CHAPTER XII.Distilling Plants: Their General Arrangement and Equipment.

Field’s AlcoholometerFig.53.—Field’s Alcoholometer.

Fig.53.—Field’s Alcoholometer.

A quick, if not always very exact, method consists in determining the point at which the liquor boils. The boiling point of absolute alcohol being once determined, it is obvious that the more it is diluted with water the nearer will the boiling point of the mixture approach that of water; moreover,it has been proved that the presence of saccharine and other solid matters has but an almost inappreciable effect upon this point. Field’s alcoholometer, since improved by Ure, is based upon this principle. It is shown in Fig.53, and consists, roughly speaking, of a cylindrical vesselA, to contain the spirit; this vessel is heated from beneath by a spirit lamp, which fits into the caseB. A delicate thermometerC, the bulb of which is introduced into the spirit, is attached to a scale divided into 100 divisions, of which each represents one degree over-or under-proof. This method is liable toseveral small sources of error, but when a great many determinations have to be made, and speed is an object rather than extreme accuracy, this instrument becomes exceedingly useful. It does not answer well with spiritsaboveproof, because the variation in their boiling points are so slight as not to be easily observed with accuracy. But for liquors under-proof, and especially for wines, beer, and other fermented liquors, it gives results closely approximating to those obtained by distillation, and quite accurate enough for all ordinary purposes. Strong liquors should therefore be tested with twice their bulk, and commercial spirits with an equal bulk, of water, the result obtained being multiplied by two or three, as the case may be.

Another very expeditious, but somewhat rough, method was invented by Geisler. It consists in measuring the tension of the vapor of the spirit, by causing it to raise a column of mercury in a closed tube. The very simple apparatus is shown in Fig.54.Ais a small glass bulb, fitted with a narrow tube and stop-cock. This vessel is completely filled with the spirit, and is then screwed upon a long, narrow tubeB, bent at one end and containing mercury. This tube is attached to a graduated scale showing the percentage of absolute alcohol above or below proof. To make the test the cock is opened, and the bulb, together with the lower part of the tube, is immersed in boiling water, which gradually raises the spirit to its boiling-point. When this is reached, the vaporforces the mercury up the tube, and, when stationary, the degree on the scale to which it has ascended gives directly the percentage of alcohol.

Geisler’s ApparatusFig.54.—Geisler’s Apparatus.

Fig.54.—Geisler’s Apparatus.

Another method, which is not to be relied on for very weak liquors, but which answers well for cordials, wines, and strong ales, is that known as Brande’s method. The liquor is poured into a long, narrow glass tube, graduated centesimally, until it is half-filled. About 12 or 15 per cent. of subacetate of lead, or finely powdered litharge, is then added, and the whole is shaken until all the color is destroyed. Powdered anhydrous carbonate of potash is next added until it sinks undissolved in the tube, even after prolonged agitation. The tube is then allowed to rest, when the alcohol is observed to float upon the surface of the water in a well-defined layer. The quantity read off onthe scale of the tube and doubled, gives the percentage by volume of alcohol in the original liquid. The whole operation may be performed in about five minutes, and furnishes reliable approximative results. In many cases it is necessary to add the lead salt for the purpose of decolorizing the liquid.

For the investigation of the amount of sugar in, or the concentration of the mash, or beer, a specially scaled hydrometer is used which is termed a saccharometer. Sugar possesses a higher degree of specific gravity than water, and hence it follows that the greater the amount of sugar in the mash the higher will be the specific gravity. The less the hydrometer sinks into the fluid the greater the amount of sugar present. Saccharometers are provided with thermometers whereby the reading may be corrected to a standard temperature, usually 59° F. The saccharometer is correct for solutions containing sugar alone but it is only approximately correct for mash liquor which contains a variety of other matters in variable quantities.

It is a prime necessity that the distiller should be able to determine if the mash has been completely saccharified by the malt. For this purpose a solution of iodine is used. Iodine gives to starch a blue color. If the starch however, has been completely changed into sugar there will either be no discoloration or the filtered mash liquid which is at first a yellowish red becomes blue, then violet, and at last red.

Determination of the Purity of Alcohols.While the knowledge of the amount of alcohol contained in a liquid is of great practical utility, this does not give any idea of the impurities present.

An alcohol of 100 degrees or an absolute alcohol, may contain numerous impurities which may greatly affect its quality. It is therefore necessary in addition to analyze the purity of the alcohol.

In commercial practice there are certain simple processes which will give a basis by which to determine the impurities left after distillation and rectification. These processes are largely empirical. They are based on the perception of the senses and are consequently of an entirely relative degree of precision. Nevertheless, when made by a practical expert, the operation may give very useful preliminary indications.

This test is made in a glass of special shape broad at the bottom and narrowing at the top in order to concentrate the aroma of the product. Ordinary brandies are tested undiluted. Commercial alcohols, of about 95 degrees must be diluted with water to a maximum of 30 degrees. Otherwise the burning tang of the alcohol would preclude any delicacy of perception and allow impurities to pass unnoticed.

