AGRICULTURE.

LUMBER.FEET.LATH.NO.PILES.LINEAR FT.Tacoma Mill103,448,35028,815,095642,385Washington Mill42,195,4788,772,800266,403

There were other large mills whose statistics I was not able to get in time. Mr. Walker thinks that the cut of all the mills on Puget Sound averages 1,200,000 feet per day; all of which finds ready sale.

I was not able to ascertain the profits of these mills,Profits and prices.but there can be no doubt that, with proper management, the profits are very good. The Seattle wholesale prices were as follows:

Lumber,common,perthousandfeet$12 00"sized,"""14 00"Flooring$15 00 to 20 00Dressedlumber,per thousand feet14 00 to 30 00Laths2 00 to 2 25Shingles1 50 to 2 00

After hearing of the forests in West Washington, one cannot be surprised to learn that the agricultural interest develops slowly in this part of the Territory. Even after the logger has taken what he wants, there remains a heavy mass of vegetation which is expensive to clear away.Clearing the land.A thorough clearing, including the removal of stumps, costs $75 to $100 per acre; and yet this is sometimes done for hops, hay and vegetables. But the common way is to "slash and burn," at an expense of ten to fifteen dollars an acre. This clears off everything but stumps, and such trees as may be reserved for the mill or other purposes.There are fine farms in every direction, but I had no means of ascertaining the proportion of cleared land, or of the agricultural population. The naturalDemand for agricultural products.fertility of the soil, the high prices of produce, and the rapidly growing demand, both foreign and local, will tempt to a wasteful destruction of timber in order to prepare the ground for crops. There need be no doubt as to the extraordinary productiveness of the soils, even beyond that of the same quality of lands elsewhere;Large crops.because the climatic conditions are extra favorable for the growth of all crops suited to the country. There are some crops, such as corn, lima beans and sweet potatoes, which are contra-indicated. The cool summer nights check the maturing of these. Wheat, also, is not suited, though produced to some extent. But for almost everything else the conditions favor extra production. The conditions could scarcely be better for grass and hay. The scantiness of the summer rains is more than compensated for by the long growing seasons in fall and spring. No soil and climate could be better for oats and potatoes. The reported yield of these three staples would be called fabulous if not established by good testimony. Three tons of hay, 100 bushels of oats, and 600 bushels of potatoes per acre are above the average, but by no means reach the maximum on the best lands. Most fruits do well.Hop-growing on a large scale.In the production of hops West Washington hasbecome celebrated as to quality and yield per acre. This is probably the largest of the agricultural interests in this part of the Territory, and was at one time enormously profitable. Present prices are thought to leave some margin, but not much.

Indians gathering hopsINDIANS GATHERING HOPS, WASHINGTON TERRITORY, ON LINE OF SEATTLE, LAKE SHORE AND EASTERN RAILWAY.

The changed agricultural conditions of East Washington.As heretofore remarked, the agricultural conditions change suddenly on crossing the Cascade Mountains to the eastward; and this change begins at the crest line, and is more marked on the mountain side and near its base than anywhere else. The winters are longer and more severe, and the summers drier and hotter. There is natural pasturage similar to that of the plateau country, coming up to the timber line, the lower edge of which is high on the mountain. Much of this mountain land, though covered scantily with sage brush and bunch grass, is really fertile, and, besides supporting cattle, can be made to bring fair crops of wheat and other things; but the rainfall is so insufficient that irrigation is necessary for the development of any large agricultural interest.Irrigation in the Yakima Valley.Fortunately, in the large basin of the Yakima, irrigating streams are abundant, and its enterprising people are availing themselves of this happy resource. By reference to a good map it will be seen that the Yakima River is made up of an unusual number of streams.A group of these come together near Ellensburg, and another group near the town of North Yakima; and there are said to be large bodies of land susceptible of irrigation by these streams. The Ellensburg valley is thirty miles long, and about ten miles wide; and is the best agricultural section in Kittitas County. It is claimed that forty bushels of wheat to the acre can be produced here without irrigation; and that 1,000,000 bushels of wheat were actually produced in this basin in 1887. Hay, hops, vegetables, berries and fruits also do well naturally, but with irrigation the product is uniformly large. There are four irrigating canals in the valley. The Teanaway Ditch Company has one fifty miles long which can water 75,000 acres of land. The Ellensburg Ditch Company has a ditch ten miles long, covering 10,000 acres. Mr. Bull has one six miles long, and the owners of the new roller mill have two and a half miles of ditch.

