Chapter 4

101.Construction of a galvanic pile or battery.—Procure fifty or more thin plates of copper, and the same number of plates of zinc, all of which may be about the size of a dollar, but not so thick. The copper and zinc plates, may be either cast in moulds, or may be cut out of rolled plates of the metals. In addition to the plates of copper and zinc, it is necessary to be provided with an equal number of pieces of woollen cloth, rather smaller than the metallick plates in size. Let these be soaked in a solution of muriate of soda, till they have thoroughly imbibed it; then take them out of the solution, and squeeze them gently, to force out the superabundant water. Then, having provided a circular piece of wood, rather larger than the plates, cover it with tin foil, and on this lay a plate of zinc, upon that a plate of copper, and then a piece of moistened cloth; next a plate of zinc, &c. Continue this arrangement of zinc, copper and cloth, till all the pieces that have been provided are laid on. As the pile began with zinc, it must be concluded with copper. This pile may be braced occasionally with strips of glass to prevent its being overthrown, Fix the end of a piece of metallic wire, in contact with the base, and lay the end of another piece upon the top of the pile; if thus, the opposite ends of the wire be brought in contact with each other, or if they are connected by any conducting body, so as to form a circuit of conductors, the pile will afford a constant and powerful current of the galvanic fluid through them for many hours. If the hands be moistened, and one of them applied to each of the wires, a shock will be received. Gold and other metals have been melted, and even burnt; and potass, soda and lime have been reduced to their respective metallic states, by being made to form part of a galvanic circuit. When the pile is not in use, it should be taken down, which will preserve it from wear, and the plates will require to be cleansed occasionally, which may be easily done by diluted muriatic acid.

102.Construction of the oxy-hydrogen blow-pipe.—This useful instrument consists of a cubical vessel, made of tin plate, being from ten to twenty inches in length, breadth and height. The inside is divided into four equal apartments, by two partitions, crossing each other in the centre. The two front apartments are covered at the top, and each of them have a tube fixed in the front side, near the top, with a stopcock. The other apartments are open at the top, and communicate with those in front, by a small aperture near the bottom of each. These apartments being all filled with water, those in front are filled, the one with oxygen, and the other with hydrogen gas, which is done by forcing the gases into them through the tubes in front, which causes the water to recede through the aperture at the bottom, and consequently, part of the water is forced over the top of the other apartments; or rather, may run off through small tubes, fixed for the purpose, near the top, similar to those in front. When the front apartments are filled with the gases, (which may be known by the bubbling in the others) the tubes are stopped, and two leaden pipes are fixed in them, the opposite ends of which, are so placed, that the two streams of gas, when expelled from the gas holders, may come in contact very near the ends of the pipes. When the tubes are open, the pressure of the water will expel the gases, and will consequently settle, and must be replenished, so as to keep the apartments nearly full. When the two streams of gas are ignited at the point of contact, a flame is produced of sufficient intensity to burn gold, silver, copper or tin, with a very brilliant combustion.

103.To make a dry phosphorescent powder.—Take some thick oyster shells, wash them, and calcine by keeping them red hot in an open fire for half an hour: then, select the clearest and whitest parts, and reduce them to powder. Mix three parts of this powder, with one of the flour of sulphur; fill a crucible with this compound, pressing or beating it down as hard and solid as may be, without breaking the crucible. Set the crucible in the fire, and heat it moderately at first, but increase the heat gradually for an hour, in which time it must approach nearly to a white heat. Then let it cool, and again select from the mass, the whitest and purest parts, which must be preserved in a phial with a glass stopper. This powder has the peculiar property of imbibing the rays of the sun in the day time, and emitting them again in the night; or if the phial containing it, be exposed for a few minutes to the direct rays of the sun and then carried into a dark room, light enough will be evolved to render it distinctly visible.