The operation is begun by examination by sense of smell. The glass is half filled with the liquid diluted with one half of pure water. The glass is covered with one hand and shaken violently for a few seconds. Immediately upon uncoveringit, the quality of the alcoholic vapors may be ascertained by their odor.

For the examination by sense of taste, the operator rinses his mouth for a moment with the liquid itself. The taste of ethyl alcohol is fairly transient;—it disappears quickly allowing the taste of the accompanying foreign matter to be perceived almost immediately afterward. With a little practice this test enables one to distinguish by their flavor the primal origin of alcohols and to judge of their purity. Some professionals succeed by training in arriving at high degree of skill in the art of tasting alcohol as it should be done.

In order to determine the purity of alcohol there are besides chemical tests used by the trade. These tests, which consist in characterizing and measuring separately the impurities which alcohol may contain, such as acids, ethers, aldehydes, bases, etc., belong exclusively to analytical chemistry; they are extremely delicate and complicated. We will not venture to touch upon them here.

One of the simplest tests for purity is that of Barbet. This is based upon the time taken to discolor a solution of permanganate of potash under the action of the tested alcohol. It is not only very rapid but in general more practical than other tests. It allows the aggregate of the impurities contained in an alcohol to be ascertained in a single operation.

The permanganate solution used is very weak (0. gr. 200 of salt), and of a violet-red color.The technique of the proceeding is as follows: 50 cubic centimeters of the alcohol to be tested are placed in a glass vessel the temperature of which is maintained at 64.40°F. 2 cubic centimeters of the permanganate solution are abruptly added and the time noted to within a second. Discoloration is awaited and as soon as it takes place the time is again noted. The total discoloration of the permanganate is not very marked and passes through intermediate stages; therefore it is preferable not to await complete discoloration but to stop at a pale salmon tint, which tint may be comparatively fixed by a sample of colored liquid (say a solution of fuchsine and chromate of potash).

The comparative times of discoloration obtained by M. Barbet with various commercial alcohols, are as follows:

When we look at the manufactories of to-day with their complicated machinery, their extensive equipment, their great boilers, and engines and their hundreds of employees, we are liable to forget that good work was turned out by our ancestors, with equipment of extreme simplicity and that to-day while there are, for instance, thousands of wood-working mills, complete in every detail and covering under a multitude of roofs every variety of complicated and perfected wood-working machinery, yet there are many more thousands of small plants, comprising a portable boiler, fed with refuse, a small engine and a few saws which are making money for the owners and doing the work of the world.

The reader therefore, must be warned against any feeling of discouragement because of the cost and complicated perfection of elaborate distilling plants. Where the business is to be entered into on a large scale, to take the products from a considerable section of country and turn them into alcohol to compete in the great markets, the best of apparatus and equipment is not too good, butthe person contemplating the mere manufacture of alcohol on a small scale, to serve only a small section, must remember that distillation is really a very simple matter, for years practiced with a most rudimentary apparatus and still so practiced in the country districts particularly in the South.

This is well illustrated by the fact that an illicit distiller confined in one of the North Carolina penitentiaries for transgressing the revenue laws, was able while in durance, to continue his operations unknown to the prison authorities, his plant consisting of a few buckets, and a still whose body was a tin kettle, a few pieces of pipe and a worm which he had bent himself. This example is not given as encouragement to illicit or “blockade” distilling but merely to show vividly how simple the rudimentary apparatus really is.

The simplest regular plants, those of the South for instance, comprise a building of rough lumber some thirty feet by twelve wide, with a wooden floor on which the fermenting vats rest and an earthern floor immediately in front of the still and furnace. This is to permit the fires being drawn when the charge has been exhausted in the boiler. The still is of the fire-heated, intermittent variety, such as described on page35. It consists of a brick furnace or oven, large enough to burn ordinary cord wood and supporting a copper boiler of fifteen or twenty gallons capacity. On top of this is a copper “head” with the usual goose neck, from which a copper pipe leads to aclosed and locked barrel containing raw spirits, this barrel acting on the principle of the condensing chamber shown in the still in Fig.8. From the upper part of this barrel, which acts as a concentrator, the vapors pass to a copper worm immersed in a tub of cold water. Here the vapors are condensed and pass by a pipe to a small room, containing a locked receiving tank. This room is kept locked and is under the immediate charge of the Government officer in charge of the still, or, in the case of alcohol intended for de-naturing, the alcohol would pass to a locked tank from whence it would be taken and de-natured under the charge of the proper Government officer.

The fermenting vats may be six or more in number so as to allow the mash in each tank to be at a different stage of fermentation. A hand pump is used for pumping the contents of any of the tanks into the boiler or the still. A hand pump is also provided for supplying water to the vats and condensers.

In connection with the distilling and fermenting building there are small buildings for storing the grain, malt, etc., for the storage of the alcohol and for the keeping of the various books, records, and stamps required by law. Such plants as these are located adjacent to a good clear spring or even a small brook, and preferably in a position convenient to the carriage of materials and the transportation of the whiskey or other liquor produced.