Next below Kittitas is Yakima County, which contains a number of fertile valleys, and also good uplands, and is well supplied with irrigating streams, which have already been brought into use. Two large ditches are drawn from the Natchess River. Ditches are also takenfrom the Ahtanum, which is the principal hop-raising section. A plateau, three by ten miles, between the Cowiche and Natchess, will all be irrigated. The Moxee Valley is largely owned by Eastern and other capitalists, who seem to be expending much money in the improvement of the country. This company has fourteen miles of ditch.

Varied crops.By the help of these ditches the people of Yakima Valley are producing corn, which under the hot sun of the locality perfects its product. Tobacco has been tried also with fair results. And the Moxee County will try the dairy business. There is a disposition also to try improved breeds of cattle. The spirit of enterprise has resulted largely from the passage of the Northern Pacific Railroad along the Yakima Valley; but at the same time the greatest obstacle in the way of irrigation lies in the ownership of alternate sections by this railroad. The Yakima Indians have good lands, and Klickatat County is well spoken of. Sweet potatoes, tomatoes, peaches, grapes, and other things requiring much heat, are said to thrive in the lower parts of the Yakima Valley.

The Great Plain.We enter now the last grand division of the country, the Great Plain, or, more strictly, plateau of the Columbia River. In spite of its unpromising aspect, this is the chief agricultural region of the Pacific States. To get the exact boundary,Boundaries.find the point (a little below Wallula Junction) where Washington and Oregon both corner on the Columbia River. From this point, follow the Columbia up to the mouth of Spokane River; follow Spokane River up to the Idaho line; follow the Idaho line south to the Oregon line; follow the Oregon line due-west to the beginning, and within these lines lies the region which is destined to be the granary of the Pacific States.

Early history.The settlement of this plain began near Walla Walla, where a Christian mission was established by Whitman, the hero and martyr, who saved this country to the United States. Hence the most thickly populated part of the plain is between the Oregon line and Snake River. This region was supplied with transportation by the Oregon Railway and Navigation Company. The largest agricultural production is here.

Immigration next moved north of Snake River into the valley of the Palouse River, and here we have the next largest area of production. When the Northern Pacific Railroad came in from the east, the new-comers entered the Great Bend country, which is the northern halfof the plain. The chief settlement here is in Spokane and Lincoln counties, which cover nearly half of the Great Bend. Douglas County covers the remainder, and is beginning to be settled. There are ten counties on the plateau, with an aggregate area of 20,000 square miles and a population of 52,000.Area and population.Of this population, 20,000 is south of the Snake River, 14,000 north of Snake River, and 18,000 in the Great Bend, including Spokane Falls.

Amazing wheat crops: surpassing all other States.The great staple of this country is wheat, though almost every crop is grown, and most of them with remarkable results. Corn is grown only south of Snake River, where it yields thirty bushels to the acre. The average yield of wheat year by year for the entire Territory is put by Governor Squire at twenty-five bushels, and no one who knows the country can regard this otherwise than as a moderate estimate. This average places Washington Territory beyond comparison first among the States of America, and, so far as I can learn, second only to England among other nations. England, by the highest manuring, has brought her wheat product up to thirty bushels, which is double the average of former years. By the census of 1880, Washington Territory, as a whole, leads all the other States. The following tablesgive the average of ten of the chief wheat-producing States:

WHEAT, PER ACRE.BUSHELS.California15.8Dakota10.6Minnesota11.3New York15.7Ohio18.0Pennsylvania13.4Virginia8.6Washington Territory23.5Oregon16.8Illinois15.5

The year 1886 was the worst wheat year ever known in Washington Territory: its crop averaged sixteen and a half bushels.

Railroads overwhelmed with freight.It is thought that the wheat crop of East Washington for 1887 will exceed 10,000,000 bushels. It certainly went far beyond the ability of the railroads to carry it away before winter. The most amazing glut of freight I have ever seen was along the railroads in Walla Walla County. Not only were the depots crowded to the roof, but piles of sacks larger than the depots stood outside. It was a common sight through the whole Snake River country to see 10,000 sacks of wheat in one pile outside of the depots.

