Chapter XV.

Chapter XV.Of Progressive Effects; And Of The Continued Action Of Causes.§ 1. In the last four chapters we have traced the general outlines of the theory of the generation of derivative laws from ultimate ones. In the present chapter our attention will be directed to a particular case of the derivation of laws from other laws, but a case so general, and so important as not only to repay, but to require, a separate examination. This is the case of a complex phenomenon resulting from one simple law, by the continual addition of an effect to itself.There are some phenomena, some bodily sensations, for example, which are essentially instantaneous, and whose existence can only be prolonged by the prolongation of the existence of the cause by which they are produced. But most phenomena are in their own nature permanent; having begun to exist, they would exist forever unless some cause intervened having a tendency to alter or destroy them. Such, for example, are all the facts of phenomena which we call bodies. Water, once produced, will not of itself relapse into a state of hydrogen and oxygen; such a change requires some agent having the power of decomposing the compound. Such, again, are the positions in space and the movements of bodies. No object at rest alters its position without the intervention of some conditions extraneous to itself; and when once in motion, no object returns to a state of rest, or alters either its direction or its velocity, unless some new external conditions are superinduced. It, therefore, perpetually happens that a temporary cause gives rise to a permanent effect. The contact of iron with moist air for a few hours, produces a rust which may endure for centuries; or a projectile force which launches a cannon-ball into space, produces a motion which would continue forever unless some other force counteracted it.Between the two examples which we have here given, there is a difference worth pointing out. In the former (in which the phenomenon produced is a substance, and not a motion of a substance), since the rust remains forever and unaltered unless some new cause supervenes, we may speak of the contact of air a hundred years ago as even the proximate cause of the rust which has existed from that time until now. But when the effect is motion, which is itself a change, we must use a different language. The permanency of the effect is now only the permanency of a series of changes. The second foot, or inch, or mile of motion is not the mere prolonged duration of the first foot, or inch, or mile, but another fact which succeeds, and which may in some respects be very unlike the former, since it carries the body through a different region of space. Now, the original projectile force which set the body moving is the remote cause of all its motion, however long continued, but the proximate cause of no motion except that which took place at the first instant. The motion at any subsequent instant is proximately caused by the motion which took place at the instant preceding. It is on that, and not on the original moving cause, that the motion at any given moment depends. For, suppose that the body passes through some resisting medium, which partially counteracts[pg 362]the effect of the original impulse, and retards the motion; this counteraction (it need scarcely here be repeated) is as strict an example of obedience to the law of the impulse, as if the body had gone on moving with its original velocity; but the motion which results is different, being now a compound of the effects of two causes acting in contrary directions, instead of the single effect of one cause. Now, what cause does the body obey in its subsequent motion? The original cause of motion, or the actual motion at the preceding instant? The latter; for when the object issues from the resisting medium, it continues moving, not with its original, but with its retarded velocity. The motion having once been diminished, all that which follows is diminished. The effect changes, because the cause which it really obeys, the proximate cause, the real cause in fact, has changed. This principle is recognized by mathematicians when they enumerate among the causes by which the motion of a body is at any instant determined theforce generatedby the previous motion; an expression which would be absurd if taken to imply that this“force”was an intermediate link between the cause and the effect, but which really means only the previous motion itself, considered as a cause of further motion. We must, therefore, if we would speak with perfect precision, consider each link in the succession of motions as the effect of the link preceding it. But if, for the convenience of discourse, we speak of the whole series as one effect, it must be as an effect produced by the original impelling force; a permanent effect produced by an instantaneous cause, and possessing the property of self-perpetuation.Let us now suppose that the original agent or cause, instead of being instantaneous, is permanent. Whatever effect has been produced up to a given time, would (unless prevented by the intervention of some new cause) subsist permanently, even if the cause were to perish. Since, however, the cause does not perish, but continues to exist and to operate, it must go on producing more and more of the effect; and instead of a uniform effect, we have a progressive series of effects, arising from the accumulated influence of a permanent cause. Thus, the contact of iron with the atmosphere causes a portion of it to rust; and if the cause ceased, the effect already produced would be permanent, but no further effect would be added. If, however, the cause, namely, exposure to moist air, continues, more and more of the iron becomes rusted, until all which is exposed is converted into a red powder, when one of the conditions of the production of rust, namely, the presence of unoxidized iron, has ceased, and the effect can not any longer be produced. Again, the earth causes bodies to fall toward it; that is, the existence of the earth at a given instant causes an unsupported body to move toward it at the succeeding instant; and if the earth were annihilated, as much of the effect as is already produced would continue; the object would go on moving in the same direction, with its acquired velocity, until intercepted by some body or deflected by some other force. The earth, however, not being annihilated, goes on producing in the second instant an effect similar and of equal amount with the first, which two effects being added together, there results an accelerated velocity; and this operation being repeated at each successive instant, the mere permanence of the cause, though without increase, gives rise to a constant progressive increase of the effect, so long as all the conditions, negative and positive, of the production of that effect continue to be realized.It is obvious that this state of things is merely a case of the Composition of Causes. A cause which continues in action must on a strict analysis[pg 363]be considered as a number of causes exactly similar, successively introduced, and producing by their combination the sum of the effects which they would severally produce if they acted singly. The progressive rusting of the iron is in strictness the sum of the effects of many particles of air acting in succession upon corresponding particles of iron. The continued action of the earth upon a falling body is equivalent to a series of forces, applied in successive instants, each tending to produce a certain constant quantity of motion; and the motion at each instant is the sum of the effects of the new force applied at the preceding instant, and the motion already acquired. In each instant a fresh effect, of which gravity is the proximate cause, is added to the effect of which it was the remote cause; or (to express the same thing in another manner), the effect produced by the earth’s influence at the instant last elapsed is added to the sum of the effects of which the remote causes were the influences exerted by the earth at all the previous instants since the motion began. The case, therefore, comes under the principle of a concurrence of causes producing an effect equal to the sum of their separate effects. But as the causes come into play not all at once, but successively, and as the effect at each instant is the sum of the effects of those causes only which have come into action up to that instant, the result assumes the form of an ascending series; a succession of sums, each greater than that which preceded it; and we have thus a progressive effect from the continued action of a cause.Since the continuance of the cause influences the effect only by adding to its quantity, and since the addition takes place according to a fixed law (equal quantities in equal times), the result is capable of being computed on mathematical principles. In fact, this case, being that of infinitesimal increments, is precisely the case which the differential calculus was invented to meet. The questions, what effect will result from the continual addition of a given cause to itself, and what amount of the cause, being continually added to itself, will produce a given amount of the effect, are evidently mathematical questions, and to be treated, therefore, deductively. If, as we have seen, cases of the Composition of Causes are seldom adapted for any other than deductive investigation, this is especially true in the case now examined, the continual composition of a cause with its own previous effects; since such a case is peculiarly amenable to the deductive method, while the undistinguishable manner in which the effects are blended with one another and with the causes, must make the treatment of such an instance experimentally still more chimerical than in any other case.§ 2. We shall next advert to a rather more intricate operation of the same principle, namely, when the cause does not merely continue in action, but undergoes, during the same time, a progressive change in those of its circumstances which contribute to determine the effect. In this case, as in the former, the total effect goes on accumulating by the continual addition of a fresh effect to that already produced, but it is no longer by the addition of equal quantities in equal times; the quantities added are unequal, and even the quality may now be different. If the change in the state of the permanent cause be progressive, the effect will go through a double series of changes, arising partly from the accumulated action of the cause, and partly from the changes in its action. The effect is still a progressive effect, produced, however, not by the mere continuance of a cause, but by its continuance and its progressiveness combined.A familiar example is afforded by the increase of the temperature as[pg 364]summer advances, that is, as the sun draws nearer to a vertical position, and remains a greater number of hours above the horizon. This instance exemplifies in a very interesting manner the twofold operation on the effect, arising from the continuance of the cause, and from its progressive change. When once the sun has come near enough to the zenith, and remains above the horizon long enough, to give more warmth during one diurnal rotation than the counteracting cause, the earth’s radiation, can carry off, the mere continuance of the cause would progressively increase the effect, even if the sun came no nearer and the days grew no longer; but in addition to this, a change takes place in the accidents of the cause (its series of diurnal positions), tending to increase the quantity of the effect. When the summer solstice has passed, the progressive change in the cause begins to take place the reverse way, but, for some time, the accumulating effect of the mere continuance of the cause exceeds the effect of the changes in it, and the temperature continues to increase.Again, the motion of a planet is a progressive effect, produced by causes at once permanent and progressive. The orbit of a planet is determined (omitting perturbations) by two causes: first, the action of the central body, a permanent cause, which alternately increases and diminishes as the planet draws nearer to or goes farther from its perihelion, and which acts at every point in a different direction; and, secondly, the tendency of the planet to continue moving in the direction and with the velocity which it has already acquired. This force also grows greater as the planet draws nearer to its perihelion, because as it does so its velocity increases, and less, as it recedes from its perihelion; and this force as well as the other acts at each point in a different direction, because at every point the action of the central force, by deflecting the planet from its previous direction, alters the line in which it tends to continue moving. The motion at each instant is determined by the amount and direction of the motion, and the amount and direction of the sun’s action, at the previous instant; and if we speak of the entire revolution of the planet as one phenomenon (which, as it is periodical and similar to itself, we often find it convenient to do), that phenomenon is the progressive effect of two permanent and progressive causes, the central force and the acquired motion. Those causes happening to be progressive in the particular way which is called periodical, the effect necessarily is so too; because the quantities to be added together returning in a regular order, the same sums must also regularly return.This example is worthy of consideration also in another respect. Though the causes themselves are permanent, and independent of all conditions known to us, the changes which take place in the quantities and relations of the causes are actually caused by the periodical changes in the effects. The causes, as they exist at any moment, having produced a certain motion, that motion, becoming itself a cause, reacts upon the causes, and produces a change in them. By altering the distance and direction of the central body relatively to the planet, and the direction and quantity of the force in the direction of the tangent, it alters the elements which determine the motion at the next succeeding instant. This change renders the next motion somewhat different; and this difference, by a fresh reaction upon the causes, renders the next motion again different, and so on. The original state of the causes might have been such that this series of actions modified by reactions would not have been periodical. The sun’s action, and the original impelling force, might have been in such a ratio to one another, that the reaction of the effect would have been such as to alter the causes more and[pg 365]more, without ever bringing them back to what they were at any former time. The planet would then have moved in a parabola, or an hyperbola, curves not returning into themselves. The quantities of the two forces were, however, originally such, that the successive reactions of the effect bring back the causes, after a certain time, to what they were before; and from that time all the variations continued to recur again and again in the same periodical order, and must so continue while the causes subsist and are not counteracted.§ 3. In all cases of progressive effects, whether arising from the accumulation of unchanging or of changing elements, there is a uniformity of succession not merely between the cause and the effect, but between the first stages of the effect and its subsequent stages. That a bodyin vacuofalls sixteen feet in the first second, forty-eight in the second, and so on in the ratio of the odd numbers, is as much a uniform sequence as that when the supports are removed the body falls. The sequence of spring and summer is as regular and invariable as that of the approach of the sun and spring; but we do not consider spring to be the cause of summer; it is evident that both are successive effects of the heat received from the sun, and that, considered merely in itself, spring might continue forever without having the slightest tendency to produce summer. As we have so often remarked, not the conditional, but the unconditional invariable antecedent is termed the cause. That which would not be followed by the effect unless something else had preceded, and which if that something else had preceded, would not have been required, is not the cause, however invaluable the sequence may in fact be.It is in this way that most of those uniformities of succession are generated, which are not cases of causation. When a phenomenon goes on increasing, or periodically increases and diminishes, or goes through any continued and unceasing process of variation reducible to a uniform rule or law of succession, we do not on this account presume that any two successive terms of the series are cause and effect. We presume the contrary; we expect to find that the whole series originates either from the continued action of fixed causes or from causes which go through a corresponding process of continuous change. A tree grows from half an inch high to a hundred feet; and some trees will generally grow to that height unless prevented by some counteracting cause. But we do not call the seedling the cause of the full-grown tree; the invariable antecedent it certainly is, and we know very imperfectly on what other antecedents the sequence is contingent, but we are convinced that it is contingent on something; because the homogeneousness of the antecedent with the consequent, the close resemblance of the seedling to the tree in all respects except magnitude, and the graduality of the growth, so exactly resembling the progressively accumulating effect produced by the long action of some one cause, leave no possibility of doubting that the seedling and the tree are two terms in a series of that description, the first term of which is yet to seek. The conclusion is further confirmed by this, that we are able to prove by strict induction the dependence of the growth of the tree, and even of the continuance of its existence, upon the continued repetition of certain processes of nutrition, the rise of the sap, the absorptions and exhalations by the leaves, etc.; and the same experiments would probably prove to us that the growth of the tree is the accumulated sum of the effects of these continued processes, were we not, for want of sufficiently microscopic eyes, unable to observe correctly and in detail what those effects are.[pg 366]This supposition by no means requires that the effect should not, during its progress, undergo many modifications besides those of quantity, or that it should not sometimes appear to undergo a very marked change of character. This may be either because the unknown cause consists of several component elements or agents, whose effects, accumulating according to different laws, are compounded in different proportions at different periods in the existence of the organized being; or because, at certain points in its progress, fresh causes or agencies come in, or are evolved, which intermix their laws with those of the prime agent.Chapter XVI.Of Empirical Laws.§ 1. Scientific inquirers give the name of Empirical Laws to those uniformities which observation or experiment has shown to exist, but on which they hesitate to rely in cases varying much from those which have been actually observed, for want of seeing any reasonwhysuch a law should exist. It is implied, therefore, in the notion of an empirical law, that it is not an ultimate law; that if true at all, its truth is capable of being, and requires to be, accounted for. It is a derivative law, the derivation of which is not yet known. To state the explanation, thewhy, of the empirical law, would be to state the laws from which it is derived—the ultimate causes on which it is contingent. And if we knew these, we should also know what are its limits; under what conditions it would cease to be fulfilled.The periodical return of eclipses, as originally ascertained by the persevering observation of the early Eastern astronomers, was an empirical law, until the general laws of the celestial motions had accounted for it. The following are empirical laws still waiting to be resolved into the simpler laws from which they are derived: the local laws of the flux and reflux of the tides in different places; the succession of certain kinds of weather to certain appearances of sky; the apparent exceptions to the almost universal truth that bodies expand by increase of temperature; the law that breeds, both animal and vegetable, are improved by crossing; that gases have a strong tendency to permeate animal membranes; that substances containing a very high proportion of nitrogen (such as hydrocyanic acid and morphia) are powerful poisons; that when different metals are fused together the alloy is harder than the various elements; that the number of atoms of acid required to neutralize one atom of any base is equal to the number of atoms of oxygen in the base; that the solubility of substances in one another depends,171at least in some degree, on the similarity of their elements.An empirical law, then, is an observed uniformity, presumed to be resolvable[pg 367]into simpler laws, but not yet resolved into them. The ascertainment of the empirical laws of phenomena often precedes by a long interval the explanation of those laws by the Deductive Method; and the verification of a deduction usually consists in the comparison of its results with empirical laws previously ascertained.§ 2. From a limited number of ultimate laws of causation, there are necessarily generated a vast number of derivative uniformities, both of succession and co-existence. Some are laws of succession or of co-existence between different effects of the same cause; of these we had examples in the last chapter. Some are laws of succession between effects and their remote causes, resolvable into the laws which connect each with the intermediate link. Thirdly, when causes act together and compound their effects, the laws of those causes generate the fundamental law of the effect, namely, that it depends on the co-existence of those causes. And, finally, the order of succession or of co-existence which obtains among effects necessarily depends on their causes. If they are effects of the same cause, it depends on the laws of that cause; if on different causes, it depends on the laws of those causes severally, and on the circumstances which determine their co-existence. If we inquire further when and how the causes will co-exist, that, again, depends ontheircauses; and we may thus trace back the phenomena higher and higher, until the different series of effects meet in a point, and the whole is shown to have depended ultimately on some common cause; or until, instead of converging to one point, they terminate in different points, and the order of the effects is proved to have arisen from the collocation of some of the primeval causes, or natural agents. For example, the order of succession and of co-existence among the heavenly motions, which is expressed by Kepler’s laws, is derived from the co-existence of two primeval causes, the sun, and the original impulse or projectile force belonging to each planet.172Kepler’s laws are resolved into the laws of these causes and the fact of their co-existence.Derivative laws, therefore, do not depend solely on the ultimate laws into which they are resolvable; they mostly depend on those ultimate laws, and an ultimate fact; namely, the mode of co-existence of some of the component elements of the universe. The ultimate laws of causation might be the same as at present, and yet the derivative laws completely different, if the causes co-existed in different proportions, or with any difference in those of their relations by which the effects are influenced. If, for example, the sun’s attraction, and the original projectile force, had existed in some other ratio to one another than they did (and we know of no reason why this should not have been the case), the derivative laws of the heavenly motions might have been quite different from what they are. The proportions which exist happen to be such as to produce regular elliptical motions; any other proportions would have produced different ellipses, or circular, or parabolic, or hyperbolic motions, but still regular ones; because the effects of each of the agents accumulate according to a uniform law; and two regular series of quantities, when their corresponding terms are added, must produce a regular series of some sort, whatever the quantities themselves are.§ 3. Now this last-mentioned element in the resolution of a derivative law, the element which is not a law of causation, but a collocation of causes,[pg 368]can not itself be reduced to any law. There is, as formerly remarked,173no uniformity, nonorma, principle, or rule, perceivable in the distribution of the primeval natural agents through the universe. The different substances composing the earth, the powers that pervade the universe, stand in no constant relation to one another. One substance is more abundant than others, one power acts through a larger extent of space than others, without any pervading analogy that we can discover. We not only do not know of any reason why the sun’s attraction and the force in the direction of the tangent co-exist in the exact proportion they do, but we can trace no coincidence between it and the proportions in which any other elementary powers in the universe are intermingled. The utmost disorder is apparent in the combination of the causes, which is consistent with the most regular order in their effects; for when each agent carries on its own operations according to a uniform law, even the most capricious combination of agencies will generate a regularity of some sort; as we see in the kaleidoscope, where any casual arrangement of colored bits of glass produces by the laws of reflection a beautiful regularity in the effect.§ 4. In the above considerations lies the justification of the limited degree of reliance which scientific inquirers are accustomed to place in empirical laws.A derivative law which results wholly from the operation of some one cause, will be as universally true as the laws of the cause itself; that is, it will always be true except where some one of those effects of the cause, on which the derivative law depends, is defeated by a counteracting cause. But when the derivative law results not from different effects of one cause, but from effects of several causes, we can not be certain that it will be true under any variation in the mode of co-existence of those causes, or of the primitive natural agents on which the causes ultimately depend. The proposition that coal-beds rest on certain descriptions of strata exclusively, though true on the earth, so far as our observation has reached, can not be extended to the moon or the other planets, supposing coal to exist there; because we can not be assured that the original constitution of any other planet was such as to produce the different depositions in the same order as in our globe. The derivative law in this case depends not solely on laws, but on a collocation; and collocations can not be reduced to any law.Now it is the very nature of a derivative law which has not yet been resolved into its elements, in other words, an empirical law, that we do not know whether it results from the different effects of one cause, or from effects of different causes. We can not tell whether it depends wholly on laws, or partly on laws and partly on a collocation. If it depends on a collocation, it will be true in all the cases in which that particular collocation exists. But, since we are entirely ignorant, in case of its depending on a collocation, what the collocation is, we are not safe in extending the law beyond the limits of time and place in which we have actual experience of its truth. Since within those limits the law has always been found true, we have evidence that the collocations, whatever they are, on which it depends, do really exist within those limits. But, knowing of no rule or principle to which the collocations themselves conform, we can not conclude that because a collocation is proved to exist within certain limits of place or time, it will exist beyond those limits. Empirical laws, therefore, can only be received as true within the limits of time and place in which[pg 369]they have been found true by observation; and not merely the limits of time and place, but of time, place, and circumstance; for, since it is the very meaning of an empirical law that we do not know the ultimate laws of causation on which it is dependent, we can not foresee, without actual trial, in what manner or to what extent the introduction of any new circumstance may affect it.§ 5. But how are we to know that a uniformity ascertained by experience is only an empirical law? Since, by the supposition, we have not been able to resolve it into any other laws, how do we know that it is not an ultimate law of causation?I answer that no generalization amounts to more than an empirical law when the only proof on which it rests is that of the Method of Agreement. For it has been seen that by that method alone we never can arrive at causes. The utmost that the Method of Agreement can do is, to ascertain the whole of the circumstances common to all cases in which a phenomenon is produced; and this aggregate includes not only the cause of the phenomenon, but all phenomena with which it is connected by any derivative uniformity, whether as being collateral effects of the same cause, or effects of any other cause which, in all the instances we have been able to observe, co-existed with it. The method affords no means of determining which of these uniformities are laws of causation, and which are merely derivative laws, resulting from those laws of causation and from the collocation of the causes. None of them, therefore, can be received in any other character than that of derivative laws, the derivation of which has not been traced; in other words, empirical laws: in which light all results obtained by the Method of Agreement (and therefore almost all truths obtained by simple observation without experiment) must be considered, until either confirmed by the Method of Difference, or explained deductively; in other words, accounted fora priori.These empirical laws may be of greater or less authority, according as there is reason to presume that they are resolvable into laws only, or into laws and collocations together. The sequences which we observe in the production and subsequent life of an animal or a vegetable, resting on the Method of Agreement only, are mere empirical laws; but though the antecedents in those sequences may not be the causes of the consequents, both the one and the other are doubtless, in the main, successive stages of a progressive effect originating in a common cause, and therefore independent of collocations. The uniformities, on the other hand, in the order of superposition of strata on the earth, are empirical laws of a much weaker kind, since they not only are not laws of causation, but there is no reason to believe that they depend on any common cause; all appearances are in favor of their depending on the particular collocation of natural agents which at some time or other existed on our globe, and from which no inference can be drawn as to the collocation which exists or has existed in any other portion of the universe.§ 6. Our definition of an empirical law, including not only those uniformities which are not known to be laws of causation, but also those which are, provided there be reason to presume that they are not ultimate laws; this is the proper place to consider by what signs we may judge that even if an observed uniformity be a law of causation, it is not an ultimate, but a derivative law.