The buildings are of the cheapest constructionand arranged in the manner which compels the least labor in filling the mash vats and turning the contents into spirits. There are no special mash coolers, no complicated stirrers. The “beer” as the fermented mash is called is stirred by a paddle in the hands of a strong negro and the mash is mixed and fermented by rule of thumb, without the use of any scientific appliances. Primitive, as it is, however, those small plants in certain sections of the country make money for their proprietors and serve a large number of customers. The spirits so produced are low grade, fiery and rough in taste, but the point is that alcohol may be and is so produced.

Between these simple beginnings and the elaborate plants of big distilleries there is a wide range, so wide that it is impossible within the limits of this book to go into detail. The makers of distilling apparatus furnish all grades of stills and to those contemplating erecting a plant it is suggested that their best course is to communicate with such manufacturers, giving the circumstances of the case, the particular product to be worked and the capacity desired. The object of this book is to give an understanding of the processes of distillation and of this chapter to give a general idea of the arrangement of a number of typical distilling plants, suitable for various kinds of work.

That the simple, direct-heated pot still such as referred to above, used for fifteen hundred yearsand over, is still used is largely due to the simplicity of its construction and operation, but its capacity is small, and its operating expense relatively heavy. It is still used for making liquors, but for industrial purposes it has been entirely superceded by concentrating and rectifying stills. A simple form of the latter is found in the still shown in Fig.11and in the distilling apparatus of Adam (Fig.9).

Originally all stills were heated by direct contact with fire. This was open to a serious objection, namely, that the mash if thick was liable to be scorched. Stirring devices were used by Pistorious but these required constant attention. As a consequence, direct firing gave place to heating by steam, by which not only was scorching of the wash avoided but much greater certainty of operation was attained.

The steam may be used to simply heat the boiler, thus taking the place of the direct heat of the fire, but it is far better in every way to admit the steam directly to the mash as in the Coffey still, Fig.18, and all modern stills. It is possible to apply this principle to all compound stills, but the best results with greatest economy of fuel are, of course, gotten from the plate or column stills especially constructed for steam. In order to get the best results it is necessary that the entry of steam be regulated so that there may be absolute uniformity of flow. A convenient form of regulator is that invented by Savalle, and describedon page70, hut there are a number of other forms on the market each one having its special advantages.

It will be seen then that while the simple pot still, fire-heated, may be used, the practical plant for the fermentation of industrial alcohol should have a modern continuous still and rectifier and a boiler for generating the necessary steam for it and for the operations of mashing and fermenting.

The fermenting room has three main requirements for successful commercial distillation. It must allow a uniform temperature to be maintained in the vats; it must have thorough ventilation without any draftiness, and it must be absolutely clean. It should have also plenty of light so that it may be thoroughly inspected. It is true that in the primitive plants all these requisites were violated, but there is no reason for this. The first cost is but little added to by building with these requisites in mind and it is far more profitable in the long run; and it is only by the elimination of the bacteria which are inimical to proper fermentation that the fermenting operation can be performed with any certainty.

For the regulation of the temperature reliance may be had on stoves or heaters, or on special mash heaters and coolers by which the temperature of the mash in the tubs may itself becontrolled without reference to the temperature of the fermenting room. When, however, no special and adequate-heating means is provided, the walls should be double with an air space between and the doors and windows should either be also double or limited in number.

To ensure good ventilation and plenty of space above the vats wherein to work or install suitable vatting machinery, the walls should be at least twelve feet in height. Outlet openings should be formed around the base of the room leading to the outer air and closed by controllable shutters. These are to allow the escape of the carbonic acid gas evolved during fermentation. These should be most carefully constructed, however, to prevent drafts.

The walls and floor of the fermenting rooms should be so made that they may be easily washed down and kept clean. Concrete floors are excellent for this purpose and the walls also may be faced with concrete or cement covered with a coating composed of a mixture of asphalt and coal tar. This mixture may be also applied to plaster walls with good results.

The fermenting vats, as before stated, are made of wood for small plants, and of iron for larger plants, and are usually from three and a half to four and a half feet in height. After the chief fermenting period, it is necessary that the temperature of the mash be prevented from rising beyond 86° F. and to that end movable coolingtubes, coils and stirrers are used. These consist of parallel frames made up of tubes, preferably of copper, through which cold water is passed and which are moved about in the vat, either vertically or rotatively. There must be space above the vats, therefore, for the introduction and removal of these cooling frames, and for the gearing whereby they are driven.

As previously stated, mashes to-day are mostly prepared by steaming and disintegrating in a mash cooker of the type shown in Figs.1and41or in Henze steamers, from which the mash is blown into the preparatory mash vat, where it is stirred and brought to the proper temperature for fermentation. A convenient arrangement of mash cooker, coolers, pump and vats is shown in Fig.1. Where Henze steamers are used they are arranged in batteries, the blow-off pipes being connected to the preparatory mash vats. These are preferably provided with water cooled stirrers consisting of a frame of straight and vertical tubes mounted on a tubular arm projecting from a tubular shaft, and rotated in a horizontal plane within the closed mash vats, by suitable gears. The rotation of the arm stirs and automatically mixes the mash while cooling it. Another form of cooler is shown diagrammatically in Fig.4.