The price of wheat runs from 40 cents to 60cents a bushel; whilst the cost of production on good land need not exceed 25 cents a bushel.Price of wheat and cost of production.Mr. Hamilton, of Colfax, has a farm which he cultivates entirely by hired labor, and he told me that the cost of his wheat was from 20 cents to 25 cents, and that his profit was $5 per acre. Good farms about Colfax can be rented out at $2.50 per acre for the whole farm. Mr. Miles C. Moore, of Walla Walla, probably the most exact business man of that region, farms largely by hiring labor. He gave me the following statement of his own operations:

Dr.Cost of ploughing, per acre$1 50Cost of twice harrowing and sowing1 00Seed, 1-1/4 bushel62Thirteen sacks at 8 cents1 04Keeping up fences10Harvesting and hauling five miles todepot, 17 cents per bushel4 76$9 02Cr.By 28 bushels per acre at 50 cents$14 00Cost of production9 00Profit$5 00

This product could not be expected on inferior lands, but with the working farmer the cost of production is less. The yield of wheaton the best lands of East Washington is large—almost beyond belief. Mr. Houghton, attorney for the Spokane Falls and Palouse Railroad, told me that he had known of 800 bushels of wheat being raised on ten acres; that it was measured by a committee. Mr. Miles C. Moore has known 1,000 acres to average fifty bushels. A farmer (apparently honest) told me that he had raised seventy-five bushels to the acre over his whole wheat area. His crop was harvested by the acre, and the area measured by the county surveyor. It was all sold, except seed. Thus he got both area and product accurately. Many more instances were stated to me on good authority. But there are different grades of fertility in these lands as in other lands, and the amount of rainfall makes a difference also. Wallula has but twelve inches of rain, and is unproductive. There must be fifteen inches for wheat. Walla Walla has seventeen, and is productive. Nearer to the Blue Mountains the rainfall is thirty to thirty-five inches; here are the largest crops. Spokane Falls has twenty-one inches. Yet where else on the earth can such crops be raised even occasionally? I have been growing wheat for thirty-five years on good land in the Valley of Virginia, and I never could reach thirty bushelsto the acre on a single field; and I do not believe that my neighbors can do better than I do. We count twenty bushels an extra crop.

Also barley and oats.Besides wheat, these lands produce barley of superior quality, weighing fifty pounds to the bushel, at the rate of fifty to sixty bushels per acre, and oats weighing thirty-eight pounds to the bushel at the same rate per acre. The weight of wheat is sixty pounds to the bushel. Barley sells at 90 cents per 100 pounds, and is largely shipped East to be made into beer.

The wheat usually grown is the Little Club, a short, strong white wheat; but the Little Giant, Red Chaff and Chili Giant are productive. Spring wheat is generally sown, but winter wheat is probably best. Blue stem brings five cents extra in Portland. Freight, $5 a ton from Walla Walla to Portland; thirty-three bushels counted a ton.

The wheat here has no enemies—no fly, nor rust, nor weeds, nor lodging.

Much of the land has been cultivated for sixteen years without rest or manure, and without diminution of crop; but the best farmers prefer to rest and cultivate in alternate years. By the latter system the ploughing is done in the off-year, and the land left a naked fallow. This is thought to cleanse the land and renew its strength.The soil a natural fertilizer.And in some cases in which lands have an excess of alkali, their productiveness increases with cultivation. Sometimes the land contains as much as eighteen pounds of potash to the cubic yard; which fact, by the way, suggests the possibility of leaching the land to procure potash and other alkalies.

Quality of the wheat.The wheat of the Pacific coast has 4 per cent. less gluten in it than the Eastern wheat, and this practically shuts it out of the Eastern market. Nitrogen in Washington Territory wheat is 22 per cent. to 26 per cent., whilst in the Eastern it is 34 per cent. to 40 per cent., and inferior in quality. The true gluten is too brittle. It is better than the California wheat, however, which has 4 per cent. to 6 per cent. less nitrogenous matter, and the gluten inferior in quality. But the California wheat makes a whiter flour than the Washington Territory wheat, which is an advantage in selling. It should be remarked that the term nitrogen, when applied technically to wheat, includes true gluten, the phosphates, and all albuminoids, and excludes starch, sugar and water, which latter comprise about seventy-two per cent. of the wheat. Still, the Washington Territory wheat-grower has the advantage in quantity per acre, which gives him a better profit than is now made in California or anyEastern State. The price at Spokane Falls varies from 45 cents to 60 cents per bushel, which would give the farmer $10 to $12.50 per acre for his crop, which is more than the average Eastern farmer gets, whilst the cost of production ought to be, and ultimately will be, less.