[pg 370]The first sign is, if between the antecedentaand the consequentbthere be evidence of some intermediate link; some phenomenon of which we can surmise the existence, though from the imperfection of our senses or of our instruments we are unable to ascertain its precise nature and laws. If there be such a phenomenon (which may be denoted by the letterx), it follows that even ifabe the cause ofb, it is but the remote cause, and that the law,acausesb, is resolvable into at least two laws,acausesx, andxcausesb. This is a very frequent case, since the operations of nature mostly take place on so minute a scale, that many of the successive steps are either imperceptible, or very indistinctly perceived.Take, for example, the laws of the chemical composition of substances; as that hydrogen and oxygen being combined, water is produced. All we see of the process is, that the two gases being mixed in certain proportions, and heat or electricity being applied, an explosion takes place, the gases disappear, and water remains. There is no doubt about the law, or about its being a law of causation. But between the antecedent (the gases in a state of mechanical mixture, heated or electrified), and the consequent (the production of water), there must be an intermediate process which we do not see. For if we take any portion whatever of the water, and subject it to analysis, we find that it always contains hydrogen and oxygen; nay, the very same proportions of them, namely, two-thirds, in volume, of hydrogen, and one-third oxygen. This is true of a single drop; it is true of the minutest portion which our instruments are capable of appreciating. Since, then, the smallest perceptible portion of the water contains both those substances, portions of hydrogen and oxygen smaller than the smallest perceptible must have come together in every such minute portion of space; must have come closer together than when the gases were in a state of mechanical mixture, since (to mention no other reasons) the water occupies far less space than the gases. Now, as we can not see this contact or close approach of the minute particles, we can not observe with what circumstances it is attended, or according to what laws it produces its effects. The production of water, that is, of the sensible phenomena which characterize the compound, may be a very remote effect of those laws. There may be innumerable intervening links; and we are sure that there must be some. Having full proof that corpuscular action of some kind takes place previous to any of the great transformations in the sensible properties of substances, we can have no doubt that the laws of chemical action, as at present known, are not ultimate, but derivative laws; however ignorant we may be, and even though we should forever remain ignorant, of the nature of the laws of corpuscular action from which they are derived.In like manner, all the processes of vegetative life, whether in the vegetable properly so called or in the animal body, are corpuscular processes. Nutrition is the addition of particles to one another, sometimes merely replacing other particles separated and excreted, sometimes occasioning an increase of bulk or weight so gradual that only after a long continuance does it become perceptible. Various organs, by means of peculiar vessels, secrete from the blood fluids, the component particles of which must have been in the blood, but which differ from it most widely both in mechanical properties and in chemical composition. Here, then, are abundance of unknown links to be filled up; and there can be no doubt that the laws of the phenomena of vegetative or organic life are derivative laws, dependent on properties of the corpuscles, and of those elementary tissues which are comparatively simple combinations of corpuscles.[pg 371]The first sign, then, from which a law of causation, though hitherto unresolved, may be inferred to be a derivative law, is any indication of the existence of an intermediate link or links between the antecedent and the consequent. The second is, when the antecedent is an extremely complex phenomenon, and its effects, therefore, probably in part at least, compounded of the effects of its different elements; since we know that the case in which the effect of the whole is not made up of the effects of its parts is exceptional, the Composition of Causes being by far the more ordinary case.We will illustrate this by two examples, in one of which the antecedent is the sum of many homogeneous, in the other of heterogeneous, parts. The weight of a body is made up of the weights of its minute particles; a truth which astronomers express in its most general terms when they say that bodies, at equal distances, gravitate to one another in proportion to their quantity of matter. All true propositions, therefore, which can be made concerning gravity, are derivative laws; the ultimate law into which they are all resolvable being, that every particle of matter attracts every other. As our second example, we may take any of the sequences observed in meteorology; for instance, a diminution of the pressure of the atmosphere (indicated by a fall of the barometer) is followed by rain. The antecedent is here a complex phenomenon, made up of heterogeneous elements; the column of the atmosphere over any particular place consisting of two parts, a column of air, and a column of aqueous vapor mixed with it; and the change in the two together manifested by a fall of the barometer, and followed by rain, must be either a change in one of these, or in the other, or in both. We might, then, even in the absence of any other evidence, form a reasonable presumption, from the invariable presence of both these elements in the antecedent, that the sequence is probably not an ultimate law, but a result of the laws of the two different agents; a presumption only to be destroyed when we had made ourselves so well acquainted with the laws of both, as to be able to affirm that those laws could not by themselves produce the observed result.There are but few known cases of succession from very complex antecedents which have not either been actually accounted for from simpler laws, or inferred with great probability (from the ascertained existence of intermediate links of causation not yet understood) to be capable of being so accounted for. It is, therefore, highly probable that all sequences from complex antecedents are thus resolvable, and that ultimate laws are in all cases comparatively simple. If there were not the other reasons already mentioned for believing that the laws of organized nature are resolvable into simpler laws, it would be almost a sufficient reason that the antecedents in most of the sequences are so very complex.§ 7. In the preceding discussion we have recognized two kinds of empirical laws: those known to be laws of causation, but presumed to be resolvable into simpler laws; and those not known to be laws of causation at all. Both these kinds of laws agree in the demand which they make for being explained by deduction, and agree in being the appropriate means of verifying such deduction, since they represent the experience with which the result of the deduction must be compared. They agree, further, in this, that until explained, and connected with the ultimate laws from which they result, they have not attained the highest degree of certainty of which laws are susceptible. It has been shown on a former occasion that laws[pg 372]of causation which are derivative, and compounded of simpler laws, are not only, as the nature of the case implies, less general, but even less certain, than the simpler laws from which they result; not in the same degree to be relied on as universally true. The inferiority of evidence, however, which attaches to this class of laws, is trifling, compared with that which is inherent in uniformities not known to be laws of causation at all. So long as these are unresolved, we can not tell on how many collocations, as well as laws, their truth may be dependent; we can never, therefore, extend them with any confidence to cases in which we have not assured ourselves, by trial, that the necessary collocation of causes, whatever it may be, exists. It is to this class of laws alone that the property, which philosophers usually consider as characteristic of empirical laws, belongs in all its strictness—the property of being unfit to be relied on beyond the limits of time, place, and circumstance in which the observations have been made. These are empirical laws in a more emphatic sense; and when I employ that term (except where the context manifestly indicates the reverse) I shall generally mean to designate those uniformities only, whether of succession or of co-existence, which are not known to be laws of causation.Chapter XVII.Of Chance And Its Elimination.§ 1. Considering, then, as empirical laws only those observed uniformities respecting which the question whether they are laws of causation must remain undecided until they can be explained deductively, or until some means are found of applying the Method of Difference to the case, it has been shown in the preceding chapter that until a uniformity can, in one or the other of these modes, be taken out of the class of empirical laws, and brought either into that of laws of causation or of the demonstrated results of laws of causation, it can not with any assurance be pronounced true beyond the local and other limits within which it has been found so by actual observation. It remains to consider how we are to assure ourselves of its truth even within those limits; after what quantity of experience a generalization which rests solely on the Method of Agreement can be considered sufficiently established, even as an empirical law. In a former chapter, when treating of the Methods of Direct Induction, we expressly reserved this question,174and the time is now come for endeavoring to solve it.We found that the Method of Agreement has the defect of not proving causation, and can, therefore, only be employed for the ascertainment of empirical laws. But we also found that besides this deficiency, it labors under a characteristic imperfection, tending to render uncertain even such conclusions as it is in itself adapted to prove. This imperfection arises from Plurality of Causes. Although two or more cases in which the phenomenonahas been met with may have no common antecedent except A, this does not prove that there is any connection betweenaand A, sinceamay have many causes, and may have been produced, in these different instances, not by any thing which the instances had in common, but by some of those elements in them which were different. We nevertheless[pg 373]observed, that in proportion to the multiplication of instances pointing to A as the antecedent, the characteristic uncertainty of the method diminishes, and the existence of a law of connection between A andamore nearly approaches to certainty. It is now to be determined after what amount of experience this certainty may be deemed to be practically attained, and the connection between A andamay be received as an empirical law.This question may be otherwise stated in more familiar terms: After how many and what sort of instances may it be concluded that an observed coincidence between two phenomena is not the effect of chance?It is of the utmost importance for understanding the logic of induction, that we should form a distinct conception of what is meant by chance, and how the phenomena which common language ascribes to that abstraction are really produced.§ 2. Chance is usually spoken of in direct antithesis to law; whatever, it is supposed, can not be ascribed to any law is attributed to chance. It is, however, certain that whatever happens is the result of some law; is an effect of causes, and could have been predicted from a knowledge of the existence of those causes, and from their laws. If I turn up a particular card, that is a consequence of its place in the pack. Its place in the pack was a consequence of the manner in which the cards were shuffled, or of the order in which they were played in the last game; which, again, were effects of prior causes. At every stage, if we had possessed an accurate knowledge of the causes in existence, it would have been abstractedly possible to foretell the effect.An event occurring by chance may be better described as a coincidence from which we have no ground to infer a uniformity—the occurrence of a phenomenon in certain circumstances, without our having reason on that account to infer that it will happen again in those circumstances. This, however, when looked closely into, implies that the enumeration of the circumstances is not complete. Whatever the fact be, since it has occurred once, we may be sure that ifallthe same circumstances were repeated it would occur again; and not only if all, but there is some particular portion of those circumstances on which the phenomenon is invariably consequent. With most of them, however, it is not connected in any permanent manner; its conjunction with those is said to be the effect of chance, to be merely casual. Facts casually conjoined are separately the effects of causes, and therefore of laws; but of different causes, and causes not connected by any law.It is incorrect, then, to say that any phenomenon is produced by chance; but we may say that two or more phenomena are conjoined by chance, that they co-exist or succeed one another only by chance; meaning that they are in no way related through causation; that they are neither cause and effect, nor effects of the same cause, nor effects of causes between which there subsists any law of co-existence, nor even effects of the same collocation of primeval causes.If the same casual coincidence never occurred a second time, we should have an easy test for distinguishing such from the coincidences which are the results of a law. As long as the phenomena had been found together only once, so long, unless we knew some more general laws from which the coincidence might have resulted, we could not distinguish it from a casual one; but if it occurred twice, we should know that the phenomena so conjoined must be in some way connected through their causes.[pg 374]There is, however, no such test. A coincidence may occur again and again, and yet be only casual. Nay, it would be inconsistent with what we know of the order of nature to doubt that every casual coincidence will sooner or later be repeated, as long as the phenomena between which it occurred do not cease to exist, or to be reproduced. The recurrence, therefore, of the same coincidence more than once, or even its frequent recurrence, does not prove that it is an instance of any law; does not prove that it is not casual, or, in common language, the effect of chance.And yet, when a coincidence can not be deduced from known laws, nor proved by experiment to be itself a case of causation, the frequency of its occurrence is the only evidence from which we can infer that it is the result of a law. Not, however, its absolute frequency. The question is not whether the coincidence occurs often or seldom, in the ordinary sense of those terms; but whether it occurs more often than chance will account for; more often than might rationally be expected if the coincidence were casual. We have to decide, therefore, what degree of frequency in a coincidence chance will account for; and to this there can be no general answer. We can only state the principle by which the answer must be determined; the answer itself will be different in every different case.Suppose that one of the phenomena, A, exists always, and the other phenomenon, B, only occasionally; it follows that every instance of B will be an instance of its coincidence with A, and yet the coincidence will be merely casual, not the result of any connection between them. The fixed stars have been constantly in existence since the beginning of human experience, and all phenomena that have come under human observation have, in every single instance, co-existed with them; yet this coincidence, though equally invariable with that which exists between any of those phenomena and its own cause, does not prove that the stars are its cause, nor that they are in anywise connected with it. As strong a case of coincidence, therefore, as can possibly exist, and a much stronger one in point of mere frequency than most of those which prove laws, does not here prove a law; why? because, since the stars exist always, theymustco-exist with every other phenomenon, whether connected with them by causation or not. The uniformity, great though it be, is no greater than would occur on the supposition that no such connection exists.On the other hand, suppose that we were inquiring whether there be any connection between rain and any particular wind. Rain, we know, occasionally occurs with every wind; therefore, the connection, if it exists, can not be an actual law; but still rain may be connected with some particular wind through causation; that is, though they can not be always effects of the same cause (for if so they would regularly co-exist), there may be some causes common to the two, so that in so far as either is produced by those common causes, they will, from the laws of the causes, be found to co-exist. How, then, shall we ascertain this? The obvious answer is, by observing whether rain occurs with one wind more frequently than with any other. That, however, is not enough; for perhaps that one wind blows more frequently than any other; so that its blowing more frequently in rainy weather is no more than would happen, although it had no connection with the causes of rain, provided it were not connected with causes adverse to rain. In England, westerly winds blow during about twice as great a portion of the year as easterly. If, therefore, it rains only twice as often with a westerly as with an easterly wind, we have no reason to infer that any law of nature is concerned in the coincidence. If it rains more than twice[pg 375]as often, we may be sure that some law is concerned; either there is some cause in nature which, in this climate, tends to produce both rain and a westerly wind, or a westerly wind has itself some tendency to produce rain. But if it rains less than twice as often, we may draw a directly opposite inference: the one, instead of being a cause, or connected with causes of the other, must be connected with causes adverse to it, or with the absence of some cause which produces it; and though it may still rain much oftener with a westerly wind than with an easterly, so far would this be from proving any connection between the phenomena, that the connection proved would be between rain and an easterly wind, to which, in mere frequency of coincidence, it is less allied.Here, then, are two examples: in one, the greatest possible frequency of coincidence, with no instance whatever to the contrary, does not prove that there is any law; in the other, a much less frequency of coincidence, even when non-coincidence is still more frequent, does prove that there is a law. In both cases the principle is the same. In both we consider the positive frequency of the phenomena themselves, and how great frequency of coincidence that must of itself bring about, without supposing any connection between them, provided there be no repugnance; provided neither be connected with any cause tending to frustrate the other. If we find a greater frequency of coincidence than this, we conclude that there is some connection; if a less frequency, that there is some repugnance. In the former case, we conclude that one of the phenomena can under some circumstances cause the other, or that there exists something capable of causing them both; in the latter, that one of them, or some cause which produces one of them, is capable of counteracting the production of the other. We have thus to deduct from the observed frequency of coincidence as much as may be the effect of chance, that is, of the mere frequency of the phenomena themselves; and if any thing remains, what does remain is the residual fact which proves the existence of a law.The frequency of the phenomena can only be ascertained within definite limits of space and time; depending as it does on the quantity and distribution of the primeval natural agents, of which we can know nothing beyond the boundaries of human observation, since no law, no regularity, can be traced in it, enabling us to infer the unknown from the known. But for the present purpose this is no disadvantage, the question being confined within the same limits as the data. The coincidences occurred in certain places and times, and within those we can estimate the frequency with which such coincidences would be produced by chance. If, then, we find from observation that A exists in one case out of every two, and B in one case out of every three; then, if there be neither connection nor repugnance between them, or between any of their causes, the instances in which A and B will both exist, that is to say will co-exist, will be one case in every six. For A exists in three cases out of six; and B, existing in one case out of every three without regard to the presence or absence of A, will exist in one case out of those three. There will therefore be, of the whole number of cases, two in which A exists without B; one case of B without A; two in which neither B nor A exists, and one case out of six in which they both exist. If, then, in point of fact, they are found to co-exist oftener than in one case out of six; and, consequently, A does not exist without B so often as twice in three times, nor B without A so often as once in every twice, there is some cause in existence which tends to produce a conjunction between A and B.[pg 376]Generalizing the result, we may say that if A occurs in a larger proportion of the cases where B is than of the cases where B is not, then will B also occur in a larger proportion of the cases where A is than of the cases where A is not; and there is some connection, through causation, between A and B. If we could ascend to the causes of the two phenomena, we should find, at some stage, either proximate or remote, some cause or causes common to both; and if we could ascertain what these are, we could frame a generalization which would be true without restriction of place or time; but until we can do so, the fact of a connection between the two phenomena remains an empirical law.§ 3. Having considered in what manner it may be determined whether any given conjunction of phenomena is casual, or the result of some law, to complete the theory of chance it is necessary that we should now consider those effects which are partly the result of chance and partly of law, or, in other words, in which the effects of casual conjunctions of causes are habitually blended in one result with the effects of a constant cause.This is a case of Composition of Causes; and the peculiarity of it is, that instead of two or more causes intermixing their effects in a regular manner with those of one another, we have now one constant cause, producing an effect which is successively modified by a series of variable causes. Thus, as summer advances, the approach of the sun to a vertical position tends to produce a constant increase of temperature; but with this effect of a constant cause, there are blended the effects of many variable causes, winds, clouds, evaporation, electric agencies and the like, so that the temperature of any given day depends in part on these fleeting causes, and only in part on the constant cause. If the effect of the constant cause is always accompanied and disguised by effects of variable causes, it is impossible to ascertain the law of the constant cause in the ordinary manner by separating it from all other causes and observing it apart. Hence arises the necessity of an additional rule of experimental inquiry.When the action of a cause A is liable to be interfered with, not steadily by the same cause or causes, but by different causes at different times, and when these are so frequent, or so indeterminate, that we can not possibly exclude all of them from any experiment, though we may vary them; our resource is, to endeavor to ascertain what is the effect of all the variable causes taken together. In order to do this, we make as many trials as possible, preserving A invariable. The results of these different trials will naturally be different, since the indeterminate modifying causes are different in each; if, then, we do not find these results to be progressive, but, on the contrary, to oscillate about a certain point, one experiment giving a result a little greater, another a little less, one a result tending a little more in one direction, another a little more in the contrary direction; while the average or middle point does not vary, but different sets of experiments (taken in as great a variety of circumstances as possible) yield the same mean, provided only they be sufficiently numerous; then that mean, or average result, is the part, in each experiment, which is due to the cause A, and is the effect which would have been obtained if A could have acted alone; the variable remainder is the effect of chance, that is, of causes the co-existence of which with the cause A was merely casual. The test of the sufficiency of the induction in this case is, when any increase of the number of trials from which the average is struck does not materially alter the average.[pg 377]This kind of elimination, in which we do not eliminate any one assignable cause, but the multitude of floating unassignable ones, may be termed the Elimination of Chance. We afford an example of it when we repeat an experiment, in order, by taking the mean of different results, to get rid of the effects of the unavoidable errors of each individual experiment. When there is no permanent cause, such as would produce a tendency to error peculiarly in one direction, we are warranted by experience in assuming that the errors on one side will, in a certain number of experiments, about balance the errors on the contrary side. We therefore repeat the experiment, until any change which is produced in the average of the whole by further repetition, falls within limits of error consistent with the degree of accuracy required by the purpose we have in view.175§ 4. In the supposition hitherto made, the effect of the constant cause A has been assumed to form so great and conspicuous a part of the general result, that its existence never could be a matter of uncertainty, and the object of the eliminating process was only to ascertainhow muchis attributable to that cause; what is its exact law. Cases, however, occur in which the effect of a constant cause is so small, compared with that of some of the changeable causes with which it is liable to be casually conjoined, that of itself it escapes notice, and the very existence of any effect arising from a constant cause is first learned by the process which in general serves only for ascertaining the quantity of that effect. This case of induction may be characterized as follows: A given effect is known to be chiefly, and not known not to be wholly, determined by changeable causes. If it be wholly so produced, then if the aggregate be taken of a sufficient number of instances, the effects of these different causes will cancel one another. If, therefore, we do not find this to be the case, but, on the contrary, after such a number of trials has been made that no further increase alters the average result, we find that average to be, not zero, but some other quantity, about which, though small in comparison with the total effect, the effect nevertheless oscillates, and which is the middle point in its oscillation; we may conclude this to be the effect of some constant cause; which cause, by some of the methods already treated of, we may hope to detect. This may be calledthe discovery of a residual phenomenon by eliminating the effects of chance.It is in this manner, for example, that loaded dice may be discovered. Of course no dice are so clumsily loaded that they must always throw certain numbers; otherwise the fraud would be instantly detected. The loading, a constant cause, mingles with the changeable causes which determine what cast will be thrown in each individual instance. If the dice were not[pg 378]loaded, and the throw were left to depend entirely on the changeable causes, these in a sufficient number of instances would balance one another, and there would be no preponderant number of throws of any one kind. If, therefore, after such a number of trials that no further increase of their number has any material effect upon the average, we find a preponderance in favor of a particular throw; we may conclude with assurance that there is some constant cause acting in favor of that throw, or, in other words, that the dice are not fair; and the exact amount of the unfairness. In a similar manner, what is called the diurnal variation of the barometer, which is very small compared with the variations arising from the irregular changes in the state of the atmosphere, was discovered by comparing the average height of the barometer at different hours of the day. When this comparison was made, it was found that there was a small difference, which on the average was constant, however the absolute quantities might vary, and which difference, therefore, must be the effect of a constant cause. This cause was afterward ascertained, deductively, to be the rarefaction of the air, occasioned by the increase of temperature as the day advances.§ 5. After these general remarks on the nature of chance, we are prepared to consider in what manner assurance may be obtained that a conjunction between two phenomena, which has been observed a certain number of times, is not casual, but a result of causation, and to be received, therefore, as one of the uniformities of nature, though (until accounted fora priori) only as an empirical law.We will suppose the strongest case, namely, that the phenomenon B has never been observed except in conjunction with A. Even then, the probability that they are connected is not measured by the total number of instances in which they have been found together, but by the excess of that number above the number due to the absolutely frequency of A. If, for example, A exists always, and therefore co-exists with every thing, no number of instances of its co-existence with B would prove a connection; as in our example of the fixed stars. If A be a fact of such common occurrence that it may be presumed to be present in half of all the cases that occur, and therefore in half the cases in which B occurs, it is only the proportional excess above half that is to be reckoned as evidence toward proving a connection between A and B.In addition to the question, What is the number of coincidences which, on an average of a great multitude of trials, may be expected to arise from chance alone? there is also another question, namely, Of what extent of deviation from that average is the occurrence credible, from chance alone, in some number of instances smaller than that required for striking a fair average? It is not only to be considered what is the general result of the chances in the long run, but also what are the extreme limits of variation from the general result, which may occasionally be expected as the result of some smaller number of instances.The consideration of the latter question, and any consideration of the former beyond that already given to it, belong to what mathematicians term the doctrine of chances, or, in a phrase of greater pretension, the Theory of Probabilities.[pg 379]