Whatever form of cooling apparatus is used, attention should be paid to the ease with which the stirrers or tubes can be kept clean, and to the strength of the apparatus, gears, etc. Concentratedor thick mashes require that the stirrers be of massive construction, capable of being rapidly rotated in the liquid.

In preparatory mash vats for use with concentrated mashes, means must also be provided for clearing the mash. These mash cleaners and husk removers usually form part of, or are attached to the vat itself and are driven by gearing from the main shaft carrying power to the mashing room.

A good idea of the general arrangement and correlation of the various apparatus of a plant may be gathered from the sectional view of a grain distillery shown in Fig.55. It will be seen from this that the mashing apparatus, steamers and mixers are located on the several floors of one building and in such relation to each other that the several operations of saccharifying are carried on in a continuous movement of mash towards the fermenting vats.

Continuous Grain Alcohol Distillery—Barbet’s SystemFig.55.—Continuous Grain Alcohol Distillery—Barbet’s System.

Fig.55.—Continuous Grain Alcohol Distillery—Barbet’s System.

Adjoining the fermenting vat room is a section of the plant given up to the manufacture of pure yeast and this and the fermenting rooms are level with the ground, have solid walls whereby a uniform temperature is obtained, and plenty of space for proper ventilation of the vats. A gallery traverses the room about midway the height of the vats so that convenient access may be had to them. The distilling room is high enough to allow for the setting of the various columns, separators and condensers at their proper heights relative to each other, andshould be so arranged as to its several floors or stages that access to the various pipes and apparatus may be easily had. The steam generator for the column is located in an adjacent room.

In addition to this there should be a malt house for the preparation of malt, located conveniently to the saccharifying building; an engine and boiler room so placed that power may be conveniently transferred to the mixers, stirrers and pumps and to generate steam for the Henze boilers; while adjacent to the distilling building should be the storage tanks and de-naturing department.

Grain Distillery. Capacity 2,500 Bushels per dayFig.56.—Grain Distillery. Capacity 2,500 Bushels per day.

Fig.56.—Grain Distillery. Capacity 2,500 Bushels per day.

Another arrangement of apparatus for a grain distillery with a capacity of 2500 bushels per day is illustrated in Fig.56. This plant was erected by the Vulcan Copper Works Co., and includes separate stills for gin, alcohol, and rye whiskey, as well as a spirit rectifying column.

The milling and grain mixing departments, the yeast room and the fermenting room are arranged on the several floors of one building, in the basement of which is located the vacuum cooker and drop tub and coolers described on page11from which the mash is pumped into the fermenting tubs.

The second section of the building contains the distilling apparatus, storage tanks, charcoal rectifiers and spirit rectifying apparatus, while the third section of the building comprises the boiler house and engine room.

Small Beet DistilleryFig.57—Small Beet Distillery.

Fig.57—Small Beet Distillery.

In Fig.57is shown a view of a small plant for the distillation of beets, the figure giving a goodidea of the arrangement of the diffusion battery in relation to the still and rectifier. The juice from the diffusion battery is pumped into the overhead tanks from which it descends into a dephlegmator and from thence into the still, the vapors from the still passing into the rectifier. The still is a direct, fire-heated still and adjacent to the still is a water heater from which the water passes to the hot water reservoir located above and to one side of the diffusion vats.

A large plant for the distillation of beets is shown in the Section Fig.58. The beets from the beet silos are carried to suitable washing machines,A, seeChapter VII, in which they are thoroughly cleaned of dirt and gravel. From the washers they are lifted by a conveyorBto a distributorCby which they are conveyed to the cutters or slicers. These consist of horizontal apertured plates revolving at a high speed, and carry knives which plane off slices from the beets. These drop through the apertures of the plate and are conveyed to the diffusion batteries, as by a movable chuteDoscillated with a jigging motion through suitable gearing.

The diffusersFshould be arranged so that small trucks may be driven beneath them to receive the spent slices and carry them to the spent beet silos.Uindicates a gauging tank into which the juice runs from the diffusers. From thence it passes to coolers (not seen) and thence to the fermentation tanksG.Rindicatesa small engine for driving the beet slicers andSa battery of pumps whereby the wash may be forced up into the reservoirIfrom which the wash descends into the stillK.HandJare reservoirs for hot and cold water respectively.

Large Beet DistilleryFig.58.—Large Beet Distillery.

Fig.58.—Large Beet Distillery.

From the distilling columnKthe phlegm or raw spirit passes to the phlegm tankLfrom which it is drawn as desired into the rectifying columnM, thence into the coolers and condensers and thence into the alcohol tanksN.

On the other side of the building as indicated by the chimney is the boiler for generating the motive power for the plant and for supplying the steam necessary for the distilling and rectifying columns and the hot water for the diffusion batteries. The boiler should be very capacious and it would be well to have two, one in reserve.

If possible, advantage should be taken of the natural slope of the ground so that the trucks bringing beets from the silo to the washer and carrying the spent beets away may roll downward by their own weight. The silos for the spent beets should be excavated from the ground and the trucks be constructed to tip their contents into these pits. The natural slope of the bottom of these pits should drain away the water and means be provided whereby carts can load with the spent beets to carry them away.