104.Curious experiment of precipitation.—Set five glasses on the table, and nearly fill one of them with a solution of sulphate of iron; and another with a solution of sulphate of copper; a third with a solution of nitrate of bismuth; pour into the fourth, a solution of nitro-muriate of cobalt, and into the fifth a solution of acetate of lead, or sulphate of zinc. These liquid solutions may all be diluted so as to be colourless. Then pour into each glass, a few drops of a colourless solution of prussiate of potass. The contents of the first glass will be instantly changed to a full blue colour; those of the second to a reddish brown; those of the third, to a yellow; the fourth to a green, and the fifth to a white. Thus five distinct colours will be given, by the addition of one colourless solution.

105.To make a beautiful soft glass for jewelry.—Take six ounces of clean fine white sand, three ounces of red lead, three ounces of pure sub-carbonate of potass, one ounce of nitrate of potass, half an ounce of borate of soda, and two drachms of arsenic; mix and pound them all together. Put the compound in a crucible, and set it in a common fire, often stirring it with an iron rod, till it is well melted, and becomes transparent. This compound will liquify very easily without any great heat, if the sand is fine, (which sometimes requires to be ground or pounded in a glass or flint mortar,) and if it be kept melted awhile, will become beautifully transparent, and may be cast or blown in the manner of other glass. This glass may be changed to a red or ruby colour, by adding and fusing together with it, a small quantity of finely powdered precipitate of gold, (gold precipitated from solution in nitro-muriatic acid by the addition of tin.) It may be also changed to blue by the addition of zaffre, (an ore of cobalt,) and magnesia: a green colour may be given by a precipitate of copper; and yellow by calcined iron, and white by calcined bones. This subject is treated of largely in theHandmaid of the Arts, to which, for further information on the subject, the reader is referred.

106.Composition of various kinds of glass.—The best flint glass is composed of 129 lbs. of white sand, 50 lbs. of red lead, 40 lbs. of sub-carbonate of potass, 20 lbs. of nitrate of potass, and 5 oz. of magnesia. The best crown glass is composed of 60 lbs. of white sand, 30 lbs. of sub-carbonate of potass, 15 lbs. of nitrate of potass, 1 lb. of borate of soda and ½ lb. of arsenic. The composition of common green window glass, is 120 lbs. of white sand, 30 lbs. of sub-carbonate of potass, 60 lbs. of wood ashes, 20 lbs. of muriate of soda and 5 lbs. of arsenic. The composition for looking glass plates, is 60 lbs. of clean white sand, 25 lbs. of purified sub-carbonate of potass, 15 lbs. of nitrate of potass, and 7 lbs. of borate of soda. Common green bottle glass is made from 200 lbs. of wood ashes, and 100 lbs. of sand. The materials for making glass, is first reduced to powder; then mixed and exposed to a strong heat, in suitable pots and furnaces, till the whole mass liquifies and becomes thoroughly commixed and transparent.

107.Composition of various alloys.—Brass is composed of two parts of copper to one of zinc; or copper and calamine, (an ore of zinc,) equal quantities. Pinchbeck consists of from five to ten parts copper, and one of zinc. Bell metal is composed of three parts copper and one of tin. Gun metal, nine parts copper and one of tin. Tombac, sixteen parts copper, one part zinc and one of tin. The composition of pewter is seven pounds of tin, one of lead, four ounces of copper and two of zinc. That of type-metal is nine parts lead, two parts antimony and one of bismuth. Solder, two parts of lead with one of tin. Queen's metal, nine parts of tin, one of bismuth, one of antimony and one of lead. Jewel gold is composed of twenty-five parts gold, four parts silver, and seven parts fine copper. In forming metallic compounds or alloys, it is proper to melt such of the ingredients as are the least fusible first, and afterwards add the others, stirring them briskly till they are thoroughly commixed.