Chapter XV.Of Progressive Effects; And Of The Continued Action Of Causes.§ 1. In the last four chapters we have traced the general outlines of the theory of the generation of derivative laws from ultimate ones. In the present chapter our attention will be directed to a particular case of the derivation of laws from other laws, but a case so general, and so important as not only to repay, but to require, a separate examination. This is the case of a complex phenomenon resulting from one simple law, by the continual addition of an effect to itself.There are some phenomena, some bodily sensations, for example, which are essentially instantaneous, and whose existence can only be prolonged by the prolongation of the existence of the cause by which they are produced. But most phenomena are in their own nature permanent; having begun to exist, they would exist forever unless some cause intervened having a tendency to alter or destroy them. Such, for example, are all the facts of phenomena which we call bodies. Water, once produced, will not of itself relapse into a state of hydrogen and oxygen; such a change requires some agent having the power of decomposing the compound. Such, again, are the positions in space and the movements of bodies. No object at rest alters its position without the intervention of some conditions extraneous to itself; and when once in motion, no object returns to a state of rest, or alters either its direction or its velocity, unless some new external conditions are superinduced. It, therefore, perpetually happens that a temporary cause gives rise to a permanent effect. The contact of iron with moist air for a few hours, produces a rust which may endure for centuries; or a projectile force which launches a cannon-ball into space, produces a motion which would continue forever unless some other force counteracted it.Between the two examples which we have here given, there is a difference worth pointing out. In the former (in which the phenomenon produced is a substance, and not a motion of a substance), since the rust remains forever and unaltered unless some new cause supervenes, we may speak of the contact of air a hundred years ago as even the proximate cause of the rust which has existed from that time until now. But when the effect is motion, which is itself a change, we must use a different language. The permanency of the effect is now only the permanency of a series of changes. The second foot, or inch, or mile of motion is not the mere prolonged duration of the first foot, or inch, or mile, but another fact which succeeds, and which may in some respects be very unlike the former, since it carries the body through a different region of space. Now, the original projectile force which set the body moving is the remote cause of all its motion, however long continued, but the proximate cause of no motion except that which took place at the first instant. The motion at any subsequent instant is proximately caused by the motion which took place at the instant preceding. It is on that, and not on the original moving cause, that the motion at any given moment depends. For, suppose that the body passes through some resisting medium, which partially counteracts[pg 362]the effect of the original impulse, and retards the motion; this counteraction (it need scarcely here be repeated) is as strict an example of obedience to the law of the impulse, as if the body had gone on moving with its original velocity; but the motion which results is different, being now a compound of the effects of two causes acting in contrary directions, instead of the single effect of one cause. Now, what cause does the body obey in its subsequent motion? The original cause of motion, or the actual motion at the preceding instant? The latter; for when the object issues from the resisting medium, it continues moving, not with its original, but with its retarded velocity. The motion having once been diminished, all that which follows is diminished. The effect changes, because the cause which it really obeys, the proximate cause, the real cause in fact, has changed. This principle is recognized by mathematicians when they enumerate among the causes by which the motion of a body is at any instant determined theforce generatedby the previous motion; an expression which would be absurd if taken to imply that this“force”was an intermediate link between the cause and the effect, but which really means only the previous motion itself, considered as a cause of further motion. We must, therefore, if we would speak with perfect precision, consider each link in the succession of motions as the effect of the link preceding it. But if, for the convenience of discourse, we speak of the whole series as one effect, it must be as an effect produced by the original impelling force; a permanent effect produced by an instantaneous cause, and possessing the property of self-perpetuation.Let us now suppose that the original agent or cause, instead of being instantaneous, is permanent. Whatever effect has been produced up to a given time, would (unless prevented by the intervention of some new cause) subsist permanently, even if the cause were to perish. Since, however, the cause does not perish, but continues to exist and to operate, it must go on producing more and more of the effect; and instead of a uniform effect, we have a progressive series of effects, arising from the accumulated influence of a permanent cause. Thus, the contact of iron with the atmosphere causes a portion of it to rust; and if the cause ceased, the effect already produced would be permanent, but no further effect would be added. If, however, the cause, namely, exposure to moist air, continues, more and more of the iron becomes rusted, until all which is exposed is converted into a red powder, when one of the conditions of the production of rust, namely, the presence of unoxidized iron, has ceased, and the effect can not any longer be produced. Again, the earth causes bodies to fall toward it; that is, the existence of the earth at a given instant causes an unsupported body to move toward it at the succeeding instant; and if the earth were annihilated, as much of the effect as is already produced would continue; the object would go on moving in the same direction, with its acquired velocity, until intercepted by some body or deflected by some other force. The earth, however, not being annihilated, goes on producing in the second instant an effect similar and of equal amount with the first, which two effects being added together, there results an accelerated velocity; and this operation being repeated at each successive instant, the mere permanence of the cause, though without increase, gives rise to a constant progressive increase of the effect, so long as all the conditions, negative and positive, of the production of that effect continue to be realized.It is obvious that this state of things is merely a case of the Composition of Causes. A cause which continues in action must on a strict analysis[pg 363]be considered as a number of causes exactly similar, successively introduced, and producing by their combination the sum of the effects which they would severally produce if they acted singly. The progressive rusting of the iron is in strictness the sum of the effects of many particles of air acting in succession upon corresponding particles of iron. The continued action of the earth upon a falling body is equivalent to a series of forces, applied in successive instants, each tending to produce a certain constant quantity of motion; and the motion at each instant is the sum of the effects of the new force applied at the preceding instant, and the motion already acquired. In each instant a fresh effect, of which gravity is the proximate cause, is added to the effect of which it was the remote cause; or (to express the same thing in another manner), the effect produced by the earth’s influence at the instant last elapsed is added to the sum of the effects of which the remote causes were the influences exerted by the earth at all the previous instants since the motion began. The case, therefore, comes under the principle of a concurrence of causes producing an effect equal to the sum of their separate effects. But as the causes come into play not all at once, but successively, and as the effect at each instant is the sum of the effects of those causes only which have come into action up to that instant, the result assumes the form of an ascending series; a succession of sums, each greater than that which preceded it; and we have thus a progressive effect from the continued action of a cause.Since the continuance of the cause influences the effect only by adding to its quantity, and since the addition takes place according to a fixed law (equal quantities in equal times), the result is capable of being computed on mathematical principles. In fact, this case, being that of infinitesimal increments, is precisely the case which the differential calculus was invented to meet. The questions, what effect will result from the continual addition of a given cause to itself, and what amount of the cause, being continually added to itself, will produce a given amount of the effect, are evidently mathematical questions, and to be treated, therefore, deductively. If, as we have seen, cases of the Composition of Causes are seldom adapted for any other than deductive investigation, this is especially true in the case now examined, the continual composition of a cause with its own previous effects; since such a case is peculiarly amenable to the deductive method, while the undistinguishable manner in which the effects are blended with one another and with the causes, must make the treatment of such an instance experimentally still more chimerical than in any other case.§ 2. We shall next advert to a rather more intricate operation of the same principle, namely, when the cause does not merely continue in action, but undergoes, during the same time, a progressive change in those of its circumstances which contribute to determine the effect. In this case, as in the former, the total effect goes on accumulating by the continual addition of a fresh effect to that already produced, but it is no longer by the addition of equal quantities in equal times; the quantities added are unequal, and even the quality may now be different. If the change in the state of the permanent cause be progressive, the effect will go through a double series of changes, arising partly from the accumulated action of the cause, and partly from the changes in its action. The effect is still a progressive effect, produced, however, not by the mere continuance of a cause, but by its continuance and its progressiveness combined.A familiar example is afforded by the increase of the temperature as[pg 364]summer advances, that is, as the sun draws nearer to a vertical position, and remains a greater number of hours above the horizon. This instance exemplifies in a very interesting manner the twofold operation on the effect, arising from the continuance of the cause, and from its progressive change. When once the sun has come near enough to the zenith, and remains above the horizon long enough, to give more warmth during one diurnal rotation than the counteracting cause, the earth’s radiation, can carry off, the mere continuance of the cause would progressively increase the effect, even if the sun came no nearer and the days grew no longer; but in addition to this, a change takes place in the accidents of the cause (its series of diurnal positions), tending to increase the quantity of the effect. When the summer solstice has passed, the progressive change in the cause begins to take place the reverse way, but, for some time, the accumulating effect of the mere continuance of the cause exceeds the effect of the changes in it, and the temperature continues to increase.Again, the motion of a planet is a progressive effect, produced by causes at once permanent and progressive. The orbit of a planet is determined (omitting perturbations) by two causes: first, the action of the central body, a permanent cause, which alternately increases and diminishes as the planet draws nearer to or goes farther from its perihelion, and which acts at every point in a different direction; and, secondly, the tendency of the planet to continue moving in the direction and with the velocity which it has already acquired. This force also grows greater as the planet draws nearer to its perihelion, because as it does so its velocity increases, and less, as it recedes from its perihelion; and this force as well as the other acts at each point in a different direction, because at every point the action of the central force, by deflecting the planet from its previous direction, alters the line in which it tends to continue moving. The motion at each instant is determined by the amount and direction of the motion, and the amount and direction of the sun’s action, at the previous instant; and if we speak of the entire revolution of the planet as one phenomenon (which, as it is periodical and similar to itself, we often find it convenient to do), that phenomenon is the progressive effect of two permanent and progressive causes, the central force and the acquired motion. Those causes happening to be progressive in the particular way which is called periodical, the effect necessarily is so too; because the quantities to be added together returning in a regular order, the same sums must also regularly return.This example is worthy of consideration also in another respect. Though the causes themselves are permanent, and independent of all conditions known to us, the changes which take place in the quantities and relations of the causes are actually caused by the periodical changes in the effects. The causes, as they exist at any moment, having produced a certain motion, that motion, becoming itself a cause, reacts upon the causes, and produces a change in them. By altering the distance and direction of the central body relatively to the planet, and the direction and quantity of the force in the direction of the tangent, it alters the elements which determine the motion at the next succeeding instant. This change renders the next motion somewhat different; and this difference, by a fresh reaction upon the causes, renders the next motion again different, and so on. The original state of the causes might have been such that this series of actions modified by reactions would not have been periodical. The sun’s action, and the original impelling force, might have been in such a ratio to one another, that the reaction of the effect would have been such as to alter the causes more and[pg 365]more, without ever bringing them back to what they were at any former time. The planet would then have moved in a parabola, or an hyperbola, curves not returning into themselves. The quantities of the two forces were, however, originally such, that the successive reactions of the effect bring back the causes, after a certain time, to what they were before; and from that time all the variations continued to recur again and again in the same periodical order, and must so continue while the causes subsist and are not counteracted.§ 3. In all cases of progressive effects, whether arising from the accumulation of unchanging or of changing elements, there is a uniformity of succession not merely between the cause and the effect, but between the first stages of the effect and its subsequent stages. That a bodyin vacuofalls sixteen feet in the first second, forty-eight in the second, and so on in the ratio of the odd numbers, is as much a uniform sequence as that when the supports are removed the body falls. The sequence of spring and summer is as regular and invariable as that of the approach of the sun and spring; but we do not consider spring to be the cause of summer; it is evident that both are successive effects of the heat received from the sun, and that, considered merely in itself, spring might continue forever without having the slightest tendency to produce summer. As we have so often remarked, not the conditional, but the unconditional invariable antecedent is termed the cause. That which would not be followed by the effect unless something else had preceded, and which if that something else had preceded, would not have been required, is not the cause, however invaluable the sequence may in fact be.It is in this way that most of those uniformities of succession are generated, which are not cases of causation. When a phenomenon goes on increasing, or periodically increases and diminishes, or goes through any continued and unceasing process of variation reducible to a uniform rule or law of succession, we do not on this account presume that any two successive terms of the series are cause and effect. We presume the contrary; we expect to find that the whole series originates either from the continued action of fixed causes or from causes which go through a corresponding process of continuous change. A tree grows from half an inch high to a hundred feet; and some trees will generally grow to that height unless prevented by some counteracting cause. But we do not call the seedling the cause of the full-grown tree; the invariable antecedent it certainly is, and we know very imperfectly on what other antecedents the sequence is contingent, but we are convinced that it is contingent on something; because the homogeneousness of the antecedent with the consequent, the close resemblance of the seedling to the tree in all respects except magnitude, and the graduality of the growth, so exactly resembling the progressively accumulating effect produced by the long action of some one cause, leave no possibility of doubting that the seedling and the tree are two terms in a series of that description, the first term of which is yet to seek. The conclusion is further confirmed by this, that we are able to prove by strict induction the dependence of the growth of the tree, and even of the continuance of its existence, upon the continued repetition of certain processes of nutrition, the rise of the sap, the absorptions and exhalations by the leaves, etc.; and the same experiments would probably prove to us that the growth of the tree is the accumulated sum of the effects of these continued processes, were we not, for want of sufficiently microscopic eyes, unable to observe correctly and in detail what those effects are.[pg 366]This supposition by no means requires that the effect should not, during its progress, undergo many modifications besides those of quantity, or that it should not sometimes appear to undergo a very marked change of character. This may be either because the unknown cause consists of several component elements or agents, whose effects, accumulating according to different laws, are compounded in different proportions at different periods in the existence of the organized being; or because, at certain points in its progress, fresh causes or agencies come in, or are evolved, which intermix their laws with those of the prime agent.Chapter XVI.Of Empirical Laws.§ 1. Scientific inquirers give the name of Empirical Laws to those uniformities which observation or experiment has shown to exist, but on which they hesitate to rely in cases varying much from those which have been actually observed, for want of seeing any reasonwhysuch a law should exist. It is implied, therefore, in the notion of an empirical law, that it is not an ultimate law; that if true at all, its truth is capable of being, and requires to be, accounted for. It is a derivative law, the derivation of which is not yet known. To state the explanation, thewhy, of the empirical law, would be to state the laws from which it is derived—the ultimate causes on which it is contingent. And if we knew these, we should also know what are its limits; under what conditions it would cease to be fulfilled.The periodical return of eclipses, as originally ascertained by the persevering observation of the early Eastern astronomers, was an empirical law, until the general laws of the celestial motions had accounted for it. The following are empirical laws still waiting to be resolved into the simpler laws from which they are derived: the local laws of the flux and reflux of the tides in different places; the succession of certain kinds of weather to certain appearances of sky; the apparent exceptions to the almost universal truth that bodies expand by increase of temperature; the law that breeds, both animal and vegetable, are improved by crossing; that gases have a strong tendency to permeate animal membranes; that substances containing a very high proportion of nitrogen (such as hydrocyanic acid and morphia) are powerful poisons; that when different metals are fused together the alloy is harder than the various elements; that the number of atoms of acid required to neutralize one atom of any base is equal to the number of atoms of oxygen in the base; that the solubility of substances in one another depends,171at least in some degree, on the similarity of their elements.An empirical law, then, is an observed uniformity, presumed to be resolvable[pg 367]into simpler laws, but not yet resolved into them. The ascertainment of the empirical laws of phenomena often precedes by a long interval the explanation of those laws by the Deductive Method; and the verification of a deduction usually consists in the comparison of its results with empirical laws previously ascertained.§ 2. From a limited number of ultimate laws of causation, there are necessarily generated a vast number of derivative uniformities, both of succession and co-existence. Some are laws of succession or of co-existence between different effects of the same cause; of these we had examples in the last chapter. Some are laws of succession between effects and their remote causes, resolvable into the laws which connect each with the intermediate link. Thirdly, when causes act together and compound their effects, the laws of those causes generate the fundamental law of the effect, namely, that it depends on the co-existence of those causes. And, finally, the order of succession or of co-existence which obtains among effects necessarily depends on their causes. If they are effects of the same cause, it depends on the laws of that cause; if on different causes, it depends on the laws of those causes severally, and on the circumstances which determine their co-existence. If we inquire further when and how the causes will co-exist, that, again, depends ontheircauses; and we may thus trace back the phenomena higher and higher, until the different series of effects meet in a point, and the whole is shown to have depended ultimately on some common cause; or until, instead of converging to one point, they terminate in different points, and the order of the effects is proved to have arisen from the collocation of some of the primeval causes, or natural agents. For example, the order of succession and of co-existence among the heavenly motions, which is expressed by Kepler’s laws, is derived from the co-existence of two primeval causes, the sun, and the original impulse or projectile force belonging to each planet.172Kepler’s laws are resolved into the laws of these causes and the fact of their co-existence.Derivative laws, therefore, do not depend solely on the ultimate laws into which they are resolvable; they mostly depend on those ultimate laws, and an ultimate fact; namely, the mode of co-existence of some of the component elements of the universe. The ultimate laws of causation might be the same as at present, and yet the derivative laws completely different, if the causes co-existed in different proportions, or with any difference in those of their relations by which the effects are influenced. If, for example, the sun’s attraction, and the original projectile force, had existed in some other ratio to one another than they did (and we know of no reason why this should not have been the case), the derivative laws of the heavenly motions might have been quite different from what they are. The proportions which exist happen to be such as to produce regular elliptical motions; any other proportions would have produced different ellipses, or circular, or parabolic, or hyperbolic motions, but still regular ones; because the effects of each of the agents accumulate according to a uniform law; and two regular series of quantities, when their corresponding terms are added, must produce a regular series of some sort, whatever the quantities themselves are.§ 3. Now this last-mentioned element in the resolution of a derivative law, the element which is not a law of causation, but a collocation of causes,[pg 368]can not itself be reduced to any law. There is, as formerly remarked,173no uniformity, nonorma, principle, or rule, perceivable in the distribution of the primeval natural agents through the universe. The different substances composing the earth, the powers that pervade the universe, stand in no constant relation to one another. One substance is more abundant than others, one power acts through a larger extent of space than others, without any pervading analogy that we can discover. We not only do not know of any reason why the sun’s attraction and the force in the direction of the tangent co-exist in the exact proportion they do, but we can trace no coincidence between it and the proportions in which any other elementary powers in the universe are intermingled. The utmost disorder is apparent in the combination of the causes, which is consistent with the most regular order in their effects; for when each agent carries on its own operations according to a uniform law, even the most capricious combination of agencies will generate a regularity of some sort; as we see in the kaleidoscope, where any casual arrangement of colored bits of glass produces by the laws of reflection a beautiful regularity in the effect.§ 4. In the above considerations lies the justification of the limited degree of reliance which scientific inquirers are accustomed to place in empirical laws.A derivative law which results wholly from the operation of some one cause, will be as universally true as the laws of the cause itself; that is, it will always be true except where some one of those effects of the cause, on which the derivative law depends, is defeated by a counteracting cause. But when the derivative law results not from different effects of one cause, but from effects of several causes, we can not be certain that it will be true under any variation in the mode of co-existence of those causes, or of the primitive natural agents on which the causes ultimately depend. The proposition that coal-beds rest on certain descriptions of strata exclusively, though true on the earth, so far as our observation has reached, can not be extended to the moon or the other planets, supposing coal to exist there; because we can not be assured that the original constitution of any other planet was such as to produce the different depositions in the same order as in our globe. The derivative law in this case depends not solely on laws, but on a collocation; and collocations can not be reduced to any law.Now it is the very nature of a derivative law which has not yet been resolved into its elements, in other words, an empirical law, that we do not know whether it results from the different effects of one cause, or from effects of different causes. We can not tell whether it depends wholly on laws, or partly on laws and partly on a collocation. If it depends on a collocation, it will be true in all the cases in which that particular collocation exists. But, since we are entirely ignorant, in case of its depending on a collocation, what the collocation is, we are not safe in extending the law beyond the limits of time and place in which we have actual experience of its truth. Since within those limits the law has always been found true, we have evidence that the collocations, whatever they are, on which it depends, do really exist within those limits. But, knowing of no rule or principle to which the collocations themselves conform, we can not conclude that because a collocation is proved to exist within certain limits of place or time, it will exist beyond those limits. Empirical laws, therefore, can only be received as true within the limits of time and place in which[pg 369]they have been found true by observation; and not merely the limits of time and place, but of time, place, and circumstance; for, since it is the very meaning of an empirical law that we do not know the ultimate laws of causation on which it is dependent, we can not foresee, without actual trial, in what manner or to what extent the introduction of any new circumstance may affect it.§ 5. But how are we to know that a uniformity ascertained by experience is only an empirical law? Since, by the supposition, we have not been able to resolve it into any other laws, how do we know that it is not an ultimate law of causation?I answer that no generalization amounts to more than an empirical law when the only proof on which it rests is that of the Method of Agreement. For it has been seen that by that method alone we never can arrive at causes. The utmost that the Method of Agreement can do is, to ascertain the whole of the circumstances common to all cases in which a phenomenon is produced; and this aggregate includes not only the cause of the phenomenon, but all phenomena with which it is connected by any derivative uniformity, whether as being collateral effects of the same cause, or effects of any other cause which, in all the instances we have been able to observe, co-existed with it. The method affords no means of determining which of these uniformities are laws of causation, and which are merely derivative laws, resulting from those laws of causation and from the collocation of the causes. None of them, therefore, can be received in any other character than that of derivative laws, the derivation of which has not been traced; in other words, empirical laws: in which light all results obtained by the Method of Agreement (and therefore almost all truths obtained by simple observation without experiment) must be considered, until either confirmed by the Method of Difference, or explained deductively; in other words, accounted fora priori.These empirical laws may be of greater or less authority, according as there is reason to presume that they are resolvable into laws only, or into laws and collocations together. The sequences which we observe in the production and subsequent life of an animal or a vegetable, resting on the Method of Agreement only, are mere empirical laws; but though the antecedents in those sequences may not be the causes of the consequents, both the one and the other are doubtless, in the main, successive stages of a progressive effect originating in a common cause, and therefore independent of collocations. The uniformities, on the other hand, in the order of superposition of strata on the earth, are empirical laws of a much weaker kind, since they not only are not laws of causation, but there is no reason to believe that they depend on any common cause; all appearances are in favor of their depending on the particular collocation of natural agents which at some time or other existed on our globe, and from which no inference can be drawn as to the collocation which exists or has existed in any other portion of the universe.§ 6. Our definition of an empirical law, including not only those uniformities which are not known to be laws of causation, but also those which are, provided there be reason to presume that they are not ultimate laws; this is the proper place to consider by what signs we may judge that even if an observed uniformity be a law of causation, it is not an ultimate, but a derivative law.