The spent liquors should flow off into ponds from which they may be drawn away to fertilize land.

A very convenient method of carrying beets from the silos to the washing machine is by means of a narrow canal of rapidly flowing water, flowing between the silos and entering the washing machines. Beets pitched into this stream are carried along by the current to the washers and at the same time undergo a preliminary washing. By laying out a system of channels throughout the beet yard the labor of handling is reduced to a minimum. These channels may be covered by boards on which the beets may be piled. These may be lifted and the beets thereon dumped into the stream.

A plant for the distillation of potatoes would be arranged very much after the plan of the grain distillery heretofore described except that it would have to be provided with apparatus for washing the potatoes and removing stones and adhering clods of earth. These washers, as put on the market, comprise a slotted rotating drum, which tumbles the potatoes about and loosens the dirt. When they escape from the drum they enter a washing trough where they are stirred about by revolving blades and acted upon by a swift current of water. The trough should be about two feet long to properly wash the potatoes. They are then lifted by an elevator to the mouth of the Henze pulpers (see Fig.2) or the vacuum cookers see Fig.1).

It is of advantage that the washing apparatus be so located that the potatoes as they are receivedmay be shoveled into it immediately. The scale for weighing the potatoes as they are brought in should be so located that the manager may attend to the weighing without having to leave the distillery. This and other like details may seem of small moment but it is care in such details which conduces to the success of a plant. As before stated in describing a beet distillery, advantage should be taken of the lay of the land in laying out the plant so that the spent pulp may be easily disposed of, the spent wash carried away, and the finished product conveniently handled.

Molasses Distillery. Capacity 2,500 gallons per dayFig.59.—Molasses Distillery. Capacity 2,500 gallons per day.

Fig.59.—Molasses Distillery. Capacity 2,500 gallons per day.

In Fig.59, is shown a plant for distilling molasses, designed by the Vulcan Copper Works, before referred to, and erected for the Rio Tamposo Sugar Co., of Tamposo, S. L. P., Mexico.

The molasses as before explained at page164being too concentrated, is first pumped into the steam mixing tank on the ground floor of the distilling building. Here it is diluted and heated, mixed with sulphuric acid and pumped into the long ranges of cooling pipes, located along the fermenting room and built on the principle shown in Fig.4. Here it is further diluted and yeast is added. From the fermenting tubs the molasses beer is pumped into the beer heater and thence into such a still as is shown in Fig.32.

In addition to this the plant contains a rectifying apparatus for the high wines produced by the beer still, comprising a spirit still, charged from a high wine tank, a rectifying column, separator, andtubular condenser from which the rectified spirit is carried to the storage tanks.

Molasses Fermenting HouseFig.60.—Molasses Fermenting House.

Fig.60.—Molasses Fermenting House.

Cane sugar distilleries are practically arranged the same as the molasses distillery above described. The cane is crushed between the rolls of cane crushers on the receiving floor and is then strained to remove the “begasse.” The clarified juice is then pumped up to the mixing tanks. In these the molasses is mixed with spent wash from other fermentations or with water, after which it is acidified and flows to the fermenting vats. The fermenting house should be provided with means for forcing in filtered air and for ventilating, as molasses wash is very sensitive to change in temperature and very liable to become contaminated by injurious ferments. (See Fig.60).

Above each vat should be a cooling coil capable of being lowered into the vat and a water spraying pipe, whereby the mash may be diluted when desired. From the vats, the wash is pumped to the distilling and rectifying columns. In Jamaica the still shown in Fig.37, is largely used, as also the Coffey still, Fig.18.

It is very often not profitable to distill spirit from molasses or sugar cane directly at the sugar factories, there being no market on the spot and transportation of the spirit in casks being very costly and difficult, not only because of the lack of transporting means but because the tropical climate tends to warp the empty casks. Transportation of the molasses in casks to a distillery is likewise open to objections of cost and the action of the hot sun in fermenting the molasses and bursting the cask.

Barbet has suggested a way out of the difficulty. This consists in boiling the molasses in vacuo, and then running it into molds lined with sheets of paper. These are set by dipping in cold water. When set the loaves wrapped in their paper coverings are as easily handled as sugar loaves. There is no dead weight nor any “empties” to be returned as in the case of casks. The molasses is in a most concentrated form and this makes for economy in freight. There is no risk of deterioration and the loaves may be stored in an ordinary warehouse. This method allows the distillery to be located at centers of transportationor at seaports, while the sugar factories are on the plantation.

Care should be taken in selecting the site for a distillery that an abundance of pure water may be supplied. The purer the water the better, and where water is not pure, purifying apparatus should be provided. The coolness of the water is a factor which must be taken into consideration. The greater amount of water will be used for cooling, and it follows then that the cooler the water the less of it will have to be used.

The horse-power of the engines used in driving the distilling apparatus varies, of course, with the capacity of the still, the average being between 6 H.P. and 30 H.P., for plants having fermenting vats of capacities ranging between two hundred and fifty, and twelve hundred gallons.

It must not be forgotten that the coal consumption of a plant depends upon the economy of heating means in the distilling apparatus, the perfection with which the heat of the vapors is used to heat the wash, the perfection of the boiler grates and the method of firing. These latter matters should be obvious to any distiller, but it is in economy in little things that the successful operation of a plant resides.