The market in England, China, and other Asiatic ports.Flour is sent to England, by Cape Horn, at a cost of $1.30 per barrel from Spokane Falls, and in Liverpool brings within 20 cents a barrel as much as the Minneapolis flour, and it is also shipped to China and other Asiatic ports, where it seems destined to supersede rice for bread. China raises wheat, but not nearly enough for home consumption. The Asiatic and Oceanic market will, ultimately, want all the wheat of our Pacific States.

Astonishing growth of vegetables.Besides the cereals, vegetables of nearly all kinds grow to great size on this plateau. Those requiring a more uniformly warm temperature, such as tomatoes, sweet potatoes, beans and peanuts, do best in the region lying south of the Snake River, which is much less elevated than the country north and east. And this is true also of peaches, grapes, and other fruits requiring similar conditions. But as regards most vegetables, especially roots, and also fruits, the plateau generally is very productive. This is almost unaccountable in view of the fact thatafter the first of JuneCrops without rain.there is little or no rain until late in the fall. Whilst rain seems to be necessary to start the small seeds, large crops of potatoes are sometimes raised without a drop of rain. The moisture must come partly from the soil, which has retained the winter water, and partly from the deposition of moisture by the sea-air which comes through the gap in the Cascade Mountains and penetrates the deep, loose soil. Mr. Paul F. Mohr has measured a parsnip four feet long and eight inches across the top. I saw potatoes in Colfax, thirty of which filled a bushel measure.

As before intimated, I doubt whether the plateau can ever become a good grass and hay country. For long forage, besides straw, the people must depend upon the cereals mowed in the green state.West (not East) Washington is to be the great cattle country.

For this reason the plateau, as will also be the case with the great plains eastward, can never carry the number of cattle that can be grazed in a grass country. A farmer told me it required fifteen acres of bunch grass to support one horse or steer, whilst in a grass country three acres are ample, and on the best sods one acre is sufficient. Still, the bunch grass is, and ought to be, utilized. And the areas of unimproved land are so vast that the herds of cattle, horses and sheep which range upon them altogether constitute a large item of wealth.And on these treeless plains the effort seems to be to train the cattle and horses to live like buffaloes and wild horses in both summer and winter.

Tree-planting.The tree problem will, I think, work out satisfactorily, though, of course, no such trees can ever be produced there as abound in West Washington. Walla Walla is embowered in trees of artificial growth. The Lombardy poplar seems to have been most successful. At various points I saw plantations of box elder, and was told that this tree is easily grown. The cottonwood is said to grow readily. Captain John McGowan reports the successful culture of locust, walnut, maple and catalpa in Lincoln County. He says, also, that the plum, peach, apricot, apple, pear and grape succeed: and so with strawberries, raspberries and blackberries. All these fruits are grown about Spokane Falls, but I think that the grape and peach sometimes fail to mature. A good many plantations of trees have been set out under the timber-culture act of Congress, but it is thought that much imposition has been practised on the Government by the failure to take proper care of the trees after they were planted. The truthabout the whole matter seems to be that, with proper care, trees of most varieties may be grown on the plateau, but that they will grow slowly and not attain large size. I might add many details concerning the products of this wonderful country, but these will suffice as illustrations.

Bridge over Spokane RiverBRIDGE OVER THE SPOKANE RIVER, SEATTLE, LAKE SHORE AND EASTERN RAILWAY.

Good supply of labor, but more wanted.Under this head I will merely say that, though the laboring population of Washington Territory is very mixed and has not the settled character of labor in the old States, and though many more laborers could find employment, there does not seem to be any special deficiency of this class, and the high wages that are paid will, no doubt, bring in more workmen as they are wanted.

Wages.Governor Squire, in his report for 1885, page 41, gives quite a detailed list of wages, which shows that the rates are at least fifty per cent. higher than in the Middle States, and double what is paid in the Southern Atlantic States. Farm laborers get from $25 to $30 a month and board. Loggers pay from $35 to $40 per month to common hands, and $65 to $70 to teamsters. Skilled labor receives high wages, and railway contractors sometimes have to pay$2 to $2.50 per day for common hands. Servant girls are scarce, and wanted, at $15 a month and board. Hotel servants get from $20 to $25 a month. Chinamen are extensively employed for family servants. Many of them are tolerable cooks, and get $30 a month and board. Indians are working more than formerly. The men "slash" the forests, pick hops, etc. Squaws always were industrious—had to be! The Sandwich Islands, as well as China and Japan, furnish some laborers. The employers are favorable to this class of immigrants, whilst the white laborers are bitterly opposed to them. Canada will continue to employ cheap Chinese labor, and thus place our Pacific States at a disadvantage, if the present policy of excluding Chinese labor is continued.