[pg 370]The first sign is, if between the antecedentaand the consequentbthere be evidence of some intermediate link; some phenomenon of which we can surmise the existence, though from the imperfection of our senses or of our instruments we are unable to ascertain its precise nature and laws. If there be such a phenomenon (which may be denoted by the letterx), it follows that even ifabe the cause ofb, it is but the remote cause, and that the law,acausesb, is resolvable into at least two laws,acausesx, andxcausesb. This is a very frequent case, since the operations of nature mostly take place on so minute a scale, that many of the successive steps are either imperceptible, or very indistinctly perceived.Take, for example, the laws of the chemical composition of substances; as that hydrogen and oxygen being combined, water is produced. All we see of the process is, that the two gases being mixed in certain proportions, and heat or electricity being applied, an explosion takes place, the gases disappear, and water remains. There is no doubt about the law, or about its being a law of causation. But between the antecedent (the gases in a state of mechanical mixture, heated or electrified), and the consequent (the production of water), there must be an intermediate process which we do not see. For if we take any portion whatever of the water, and subject it to analysis, we find that it always contains hydrogen and oxygen; nay, the very same proportions of them, namely, two-thirds, in volume, of hydrogen, and one-third oxygen. This is true of a single drop; it is true of the minutest portion which our instruments are capable of appreciating. Since, then, the smallest perceptible portion of the water contains both those substances, portions of hydrogen and oxygen smaller than the smallest perceptible must have come together in every such minute portion of space; must have come closer together than when the gases were in a state of mechanical mixture, since (to mention no other reasons) the water occupies far less space than the gases. Now, as we can not see this contact or close approach of the minute particles, we can not observe with what circumstances it is attended, or according to what laws it produces its effects. The production of water, that is, of the sensible phenomena which characterize the compound, may be a very remote effect of those laws. There may be innumerable intervening links; and we are sure that there must be some. Having full proof that corpuscular action of some kind takes place previous to any of the great transformations in the sensible properties of substances, we can have no doubt that the laws of chemical action, as at present known, are not ultimate, but derivative laws; however ignorant we may be, and even though we should forever remain ignorant, of the nature of the laws of corpuscular action from which they are derived.In like manner, all the processes of vegetative life, whether in the vegetable properly so called or in the animal body, are corpuscular processes. Nutrition is the addition of particles to one another, sometimes merely replacing other particles separated and excreted, sometimes occasioning an increase of bulk or weight so gradual that only after a long continuance does it become perceptible. Various organs, by means of peculiar vessels, secrete from the blood fluids, the component particles of which must have been in the blood, but which differ from it most widely both in mechanical properties and in chemical composition. Here, then, are abundance of unknown links to be filled up; and there can be no doubt that the laws of the phenomena of vegetative or organic life are derivative laws, dependent on properties of the corpuscles, and of those elementary tissues which are comparatively simple combinations of corpuscles.[pg 371]The first sign, then, from which a law of causation, though hitherto unresolved, may be inferred to be a derivative law, is any indication of the existence of an intermediate link or links between the antecedent and the consequent. The second is, when the antecedent is an extremely complex phenomenon, and its effects, therefore, probably in part at least, compounded of the effects of its different elements; since we know that the case in which the effect of the whole is not made up of the effects of its parts is exceptional, the Composition of Causes being by far the more ordinary case.We will illustrate this by two examples, in one of which the antecedent is the sum of many homogeneous, in the other of heterogeneous, parts. The weight of a body is made up of the weights of its minute particles; a truth which astronomers express in its most general terms when they say that bodies, at equal distances, gravitate to one another in proportion to their quantity of matter. All true propositions, therefore, which can be made concerning gravity, are derivative laws; the ultimate law into which they are all resolvable being, that every particle of matter attracts every other. As our second example, we may take any of the sequences observed in meteorology; for instance, a diminution of the pressure of the atmosphere (indicated by a fall of the barometer) is followed by rain. The antecedent is here a complex phenomenon, made up of heterogeneous elements; the column of the atmosphere over any particular place consisting of two parts, a column of air, and a column of aqueous vapor mixed with it; and the change in the two together manifested by a fall of the barometer, and followed by rain, must be either a change in one of these, or in the other, or in both. We might, then, even in the absence of any other evidence, form a reasonable presumption, from the invariable presence of both these elements in the antecedent, that the sequence is probably not an ultimate law, but a result of the laws of the two different agents; a presumption only to be destroyed when we had made ourselves so well acquainted with the laws of both, as to be able to affirm that those laws could not by themselves produce the observed result.There are but few known cases of succession from very complex antecedents which have not either been actually accounted for from simpler laws, or inferred with great probability (from the ascertained existence of intermediate links of causation not yet understood) to be capable of being so accounted for. It is, therefore, highly probable that all sequences from complex antecedents are thus resolvable, and that ultimate laws are in all cases comparatively simple. If there were not the other reasons already mentioned for believing that the laws of organized nature are resolvable into simpler laws, it would be almost a sufficient reason that the antecedents in most of the sequences are so very complex.§ 7. In the preceding discussion we have recognized two kinds of empirical laws: those known to be laws of causation, but presumed to be resolvable into simpler laws; and those not known to be laws of causation at all. Both these kinds of laws agree in the demand which they make for being explained by deduction, and agree in being the appropriate means of verifying such deduction, since they represent the experience with which the result of the deduction must be compared. They agree, further, in this, that until explained, and connected with the ultimate laws from which they result, they have not attained the highest degree of certainty of which laws are susceptible. It has been shown on a former occasion that laws[pg 372]of causation which are derivative, and compounded of simpler laws, are not only, as the nature of the case implies, less general, but even less certain, than the simpler laws from which they result; not in the same degree to be relied on as universally true. The inferiority of evidence, however, which attaches to this class of laws, is trifling, compared with that which is inherent in uniformities not known to be laws of causation at all. So long as these are unresolved, we can not tell on how many collocations, as well as laws, their truth may be dependent; we can never, therefore, extend them with any confidence to cases in which we have not assured ourselves, by trial, that the necessary collocation of causes, whatever it may be, exists. It is to this class of laws alone that the property, which philosophers usually consider as characteristic of empirical laws, belongs in all its strictness—the property of being unfit to be relied on beyond the limits of time, place, and circumstance in which the observations have been made. These are empirical laws in a more emphatic sense; and when I employ that term (except where the context manifestly indicates the reverse) I shall generally mean to designate those uniformities only, whether of succession or of co-existence, which are not known to be laws of causation.Chapter XVII.Of Chance And Its Elimination.§ 1. Considering, then, as empirical laws only those observed uniformities respecting which the question whether they are laws of causation must remain undecided until they can be explained deductively, or until some means are found of applying the Method of Difference to the case, it has been shown in the preceding chapter that until a uniformity can, in one or the other of these modes, be taken out of the class of empirical laws, and brought either into that of laws of causation or of the demonstrated results of laws of causation, it can not with any assurance be pronounced true beyond the local and other limits within which it has been found so by actual observation. It remains to consider how we are to assure ourselves of its truth even within those limits; after what quantity of experience a generalization which rests solely on the Method of Agreement can be considered sufficiently established, even as an empirical law. In a former chapter, when treating of the Methods of Direct Induction, we expressly reserved this question,174and the time is now come for endeavoring to solve it.We found that the Method of Agreement has the defect of not proving causation, and can, therefore, only be employed for the ascertainment of empirical laws. But we also found that besides this deficiency, it labors under a characteristic imperfection, tending to render uncertain even such conclusions as it is in itself adapted to prove. This imperfection arises from Plurality of Causes. Although two or more cases in which the phenomenonahas been met with may have no common antecedent except A, this does not prove that there is any connection betweenaand A, sinceamay have many causes, and may have been produced, in these different instances, not by any thing which the instances had in common, but by some of those elements in them which were different. We nevertheless[pg 373]observed, that in proportion to the multiplication of instances pointing to A as the antecedent, the characteristic uncertainty of the method diminishes, and the existence of a law of connection between A andamore nearly approaches to certainty. It is now to be determined after what amount of experience this certainty may be deemed to be practically attained, and the connection between A andamay be received as an empirical law.This question may be otherwise stated in more familiar terms: After how many and what sort of instances may it be concluded that an observed coincidence between two phenomena is not the effect of chance?It is of the utmost importance for understanding the logic of induction, that we should form a distinct conception of what is meant by chance, and how the phenomena which common language ascribes to that abstraction are really produced.§ 2. Chance is usually spoken of in direct antithesis to law; whatever, it is supposed, can not be ascribed to any law is attributed to chance. It is, however, certain that whatever happens is the result of some law; is an effect of causes, and could have been predicted from a knowledge of the existence of those causes, and from their laws. If I turn up a particular card, that is a consequence of its place in the pack. Its place in the pack was a consequence of the manner in which the cards were shuffled, or of the order in which they were played in the last game; which, again, were effects of prior causes. At every stage, if we had possessed an accurate knowledge of the causes in existence, it would have been abstractedly possible to foretell the effect.An event occurring by chance may be better described as a coincidence from which we have no ground to infer a uniformity—the occurrence of a phenomenon in certain circumstances, without our having reason on that account to infer that it will happen again in those circumstances. This, however, when looked closely into, implies that the enumeration of the circumstances is not complete. Whatever the fact be, since it has occurred once, we may be sure that ifallthe same circumstances were repeated it would occur again; and not only if all, but there is some particular portion of those circumstances on which the phenomenon is invariably consequent. With most of them, however, it is not connected in any permanent manner; its conjunction with those is said to be the effect of chance, to be merely casual. Facts casually conjoined are separately the effects of causes, and therefore of laws; but of different causes, and causes not connected by any law.It is incorrect, then, to say that any phenomenon is produced by chance; but we may say that two or more phenomena are conjoined by chance, that they co-exist or succeed one another only by chance; meaning that they are in no way related through causation; that they are neither cause and effect, nor effects of the same cause, nor effects of causes between which there subsists any law of co-existence, nor even effects of the same collocation of primeval causes.If the same casual coincidence never occurred a second time, we should have an easy test for distinguishing such from the coincidences which are the results of a law. As long as the phenomena had been found together only once, so long, unless we knew some more general laws from which the coincidence might have resulted, we could not distinguish it from a casual one; but if it occurred twice, we should know that the phenomena so conjoined must be in some way connected through their causes.[pg 374]There is, however, no such test. A coincidence may occur again and again, and yet be only casual. Nay, it would be inconsistent with what we know of the order of nature to doubt that every casual coincidence will sooner or later be repeated, as long as the phenomena between which it occurred do not cease to exist, or to be reproduced. The recurrence, therefore, of the same coincidence more than once, or even its frequent recurrence, does not prove that it is an instance of any law; does not prove that it is not casual, or, in common language, the effect of chance.And yet, when a coincidence can not be deduced from known laws, nor proved by experiment to be itself a case of causation, the frequency of its occurrence is the only evidence from which we can infer that it is the result of a law. Not, however, its absolute frequency. The question is not whether the coincidence occurs often or seldom, in the ordinary sense of those terms; but whether it occurs more often than chance will account for; more often than might rationally be expected if the coincidence were casual. We have to decide, therefore, what degree of frequency in a coincidence chance will account for; and to this there can be no general answer. We can only state the principle by which the answer must be determined; the answer itself will be different in every different case.Suppose that one of the phenomena, A, exists always, and the other phenomenon, B, only occasionally; it follows that every instance of B will be an instance of its coincidence with A, and yet the coincidence will be merely casual, not the result of any connection between them. The fixed stars have been constantly in existence since the beginning of human experience, and all phenomena that have come under human observation have, in every single instance, co-existed with them; yet this coincidence, though equally invariable with that which exists between any of those phenomena and its own cause, does not prove that the stars are its cause, nor that they are in anywise connected with it. As strong a case of coincidence, therefore, as can possibly exist, and a much stronger one in point of mere frequency than most of those which prove laws, does not here prove a law; why? because, since the stars exist always, theymustco-exist with every other phenomenon, whether connected with them by causation or not. The uniformity, great though it be, is no greater than would occur on the supposition that no such connection exists.On the other hand, suppose that we were inquiring whether there be any connection between rain and any particular wind. Rain, we know, occasionally occurs with every wind; therefore, the connection, if it exists, can not be an actual law; but still rain may be connected with some particular wind through causation; that is, though they can not be always effects of the same cause (for if so they would regularly co-exist), there may be some causes common to the two, so that in so far as either is produced by those common causes, they will, from the laws of the causes, be found to co-exist. How, then, shall we ascertain this? The obvious answer is, by observing whether rain occurs with one wind more frequently than with any other. That, however, is not enough; for perhaps that one wind blows more frequently than any other; so that its blowing more frequently in rainy weather is no more than would happen, although it had no connection with the causes of rain, provided it were not connected with causes adverse to rain. In England, westerly winds blow during about twice as great a portion of the year as easterly. If, therefore, it rains only twice as often with a westerly as with an easterly wind, we have no reason to infer that any law of nature is concerned in the coincidence. If it rains more than twice[pg 375]as often, we may be sure that some law is concerned; either there is some cause in nature which, in this climate, tends to produce both rain and a westerly wind, or a westerly wind has itself some tendency to produce rain. But if it rains less than twice as often, we may draw a directly opposite inference: the one, instead of being a cause, or connected with causes of the other, must be connected with causes adverse to it, or with the absence of some cause which produces it; and though it may still rain much oftener with a westerly wind than with an easterly, so far would this be from proving any connection between the phenomena, that the connection proved would be between rain and an easterly wind, to which, in mere frequency of coincidence, it is less allied.Here, then, are two examples: in one, the greatest possible frequency of coincidence, with no instance whatever to the contrary, does not prove that there is any law; in the other, a much less frequency of coincidence, even when non-coincidence is still more frequent, does prove that there is a law. In both cases the principle is the same. In both we consider the positive frequency of the phenomena themselves, and how great frequency of coincidence that must of itself bring about, without supposing any connection between them, provided there be no repugnance; provided neither be connected with any cause tending to frustrate the other. If we find a greater frequency of coincidence than this, we conclude that there is some connection; if a less frequency, that there is some repugnance. In the former case, we conclude that one of the phenomena can under some circumstances cause the other, or that there exists something capable of causing them both; in the latter, that one of them, or some cause which produces one of them, is capable of counteracting the production of the other. We have thus to deduct from the observed frequency of coincidence as much as may be the effect of chance, that is, of the mere frequency of the phenomena themselves; and if any thing remains, what does remain is the residual fact which proves the existence of a law.The frequency of the phenomena can only be ascertained within definite limits of space and time; depending as it does on the quantity and distribution of the primeval natural agents, of which we can know nothing beyond the boundaries of human observation, since no law, no regularity, can be traced in it, enabling us to infer the unknown from the known. But for the present purpose this is no disadvantage, the question being confined within the same limits as the data. The coincidences occurred in certain places and times, and within those we can estimate the frequency with which such coincidences would be produced by chance. If, then, we find from observation that A exists in one case out of every two, and B in one case out of every three; then, if there be neither connection nor repugnance between them, or between any of their causes, the instances in which A and B will both exist, that is to say will co-exist, will be one case in every six. For A exists in three cases out of six; and B, existing in one case out of every three without regard to the presence or absence of A, will exist in one case out of those three. There will therefore be, of the whole number of cases, two in which A exists without B; one case of B without A; two in which neither B nor A exists, and one case out of six in which they both exist. If, then, in point of fact, they are found to co-exist oftener than in one case out of six; and, consequently, A does not exist without B so often as twice in three times, nor B without A so often as once in every twice, there is some cause in existence which tends to produce a conjunction between A and B.[pg 376]Generalizing the result, we may say that if A occurs in a larger proportion of the cases where B is than of the cases where B is not, then will B also occur in a larger proportion of the cases where A is than of the cases where A is not; and there is some connection, through causation, between A and B. If we could ascend to the causes of the two phenomena, we should find, at some stage, either proximate or remote, some cause or causes common to both; and if we could ascertain what these are, we could frame a generalization which would be true without restriction of place or time; but until we can do so, the fact of a connection between the two phenomena remains an empirical law.§ 3. Having considered in what manner it may be determined whether any given conjunction of phenomena is casual, or the result of some law, to complete the theory of chance it is necessary that we should now consider those effects which are partly the result of chance and partly of law, or, in other words, in which the effects of casual conjunctions of causes are habitually blended in one result with the effects of a constant cause.This is a case of Composition of Causes; and the peculiarity of it is, that instead of two or more causes intermixing their effects in a regular manner with those of one another, we have now one constant cause, producing an effect which is successively modified by a series of variable causes. Thus, as summer advances, the approach of the sun to a vertical position tends to produce a constant increase of temperature; but with this effect of a constant cause, there are blended the effects of many variable causes, winds, clouds, evaporation, electric agencies and the like, so that the temperature of any given day depends in part on these fleeting causes, and only in part on the constant cause. If the effect of the constant cause is always accompanied and disguised by effects of variable causes, it is impossible to ascertain the law of the constant cause in the ordinary manner by separating it from all other causes and observing it apart. Hence arises the necessity of an additional rule of experimental inquiry.When the action of a cause A is liable to be interfered with, not steadily by the same cause or causes, but by different causes at different times, and when these are so frequent, or so indeterminate, that we can not possibly exclude all of them from any experiment, though we may vary them; our resource is, to endeavor to ascertain what is the effect of all the variable causes taken together. In order to do this, we make as many trials as possible, preserving A invariable. The results of these different trials will naturally be different, since the indeterminate modifying causes are different in each; if, then, we do not find these results to be progressive, but, on the contrary, to oscillate about a certain point, one experiment giving a result a little greater, another a little less, one a result tending a little more in one direction, another a little more in the contrary direction; while the average or middle point does not vary, but different sets of experiments (taken in as great a variety of circumstances as possible) yield the same mean, provided only they be sufficiently numerous; then that mean, or average result, is the part, in each experiment, which is due to the cause A, and is the effect which would have been obtained if A could have acted alone; the variable remainder is the effect of chance, that is, of causes the co-existence of which with the cause A was merely casual. The test of the sufficiency of the induction in this case is, when any increase of the number of trials from which the average is struck does not materially alter the average.[pg 377]This kind of elimination, in which we do not eliminate any one assignable cause, but the multitude of floating unassignable ones, may be termed the Elimination of Chance. We afford an example of it when we repeat an experiment, in order, by taking the mean of different results, to get rid of the effects of the unavoidable errors of each individual experiment. When there is no permanent cause, such as would produce a tendency to error peculiarly in one direction, we are warranted by experience in assuming that the errors on one side will, in a certain number of experiments, about balance the errors on the contrary side. We therefore repeat the experiment, until any change which is produced in the average of the whole by further repetition, falls within limits of error consistent with the degree of accuracy required by the purpose we have in view.175§ 4. In the supposition hitherto made, the effect of the constant cause A has been assumed to form so great and conspicuous a part of the general result, that its existence never could be a matter of uncertainty, and the object of the eliminating process was only to ascertainhow muchis attributable to that cause; what is its exact law. Cases, however, occur in which the effect of a constant cause is so small, compared with that of some of the changeable causes with which it is liable to be casually conjoined, that of itself it escapes notice, and the very existence of any effect arising from a constant cause is first learned by the process which in general serves only for ascertaining the quantity of that effect. This case of induction may be characterized as follows: A given effect is known to be chiefly, and not known not to be wholly, determined by changeable causes. If it be wholly so produced, then if the aggregate be taken of a sufficient number of instances, the effects of these different causes will cancel one another. If, therefore, we do not find this to be the case, but, on the contrary, after such a number of trials has been made that no further increase alters the average result, we find that average to be, not zero, but some other quantity, about which, though small in comparison with the total effect, the effect nevertheless oscillates, and which is the middle point in its oscillation; we may conclude this to be the effect of some constant cause; which cause, by some of the methods already treated of, we may hope to detect. This may be calledthe discovery of a residual phenomenon by eliminating the effects of chance.It is in this manner, for example, that loaded dice may be discovered. Of course no dice are so clumsily loaded that they must always throw certain numbers; otherwise the fraud would be instantly detected. The loading, a constant cause, mingles with the changeable causes which determine what cast will be thrown in each individual instance. If the dice were not[pg 378]loaded, and the throw were left to depend entirely on the changeable causes, these in a sufficient number of instances would balance one another, and there would be no preponderant number of throws of any one kind. If, therefore, after such a number of trials that no further increase of their number has any material effect upon the average, we find a preponderance in favor of a particular throw; we may conclude with assurance that there is some constant cause acting in favor of that throw, or, in other words, that the dice are not fair; and the exact amount of the unfairness. In a similar manner, what is called the diurnal variation of the barometer, which is very small compared with the variations arising from the irregular changes in the state of the atmosphere, was discovered by comparing the average height of the barometer at different hours of the day. When this comparison was made, it was found that there was a small difference, which on the average was constant, however the absolute quantities might vary, and which difference, therefore, must be the effect of a constant cause. This cause was afterward ascertained, deductively, to be the rarefaction of the air, occasioned by the increase of temperature as the day advances.§ 5. After these general remarks on the nature of chance, we are prepared to consider in what manner assurance may be obtained that a conjunction between two phenomena, which has been observed a certain number of times, is not casual, but a result of causation, and to be received, therefore, as one of the uniformities of nature, though (until accounted fora priori) only as an empirical law.We will suppose the strongest case, namely, that the phenomenon B has never been observed except in conjunction with A. Even then, the probability that they are connected is not measured by the total number of instances in which they have been found together, but by the excess of that number above the number due to the absolutely frequency of A. If, for example, A exists always, and therefore co-exists with every thing, no number of instances of its co-existence with B would prove a connection; as in our example of the fixed stars. If A be a fact of such common occurrence that it may be presumed to be present in half of all the cases that occur, and therefore in half the cases in which B occurs, it is only the proportional excess above half that is to be reckoned as evidence toward proving a connection between A and B.In addition to the question, What is the number of coincidences which, on an average of a great multitude of trials, may be expected to arise from chance alone? there is also another question, namely, Of what extent of deviation from that average is the occurrence credible, from chance alone, in some number of instances smaller than that required for striking a fair average? It is not only to be considered what is the general result of the chances in the long run, but also what are the extreme limits of variation from the general result, which may occasionally be expected as the result of some smaller number of instances.The consideration of the latter question, and any consideration of the former beyond that already given to it, belong to what mathematicians term the doctrine of chances, or, in a phrase of greater pretension, the Theory of Probabilities.[pg 379]

