after exposure to the moist air.

This series of experiments confirmed the statement made in a former paper, that some tints obtained in Positive printing are more permanent than others. Violet tones produced by Sulphur invariably passed into a dull brown by the action of the moist air; and even when Gold was employed in toning, these same purple colours were usuallyreddened. This was especially the case when English papers were used, or foreign papers re-sized with Serum of Milk containing Caseine. The chocolate-brown tints which best stand the action of boiling water, and in particular those upon Ammonio-Nitrate paper, were least affected by the damp air; and indeed it was evident that the two agents, viz. moist air and hot water, acted alike in tending toreddenthe print, although the latter did so in the most marked manner.

It seemed also, from the results of these experiments, to be a point of great importance that the size should be removed from the print in order to render it indestructible by damp air. This was evidently seen in two cases where Positives, toned in an oldHyposulphite and Gold Bath, were divided into halves, one of which was treated with a strong solution of Ammonia. The result was that the halves in which the size was allowed to remain, faded, whilst the others were comparatively uninjured. The Albumen proofs especially suffered when the size was left in the paper, a destructive mouldiness forming, and fading the picture. The use of boiling water obviated this, and the prints so treated remained clean and bright. A partial decomposition of Albumen however occurred in some cases even when hot water was used, the gloss disappearing from the paper in isolated patches. WithCaseinesubstituted for Albumen there was also a loss of half-tone; thus seeming to indicate that both these animal principles, although stable under ordinary conditions, will, even when coagulated by Nitrate of Silver, decompose if kept long in a moist state.

The use of improper substances for mounting proved to be another determining cause of fading by oxidation. Those bodies which combine with Oxide of Silver, are likely upon theoretical grounds to destroy the half-tones of the image; and it was found, that if the picture were left in contact with Alum, Acetic Acid, etc., or with the substances which generate an acid by fermentation, such as paste or starch, it invariably faded.

The supposed accelerating influence ofLightupon the fading of Positives was not confirmed by these experiments, as far as they extended. Many of the bottles containing the Photographs were placed outside the window of a house with a southern aspect during the whole of the three months with the exception of two or three weeks, but no difference whatever could be detected between Positives so treated and others kept in total darkness. It will be proper however that this part of the investigation should be repeated, allowing a longer time.

An examination of the various modes employed for coating Positives, in order to exclude the atmosphere, showed that many of them were not fitted to fulfil the purpose intended. Waxed prints faded quite as much when exposed to moisture as others not waxed. White wax is a substance often adulterated, and Oil of Turpentine has been shown to contain a body resembling Ozone in properties, and possessing the power of bleaching a dilute solution of Sulphate of Indigo. Spirit varnish applied to thesurface of the picture after re-sizing with Gelatine was plainly superior to white wax, but nevertheless it did not obviate the fading effect of the moisture upon an unstable Positive which had been toned by sulphuration. Its protective influence is therefore limited.

ON THE CHANGE IN COMPOSITION WHICH HYPOSULPHITE OF SODA EXPERIENCES BY USE IN FIXING PAPER PROOFS.[28]

[28]These observations are condensed and re-arranged from the papers published by the Author in the 'Photographic Journal' for September and October, 1854.

[28]These observations are condensed and re-arranged from the papers published by the Author in the 'Photographic Journal' for September and October, 1854.

It was remarked by Photographers at an early period that the properties of the Fixing Bath of Hyposulphite of Soda became altered by constant use; that it gradually acquired the power ofdarkeningthe colour of the Positive image. This change was at first referred to the accumulation ofSalts of Silverin the Bath, and hence directions were given to dissolve a portion of blackened Chloride of Silver in the Hyposulphite in preparing a new solution.

Careful experiments performed by the Author convinced him that an error had been entertained; since it was found that the simple solution of Chloride of Silver in Hyposulphite of Soda had no power of yielding the black tones. But it afterwards appeared that if the fixing Bath, containing dissolved Silver Salts, were set aside for a few weeks, adecompositionoccurred in it, evidenced by the formation of a black deposit of Sulphuret of Silver; andthenit became active in toning the proofs.