I shall not say much about the historical geology of Washington Territory, because it contains some problems which have never been adequately studied, and which I had no opportunity to investigate. It is to be hoped that the regular work of the Government Survey may soon be extended to this important region. Hitherto it has been neglected. A few able geologists such as Joseph Le Conte, Pumpelly, Newberry, Bailey Willis, and some others, have made visits to the country on special errands; but except the treatise of Bailey Willis in Vol. XV. of the Census Reports, and some brief allusions to the country in systematic works on general geology, I had nothing to guide me as to the structure of the country, or the age of its deposits. For all practical purposes, however, I had no difficulty in understanding the work I had to do.

All agree that the country west of the Rocky Mountains proper, and including nearly all ofCalifornia, Oregon, and Washington Territory,The Western Coast regions younger than the Rocky Mountains and Appalachians.is geologically younger than the main range, and younger than the Appalachian country. At the close of the carboniferous period proper, the Rocky Mountain range constituted a separate continent, with a sea covering what is now the main Mississippi Valley, including the wide plains immediately east of the Rocky Mountains, and connecting, probably, with the polar sea, whilst the Pacific Ocean washed the western edge of this Rocky Mountain continent; so that until after that period there were no Wahsatch and Uintah mountains, no Sierra Nevada and Cascade Range, no Coast Range, and, of course, none of the intervening country. It is quite possible, however, that there was a third continent lying west of the present continentAn outlying Continent.in what is now ocean, from whose waste the sediments were derived which were afterwards elevated and became the land now included in the three States bordering the Pacific, whilst the mother continent, which furnished the sediments, sank beneath the ocean. If there were such an outlying continent, additional force is given to the views of Dr. George F. Becker, endorsed by Dr. C. A. White, and to some extent anticipated by Prof. J. D. Whitney, which render it probable on other grounds thatthe two great lines of mountains, viz., the Sierra Nevada and Cascade Range and the Coast Range, began their upward movement simultaneously during the early ages of the Juro-Trias.The rise of the West Coast.The rise of these mountain lines was gradual and marked by reverse movements, whereby, after appearing above the surface, they sank and rose alternately, receiving fresh sediments, which, especially in the Washington Territory region and part of Oregon and California, when above water, became clothed with an enormous vegetation which was packed into coal-beds, layer after layer. In the lapse of time these all came above the surface. The mountains grew higher and higher, attended by intense heat in the axes of the ranges, and at different periods, down almost to the present, exhibiting volcanic action on an enormous scale. At other periods, a large portion of the region was visited by ice-floods, succeeded by water-floods, which top-dressed great areas with a mingled deposit of gravel, sand and mud, and carried away vast blocks of the rocky substance of the country, and cut deep channels in all the highlands.

As Washington Territory is now presented to us, it exhibits a scene of mountains, lowlands, and elevated plateaus, which are full of interest and variety. Some general account of its topography has already been given.

Lower Snoqualmie FallsLOWER SNOQUALMIE FALLS, 268 FEET HIGH, ON LINE OF SEATTLE, LAKE SHORE AND EASTERN RAILWAY.

The rocks and minerals of the Cascade Mountains.The core of these high ranges is chiefly rock originally stratified, which has been metamorphosed by heat, and perhaps inside of all, with branches bursting out at various places, are plutonic rocks which have never been stratified. This is the state of things on the top of the Cascade Range, near Snoqualmie Pass, as well as on some subordinate peaks and ranges. On Mount Logan, the Denny Mountain, etc., are large bodies of syenitic granite whose age I have no means of determining. Associated with this are quartzites of fine grain, and extremely hard, porphyries, and serpentinoid and chloritic rocks of different sorts, in which are imbedded the magnetic iron ores; and also large beds of crystalline limestone, both fine and coarse grained. Crossing these, at various angles, are veins containing the precious and base metals.