Chapter XV.Of Progressive Effects; And Of The Continued Action Of Causes.§ 1. In the last four chapters we have traced the general outlines of the theory of the generation of derivative laws from ultimate ones. In the present chapter our attention will be directed to a particular case of the derivation of laws from other laws, but a case so general, and so important as not only to repay, but to require, a separate examination. This is the case of a complex phenomenon resulting from one simple law, by the continual addition of an effect to itself.There are some phenomena, some bodily sensations, for example, which are essentially instantaneous, and whose existence can only be prolonged by the prolongation of the existence of the cause by which they are produced. But most phenomena are in their own nature permanent; having begun to exist, they would exist forever unless some cause intervened having a tendency to alter or destroy them. Such, for example, are all the facts of phenomena which we call bodies. Water, once produced, will not of itself relapse into a state of hydrogen and oxygen; such a change requires some agent having the power of decomposing the compound. Such, again, are the positions in space and the movements of bodies. No object at rest alters its position without the intervention of some conditions extraneous to itself; and when once in motion, no object returns to a state of rest, or alters either its direction or its velocity, unless some new external conditions are superinduced. It, therefore, perpetually happens that a temporary cause gives rise to a permanent effect. The contact of iron with moist air for a few hours, produces a rust which may endure for centuries; or a projectile force which launches a cannon-ball into space, produces a motion which would continue forever unless some other force counteracted it.Between the two examples which we have here given, there is a difference worth pointing out. In the former (in which the phenomenon produced is a substance, and not a motion of a substance), since the rust remains forever and unaltered unless some new cause supervenes, we may speak of the contact of air a hundred years ago as even the proximate cause of the rust which has existed from that time until now. But when the effect is motion, which is itself a change, we must use a different language. The permanency of the effect is now only the permanency of a series of changes. The second foot, or inch, or mile of motion is not the mere prolonged duration of the first foot, or inch, or mile, but another fact which succeeds, and which may in some respects be very unlike the former, since it carries the body through a different region of space. Now, the original projectile force which set the body moving is the remote cause of all its motion, however long continued, but the proximate cause of no motion except that which took place at the first instant. The motion at any subsequent instant is proximately caused by the motion which took place at the instant preceding. It is on that, and not on the original moving cause, that the motion at any given moment depends. For, suppose that the body passes through some resisting medium, which partially counteracts[pg 362]the effect of the original impulse, and retards the motion; this counteraction (it need scarcely here be repeated) is as strict an example of obedience to the law of the impulse, as if the body had gone on moving with its original velocity; but the motion which results is different, being now a compound of the effects of two causes acting in contrary directions, instead of the single effect of one cause. Now, what cause does the body obey in its subsequent motion? The original cause of motion, or the actual motion at the preceding instant? The latter; for when the object issues from the resisting medium, it continues moving, not with its original, but with its retarded velocity. The motion having once been diminished, all that which follows is diminished. The effect changes, because the cause which it really obeys, the proximate cause, the real cause in fact, has changed. This principle is recognized by mathematicians when they enumerate among the causes by which the motion of a body is at any instant determined theforce generatedby the previous motion; an expression which would be absurd if taken to imply that this“force”was an intermediate link between the cause and the effect, but which really means only the previous motion itself, considered as a cause of further motion. We must, therefore, if we would speak with perfect precision, consider each link in the succession of motions as the effect of the link preceding it. But if, for the convenience of discourse, we speak of the whole series as one effect, it must be as an effect produced by the original impelling force; a permanent effect produced by an instantaneous cause, and possessing the property of self-perpetuation.Let us now suppose that the original agent or cause, instead of being instantaneous, is permanent. Whatever effect has been produced up to a given time, would (unless prevented by the intervention of some new cause) subsist permanently, even if the cause were to perish. Since, however, the cause does not perish, but continues to exist and to operate, it must go on producing more and more of the effect; and instead of a uniform effect, we have a progressive series of effects, arising from the accumulated influence of a permanent cause. Thus, the contact of iron with the atmosphere causes a portion of it to rust; and if the cause ceased, the effect already produced would be permanent, but no further effect would be added. If, however, the cause, namely, exposure to moist air, continues, more and more of the iron becomes rusted, until all which is exposed is converted into a red powder, when one of the conditions of the production of rust, namely, the presence of unoxidized iron, has ceased, and the effect can not any longer be produced. Again, the earth causes bodies to fall toward it; that is, the existence of the earth at a given instant causes an unsupported body to move toward it at the succeeding instant; and if the earth were annihilated, as much of the effect as is already produced would continue; the object would go on moving in the same direction, with its acquired velocity, until intercepted by some body or deflected by some other force. The earth, however, not being annihilated, goes on producing in the second instant an effect similar and of equal amount with the first, which two effects being added together, there results an accelerated velocity; and this operation being repeated at each successive instant, the mere permanence of the cause, though without increase, gives rise to a constant progressive increase of the effect, so long as all the conditions, negative and positive, of the production of that effect continue to be realized.It is obvious that this state of things is merely a case of the Composition of Causes. A cause which continues in action must on a strict analysis[pg 363]be considered as a number of causes exactly similar, successively introduced, and producing by their combination the sum of the effects which they would severally produce if they acted singly. The progressive rusting of the iron is in strictness the sum of the effects of many particles of air acting in succession upon corresponding particles of iron. The continued action of the earth upon a falling body is equivalent to a series of forces, applied in successive instants, each tending to produce a certain constant quantity of motion; and the motion at each instant is the sum of the effects of the new force applied at the preceding instant, and the motion already acquired. In each instant a fresh effect, of which gravity is the proximate cause, is added to the effect of which it was the remote cause; or (to express the same thing in another manner), the effect produced by the earth’s influence at the instant last elapsed is added to the sum of the effects of which the remote causes were the influences exerted by the earth at all the previous instants since the motion began. The case, therefore, comes under the principle of a concurrence of causes producing an effect equal to the sum of their separate effects. But as the causes come into play not all at once, but successively, and as the effect at each instant is the sum of the effects of those causes only which have come into action up to that instant, the result assumes the form of an ascending series; a succession of sums, each greater than that which preceded it; and we have thus a progressive effect from the continued action of a cause.Since the continuance of the cause influences the effect only by adding to its quantity, and since the addition takes place according to a fixed law (equal quantities in equal times), the result is capable of being computed on mathematical principles. In fact, this case, being that of infinitesimal increments, is precisely the case which the differential calculus was invented to meet. The questions, what effect will result from the continual addition of a given cause to itself, and what amount of the cause, being continually added to itself, will produce a given amount of the effect, are evidently mathematical questions, and to be treated, therefore, deductively. If, as we have seen, cases of the Composition of Causes are seldom adapted for any other than deductive investigation, this is especially true in the case now examined, the continual composition of a cause with its own previous effects; since such a case is peculiarly amenable to the deductive method, while the undistinguishable manner in which the effects are blended with one another and with the causes, must make the treatment of such an instance experimentally still more chimerical than in any other case.§ 2. We shall next advert to a rather more intricate operation of the same principle, namely, when the cause does not merely continue in action, but undergoes, during the same time, a progressive change in those of its circumstances which contribute to determine the effect. In this case, as in the former, the total effect goes on accumulating by the continual addition of a fresh effect to that already produced, but it is no longer by the addition of equal quantities in equal times; the quantities added are unequal, and even the quality may now be different. If the change in the state of the permanent cause be progressive, the effect will go through a double series of changes, arising partly from the accumulated action of the cause, and partly from the changes in its action. The effect is still a progressive effect, produced, however, not by the mere continuance of a cause, but by its continuance and its progressiveness combined.A familiar example is afforded by the increase of the temperature as[pg 364]summer advances, that is, as the sun draws nearer to a vertical position, and remains a greater number of hours above the horizon. This instance exemplifies in a very interesting manner the twofold operation on the effect, arising from the continuance of the cause, and from its progressive change. When once the sun has come near enough to the zenith, and remains above the horizon long enough, to give more warmth during one diurnal rotation than the counteracting cause, the earth’s radiation, can carry off, the mere continuance of the cause would progressively increase the effect, even if the sun came no nearer and the days grew no longer; but in addition to this, a change takes place in the accidents of the cause (its series of diurnal positions), tending to increase the quantity of the effect. When the summer solstice has passed, the progressive change in the cause begins to take place the reverse way, but, for some time, the accumulating effect of the mere continuance of the cause exceeds the effect of the changes in it, and the temperature continues to increase.Again, the motion of a planet is a progressive effect, produced by causes at once permanent and progressive. The orbit of a planet is determined (omitting perturbations) by two causes: first, the action of the central body, a permanent cause, which alternately increases and diminishes as the planet draws nearer to or goes farther from its perihelion, and which acts at every point in a different direction; and, secondly, the tendency of the planet to continue moving in the direction and with the velocity which it has already acquired. This force also grows greater as the planet draws nearer to its perihelion, because as it does so its velocity increases, and less, as it recedes from its perihelion; and this force as well as the other acts at each point in a different direction, because at every point the action of the central force, by deflecting the planet from its previous direction, alters the line in which it tends to continue moving. The motion at each instant is determined by the amount and direction of the motion, and the amount and direction of the sun’s action, at the previous instant; and if we speak of the entire revolution of the planet as one phenomenon (which, as it is periodical and similar to itself, we often find it convenient to do), that phenomenon is the progressive effect of two permanent and progressive causes, the central force and the acquired motion. Those causes happening to be progressive in the particular way which is called periodical, the effect necessarily is so too; because the quantities to be added together returning in a regular order, the same sums must also regularly return.This example is worthy of consideration also in another respect. Though the causes themselves are permanent, and independent of all conditions known to us, the changes which take place in the quantities and relations of the causes are actually caused by the periodical changes in the effects. The causes, as they exist at any moment, having produced a certain motion, that motion, becoming itself a cause, reacts upon the causes, and produces a change in them. By altering the distance and direction of the central body relatively to the planet, and the direction and quantity of the force in the direction of the tangent, it alters the elements which determine the motion at the next succeeding instant. This change renders the next motion somewhat different; and this difference, by a fresh reaction upon the causes, renders the next motion again different, and so on. The original state of the causes might have been such that this series of actions modified by reactions would not have been periodical. The sun’s action, and the original impelling force, might have been in such a ratio to one another, that the reaction of the effect would have been such as to alter the causes more and[pg 365]more, without ever bringing them back to what they were at any former time. The planet would then have moved in a parabola, or an hyperbola, curves not returning into themselves. The quantities of the two forces were, however, originally such, that the successive reactions of the effect bring back the causes, after a certain time, to what they were before; and from that time all the variations continued to recur again and again in the same periodical order, and must so continue while the causes subsist and are not counteracted.§ 3. In all cases of progressive effects, whether arising from the accumulation of unchanging or of changing elements, there is a uniformity of succession not merely between the cause and the effect, but between the first stages of the effect and its subsequent stages. That a bodyin vacuofalls sixteen feet in the first second, forty-eight in the second, and so on in the ratio of the odd numbers, is as much a uniform sequence as that when the supports are removed the body falls. The sequence of spring and summer is as regular and invariable as that of the approach of the sun and spring; but we do not consider spring to be the cause of summer; it is evident that both are successive effects of the heat received from the sun, and that, considered merely in itself, spring might continue forever without having the slightest tendency to produce summer. As we have so often remarked, not the conditional, but the unconditional invariable antecedent is termed the cause. That which would not be followed by the effect unless something else had preceded, and which if that something else had preceded, would not have been required, is not the cause, however invaluable the sequence may in fact be.It is in this way that most of those uniformities of succession are generated, which are not cases of causation. When a phenomenon goes on increasing, or periodically increases and diminishes, or goes through any continued and unceasing process of variation reducible to a uniform rule or law of succession, we do not on this account presume that any two successive terms of the series are cause and effect. We presume the contrary; we expect to find that the whole series originates either from the continued action of fixed causes or from causes which go through a corresponding process of continuous change. A tree grows from half an inch high to a hundred feet; and some trees will generally grow to that height unless prevented by some counteracting cause. But we do not call the seedling the cause of the full-grown tree; the invariable antecedent it certainly is, and we know very imperfectly on what other antecedents the sequence is contingent, but we are convinced that it is contingent on something; because the homogeneousness of the antecedent with the consequent, the close resemblance of the seedling to the tree in all respects except magnitude, and the graduality of the growth, so exactly resembling the progressively accumulating effect produced by the long action of some one cause, leave no possibility of doubting that the seedling and the tree are two terms in a series of that description, the first term of which is yet to seek. The conclusion is further confirmed by this, that we are able to prove by strict induction the dependence of the growth of the tree, and even of the continuance of its existence, upon the continued repetition of certain processes of nutrition, the rise of the sap, the absorptions and exhalations by the leaves, etc.; and the same experiments would probably prove to us that the growth of the tree is the accumulated sum of the effects of these continued processes, were we not, for want of sufficiently microscopic eyes, unable to observe correctly and in detail what those effects are.[pg 366]This supposition by no means requires that the effect should not, during its progress, undergo many modifications besides those of quantity, or that it should not sometimes appear to undergo a very marked change of character. This may be either because the unknown cause consists of several component elements or agents, whose effects, accumulating according to different laws, are compounded in different proportions at different periods in the existence of the organized being; or because, at certain points in its progress, fresh causes or agencies come in, or are evolved, which intermix their laws with those of the prime agent.