Nothing is more surprising than the difference in the coal consumption of different distilleries. Some use a third more than others. This is caused by poor coal, by poor firing, by poor boilers, by hard water, or by poor distillingequipment. With regard to the latter this word of advice may be given: The greater the number of plates in the distilling column, the less the coal consumed per gallon of alcohol produced. It must, however, be taken into account that a large number of plates in a column means a column of considerable height and that in turn means a correspondingly tall still house and increased first cost. Hence it is more economical to use the best forms of traps on the plates and fewer plates, and the best forms of these traps as pointed out inChapter III, are those wherein the largest quantity of vapor in a finely divided state may come into contact with the greatest number of liquid particles.

In conclusion it may be said that dirt, neglect, carelessness and a too great desire for economy in first cost are all factors in lowering the economical productiveness as well in a distillery as in other manufacturing plants.

The uses of alcohol are very numerous and varied, the principal being, of course, for the production of all alcoholic liquors such as brandy, gin, rum, whiskey, liquors, etc.; that distilled from grain is almost entirely consumed in the manufacture of whiskey, gin, and British brandy. In the arts, strong alcohol is employed by the perfumers and makers of essences for dissolving essential oils, soaps, etc., and for extracting the odor of flowers and plants; by the varnish-makers for dissolving resins; by photographers in the preparation of collodion; by the pharmaceutists in the preparation of tinctures and other valuable medicaments; by chemists in many analytical operations, and in the manufacture of numerous preparations; by instrument makers in the manufacture of delicate thermometers; by the anatomist and naturalist as an antiseptic; and in medicine, both in a concentrated form (rectified spirit), and diluted (proof spirit, brandy, etc.), as a stimulant, tonic, or irritant, and for various applications as a remedy. It is largely consumed in the manufacture of vinegar; and in the form of methylated spiritit is used in lamps for producing heat. It has, in fact, been employed for a multitude of purposes which it is almost impossible to enumerate.

The common form of alcohol known as “de-natured spirit” consists of alcohol to which one tenth of its volume of wood alcohol, or other de-naturizing agents has been added, for the purpose of rendering the mixture undrinkable through its offensive odor and taste. Methylated spirit being sold tax free, may be applied by chemical manufacturers, varnish makers, and many others, to a variety of uses, to which, from its greater cost, duty-paid spirit is commercially inapplicable. Its use, however, in the preparation of tinctures, sweet spirits of nitre, etc., has been prohibited by law. It has often been attempted to separate the wood spirit from the alcohol, and thus to obtain pure alcohol from the mixture, but always unsuccessfully, as, although the former boils at a lower temperature than the latter, when boiled they both distil over together, owing probably to the difference of their vapor densities.

It is Germany which has led the way in the manufacture and use of “de-natured” alcohol or “spiritus,” as it is there known. Germany has no natural gas or oil wells, and gasoline and kerosene are not produced there, hence the necessity of using some other form of liquid fuel. This fuel—in many ways better than any petroleum product—was found in alcohol. The sandy plains of northern Germany, and indeed any agriculturaldistrict of that empire, produce abundant crops of potatoes and beets.

From the first, alcohol can be so easily manufactured that the processes are within the understanding and ability of any farmer. The second is used in the manufacture of beet sugar,—one of the great German industries, and the crude molasses, from a refuse product,—still contains from 40 to 50 per cent. of sugar, from which alcohol can be made. Under these circumstances and the great demand for liquid fuel for motor carriages and gas engines, alcohol for “de-naturing” came rapidly to the front as one of the most important of agricultural products, as one of the most valuable “crops” which a farmer could raise. Potatoes are chiefly raised. The potatoes are grown by the farmers and manufactured into alcohol in individual farm distilleries and in cooperative distilleries.

While England and France were somewhat behind Germany in fostering this industry—yet they both were far ahead of the United States in this matter. De-natured alcohol could be readily gotten in these countries, for industrial purposes, while the United States continued to charge a high internal revenue tax on all but wood alcohol. This prevented the use of alcohol in competition with gasoline or kerosene, and limited its use in arts and manufactures.

On June 7, 1906, however, Congress passed the “De-naturing Act,” as it is called, which provided in brief that alcohol, which had been mixed witha certain proportion of de-naturing materials sufficient to prevent its use as a beverage should not be taxed.

The passage of this Act was alcohol’s new day, and is destined to have a wide influence upon the agricultural pursuits of the country.

In the matter of small engines and motors alone one estimate places the farm use of these at three hundred thousand with an annual increase of one hundred thousand. This means an economical displacing of horse and muscle power in farm work almost beyond comprehension. If now the farmer can make from surplus or cheaply grown crops the very alcohol which is to furnish the cheaper fuel for his motors, he is placed in a still more independent and commanding position in the industrial race.