108.To produce various kinds of gas.—To three or four ounces of pulverized chalk or marble, moistened in a flask, with an equal quantity of water, add one ounce of sulphuric acid;—carbonic acid gas will be evolved in abundance, and will rise through the neck of the flask, and may be conducted by pipes, to any proper receiver. Instead of the marble or chalk, substitute granulated zinc;—in this case hydrogen gas will be evolved; but this may require a larger proportion of water. Pour sulphuric acid upon a similar quantity of dry muriate of soda;—muriatic acid gas will be rapidly evolved. Proceed in the same manner with a similar quantity of black oxide of manganese,—apply the heat of a lamp, and oxygen gas will be produced. Put into the flask, two or three ounces of lean beef, cut into small pieces; pour over them one ounce of nitric acid diluted with three ounces of water; apply the heat of a lamp, and nitrogen gas will be liberated. Powder separately, equal quantities of muriate of ammonia and newly burnt lime; put them together into a flask and apply gentle heat; ammoniacal gas will be evolved. Pour an ounce of nitric acid, diluted with five times its weight of water, upon one ounce of shreds or turnings of copper; nitrous gas will be rapidly evolved. Grind three parts of muriate of soda with two parts of black oxide of manganese; introduce this mixture into the flask, and add two parts of sulphuric acid, diluted with an equal quantity of water; apply a gentle heat and chlorine gas will be evolved.Note.—When either of the last mentioned gases are produced, great caution is requisite that they do not escape into the room, in any considerable quantity, as their action on the lungs is exceedingly injurious.

109.Various chemical tests.—When water is suspected to hold any foreign substance in solution, various means may be used to detect and ascertain the quality of the substances combined; thus, acids may be detected by immersing in the water, a slip of litmus colored paper, which, if acid be present, will be changed to red. In the same manner, alkalies may be detected by a strip of turmeric yellow paper, which will be also changed to red by alkalies. These tests are sensible to the presence of an acid or alkali in the proportion of one to ten thousand. Iron may be detected by a drop of infusion of galls, which will give to the water (if iron be present) a brown tinge. A drop of sulphuric acid, precipitates barites in the form of a white powder. Clear transparent lime-water (water in which lime has been slaked and then suffered to settle) will indicate the presence of carbonic acid by a milky whiteness. On the same principle, a solution of super-carbonate of potass will detect lime. A few drops of nitrate of silver will instantly discover muriatic acid, by a white flaky precipitate. Muriatic acid, consequently, is a good test for silver. Acetate of lead, in solution, is a test for sulphureted hydrogen, which occasions a precipitate of a black colour. Nitrate of mercury is an excellent test for ammonia, one part of which, with 30,000 parts of water is indicated by a blackish yellow tinge on adding the test. Liquid ammonia is a very sensible test for copper, with which it strikes a fine blue colour. Nitro-muriate of gold will discover the presence of tin, by a beautiful purple precipitate. Nitro-muriate of tin is, on the same principle, an excellent test for gold.

110.To produce a picture instantly, in a variety of colours.—Paint any picture on paper in the usual way, only instead of colours, use the following substitutes: for green, use a solution of nitro-muriate of cobalt, for blue, a solution of sulphate of iron—for yellow, a solution of nitrate of bismuth—and for a brown, a solution of sulphate of copper. Any of these solutions may be more or less diluted, as the respective parts of the picture are to be light or dark, but none of them must be strong enough to colour the paper. This pictture is invisible: but when it is required to appear, the paper may be tacked up on the wall, and having a glass of the transparent solution of prussiate of potass (which by sight cannot be distinguished from clear water) dashed suddenly upon it, the picture will instantly appear in its full colours. A similar effect may be produced, by drawing the picture with infusion of galls, and sub-carbonate of potass; this is revived by a solution of sulphate of iron, and appears in a yellow and a brown colour.

111.A cheap imitation of silver bronze.—Put into a crucible, an ounce of pure tin, and set it on a fire to melt; when it begins to melt, add to it an equal quantity of bismuth, and stir the mixture with an iron rod till the whole is entirely melted and incorporated. Take the crucible then from the fire, and after the melted composition has become a little cooler, but while it is yet in a fluid state, pour into it gradually, an ounce of mercury, stirring it at the same time, that the mercury may be thoroughly conjoined with the other ingredients. When the whole is thus commixed, pour the mass out of the crucible on a stone, where, as it cools, it will take the form of an amalgam, or metallic paste; which will be easily bruised into a flaky powder, and may then be applied to sized figures in the manner of gold or silver bronze, or may be tempered with gum-water, and applied to the work with a brush or camel-hair pencil; and if properly secured with varnish or laquers will be even more durable than either silver leaf or silver bronze.