The presence of this deposit of Sulphuret of Silver indicated that a portion of Hyposulphite of Silver had spontaneously decomposed, and, knowing the products which are generated by the spontaneous decomposition of this salt, a clue to the difficulty was afforded. One atom of Hyposulphite of Silver includes the elements of one of Sulphuret of Silver and one of Sulphuric Acid. Sulphuric Acid in contact with Hyposulphite of Soda producesSulphurous Acidby a process of displacement; and Plessy has shown that Sulphurous Acid reacts upon an excess of Hyposulphite of Soda, forming two of that interesting series of Sulphur compounds designated by Berzelius the "Polythionic Acids."

It appeared therefore probable, upon theoretical grounds, that the Penta-, Tetra-, and Trithionates might produce some effect in the Hyposulphite fixing Bath. Upon making the trial these expectations were verified; and it was found that Tetrathionate of Soda added to Hyposulphite of Soda yielded a fixing and toning Bath quite equal in activity to that produced by means of Chloride of Gold.

It may be useful to review for an instant the composition of the Polythionic series of acids; it is thus represented:—

The amount ofOxygenin all is the same, that of the other element increases progressively; hence it is at once evident that the highest member of the series mightby losing Sulphurdescend gradually until it reached the condition of the lowest.

This transition is not only theoretically possible, but there is an actual tendency to it, all the acids being unstable with the exception of the Hyposulphuric. The Alkaline Salts of these acids are more unstable than the acids themselves; a solution of Tetrathionate of Soda becomes milky in the course of a few days from deposition of Sulphur, and, if tested, is then found to containTrithionate and eventuallyDithionate of Soda.

The cause of the change in properties of the fixing Bath being thus clearly traced to a decomposition of Hyposulphite of Silver, and a consequent generation of unstable principles capable of imparting Sulphur to the immersed proofs, it seemed desirable to continue the experiments.—

There is a peculiaracid conditioncommonly assumed by old fixing Baths, which could not be satisfactorily explained, since it was known that acids do not exist long in a free state in solution of Hyposulphite of Soda, but tend to neutralize themselves by displacingHyposulphurous Acidspontaneously decomposable into Sulphurous Acid and Sulphur. This point is set at rest by the discovery of a peculiar reaction which takes place between certain salts of the Polythionic acids and Hyposulphite of Soda. Asolution of Tetrathionate of Soda may be preserved for many hours unchanged; but if a few crystals of Hyposulphite of Soda be dropped in, it begins very shortly to deposit Sulphur, and continues to do so for several days. At the same time the liquid acquires an acid reaction to test-paper, and produces effervescence on the addition of Carbonate of Lime.

It is evident that a Sulphur acid exists which has not hitherto been described, and that this acid is formed as one of the products of the decomposition of the Hyposulphite of Silver contained in the fixing Bath. The subject is an important one to Photographers, because it is found that Hyposulphite Baths which have acquired the acid reaction, although toning quickly, yield Positives which fade on keeping. The acid may perhaps combine with the reduced Silver Salt, which, if the image be allowed to contain Suboxide of Silver, is theoretically probable.

The experiments were next directed towards ascertaining more carefully the effect of the acid fixing Bath upon the Positive proofs. Tetrathionate of Soda added to solution of Hyposulphite of Soda produces, at the expiration of twelve hours, a liquid which, when filtered from the deposited Sulphur, reddens blue litmus-paper slowly. Positive prints immersed in the Bath pass from red to black, dissolving in the half-tones, and becoming yellow and faded if the action be too long continued. On adding Carbonate of Soda in quantity sufficient to remove the acid reaction, the power of toning is much diminished, but dark colours can still be obtained by continuing the action. The solvent effect upon the half-tones, evidently caused in great measure by the acid, is lessened; whilst the tendency to yellowness in the white parts of the proof, almost disappears. These effects are more particularly manifested when the prints are immersed in the Bath immediately on their removal from the printing frame; and it is found almost impossible to preserve the whites of the impression clear, in the acid Bath, unless the Nitrate of Silver has been washed away.