As an illuminant the untaxed alcohol is bound to introduce some interesting as well as novel conditions. The general estimate of the value of alcohol for lighting gives it about double the power of kerosene, a gallon of alcohol lasting as two gallons of the oil. In Germany, where the use of alcohol in lamps is most fully developed, a mantle is used. Thus in a short time it may be expected that an entirely new industry will spring up to meet the demand for the illuminating lamps embodying the latest approved form of mantle. The adapting of the gasoline motors of automobiles to alcohol fuel will in itself create a vast new manufacturing undertaking. When thisis accomplished it is believed that we shall no more be troubled with the malodorous gasoline “auto” and “cycle” burners on our public streets and parkways.

De-natured alcohol is simply alcohol which has been so treated, as to spoil it for use as a beverage or medicine, and prevent its use in any manner except for industrial purposes.

De-naturing may be accomplished in many ways.

In England a mixture suitable for industrial purposes, but unfit for any other use, is made by mixing 90 per cent. of ethyl alcohol (alcohol made from grain, potatoes, beets, etc.), with 10 per cent. of methyl or “wood alcohol.” Under the new law the proportion of wood alcohol is cut to five per cent.

In Canada “methylated spirits,” as it is known, is composed of from 25 per cent. to 50 per cent. of wood alcohol mixed with ethyl alcohol. This proportion of wood alcohol is far more than is required in any other country.

In Germany, the de-naturing law passed in 1887 was so framed as to maintain the high revenue tax on alcohol intended for drinking, but to exempt from taxation such as should be de-naturized and used for industrial purposes. De-naturing is accomplished by mixing with the spirit a small proportion of some foreign substance, which, while not injuring its efficiency for technical uses, renders it unfit for consumption as a beverage. The de-naturing substances employed depend upon theuse to which the alcohol is to be subsequently applied. They include pyridin, picolin, benzol, toluol, and xylol, wood vinegar, and several other similar products. As a result of this system Germany produced and used last year 100,000,000 gallons of de-natured spirits, as compared with 10,302,630 gallons used in 1886, the last year before the enactment of the present law.

The following are some of the other de-naturants used in Germany: Camphor, oil of turpentine, sulphuric ether, animal oil, chloroform, iodoform, ethyl bromide, benzine, castor oil, lye.

In France the standard mixture consists of:

An illustration of de-naturing on a large scale is given by the methods and operations of a large London establishment. On the ground floor are four large iron tanks holding about 2500 gallons each. On the next floor are casks of spirit brought under seal from the bonded warehouse. On the third floor are the wood alcohol tanks, and on the fourth floor cans of methylating materials. On the fourth floor the covers to the wood alcohol tanks were removed (these tank covers were flush with that floor) and the contents gauged and tested. The quantity to be put into the tanks on the first floor was run off through pipes connectingwith the first-floor tanks and the upper tanks relocked. Then going to the second floor, each cask of the grain spirit was gauged and tested and the tank covers, which were flush with the floor, were removed and the casks of the grain spirit were run into the tanks below. The mixture was then stirred with long-handled wooden paddles and the tank covers replaced, and the material was ready for sale free of tax. The mixture was 10 per cent. wood alcohol and 90 per cent. ethyl alcohol made from molasses, and was what is known as the ordinary methylating spirit used for manufacturing purposes only and used under bond. The completely de-natured spirit is made by adding to the foregoing three-eighths of one per cent. of benzine.

This benzine prevents re-distillation.

In the United States there are at present two general formulas for de-natured alcohol in use, either one of which may be used by any manufacturer, who can use de-natured alcohol.

The first and most common one is made up as follows:

Where such a formula as this is required in an aqueous solution the benzine is of course thrown out, giving the solution a milky appearance. In this case the other general formula may be used.

In addition to these two general formulas for de-natured alcohol a number of special formulas have been authorized to be used in the manufacture of certain classes of goods. In order to buy these specially de-natured alcohols it is necessary, of course, to obtain a permit first from your Collector of Internal Revenue, a simple permit to use de-natured alcohol will not suffice. Some of the special formulas are as follows:

For use in the manufacture of sulphonmethane.

For use in the manufacture of transparent soap.

For the manufacture of shellac varnishes.

For the manufacture of smoking and chewing tobacco.

For the manufacture of photo-engravings.

For the manufacture of fulminate of mercury.

The next formula may be used for the following purposes:

In the manufacture of photographic dry plates.

In the manufacture of embalming fluid.

In the manufacture of heliotropin.

In the manufacture of resin of podophyllum and similar products.

In the manufacture of lacquers from soluble cotton.

In the manufacture of thermometer and barometer tubes.

For use in the manufacture of photographic collodian.

For use in the manufacture of pastes and varnishes from soluble cotton.

For use in the purification of rubber.

Petroleum naptha must have a specific gravity of not less than ˙650 nor more than ˙720 at 60°F.

For use in the manufacture of watches.

(Acid calcium, magnesium, or sodium salt of the disulpho-acids of meta-oxytetraethyldiamidotri-phenyl-carbidrids.)

The methyl alcohol must have a specific gravity of not more than ˙810 at 60° F.

The de-naturing mixture is best prepared by dissolving the cyanide of potassium in a small quantity of water, and then adding this solution to the alcohol, with which the methyl alcohol, containing the dissolved color, has been previously mixed.

For the manufacture of celluloid, pyralin and similar products.