112.To make crayons of various colours.—Crayons or pastils consist of various coloured pigments or paints, formed into sticks or rolls for the purpose of drawing and shading with them in the manner of lead pencils. But that they may be of uniform texture or hardness, different ingredients and materials require some variation in the management. To make white crayons, nothing more is requisite than to mix superfine or refined whiting with alcohol, to the consistence of soft putty; form it into rolls of a convenient length and size and let them dry: or the whiting may be mixed with water and a sufficient quantity of burnt or calcined sulphate of lime to give the crayons a sufficient degree of hardness when dry. A great variety of elegant light colours may be formed by adding to the whiting prepared as above, small quantities of any of the coloured pigments. The most proper colors for crayons are lamp-black, prussian blue, burnt umber, burnt terra-de-sienna, red ochre, vermilion, lake, rose-pink, chrome yellow, yellow ochre and mineral green. Many other handsome greens are formed by mixing chrome yellow with prussian blue, varying the proportions; and purples are produced by mixing rose pink or lake with blue. Prussian blue and lake being each naturally of a binding nature, require only to be ground in water; but red ochre and vermilion should be ground in alcohol, or may have some quantity of the sulphate of lime mixed with them. Any of these colours may be mixed in any proportion with whiting or with each other, each compound having a sufficient proportion of the sulphate of lime, to give it a proper degree of hardness and strength when dry. The proper length for crayons is from two to three inches, and the size about the same as that of a tobacco-pipe stem. It is customary in making crayons, to have at hand a large piece of chalk with a plane surface, on which to lay the crayons as soon as they are rolled; the chalk absorbs a part of the moisture, which makes them dry the sooner and without cracking.

113.To make hard sealing wax, of various colours.—Take of gum-shellac and rosin each two ounces; and of gum-mastic one ounce; reduce them to powder and mix and melt them together over a gentle fire. Then if a red colour is required, add to the mixture one ounce of fine vermilion; for a black colour, add half an ounce of a mixture of lamp black with rum; for a blue, half an ounce of white lead with one fourth of an ounce of prussian blue; which should be previously ground together dry. To give a green colour, add finely ground verdegris; a yellow is produced by chrome yellow or gamboge; and white, by adding pure white lead to the mixture. When the desired colour is formed by the mixture and incorporation of any of the above mentioned colouring ingredients, take out a part of the mixture, sufficient to form a stick or roll of the usual size, and roll it between two smooth metallic plates, which should also be previously warmed to prevent the wax from becoming too hard. When the stick is reduced to a proper size, flatten it a little and let it cool. Proceed in the same manner with the rest of the composition; afterward hold each stick severally over a fire of charcoal, turning it quickly till the surface of the wax is completely melted, by which means the sticks will have acquired a very smooth and shining polish at the surface, which they will retain when cold again. If a softer wax is required, a small quantity of bees-wax and of linseed oil may be added to the above composition, or may be substituted in the place of the gum-mastic.