§ 1. In the last four chapters we have traced the general outlines of the theory of the generation of derivative laws from ultimate ones. In the present chapter our attention will be directed to a particular case of the derivation of laws from other laws, but a case so general, and so important as not only to repay, but to require, a separate examination. This is the case of a complex phenomenon resulting from one simple law, by the continual addition of an effect to itself.

There are some phenomena, some bodily sensations, for example, which are essentially instantaneous, and whose existence can only be prolonged by the prolongation of the existence of the cause by which they are produced. But most phenomena are in their own nature permanent; having begun to exist, they would exist forever unless some cause intervened having a tendency to alter or destroy them. Such, for example, are all the facts of phenomena which we call bodies. Water, once produced, will not of itself relapse into a state of hydrogen and oxygen; such a change requires some agent having the power of decomposing the compound. Such, again, are the positions in space and the movements of bodies. No object at rest alters its position without the intervention of some conditions extraneous to itself; and when once in motion, no object returns to a state of rest, or alters either its direction or its velocity, unless some new external conditions are superinduced. It, therefore, perpetually happens that a temporary cause gives rise to a permanent effect. The contact of iron with moist air for a few hours, produces a rust which may endure for centuries; or a projectile force which launches a cannon-ball into space, produces a motion which would continue forever unless some other force counteracted it.

Between the two examples which we have here given, there is a difference worth pointing out. In the former (in which the phenomenon produced is a substance, and not a motion of a substance), since the rust remains forever and unaltered unless some new cause supervenes, we may speak of the contact of air a hundred years ago as even the proximate cause of the rust which has existed from that time until now. But when the effect is motion, which is itself a change, we must use a different language. The permanency of the effect is now only the permanency of a series of changes. The second foot, or inch, or mile of motion is not the mere prolonged duration of the first foot, or inch, or mile, but another fact which succeeds, and which may in some respects be very unlike the former, since it carries the body through a different region of space. Now, the original projectile force which set the body moving is the remote cause of all its motion, however long continued, but the proximate cause of no motion except that which took place at the first instant. The motion at any subsequent instant is proximately caused by the motion which took place at the instant preceding. It is on that, and not on the original moving cause, that the motion at any given moment depends. For, suppose that the body passes through some resisting medium, which partially counteracts[pg 362]the effect of the original impulse, and retards the motion; this counteraction (it need scarcely here be repeated) is as strict an example of obedience to the law of the impulse, as if the body had gone on moving with its original velocity; but the motion which results is different, being now a compound of the effects of two causes acting in contrary directions, instead of the single effect of one cause. Now, what cause does the body obey in its subsequent motion? The original cause of motion, or the actual motion at the preceding instant? The latter; for when the object issues from the resisting medium, it continues moving, not with its original, but with its retarded velocity. The motion having once been diminished, all that which follows is diminished. The effect changes, because the cause which it really obeys, the proximate cause, the real cause in fact, has changed. This principle is recognized by mathematicians when they enumerate among the causes by which the motion of a body is at any instant determined theforce generatedby the previous motion; an expression which would be absurd if taken to imply that this“force”was an intermediate link between the cause and the effect, but which really means only the previous motion itself, considered as a cause of further motion. We must, therefore, if we would speak with perfect precision, consider each link in the succession of motions as the effect of the link preceding it. But if, for the convenience of discourse, we speak of the whole series as one effect, it must be as an effect produced by the original impelling force; a permanent effect produced by an instantaneous cause, and possessing the property of self-perpetuation.

Let us now suppose that the original agent or cause, instead of being instantaneous, is permanent. Whatever effect has been produced up to a given time, would (unless prevented by the intervention of some new cause) subsist permanently, even if the cause were to perish. Since, however, the cause does not perish, but continues to exist and to operate, it must go on producing more and more of the effect; and instead of a uniform effect, we have a progressive series of effects, arising from the accumulated influence of a permanent cause. Thus, the contact of iron with the atmosphere causes a portion of it to rust; and if the cause ceased, the effect already produced would be permanent, but no further effect would be added. If, however, the cause, namely, exposure to moist air, continues, more and more of the iron becomes rusted, until all which is exposed is converted into a red powder, when one of the conditions of the production of rust, namely, the presence of unoxidized iron, has ceased, and the effect can not any longer be produced. Again, the earth causes bodies to fall toward it; that is, the existence of the earth at a given instant causes an unsupported body to move toward it at the succeeding instant; and if the earth were annihilated, as much of the effect as is already produced would continue; the object would go on moving in the same direction, with its acquired velocity, until intercepted by some body or deflected by some other force. The earth, however, not being annihilated, goes on producing in the second instant an effect similar and of equal amount with the first, which two effects being added together, there results an accelerated velocity; and this operation being repeated at each successive instant, the mere permanence of the cause, though without increase, gives rise to a constant progressive increase of the effect, so long as all the conditions, negative and positive, of the production of that effect continue to be realized.

It is obvious that this state of things is merely a case of the Composition of Causes. A cause which continues in action must on a strict analysis[pg 363]be considered as a number of causes exactly similar, successively introduced, and producing by their combination the sum of the effects which they would severally produce if they acted singly. The progressive rusting of the iron is in strictness the sum of the effects of many particles of air acting in succession upon corresponding particles of iron. The continued action of the earth upon a falling body is equivalent to a series of forces, applied in successive instants, each tending to produce a certain constant quantity of motion; and the motion at each instant is the sum of the effects of the new force applied at the preceding instant, and the motion already acquired. In each instant a fresh effect, of which gravity is the proximate cause, is added to the effect of which it was the remote cause; or (to express the same thing in another manner), the effect produced by the earth’s influence at the instant last elapsed is added to the sum of the effects of which the remote causes were the influences exerted by the earth at all the previous instants since the motion began. The case, therefore, comes under the principle of a concurrence of causes producing an effect equal to the sum of their separate effects. But as the causes come into play not all at once, but successively, and as the effect at each instant is the sum of the effects of those causes only which have come into action up to that instant, the result assumes the form of an ascending series; a succession of sums, each greater than that which preceded it; and we have thus a progressive effect from the continued action of a cause.

Since the continuance of the cause influences the effect only by adding to its quantity, and since the addition takes place according to a fixed law (equal quantities in equal times), the result is capable of being computed on mathematical principles. In fact, this case, being that of infinitesimal increments, is precisely the case which the differential calculus was invented to meet. The questions, what effect will result from the continual addition of a given cause to itself, and what amount of the cause, being continually added to itself, will produce a given amount of the effect, are evidently mathematical questions, and to be treated, therefore, deductively. If, as we have seen, cases of the Composition of Causes are seldom adapted for any other than deductive investigation, this is especially true in the case now examined, the continual composition of a cause with its own previous effects; since such a case is peculiarly amenable to the deductive method, while the undistinguishable manner in which the effects are blended with one another and with the causes, must make the treatment of such an instance experimentally still more chimerical than in any other case.

§ 2. We shall next advert to a rather more intricate operation of the same principle, namely, when the cause does not merely continue in action, but undergoes, during the same time, a progressive change in those of its circumstances which contribute to determine the effect. In this case, as in the former, the total effect goes on accumulating by the continual addition of a fresh effect to that already produced, but it is no longer by the addition of equal quantities in equal times; the quantities added are unequal, and even the quality may now be different. If the change in the state of the permanent cause be progressive, the effect will go through a double series of changes, arising partly from the accumulated action of the cause, and partly from the changes in its action. The effect is still a progressive effect, produced, however, not by the mere continuance of a cause, but by its continuance and its progressiveness combined.

A familiar example is afforded by the increase of the temperature as[pg 364]summer advances, that is, as the sun draws nearer to a vertical position, and remains a greater number of hours above the horizon. This instance exemplifies in a very interesting manner the twofold operation on the effect, arising from the continuance of the cause, and from its progressive change. When once the sun has come near enough to the zenith, and remains above the horizon long enough, to give more warmth during one diurnal rotation than the counteracting cause, the earth’s radiation, can carry off, the mere continuance of the cause would progressively increase the effect, even if the sun came no nearer and the days grew no longer; but in addition to this, a change takes place in the accidents of the cause (its series of diurnal positions), tending to increase the quantity of the effect. When the summer solstice has passed, the progressive change in the cause begins to take place the reverse way, but, for some time, the accumulating effect of the mere continuance of the cause exceeds the effect of the changes in it, and the temperature continues to increase.

Again, the motion of a planet is a progressive effect, produced by causes at once permanent and progressive. The orbit of a planet is determined (omitting perturbations) by two causes: first, the action of the central body, a permanent cause, which alternately increases and diminishes as the planet draws nearer to or goes farther from its perihelion, and which acts at every point in a different direction; and, secondly, the tendency of the planet to continue moving in the direction and with the velocity which it has already acquired. This force also grows greater as the planet draws nearer to its perihelion, because as it does so its velocity increases, and less, as it recedes from its perihelion; and this force as well as the other acts at each point in a different direction, because at every point the action of the central force, by deflecting the planet from its previous direction, alters the line in which it tends to continue moving. The motion at each instant is determined by the amount and direction of the motion, and the amount and direction of the sun’s action, at the previous instant; and if we speak of the entire revolution of the planet as one phenomenon (which, as it is periodical and similar to itself, we often find it convenient to do), that phenomenon is the progressive effect of two permanent and progressive causes, the central force and the acquired motion. Those causes happening to be progressive in the particular way which is called periodical, the effect necessarily is so too; because the quantities to be added together returning in a regular order, the same sums must also regularly return.

This example is worthy of consideration also in another respect. Though the causes themselves are permanent, and independent of all conditions known to us, the changes which take place in the quantities and relations of the causes are actually caused by the periodical changes in the effects. The causes, as they exist at any moment, having produced a certain motion, that motion, becoming itself a cause, reacts upon the causes, and produces a change in them. By altering the distance and direction of the central body relatively to the planet, and the direction and quantity of the force in the direction of the tangent, it alters the elements which determine the motion at the next succeeding instant. This change renders the next motion somewhat different; and this difference, by a fresh reaction upon the causes, renders the next motion again different, and so on. The original state of the causes might have been such that this series of actions modified by reactions would not have been periodical. The sun’s action, and the original impelling force, might have been in such a ratio to one another, that the reaction of the effect would have been such as to alter the causes more and[pg 365]more, without ever bringing them back to what they were at any former time. The planet would then have moved in a parabola, or an hyperbola, curves not returning into themselves. The quantities of the two forces were, however, originally such, that the successive reactions of the effect bring back the causes, after a certain time, to what they were before; and from that time all the variations continued to recur again and again in the same periodical order, and must so continue while the causes subsist and are not counteracted.

§ 3. In all cases of progressive effects, whether arising from the accumulation of unchanging or of changing elements, there is a uniformity of succession not merely between the cause and the effect, but between the first stages of the effect and its subsequent stages. That a bodyin vacuofalls sixteen feet in the first second, forty-eight in the second, and so on in the ratio of the odd numbers, is as much a uniform sequence as that when the supports are removed the body falls. The sequence of spring and summer is as regular and invariable as that of the approach of the sun and spring; but we do not consider spring to be the cause of summer; it is evident that both are successive effects of the heat received from the sun, and that, considered merely in itself, spring might continue forever without having the slightest tendency to produce summer. As we have so often remarked, not the conditional, but the unconditional invariable antecedent is termed the cause. That which would not be followed by the effect unless something else had preceded, and which if that something else had preceded, would not have been required, is not the cause, however invaluable the sequence may in fact be.

It is in this way that most of those uniformities of succession are generated, which are not cases of causation. When a phenomenon goes on increasing, or periodically increases and diminishes, or goes through any continued and unceasing process of variation reducible to a uniform rule or law of succession, we do not on this account presume that any two successive terms of the series are cause and effect. We presume the contrary; we expect to find that the whole series originates either from the continued action of fixed causes or from causes which go through a corresponding process of continuous change. A tree grows from half an inch high to a hundred feet; and some trees will generally grow to that height unless prevented by some counteracting cause. But we do not call the seedling the cause of the full-grown tree; the invariable antecedent it certainly is, and we know very imperfectly on what other antecedents the sequence is contingent, but we are convinced that it is contingent on something; because the homogeneousness of the antecedent with the consequent, the close resemblance of the seedling to the tree in all respects except magnitude, and the graduality of the growth, so exactly resembling the progressively accumulating effect produced by the long action of some one cause, leave no possibility of doubting that the seedling and the tree are two terms in a series of that description, the first term of which is yet to seek. The conclusion is further confirmed by this, that we are able to prove by strict induction the dependence of the growth of the tree, and even of the continuance of its existence, upon the continued repetition of certain processes of nutrition, the rise of the sap, the absorptions and exhalations by the leaves, etc.; and the same experiments would probably prove to us that the growth of the tree is the accumulated sum of the effects of these continued processes, were we not, for want of sufficiently microscopic eyes, unable to observe correctly and in detail what those effects are.