Alternative special de-naturant for the manufacture of celluloid, pyralin and similar products.

The strongest alcohol of commerce in the United States is usually 95 per cent. alcohol, and the price varies from $2.30 to $2.50 per gallon, showing that the greater part of the cost is due to the revenue levied by the government. The greater part of the 60,000,000 gallons of alcohol consumed in the United States is used in the manufacture of whiskey and other beverages. The revenue tax prevents the use of alcohol to any great extent in the industries of the country. The bill passed by Congress in 1906, designed to promote the use of untaxed alcohol in the arts and as fuel, took effect January 1, 1907. The first effect of free alcohol would, it was said, supplant the 12,000,000 gallons of wood alcohol which are used in the manufacture of paint, varnishes, shellacs, and other purposes. Another use that is expected of de-natured alcohol is in the manufacture of certain products, such as dyestuffs and chemicals, which can not now be manufactured commercially in this country because of the high cost of alcohol, andwhich are imported largely from Europe. A very rapid development of the industry of manufacturing chemicals as a result of free alcohol is looked for. In the production of alcohol there is always formed as a by-product a certain amount of fusel oil, which is very useful in manufacturing lacquers which are used on metallic substances, fine hardware, gas fixtures, and similar articles. The industries manufacturing these wares will undoubtedly receive a great stimulus as a result of cheaper fusel oil caused by the increased production of alcohol.

A Safe Fuel.The use of de-natured alcohol as a fuel has yet to be fully developed. Although alcohol has only about half the heating power of kerosene or gasoline, gallon for gallon, yet it has many valuable properties which may enable it to compete successfully in spite of its lower fuel value. In the first place it is very much safer. Alcohol has a tendency to simply heat the surrounding vapors and produce currents of hot gases which are not usually brought to high enough temperature to inflame articles at a distance. It can be easily diluted with water, and when it is diluted to more than one-half it ceases to be inflammable. Hence it may be readily extinguished; while burning gasoline, by floating on the water, simply spreads its flame when water is applied to it. Although alcohol has far less heating capacity than gasoline, the best experts believe that it will develop a much higher percentage of efficiencyin motors than does gasoline. Since gasoline represents only about two per cent. of the petroleum which is refined, its supply is limited and its price must constantly rise in view of the enormous demand made for it for automobiles and gasoline engines in general. This will open a new opportunity for de-natured alcohol. Industrial alcohol is now used in Germany in small portable lamps, which give it all the effects of a mantel burner heated by gas. The expense for alcohol is only about two-thirds as much per candle-power as is the cost of kerosene. Even at 25 or 30 cents a gallon, de-natured alcohol can successfully compete with kerosene as a means of lighting.

Objection has been made to the use of alcohol in automobiles and other internal-explosive engines, that it resulted in a corrosion of the metal. This is vigorously denied by the advocate of alcohol fuel and the denial is backed by proofs of the use of alcohol in German engines for a number of years without any bad results.

A recent exhibition in Germany gave a good illustration of the broad field in which de-natured alcohol may be used.

Here were shown alcohol engines of a large number of different makes, alcohol boat motors as devised for the Russian navy, and motors for threshing, grinding, wood-cutting, and other agricultural purposes.

The department of lighting apparatus included a large and varied display of lamps, chandeliers,and street and corridor lights, in which alcohol vapor is burned like gas in a hooded flame covered by a Welsbach mantle. Under such conditions alcohol vapor burns with an incandescent flame which rivals the arc light in brilliancy and requires to be shaded to adopt it to the endurance of the human eye. There has been each year a great improvement in the artistic models and finish of lamps and chandeliers for alcohol lighting. At the beginning they were simple and of rather ordinary appearance, but now they are up to the best standard of modern fixtures for gas and electricity, with which alcohol lighting is now competing with increasing success in that country.

Similarly attractive and interesting was the large display of alcohol heating stoves, which, for warming corridors, sleeping rooms, and certain other locations, are highly esteemed. They are made of japanned-iron plate in decorative forms, with concave copper reflectors, are readily portable, and, when provided with chimney connections for the escape of the gases of combustion, furnish a clean, odorless, and convenient heating apparatus.

Cooking stoves of all sizes, forms, and capacities, from the complete range, with baking and roasting ovens, broilers, etc., to the simple tea and coffee lamp, were also displayed in endless variety.

Enough has been said to give an idea of the capabilities and values of this new form of fuel,—at least, and as far as the United States is concerned.

With its advent not only will American genius perfect the machinery for its use, but the American farmer is given a new market for his crops.

Distilleries, big and little, are likely to be set up all over the country, and the time is not far distant when the farmer will be able to carry his corn to his local distillery, and either return with the money in his pocket, or with fuel for farm engines, machinery, and perchance his automobile.

When our government shall have become as far-sighted as the German government in this matter, every farmer will be able to manufacture his own de-natured spirits. The wisdom of the German system established by the law of 1887 has long ceased to be a question of debate. For every reichsmark of revenue sacrificed by exempting de-natured spirits from taxation the empire and its people have profited ten-fold by the stimulus which has been thereby given to agriculture and the industrial arts.


Back to IndexNext