114.The art of manufacturing paper hangings.—This business, which has been usually, though improperly termed paper staining, consists principally in stamping or painting various figures in water colours on paper. The paper for this purpose is formed into long strips or rolls, by pasting the edges of several sheets together. The edges of the sheets should not lap on each other more than half an inch, and the usual length of a roll is about nine yards. These rolls are first painted plain with a large brush; the paint is composed of refined whiting with some colouring ingredient, being ground in water and tempered with a sufficient quantity of glue to prevent it from rubbing off; when a new design or figure is to be introduced, several colours are prepared, i.e. as many as are required in such design, and with these the design is painted on a sheet of paper. The paper is then laid on a smooth birch or maple board, and such parts of the paper as contain the colour that was last applied in the drawing (which is usually the white) are completely cut out, with a sharp pen-knife, and the parts thus cut out, are pasted down upon the board, immediately, in the places and positions they occupied in the design. The sheet is then removed to another board, and another colour is cut out in the same manner; thus the several colours are distributed in their proper arrangements on as many different boards. Each board is then cut away with chisels and gouges, to the depth of a fourth, or an eighth of an inch, in every part except where the pieces of paper are fixed. These boards or prints are supported by other thin pieces, which are fixed firmly on the backs of them by screws, in such manner that the grain of one, crosses that of the other, and thus prevents their warping. They have also cleats or pins attached to them which serve as handles. A trough is provided, a little larger than the prints, of one inch in depth, and having a smooth bottom, on which is laid three or four pieces of fine flannel or cassimere, each of which is at least as large as the prints. Then some of the colour with which the first part of the design was painted, is spread upon the cloth with a brush; and upon this, the print containing the corresponding parts of the figure, is pressed, (the pieces of paper having been previously scraped off;) the print being thus charged with the colour, is placed upon one end of a roll of the prepared paper, which is laid on a table for that purpose, and is pressed down hard by a lever or screw. It is then returned to the trough, and again charged with the colour, and again impressed on the paper at a proper distance above the other impression. In this manner several rolls are printed with one colour. Then the next colour in the design is applied to the paper in the same manner by another print;—a third colour by a third print and so on till the paper is completely printed with every colour in the design, each in its proper place. These prints should be washed and kept dry for future use. A variety of figures may be produced with the same print, by varying the colours.

115.To make elastic blacking for leather.—Dilute one ounce of gum-asphaltum with a pint of spirits of turpentine, in the manner described at 51;—put this into a flask, and add one ounce of gum-elastic cut into very small pieces, and half an ounce of gum-shellac previously reduced to powder. Suspend the flask unstopped over a fire of charcoal, or set it in a sand bath where it may boil gently till the quantity is reduced to a gill; then strain it through a flannel, and when nearly cold, bottle and cork it. The leather should be thoroughly blackened with some liquid blacking and waxed over slightly with bees-wax before the elastic blacking is applied. If the blacking should be too thick, it may again be diluted with spirits of turpentine. It should be warmed when applied, and the work may require several coats, and a considerable time for each to dry. Any of the above mentioned gums may also be dissolved in sulphuric ether, and thus produce a fine drying varnish, but the preparation is much more difficult as the volatile nature of the ether will not admit of much heat, whereby to facilitate the solution.

116.Sundry Experiments.—Rub together a little dry powdered alum, and acetate of lead; both will become fluid. To a saturated solution of muriate of lime, add a saturated solution of sub-carbonate of potass, (both transparent liquids,) the mixture will be nearly solid. Rub together a little pure white calomel (sublimed mercury) and pure white ammonia (being moistened;) both will become intensely black. Fill a flask nearly half full of water, and apply heat till it boils; take it from the fire and (when it has done boiling) cork it; pour cold water upon the flask, and the water inside will re-commence boiling. Fill a glass with water, and lay a piece of paper upon the top of it; place your hand upon the paper, and invert the glass; the hand may be removed and the glass may be suspended in that position by a thread, and the water will not be spilled. Expose a piece of ice to the action of (cold) muriatic gas; the ice will be instantly melted. Drop a piece of phosphuret of lime, into a glass of water; bubbles will soon rise, and on reaching the surface of the water will spontaneously explode. Apply the end of a roll of brimstone to a hot bar of iron; a part of the iron will be instantly melted, and will fall. Write with diluted sulphuric acid, on paper that has been coloured brown by a mixture of sulphate of iron, and infusion of galls; the writing will be white. Moisten the under lip, and lay upon it a piece of silver money, (not less than a twenty cent piece) with the edge of it beneath the tongue; lay a piece of zinc, of nearly an equal size, upon the tongue, and bring the edges of the pieces of metal into contact; you will instantly drop the money.

A large building

Appendix

A catalogue of the various articles mentioned in the preceding pages, with the prices, explanations, &c.

Hand with a pointing fingerThe articles which have this mark * prefixed may be procured at 135, Washington-street, Boston.


Back to IndexNext