Solution of half-tones and yellowness in the lights, both a source of annoyance to the operator, are thus traced in great measure to an acid condition of the fixing and toning Bath; and the remedy is obvious.

The Author's experiments upon the Tetrathionates and theirreaction with Hyposulphite of Soda likewise elicited the important fact thatalkaliesdecompose the unstable sulphuretted principle. If the Bath be treated with Potash or Carbonate of Soda, an alkalineSulphuretappears to be gradually formed, which precipitates Sulphuret of Silver, and in the course of a few days the liquid returns to its original condition and ceases to act as a toning agent upon the proof. The same effect takes place to a great extent when the solution is set aside for several weeks or months; a process of spontaneous change going forward, which issues in a deposition of Sulphur and Sulphuret of Silver, and a partial loss of sulphuretting properties in the liquid.

It may be interesting to the scientific investigator to describe the mode of preparing a fixing and toning Bath, illustrating the above remarks:—

Dissolve the Nitrate of Silver in 2 ounces of the water, then from the total quantity of Hyposulphite of Soda, weigh out

dissolve this likewise in 2 ounces of water, and the remainder of the Hyposulphite in the other 4 ounces. Then, having the three solutions in separate vessels, pour the Nitrate of Silver at once into the 2-ounce solution of Hyposulphite, agitating the precipitated Hyposulphite of Silver rapidly. In a short time it will begin to decompose, passing from white to canary-yellow, and then to orange-yellow.When the orange-yellow begins to verge towards brown, add the 4-ounce concentrated solution of Hyposulphite, which will at once complete the decomposition, a part of the precipitate dissolving and the remainder becoming perfectly black. After filtering out the black Sulphuret of Silver, the solution is ready for use.

A Bath prepared by this formula is not usually very active, but it shows clearly the process by which an ordinary fixing Bath may be converted into a toning Bath by the immersion of positives having free Nitrate of Silver upon the surface.

The following formula is more economical and gives a betterresult, but it cannot be used for "Ammonio-Nitrate" prints; the addition of an alkali precipitating Sulphuret of Iron.

Dissolve the Hyposulphite of Soda in seven ounces of the water, the Nitrate of Silver in the remaining one ounce; then pour the Perchloride of Iron into the solution of Hyposulphite, by degrees, stirring all the time. The addition of the Iron Salt strikes a fine purple colour, but this soon disappears. When the liquid has become again colourless, which it does in a few minutes, add the Nitrate of Silver, stirring briskly. Perfect solution will take place without any formation of black Sulphuret.

A toning Bath prepared with Chloride of Iron will be ready for use twelve hours after mixing, but it will be more active at the expiration of a week. The solution is acid to test-paper, andmilkyfrom a deposit of Sulphur, which must be filtered out.

The Perchloride of Iron should be prepared by boiling Peroxide of Iron with Hydrochloric Acid, in preference to dissolving Iron wire in Aqua-Regia.

The addition of the Nitrate of Silver is made in order to produce a portion of Hyposulphite of Silver in the bath; the presence of a Silver Salt having been found to modify the tint of the Positives, and to prevent their quickly turning yellow.

SECTION IV.

On the Fading of Photographic Prints.

For many years subsequent to the discovery of the process of Photographic Printing by Mr. Fox Talbot, it was not generally known that pictures so produced were easily susceptible of injury from various causes, and in particular from traces of thefixing-agentremaining in the paper. Hence, due care not being taken in the proper cleansing and preservation of the proofs, the majority of them faded.

This matter became at last one of such importance that the Council of the Photographic Society decided upon forming a Committee for the purpose of examining the subject. The Author was honoured by being placed upon this Committee, and the researches of which an abstract has been given in the previous Section, were undertaken at the request of the Society.

The present Section is intended to explain practically and in a concise manner the causes of the fading of Photographic Prints, and the precautions which should be taken to ensure their permanency. The chemistry of the subject having been fully explained in the last Section, it will suffice to refer the reader to its pages for more detailed information.