The metamorphic rocks of doubtful origin.Whether these rocks are Palæozoic or Archæan in their origin, or whether they are simply the metamorphosed strata of the upper Juro-Trias, or the lower Cretaceous, is a question for future study. These plutonic and metamorphic rocks are believed to extend through the mountainous region lying north of the Columbia River; and they are reported also in the Cœur d'Alene Mountains. It is quite certain that on both flanks of the Cascade Mountains we findin their natural state Cretaceous conglomerates, sandstones, and shales bearing coal, at least in their upper beds. The deposits on the east side of the mountain have been much grooved and denuded, until we find only small areas of the Cretaceous strata on the Yakima and the Wenatchie rivers, and the Peshastan ridge between, with a patch of the coal-bearing rocks on the Yakima, and another on the Wenatchie. On the west side of the mountain range, the Cretaceous and coal-bearing areas are much larger.

The coal beds.The coal deposits of all the Cretaceous regions of the West are regarded as belonging to the Laramie period which closed the Cretaceous age, and constitutes a transition period between the Cretaceous and Tertiary. But I do not regard this question as settled. The inferior lignites of the Rocky Mountains, and the semi-lignites which constitute the upper beds of the Washington Cretaceous coal properly belong to the Laramie period; but to include the underlying bituminous coals in the same group may be a matter of question. More will be said in reference to these coal beds under the next head. The Western coal-bearing rocks begin on outlying mountains, standing at the west foot of themain Cascade Range. These outlyers are irregular in size, height and direction; but many of them are 1,000 to 1,500 feet in height, and they are found in groups, separated by denuded spaces, from the Cascade Mountains to the Pacific Ocean, and from the Canada line nearly to the Columbia River. The largest and most important field, however, lies south of the Snoqualmie River and between Puget Sound and the Cascade Mountains. Some of the coals found in the most southern part of the field, and on the Coast Range, are referred to the Tertiary period.

A smaller and wholly undeveloped field lies on the Skagit River, and another on, and west of Bellingham Bay. Similar beds are found on Vancouver's Island. Coal-bearing strata are found also on the Chehalis, Des Chutes, Nisqually and Cowlitz rivers. Whilst some of these southern and western strata are referred to the Tertiary period, there has been no systematic study of their geologic relations.

The volcanic mountains and their great activity.It seems to be settled, however, that the lofty volcanic mountains which form conspicuous features in the scenery of the Cascade Range, were active in the Tertiary period, and not only built their own crests 9,000 to 15,000 feet high, but inundated much of the surrounding country with lava to an amazing breadth and depth. In this region, Mount Baker, Mount Ranier (also called Mount Tacoma), Mount St. Helens and Mount Adams in Washington Territory, and Mount Hood in Oregon, were the centres of the grandest operations; and so continued for ages.

We see gigantic results of this activity in the cañonThe wonderful cañon of the Columbia River.1,000 to over 3,000 feet deep, which the Columbia River has cut through this volcanic matter in its passage through the Cascade Mountains. This volcanic deposit consists of brown basalt, which in cooling crystallized into vertical, polygonal prisms, or columns, which have been sculptured by the weather into endlessly varied forms, beautiful, fantastic, and grand; altogether presenting a scene, or succession of scenes, for twenty-five miles, such as can nowhere else be equaled on the American continent, unless it be near by, on a tributary of the Columbia, the Des Chutes River of Oregon.

The great sheets of basalt.This great pile of basalt was built up by a succession of overflows of lava, the joints of which are plainly visible. The basaltic area, though perhaps thickest here, continues with a thickness of 1,000 to 1,500 feet up the Columbia for hundreds of miles; indeed the whole plateau, or prairie country of East Washington, which is a quadrilateral of some 200 miles in diameter,is but a continuation of the great lava-sheet seen at the Cascades and the Dalles. Through it the Columbia and Snake rivers have cut deep channels; and other, though shallower channels, have been cut across the surface of the plateau by departed streams.

Origin of the rich soil of East Washington.Whether the extremely fertile soil which overlies the basalt in East Washington is a top-dressing of volcanic ashes, or is decomposed basalt, cannot readily be determined. It cannot be referred to the Glacial period, as I observed no appearance of drift anywhere except in the valley of Spokane River. Such a wide spread of lava is not unexampled in view of somewhat similar overflows now occurring at intervals in the Sandwich Islands, where lava runs and spreads itself like water. These Hawaiian flows are mentioned by Captain C. F. Dutton in his report of the Zuni Plateau.