This supposition by no means requires that the effect should not, during its progress, undergo many modifications besides those of quantity, or that it should not sometimes appear to undergo a very marked change of character. This may be either because the unknown cause consists of several component elements or agents, whose effects, accumulating according to different laws, are compounded in different proportions at different periods in the existence of the organized being; or because, at certain points in its progress, fresh causes or agencies come in, or are evolved, which intermix their laws with those of the prime agent.

Chapter XVI.Of Empirical Laws.§ 1. Scientific inquirers give the name of Empirical Laws to those uniformities which observation or experiment has shown to exist, but on which they hesitate to rely in cases varying much from those which have been actually observed, for want of seeing any reasonwhysuch a law should exist. It is implied, therefore, in the notion of an empirical law, that it is not an ultimate law; that if true at all, its truth is capable of being, and requires to be, accounted for. It is a derivative law, the derivation of which is not yet known. To state the explanation, thewhy, of the empirical law, would be to state the laws from which it is derived—the ultimate causes on which it is contingent. And if we knew these, we should also know what are its limits; under what conditions it would cease to be fulfilled.The periodical return of eclipses, as originally ascertained by the persevering observation of the early Eastern astronomers, was an empirical law, until the general laws of the celestial motions had accounted for it. The following are empirical laws still waiting to be resolved into the simpler laws from which they are derived: the local laws of the flux and reflux of the tides in different places; the succession of certain kinds of weather to certain appearances of sky; the apparent exceptions to the almost universal truth that bodies expand by increase of temperature; the law that breeds, both animal and vegetable, are improved by crossing; that gases have a strong tendency to permeate animal membranes; that substances containing a very high proportion of nitrogen (such as hydrocyanic acid and morphia) are powerful poisons; that when different metals are fused together the alloy is harder than the various elements; that the number of atoms of acid required to neutralize one atom of any base is equal to the number of atoms of oxygen in the base; that the solubility of substances in one another depends,171at least in some degree, on the similarity of their elements.An empirical law, then, is an observed uniformity, presumed to be resolvable[pg 367]into simpler laws, but not yet resolved into them. The ascertainment of the empirical laws of phenomena often precedes by a long interval the explanation of those laws by the Deductive Method; and the verification of a deduction usually consists in the comparison of its results with empirical laws previously ascertained.§ 2. From a limited number of ultimate laws of causation, there are necessarily generated a vast number of derivative uniformities, both of succession and co-existence. Some are laws of succession or of co-existence between different effects of the same cause; of these we had examples in the last chapter. Some are laws of succession between effects and their remote causes, resolvable into the laws which connect each with the intermediate link. Thirdly, when causes act together and compound their effects, the laws of those causes generate the fundamental law of the effect, namely, that it depends on the co-existence of those causes. And, finally, the order of succession or of co-existence which obtains among effects necessarily depends on their causes. If they are effects of the same cause, it depends on the laws of that cause; if on different causes, it depends on the laws of those causes severally, and on the circumstances which determine their co-existence. If we inquire further when and how the causes will co-exist, that, again, depends ontheircauses; and we may thus trace back the phenomena higher and higher, until the different series of effects meet in a point, and the whole is shown to have depended ultimately on some common cause; or until, instead of converging to one point, they terminate in different points, and the order of the effects is proved to have arisen from the collocation of some of the primeval causes, or natural agents. For example, the order of succession and of co-existence among the heavenly motions, which is expressed by Kepler’s laws, is derived from the co-existence of two primeval causes, the sun, and the original impulse or projectile force belonging to each planet.172Kepler’s laws are resolved into the laws of these causes and the fact of their co-existence.Derivative laws, therefore, do not depend solely on the ultimate laws into which they are resolvable; they mostly depend on those ultimate laws, and an ultimate fact; namely, the mode of co-existence of some of the component elements of the universe. The ultimate laws of causation might be the same as at present, and yet the derivative laws completely different, if the causes co-existed in different proportions, or with any difference in those of their relations by which the effects are influenced. If, for example, the sun’s attraction, and the original projectile force, had existed in some other ratio to one another than they did (and we know of no reason why this should not have been the case), the derivative laws of the heavenly motions might have been quite different from what they are. The proportions which exist happen to be such as to produce regular elliptical motions; any other proportions would have produced different ellipses, or circular, or parabolic, or hyperbolic motions, but still regular ones; because the effects of each of the agents accumulate according to a uniform law; and two regular series of quantities, when their corresponding terms are added, must produce a regular series of some sort, whatever the quantities themselves are.§ 3. Now this last-mentioned element in the resolution of a derivative law, the element which is not a law of causation, but a collocation of causes,[pg 368]can not itself be reduced to any law. There is, as formerly remarked,173no uniformity, nonorma, principle, or rule, perceivable in the distribution of the primeval natural agents through the universe. The different substances composing the earth, the powers that pervade the universe, stand in no constant relation to one another. One substance is more abundant than others, one power acts through a larger extent of space than others, without any pervading analogy that we can discover. We not only do not know of any reason why the sun’s attraction and the force in the direction of the tangent co-exist in the exact proportion they do, but we can trace no coincidence between it and the proportions in which any other elementary powers in the universe are intermingled. The utmost disorder is apparent in the combination of the causes, which is consistent with the most regular order in their effects; for when each agent carries on its own operations according to a uniform law, even the most capricious combination of agencies will generate a regularity of some sort; as we see in the kaleidoscope, where any casual arrangement of colored bits of glass produces by the laws of reflection a beautiful regularity in the effect.§ 4. In the above considerations lies the justification of the limited degree of reliance which scientific inquirers are accustomed to place in empirical laws.A derivative law which results wholly from the operation of some one cause, will be as universally true as the laws of the cause itself; that is, it will always be true except where some one of those effects of the cause, on which the derivative law depends, is defeated by a counteracting cause. But when the derivative law results not from different effects of one cause, but from effects of several causes, we can not be certain that it will be true under any variation in the mode of co-existence of those causes, or of the primitive natural agents on which the causes ultimately depend. The proposition that coal-beds rest on certain descriptions of strata exclusively, though true on the earth, so far as our observation has reached, can not be extended to the moon or the other planets, supposing coal to exist there; because we can not be assured that the original constitution of any other planet was such as to produce the different depositions in the same order as in our globe. The derivative law in this case depends not solely on laws, but on a collocation; and collocations can not be reduced to any law.Now it is the very nature of a derivative law which has not yet been resolved into its elements, in other words, an empirical law, that we do not know whether it results from the different effects of one cause, or from effects of different causes. We can not tell whether it depends wholly on laws, or partly on laws and partly on a collocation. If it depends on a collocation, it will be true in all the cases in which that particular collocation exists. But, since we are entirely ignorant, in case of its depending on a collocation, what the collocation is, we are not safe in extending the law beyond the limits of time and place in which we have actual experience of its truth. Since within those limits the law has always been found true, we have evidence that the collocations, whatever they are, on which it depends, do really exist within those limits. But, knowing of no rule or principle to which the collocations themselves conform, we can not conclude that because a collocation is proved to exist within certain limits of place or time, it will exist beyond those limits. Empirical laws, therefore, can only be received as true within the limits of time and place in which[pg 369]they have been found true by observation; and not merely the limits of time and place, but of time, place, and circumstance; for, since it is the very meaning of an empirical law that we do not know the ultimate laws of causation on which it is dependent, we can not foresee, without actual trial, in what manner or to what extent the introduction of any new circumstance may affect it.§ 5. But how are we to know that a uniformity ascertained by experience is only an empirical law? Since, by the supposition, we have not been able to resolve it into any other laws, how do we know that it is not an ultimate law of causation?I answer that no generalization amounts to more than an empirical law when the only proof on which it rests is that of the Method of Agreement. For it has been seen that by that method alone we never can arrive at causes. The utmost that the Method of Agreement can do is, to ascertain the whole of the circumstances common to all cases in which a phenomenon is produced; and this aggregate includes not only the cause of the phenomenon, but all phenomena with which it is connected by any derivative uniformity, whether as being collateral effects of the same cause, or effects of any other cause which, in all the instances we have been able to observe, co-existed with it. The method affords no means of determining which of these uniformities are laws of causation, and which are merely derivative laws, resulting from those laws of causation and from the collocation of the causes. None of them, therefore, can be received in any other character than that of derivative laws, the derivation of which has not been traced; in other words, empirical laws: in which light all results obtained by the Method of Agreement (and therefore almost all truths obtained by simple observation without experiment) must be considered, until either confirmed by the Method of Difference, or explained deductively; in other words, accounted fora priori.These empirical laws may be of greater or less authority, according as there is reason to presume that they are resolvable into laws only, or into laws and collocations together. The sequences which we observe in the production and subsequent life of an animal or a vegetable, resting on the Method of Agreement only, are mere empirical laws; but though the antecedents in those sequences may not be the causes of the consequents, both the one and the other are doubtless, in the main, successive stages of a progressive effect originating in a common cause, and therefore independent of collocations. The uniformities, on the other hand, in the order of superposition of strata on the earth, are empirical laws of a much weaker kind, since they not only are not laws of causation, but there is no reason to believe that they depend on any common cause; all appearances are in favor of their depending on the particular collocation of natural agents which at some time or other existed on our globe, and from which no inference can be drawn as to the collocation which exists or has existed in any other portion of the universe.§ 6. Our definition of an empirical law, including not only those uniformities which are not known to be laws of causation, but also those which are, provided there be reason to presume that they are not ultimate laws; this is the proper place to consider by what signs we may judge that even if an observed uniformity be a law of causation, it is not an ultimate, but a derivative law.[pg 370]The first sign is, if between the antecedentaand the consequentbthere be evidence of some intermediate link; some phenomenon of which we can surmise the existence, though from the imperfection of our senses or of our instruments we are unable to ascertain its precise nature and laws. If there be such a phenomenon (which may be denoted by the letterx), it follows that even ifabe the cause ofb, it is but the remote cause, and that the law,acausesb, is resolvable into at least two laws,acausesx, andxcausesb. This is a very frequent case, since the operations of nature mostly take place on so minute a scale, that many of the successive steps are either imperceptible, or very indistinctly perceived.Take, for example, the laws of the chemical composition of substances; as that hydrogen and oxygen being combined, water is produced. All we see of the process is, that the two gases being mixed in certain proportions, and heat or electricity being applied, an explosion takes place, the gases disappear, and water remains. There is no doubt about the law, or about its being a law of causation. But between the antecedent (the gases in a state of mechanical mixture, heated or electrified), and the consequent (the production of water), there must be an intermediate process which we do not see. For if we take any portion whatever of the water, and subject it to analysis, we find that it always contains hydrogen and oxygen; nay, the very same proportions of them, namely, two-thirds, in volume, of hydrogen, and one-third oxygen. This is true of a single drop; it is true of the minutest portion which our instruments are capable of appreciating. Since, then, the smallest perceptible portion of the water contains both those substances, portions of hydrogen and oxygen smaller than the smallest perceptible must have come together in every such minute portion of space; must have come closer together than when the gases were in a state of mechanical mixture, since (to mention no other reasons) the water occupies far less space than the gases. Now, as we can not see this contact or close approach of the minute particles, we can not observe with what circumstances it is attended, or according to what laws it produces its effects. The production of water, that is, of the sensible phenomena which characterize the compound, may be a very remote effect of those laws. There may be innumerable intervening links; and we are sure that there must be some. Having full proof that corpuscular action of some kind takes place previous to any of the great transformations in the sensible properties of substances, we can have no doubt that the laws of chemical action, as at present known, are not ultimate, but derivative laws; however ignorant we may be, and even though we should forever remain ignorant, of the nature of the laws of corpuscular action from which they are derived.In like manner, all the processes of vegetative life, whether in the vegetable properly so called or in the animal body, are corpuscular processes. Nutrition is the addition of particles to one another, sometimes merely replacing other particles separated and excreted, sometimes occasioning an increase of bulk or weight so gradual that only after a long continuance does it become perceptible. Various organs, by means of peculiar vessels, secrete from the blood fluids, the component particles of which must have been in the blood, but which differ from it most widely both in mechanical properties and in chemical composition. Here, then, are abundance of unknown links to be filled up; and there can be no doubt that the laws of the phenomena of vegetative or organic life are derivative laws, dependent on properties of the corpuscles, and of those elementary tissues which are comparatively simple combinations of corpuscles.[pg 371]The first sign, then, from which a law of causation, though hitherto unresolved, may be inferred to be a derivative law, is any indication of the existence of an intermediate link or links between the antecedent and the consequent. The second is, when the antecedent is an extremely complex phenomenon, and its effects, therefore, probably in part at least, compounded of the effects of its different elements; since we know that the case in which the effect of the whole is not made up of the effects of its parts is exceptional, the Composition of Causes being by far the more ordinary case.We will illustrate this by two examples, in one of which the antecedent is the sum of many homogeneous, in the other of heterogeneous, parts. The weight of a body is made up of the weights of its minute particles; a truth which astronomers express in its most general terms when they say that bodies, at equal distances, gravitate to one another in proportion to their quantity of matter. All true propositions, therefore, which can be made concerning gravity, are derivative laws; the ultimate law into which they are all resolvable being, that every particle of matter attracts every other. As our second example, we may take any of the sequences observed in meteorology; for instance, a diminution of the pressure of the atmosphere (indicated by a fall of the barometer) is followed by rain. The antecedent is here a complex phenomenon, made up of heterogeneous elements; the column of the atmosphere over any particular place consisting of two parts, a column of air, and a column of aqueous vapor mixed with it; and the change in the two together manifested by a fall of the barometer, and followed by rain, must be either a change in one of these, or in the other, or in both. We might, then, even in the absence of any other evidence, form a reasonable presumption, from the invariable presence of both these elements in the antecedent, that the sequence is probably not an ultimate law, but a result of the laws of the two different agents; a presumption only to be destroyed when we had made ourselves so well acquainted with the laws of both, as to be able to affirm that those laws could not by themselves produce the observed result.There are but few known cases of succession from very complex antecedents which have not either been actually accounted for from simpler laws, or inferred with great probability (from the ascertained existence of intermediate links of causation not yet understood) to be capable of being so accounted for. It is, therefore, highly probable that all sequences from complex antecedents are thus resolvable, and that ultimate laws are in all cases comparatively simple. If there were not the other reasons already mentioned for believing that the laws of organized nature are resolvable into simpler laws, it would be almost a sufficient reason that the antecedents in most of the sequences are so very complex.§ 7. In the preceding discussion we have recognized two kinds of empirical laws: those known to be laws of causation, but presumed to be resolvable into simpler laws; and those not known to be laws of causation at all. Both these kinds of laws agree in the demand which they make for being explained by deduction, and agree in being the appropriate means of verifying such deduction, since they represent the experience with which the result of the deduction must be compared. They agree, further, in this, that until explained, and connected with the ultimate laws from which they result, they have not attained the highest degree of certainty of which laws are susceptible. It has been shown on a former occasion that laws[pg 372]of causation which are derivative, and compounded of simpler laws, are not only, as the nature of the case implies, less general, but even less certain, than the simpler laws from which they result; not in the same degree to be relied on as universally true. The inferiority of evidence, however, which attaches to this class of laws, is trifling, compared with that which is inherent in uniformities not known to be laws of causation at all. So long as these are unresolved, we can not tell on how many collocations, as well as laws, their truth may be dependent; we can never, therefore, extend them with any confidence to cases in which we have not assured ourselves, by trial, that the necessary collocation of causes, whatever it may be, exists. It is to this class of laws alone that the property, which philosophers usually consider as characteristic of empirical laws, belongs in all its strictness—the property of being unfit to be relied on beyond the limits of time, place, and circumstance in which the observations have been made. These are empirical laws in a more emphatic sense; and when I employ that term (except where the context manifestly indicates the reverse) I shall generally mean to designate those uniformities only, whether of succession or of co-existence, which are not known to be laws of causation.

§ 1. Scientific inquirers give the name of Empirical Laws to those uniformities which observation or experiment has shown to exist, but on which they hesitate to rely in cases varying much from those which have been actually observed, for want of seeing any reasonwhysuch a law should exist. It is implied, therefore, in the notion of an empirical law, that it is not an ultimate law; that if true at all, its truth is capable of being, and requires to be, accounted for. It is a derivative law, the derivation of which is not yet known. To state the explanation, thewhy, of the empirical law, would be to state the laws from which it is derived—the ultimate causes on which it is contingent. And if we knew these, we should also know what are its limits; under what conditions it would cease to be fulfilled.

The periodical return of eclipses, as originally ascertained by the persevering observation of the early Eastern astronomers, was an empirical law, until the general laws of the celestial motions had accounted for it. The following are empirical laws still waiting to be resolved into the simpler laws from which they are derived: the local laws of the flux and reflux of the tides in different places; the succession of certain kinds of weather to certain appearances of sky; the apparent exceptions to the almost universal truth that bodies expand by increase of temperature; the law that breeds, both animal and vegetable, are improved by crossing; that gases have a strong tendency to permeate animal membranes; that substances containing a very high proportion of nitrogen (such as hydrocyanic acid and morphia) are powerful poisons; that when different metals are fused together the alloy is harder than the various elements; that the number of atoms of acid required to neutralize one atom of any base is equal to the number of atoms of oxygen in the base; that the solubility of substances in one another depends,171at least in some degree, on the similarity of their elements.

An empirical law, then, is an observed uniformity, presumed to be resolvable[pg 367]into simpler laws, but not yet resolved into them. The ascertainment of the empirical laws of phenomena often precedes by a long interval the explanation of those laws by the Deductive Method; and the verification of a deduction usually consists in the comparison of its results with empirical laws previously ascertained.

§ 2. From a limited number of ultimate laws of causation, there are necessarily generated a vast number of derivative uniformities, both of succession and co-existence. Some are laws of succession or of co-existence between different effects of the same cause; of these we had examples in the last chapter. Some are laws of succession between effects and their remote causes, resolvable into the laws which connect each with the intermediate link. Thirdly, when causes act together and compound their effects, the laws of those causes generate the fundamental law of the effect, namely, that it depends on the co-existence of those causes. And, finally, the order of succession or of co-existence which obtains among effects necessarily depends on their causes. If they are effects of the same cause, it depends on the laws of that cause; if on different causes, it depends on the laws of those causes severally, and on the circumstances which determine their co-existence. If we inquire further when and how the causes will co-exist, that, again, depends ontheircauses; and we may thus trace back the phenomena higher and higher, until the different series of effects meet in a point, and the whole is shown to have depended ultimately on some common cause; or until, instead of converging to one point, they terminate in different points, and the order of the effects is proved to have arisen from the collocation of some of the primeval causes, or natural agents. For example, the order of succession and of co-existence among the heavenly motions, which is expressed by Kepler’s laws, is derived from the co-existence of two primeval causes, the sun, and the original impulse or projectile force belonging to each planet.172Kepler’s laws are resolved into the laws of these causes and the fact of their co-existence.