Historical evidence of the permanence of Photographs.—It is a point of interest to collect information as to the existence of old Photographs which have remained many years unchanged. There are numerous instances of Positives printed more than ten years ago, which have not perceptibly altered up to the present time. These prints are mostly on plain paper, Albumen not having come into use at so early a date. The general impression of practical operators however is, that fading has occurred less frequently since the introduction of Albuminized paper.

Positives printed by development on paper prepared by Talbot's method seem as a rule to have stood remarkably well, and instances of Talbotype Negatives having faded are rare.

Of the prints which have proved to be permanent, some are red or brown in colour, but many, being of a dark or purple shade, have evidently been toned, although not with Gold, the use of which was unknown to the earlier Photographers.

It is plain from data thus collected, that Photographs do not necessarily fade by time; and the fact that in one and the same portfolio are constantly seen prints which appear permanent, and others in an advanced state ofchange, cannot but lead to the inference that the main causes of deterioration are intrinsic, depending upon some injurious matters left in the paper; which is confirmed by experiment.

Causes of fading.—The Author believes that the fading of Photographic Prints may almost invariably be referred to one or other of the following conditions:—

a.Imperfect washing.—This is perhaps the most important of all, and the most frequent. When Hyposulphite of Soda is allowed to remain in the paper, even in minute quantity, it gradually decomposes, with liberation of Sulphur, and destroys the print in the same way and quite as effectually as a solution of Sulphuretted Hydrogen or an alkaline sulphuret.

Imperfect washing may be suspected, if the Photograph, within a few months from the date of its preparation,begins to get darker in colour: thehalf-tints, which are the first to show the action, afterwards passing into the yellow stage, whilst the dark shadows remain black or brown for a longer time.

The proper mode of washing Photographs is sometimes misunderstood. The length of time during which the print lies in the water is a point of less importance, than that the water should be continually changed. When a number of Positives are placed together in a pan, and a tap turned upon them, the circulation of fluid does not necessarily extend to the bottom. This is proved by the addition of a little colouring matter, which shows that the stream flows actively above, but at the lower part of the vessel, and between the prints, there is a stationary layer of water which is of little use in washing out the Hyposulphite. Care should therefore be taken that the pictures are kept as far as possible separate from each other, and when running water cannot be had, that they are frequently moved and turned over, fresh water being constantly added. When this is done, and especially if thesizebe removed from the paper in the manner presently to be advised,fouror five hourswashing will be sufficient. It is a mistake to allow the pictures to remain in the water for several days; which produces no good effect, and may tend to encourage a putrefactive fermentation, or the formation of a white deposit upon the image when the water contains Carbonate of Lime.

b.Acid matters left in the Paper.—Upon examining collections of old Photographs, it is not uncommon to find prints which are stated to have remained unaltered for a long time after their first production, but in the course of time to have lost their brilliancy, and become pale and indistinct. This kind of fading often commences at the corners and edges of the paper, and works inwards towards the centre. The Author's experiments have shown that it is principally caused by a slow process ofoxidation.

The Photographic Image does not appear readily susceptible of oxidation unless it be previously darkened by the action of Sulphur, or placed in contact with acids or bodies which act as solvents of Oxide of Silver (p. 146). The materials often used in sizing papers, such as Alum and Resin, being of an acid nature, are directly injurious to the image; and the removal of the size, which may easily be effected by means of a dilute alkali or an alkaline carbonate, without injury to the tint, has the additional advantage of carrying out the last traces of Hyposulphite of Soda, and also the germs offungi, which if allowed to remain would vegetate and produce a destructive mouldiness on exposure to damp (Chap. III. Part II.).

The fact that acids facilitate oxidation of the image is likewise a hint that Photographic Prints should not be handled too frequently, or touched with the finger more than is necessary; the warm hand may leave behind a trace of acid[29]which would tend in time to produce a yellow mark.


Back to IndexNext