A ledge of sandstone belonging to the Meiocene Tertiary is visible under the basalt at the lower cascade in the Columbia River;and a stratum of iron ore and vegetable matter is found on the Willamette at Oswego, lying horizontally between great masses of basalt, showing a long interval between overflows.The volcanoes not wholly extinct.These eruptions probably continued with diminishing force until near the present time. It is reported that Mount Hood has sent out smoke or steam since the settlement of Oregon. The crater of Mount Ranier was visited by two gentlemen within a few years, and a night spent in its bottom by the side of a jet of steam. Such, at least, is the account given by one of them, Mr. Stevens.

Glacial drift.The Quaternary or Drift Period has left abundant, though by no means universal, traces of its presence. As before intimated, I saw no relics of it in East Washington, except a deposit of rather small, generally very small, and well-rounded quartz gravel, thickly strewing, and really forming, the flats bordering Spokane River. This gravel macadamizes the streets of the City of Spokane Falls, and the neighboring roads, so as to make them firm at all seasons. These gravelly bottoms are not tillable except in a few spots.

The undulating country north and east of Puget Sound is in many places deeply covered with drift material which shows the effect of both ice and water. Blocks of partially rounded granite several feet in diameter are found on the hills around Seattle. This gravel deposit is not often found on high points, but there is aridge in the Cascade Mountains, near Salal Prairie, which is thickly bestrewed at an elevation of 1,000 feet. This, however, was quite exceptional, and may be the lateral moraine of a local glacier. The deposit around Seattle is not only easy to cultivate (its soil being a light blue loam), but seems fertile. The bottom lands are free from gravel.

So much for the general geology.

Note.—The location of the coal-fields and collieries mentioned in the following pages may be seen on an accompanying map.

Note.—The location of the coal-fields and collieries mentioned in the following pages may be seen on an accompanying map.

Under the head of Economic Geology, I shall describe with more detail the mineral beds which have a commercial value, and in the following order:—I. Coal; II. Iron Ore; III. Granite, Limestone, and Marble; IV. Precious and Base Metals.Thickness of the Coal Measures.

I.Coal.—The thickness of the Coal Measures of the Puget Sound basin is estimated by Bailey Willis at something like 14,000 feet, though he admits the obvious possibility of error in the calculation by reason of undiscovered faults. We may fairly expect them, however, to be thicker than the same group in the Rocky Mountains, which measure about 9,000 feet. As heretofore remarked, the sediments becomethinner from west to east. Of course, the maximum thickness is not to be expected in every locality. Mr. Willis's estimate was made in the Wilkeson and Green River fields, and really did not reach the limit of the coal-bearing rocks. The coal rocks of the Cedar River and Snoqualmie basin have never, so far as I know, been estimated, but probably this group is equal in thickness to that of any other part of the field. The difficulty of measurement arises from the numerous fractures and changes of strike which exist.

Fifteen workable seams.The number of distinct workable seams of coal of three feet and upwards, belonging to the measures, may safely be put down at not less than fifteen.

Before considering the quality of these coals, I will, for better understanding, make someDifferent kinds of coal described.prefatory statements in regard to the character of coals generally. Charcoal has greater purity than mineral coals usually have, because there is nothing in the charcoal except what naturally belongs to the woody matter. Mineral coal, however, having been buried in water, mud, and sand, must, almost of necessity, have some mixture of foreign matter, either slate, which is simply hardened mud; silica, which may have been derived from sand; iron and sulphur, someof which may have been in the wood, but most of it, probably, introduced in solutions; to which should be added, unexpelled oxygen, which is not only useless as fuel, but which combines with a portion of the contained hydrogen, and forms water in the substance of the coal.

The proportion of ash in coals of the same class is usually determined by the amount of slate in the coal, in addition to the mineral matter which belonged originally to the vegetable material from which the coal was formed. In the pure state, the proportion of ash increases as the transformation of woody fibre goes on from peat to anthracite.

The chemical changes in coal beds.It is worth while to note what are the changes which take place in the vegetable matter during the process. It may be described in a word as a progressive loss of oxygen, and by this loss the coal becomes richer, for the reason just given. The deoxidizing process is carried on by means of chemical changes in the substance of the coaly matter. The oxygen combining with a certain proportion of the carbon, forms carbon di-oxide, or carbonic acid gas; and a certain other portion, combining with hydrogen, forms water. Both of these are volatile in their character, and gradually escape. Another loss is effected by the combination of hydrogen and carbon, forming marsh gas. We have deadly proof that these combinations are in progress in all coal mines by the occurrence of "choke-damp" and "fire-damp," which are the miners' names for these gases.

Deficient nomenclature.Unfortunately, we have no settled nomenclature for the varieties of coal, excepting the broad names lignite or brown coal, bituminous coal, and anthracite. Even the term "bituminous" is scientifically inaccurate, there being, in fact, no bitumen in any coal. But it is applied to such coals as contain more oxygen and volatile combustible matter and water than anthracite, and less of these elements than lignite. The term lignite is made to include a great variety of substances, covering the lignites of the Juro-Trias of James River (Dutch Gap), which retain not only the structure, but the appearance of decaying wood; the lignites of the State of Mississippi, which are of the same geologic age as those of the Rocky Mountains, but which, owing to their watery and crumbly character, are unfit for market; the lignites of the Grand and Moreau rivers of Dakota, which are reported to have no commercial value; the lignites of Bozeman, Montana, which are really valuable, but soon break downinto chips and grits; the lignites of Green River, Wyoming, which are firm, bright, lump coals; and the lignites of King County, Washington Territory, many of which are hard, bright, steam and shipping coals. And when brought to the laboratory, it is found that chemically these lignites vary even more than they do optically.

This want of a varied nomenclature is to be regretted, because it sometimes handicaps a good coal with an inferior name.Lignite an unsuitable name for the coals of Washington Territory.It is only of late that the Laramie or Cretaceous coals of Washington Territory have been divided into lignites, bituminous coals, and anthracites. These grade into each other so insensibly that it would be impossible to classify them sharply. None of the lignites which I saw were as low in grade as the typical lignite. The woody structure was quite discernible in some samples of the Franklin coal, and less in the Newcastle and Green River; but in respect to the two latter, I could not with the naked eye discern more of the woody structure than I have seen in some of the West Virginia coals, which belong to the Carboniferous period. I sat by fires of Newcastle and neighboring coals for a month, and observed no unusual amount of smoke, and no peculiar odor. By analysis,these coals show a larger percentage of oxygen than the typical bituminous coal, but decidedly less than is found in the brown coal of Germany, or in some of the lignites of Montana. They need a new name. Their heating power is not so great as that of the bituminous coals of the same region. Their streak and powder are less black, and their fracture more conchoidal, but not decidedly so.

The bituminous coals have the usual cubical fracture. The Wilkeson readily breaks down into small cubes. The lignites are black and lustrous. They come out as lumpy as ordinary coal, and, when exposed to weather, do not break up into powder and grits like ordinary lignite. This is true, at least, of the Newcastle coal.

The coking quality not general in these coals, but found in some.The coking quality of these coals cannot be determined by calculating the proportion between the fixed carbon and the volatile, combustible matter. I am not sure that Professor Fraser's fuel ratio tables are a safe guide in any case. So far as now known, only a few of the Washington Territory coals can be made into good coke. On this point, however, we have only laboratory and rough field tests, excepting at the Wilkeson mines, where twenty-five ovens were turning out a superior quality of coke, as proved by every test save the use of it in high furnace stacks, in which there had been no opportunity for trial.It is claimed by many persons that seams on Green River, Skagit, Yakima, and Snoqualmie will furnish good coking coal. The coal on Snoqualmie Mountain, near Hop Ranch, has not been studied, but it certainly has the external characteristics of good coking coal, and Mr. Peter Kirke made a rough trial of it in an earth-pit with decidedly encouraging results.

Somewhat similar coal is found on Raging River, but where opened, so much slate was interleaved with the coal that washing would be necessary before use. More will be said hereafter with regard to these coals; but the remark may be repeated here in respect to the entire Puget Sound basin, that much additional examination is necessary before its coals will be fully understood. The variations in character of these are not owing entirely, or even chiefly, to their relative ages, but also to the conditions to which they have been subjected, especially in respect to heat. This metamorphic agency has acted not only in the body of the Cascade Mountains, but all through the coal-fields, where faults, flexures, and intrusive rocks have occasioned changes in the original condition ofthe coal-beds, giving results along the whole scale of metamorphism from lignite to anthracite.

Analyses of Washington Territory coals.I here introduce (on the opposite page) a table of analyses made in Washington City from representative samples of Washington Territory coals and lignites selected by Mr. Bailey Willis during the examination which he made of this field for the Census Bureau, and found in Vol. XV. of the Census Reports.

I will now give some account of the principal coal seams which have been worked in Washington Territory, namely, those in the field lying east and southeast of Puget Sound; and in so doing I shall add to my own knowledge all information from any reliable sources. Unfortunately, the sources of information are few.


Back to IndexNext