Derivative laws, therefore, do not depend solely on the ultimate laws into which they are resolvable; they mostly depend on those ultimate laws, and an ultimate fact; namely, the mode of co-existence of some of the component elements of the universe. The ultimate laws of causation might be the same as at present, and yet the derivative laws completely different, if the causes co-existed in different proportions, or with any difference in those of their relations by which the effects are influenced. If, for example, the sun’s attraction, and the original projectile force, had existed in some other ratio to one another than they did (and we know of no reason why this should not have been the case), the derivative laws of the heavenly motions might have been quite different from what they are. The proportions which exist happen to be such as to produce regular elliptical motions; any other proportions would have produced different ellipses, or circular, or parabolic, or hyperbolic motions, but still regular ones; because the effects of each of the agents accumulate according to a uniform law; and two regular series of quantities, when their corresponding terms are added, must produce a regular series of some sort, whatever the quantities themselves are.

§ 3. Now this last-mentioned element in the resolution of a derivative law, the element which is not a law of causation, but a collocation of causes,[pg 368]can not itself be reduced to any law. There is, as formerly remarked,173no uniformity, nonorma, principle, or rule, perceivable in the distribution of the primeval natural agents through the universe. The different substances composing the earth, the powers that pervade the universe, stand in no constant relation to one another. One substance is more abundant than others, one power acts through a larger extent of space than others, without any pervading analogy that we can discover. We not only do not know of any reason why the sun’s attraction and the force in the direction of the tangent co-exist in the exact proportion they do, but we can trace no coincidence between it and the proportions in which any other elementary powers in the universe are intermingled. The utmost disorder is apparent in the combination of the causes, which is consistent with the most regular order in their effects; for when each agent carries on its own operations according to a uniform law, even the most capricious combination of agencies will generate a regularity of some sort; as we see in the kaleidoscope, where any casual arrangement of colored bits of glass produces by the laws of reflection a beautiful regularity in the effect.

§ 4. In the above considerations lies the justification of the limited degree of reliance which scientific inquirers are accustomed to place in empirical laws.

A derivative law which results wholly from the operation of some one cause, will be as universally true as the laws of the cause itself; that is, it will always be true except where some one of those effects of the cause, on which the derivative law depends, is defeated by a counteracting cause. But when the derivative law results not from different effects of one cause, but from effects of several causes, we can not be certain that it will be true under any variation in the mode of co-existence of those causes, or of the primitive natural agents on which the causes ultimately depend. The proposition that coal-beds rest on certain descriptions of strata exclusively, though true on the earth, so far as our observation has reached, can not be extended to the moon or the other planets, supposing coal to exist there; because we can not be assured that the original constitution of any other planet was such as to produce the different depositions in the same order as in our globe. The derivative law in this case depends not solely on laws, but on a collocation; and collocations can not be reduced to any law.

Now it is the very nature of a derivative law which has not yet been resolved into its elements, in other words, an empirical law, that we do not know whether it results from the different effects of one cause, or from effects of different causes. We can not tell whether it depends wholly on laws, or partly on laws and partly on a collocation. If it depends on a collocation, it will be true in all the cases in which that particular collocation exists. But, since we are entirely ignorant, in case of its depending on a collocation, what the collocation is, we are not safe in extending the law beyond the limits of time and place in which we have actual experience of its truth. Since within those limits the law has always been found true, we have evidence that the collocations, whatever they are, on which it depends, do really exist within those limits. But, knowing of no rule or principle to which the collocations themselves conform, we can not conclude that because a collocation is proved to exist within certain limits of place or time, it will exist beyond those limits. Empirical laws, therefore, can only be received as true within the limits of time and place in which[pg 369]they have been found true by observation; and not merely the limits of time and place, but of time, place, and circumstance; for, since it is the very meaning of an empirical law that we do not know the ultimate laws of causation on which it is dependent, we can not foresee, without actual trial, in what manner or to what extent the introduction of any new circumstance may affect it.

§ 5. But how are we to know that a uniformity ascertained by experience is only an empirical law? Since, by the supposition, we have not been able to resolve it into any other laws, how do we know that it is not an ultimate law of causation?

I answer that no generalization amounts to more than an empirical law when the only proof on which it rests is that of the Method of Agreement. For it has been seen that by that method alone we never can arrive at causes. The utmost that the Method of Agreement can do is, to ascertain the whole of the circumstances common to all cases in which a phenomenon is produced; and this aggregate includes not only the cause of the phenomenon, but all phenomena with which it is connected by any derivative uniformity, whether as being collateral effects of the same cause, or effects of any other cause which, in all the instances we have been able to observe, co-existed with it. The method affords no means of determining which of these uniformities are laws of causation, and which are merely derivative laws, resulting from those laws of causation and from the collocation of the causes. None of them, therefore, can be received in any other character than that of derivative laws, the derivation of which has not been traced; in other words, empirical laws: in which light all results obtained by the Method of Agreement (and therefore almost all truths obtained by simple observation without experiment) must be considered, until either confirmed by the Method of Difference, or explained deductively; in other words, accounted fora priori.

These empirical laws may be of greater or less authority, according as there is reason to presume that they are resolvable into laws only, or into laws and collocations together. The sequences which we observe in the production and subsequent life of an animal or a vegetable, resting on the Method of Agreement only, are mere empirical laws; but though the antecedents in those sequences may not be the causes of the consequents, both the one and the other are doubtless, in the main, successive stages of a progressive effect originating in a common cause, and therefore independent of collocations. The uniformities, on the other hand, in the order of superposition of strata on the earth, are empirical laws of a much weaker kind, since they not only are not laws of causation, but there is no reason to believe that they depend on any common cause; all appearances are in favor of their depending on the particular collocation of natural agents which at some time or other existed on our globe, and from which no inference can be drawn as to the collocation which exists or has existed in any other portion of the universe.

§ 6. Our definition of an empirical law, including not only those uniformities which are not known to be laws of causation, but also those which are, provided there be reason to presume that they are not ultimate laws; this is the proper place to consider by what signs we may judge that even if an observed uniformity be a law of causation, it is not an ultimate, but a derivative law.

The first sign is, if between the antecedentaand the consequentbthere be evidence of some intermediate link; some phenomenon of which we can surmise the existence, though from the imperfection of our senses or of our instruments we are unable to ascertain its precise nature and laws. If there be such a phenomenon (which may be denoted by the letterx), it follows that even ifabe the cause ofb, it is but the remote cause, and that the law,acausesb, is resolvable into at least two laws,acausesx, andxcausesb. This is a very frequent case, since the operations of nature mostly take place on so minute a scale, that many of the successive steps are either imperceptible, or very indistinctly perceived.

Take, for example, the laws of the chemical composition of substances; as that hydrogen and oxygen being combined, water is produced. All we see of the process is, that the two gases being mixed in certain proportions, and heat or electricity being applied, an explosion takes place, the gases disappear, and water remains. There is no doubt about the law, or about its being a law of causation. But between the antecedent (the gases in a state of mechanical mixture, heated or electrified), and the consequent (the production of water), there must be an intermediate process which we do not see. For if we take any portion whatever of the water, and subject it to analysis, we find that it always contains hydrogen and oxygen; nay, the very same proportions of them, namely, two-thirds, in volume, of hydrogen, and one-third oxygen. This is true of a single drop; it is true of the minutest portion which our instruments are capable of appreciating. Since, then, the smallest perceptible portion of the water contains both those substances, portions of hydrogen and oxygen smaller than the smallest perceptible must have come together in every such minute portion of space; must have come closer together than when the gases were in a state of mechanical mixture, since (to mention no other reasons) the water occupies far less space than the gases. Now, as we can not see this contact or close approach of the minute particles, we can not observe with what circumstances it is attended, or according to what laws it produces its effects. The production of water, that is, of the sensible phenomena which characterize the compound, may be a very remote effect of those laws. There may be innumerable intervening links; and we are sure that there must be some. Having full proof that corpuscular action of some kind takes place previous to any of the great transformations in the sensible properties of substances, we can have no doubt that the laws of chemical action, as at present known, are not ultimate, but derivative laws; however ignorant we may be, and even though we should forever remain ignorant, of the nature of the laws of corpuscular action from which they are derived.

In like manner, all the processes of vegetative life, whether in the vegetable properly so called or in the animal body, are corpuscular processes. Nutrition is the addition of particles to one another, sometimes merely replacing other particles separated and excreted, sometimes occasioning an increase of bulk or weight so gradual that only after a long continuance does it become perceptible. Various organs, by means of peculiar vessels, secrete from the blood fluids, the component particles of which must have been in the blood, but which differ from it most widely both in mechanical properties and in chemical composition. Here, then, are abundance of unknown links to be filled up; and there can be no doubt that the laws of the phenomena of vegetative or organic life are derivative laws, dependent on properties of the corpuscles, and of those elementary tissues which are comparatively simple combinations of corpuscles.

The first sign, then, from which a law of causation, though hitherto unresolved, may be inferred to be a derivative law, is any indication of the existence of an intermediate link or links between the antecedent and the consequent. The second is, when the antecedent is an extremely complex phenomenon, and its effects, therefore, probably in part at least, compounded of the effects of its different elements; since we know that the case in which the effect of the whole is not made up of the effects of its parts is exceptional, the Composition of Causes being by far the more ordinary case.

We will illustrate this by two examples, in one of which the antecedent is the sum of many homogeneous, in the other of heterogeneous, parts. The weight of a body is made up of the weights of its minute particles; a truth which astronomers express in its most general terms when they say that bodies, at equal distances, gravitate to one another in proportion to their quantity of matter. All true propositions, therefore, which can be made concerning gravity, are derivative laws; the ultimate law into which they are all resolvable being, that every particle of matter attracts every other. As our second example, we may take any of the sequences observed in meteorology; for instance, a diminution of the pressure of the atmosphere (indicated by a fall of the barometer) is followed by rain. The antecedent is here a complex phenomenon, made up of heterogeneous elements; the column of the atmosphere over any particular place consisting of two parts, a column of air, and a column of aqueous vapor mixed with it; and the change in the two together manifested by a fall of the barometer, and followed by rain, must be either a change in one of these, or in the other, or in both. We might, then, even in the absence of any other evidence, form a reasonable presumption, from the invariable presence of both these elements in the antecedent, that the sequence is probably not an ultimate law, but a result of the laws of the two different agents; a presumption only to be destroyed when we had made ourselves so well acquainted with the laws of both, as to be able to affirm that those laws could not by themselves produce the observed result.

There are but few known cases of succession from very complex antecedents which have not either been actually accounted for from simpler laws, or inferred with great probability (from the ascertained existence of intermediate links of causation not yet understood) to be capable of being so accounted for. It is, therefore, highly probable that all sequences from complex antecedents are thus resolvable, and that ultimate laws are in all cases comparatively simple. If there were not the other reasons already mentioned for believing that the laws of organized nature are resolvable into simpler laws, it would be almost a sufficient reason that the antecedents in most of the sequences are so very complex.

§ 7. In the preceding discussion we have recognized two kinds of empirical laws: those known to be laws of causation, but presumed to be resolvable into simpler laws; and those not known to be laws of causation at all. Both these kinds of laws agree in the demand which they make for being explained by deduction, and agree in being the appropriate means of verifying such deduction, since they represent the experience with which the result of the deduction must be compared. They agree, further, in this, that until explained, and connected with the ultimate laws from which they result, they have not attained the highest degree of certainty of which laws are susceptible. It has been shown on a former occasion that laws[pg 372]of causation which are derivative, and compounded of simpler laws, are not only, as the nature of the case implies, less general, but even less certain, than the simpler laws from which they result; not in the same degree to be relied on as universally true. The inferiority of evidence, however, which attaches to this class of laws, is trifling, compared with that which is inherent in uniformities not known to be laws of causation at all. So long as these are unresolved, we can not tell on how many collocations, as well as laws, their truth may be dependent; we can never, therefore, extend them with any confidence to cases in which we have not assured ourselves, by trial, that the necessary collocation of causes, whatever it may be, exists. It is to this class of laws alone that the property, which philosophers usually consider as characteristic of empirical laws, belongs in all its strictness—the property of being unfit to be relied on beyond the limits of time, place, and circumstance in which the observations have been made. These are empirical laws in a more emphatic sense; and when I employ that term (except where the context manifestly indicates the reverse) I shall generally mean to designate those uniformities only, whether of succession or of co-existence, which are not known to be laws of causation.

Chapter XVII.Of Chance And Its Elimination.§ 1. Considering, then, as empirical laws only those observed uniformities respecting which the question whether they are laws of causation must remain undecided until they can be explained deductively, or until some means are found of applying the Method of Difference to the case, it has been shown in the preceding chapter that until a uniformity can, in one or the other of these modes, be taken out of the class of empirical laws, and brought either into that of laws of causation or of the demonstrated results of laws of causation, it can not with any assurance be pronounced true beyond the local and other limits within which it has been found so by actual observation. It remains to consider how we are to assure ourselves of its truth even within those limits; after what quantity of experience a generalization which rests solely on the Method of Agreement can be considered sufficiently established, even as an empirical law. In a former chapter, when treating of the Methods of Direct Induction, we expressly reserved this question,174and the time is now come for endeavoring to solve it.We found that the Method of Agreement has the defect of not proving causation, and can, therefore, only be employed for the ascertainment of empirical laws. But we also found that besides this deficiency, it labors under a characteristic imperfection, tending to render uncertain even such conclusions as it is in itself adapted to prove. This imperfection arises from Plurality of Causes. Although two or more cases in which the phenomenonahas been met with may have no common antecedent except A, this does not prove that there is any connection betweenaand A, sinceamay have many causes, and may have been produced, in these different instances, not by any thing which the instances had in common, but by some of those elements in them which were different. We nevertheless[pg 373]observed, that in proportion to the multiplication of instances pointing to A as the antecedent, the characteristic uncertainty of the method diminishes, and the existence of a law of connection between A andamore nearly approaches to certainty. It is now to be determined after what amount of experience this certainty may be deemed to be practically attained, and the connection between A andamay be received as an empirical law.This question may be otherwise stated in more familiar terms: After how many and what sort of instances may it be concluded that an observed coincidence between two phenomena is not the effect of chance?It is of the utmost importance for understanding the logic of induction, that we should form a distinct conception of what is meant by chance, and how the phenomena which common language ascribes to that abstraction are really produced.§ 2. Chance is usually spoken of in direct antithesis to law; whatever, it is supposed, can not be ascribed to any law is attributed to chance. It is, however, certain that whatever happens is the result of some law; is an effect of causes, and could have been predicted from a knowledge of the existence of those causes, and from their laws. If I turn up a particular card, that is a consequence of its place in the pack. Its place in the pack was a consequence of the manner in which the cards were shuffled, or of the order in which they were played in the last game; which, again, were effects of prior causes. At every stage, if we had possessed an accurate knowledge of the causes in existence, it would have been abstractedly possible to foretell the effect.An event occurring by chance may be better described as a coincidence from which we have no ground to infer a uniformity—the occurrence of a phenomenon in certain circumstances, without our having reason on that account to infer that it will happen again in those circumstances. This, however, when looked closely into, implies that the enumeration of the circumstances is not complete. Whatever the fact be, since it has occurred once, we may be sure that ifallthe same circumstances were repeated it would occur again; and not only if all, but there is some particular portion of those circumstances on which the phenomenon is invariably consequent. With most of them, however, it is not connected in any permanent manner; its conjunction with those is said to be the effect of chance, to be merely casual. Facts casually conjoined are separately the effects of causes, and therefore of laws; but of different causes, and causes not connected by any law.It is incorrect, then, to say that any phenomenon is produced by chance; but we may say that two or more phenomena are conjoined by chance, that they co-exist or succeed one another only by chance; meaning that they are in no way related through causation; that they are neither cause and effect, nor effects of the same cause, nor effects of causes between which there subsists any law of co-existence, nor even effects of the same collocation of primeval causes.If the same casual coincidence never occurred a second time, we should have an easy test for distinguishing such from the coincidences which are the results of a law. As long as the phenomena had been found together only once, so long, unless we knew some more general laws from which the coincidence might have resulted, we could not distinguish it from a casual one; but if it occurred twice, we should know that the phenomena so conjoined must be in some way connected through their causes.[pg 374]There is, however, no such test. A coincidence may occur again and again, and yet be only casual. Nay, it would be inconsistent with what we know of the order of nature to doubt that every casual coincidence will sooner or later be repeated, as long as the phenomena between which it occurred do not cease to exist, or to be reproduced. The recurrence, therefore, of the same coincidence more than once, or even its frequent recurrence, does not prove that it is an instance of any law; does not prove that it is not casual, or, in common language, the effect of chance.And yet, when a coincidence can not be deduced from known laws, nor proved by experiment to be itself a case of causation, the frequency of its occurrence is the only evidence from which we can infer that it is the result of a law. Not, however, its absolute frequency. The question is not whether the coincidence occurs often or seldom, in the ordinary sense of those terms; but whether it occurs more often than chance will account for; more often than might rationally be expected if the coincidence were casual. We have to decide, therefore, what degree of frequency in a coincidence chance will account for; and to this there can be no general answer. We can only state the principle by which the answer must be determined; the answer itself will be different in every different case.Suppose that one of the phenomena, A, exists always, and the other phenomenon, B, only occasionally; it follows that every instance of B will be an instance of its coincidence with A, and yet the coincidence will be merely casual, not the result of any connection between them. The fixed stars have been constantly in existence since the beginning of human experience, and all phenomena that have come under human observation have, in every single instance, co-existed with them; yet this coincidence, though equally invariable with that which exists between any of those phenomena and its own cause, does not prove that the stars are its cause, nor that they are in anywise connected with it. As strong a case of coincidence, therefore, as can possibly exist, and a much stronger one in point of mere frequency than most of those which prove laws, does not here prove a law; why? because, since the stars exist always, theymustco-exist with every other phenomenon, whether connected with them by causation or not. The uniformity, great though it be, is no greater than would occur on the supposition that no such connection exists.On the other hand, suppose that we were inquiring whether there be any connection between rain and any particular wind. Rain, we know, occasionally occurs with every wind; therefore, the connection, if it exists, can not be an actual law; but still rain may be connected with some particular wind through causation; that is, though they can not be always effects of the same cause (for if so they would regularly co-exist), there may be some causes common to the two, so that in so far as either is produced by those common causes, they will, from the laws of the causes, be found to co-exist. How, then, shall we ascertain this? The obvious answer is, by observing whether rain occurs with one wind more frequently than with any other. That, however, is not enough; for perhaps that one wind blows more frequently than any other; so that its blowing more frequently in rainy weather is no more than would happen, although it had no connection with the causes of rain, provided it were not connected with causes adverse to rain. In England, westerly winds blow during about twice as great a portion of the year as easterly. If, therefore, it rains only twice as often with a westerly as with an easterly wind, we have no reason to infer that any law of nature is concerned in the coincidence. If it rains more than twice[pg 375]as often, we may be sure that some law is concerned; either there is some cause in nature which, in this climate, tends to produce both rain and a westerly wind, or a westerly wind has itself some tendency to produce rain. But if it rains less than twice as often, we may draw a directly opposite inference: the one, instead of being a cause, or connected with causes of the other, must be connected with causes adverse to it, or with the absence of some cause which produces it; and though it may still rain much oftener with a westerly wind than with an easterly, so far would this be from proving any connection between the phenomena, that the connection proved would be between rain and an easterly wind, to which, in mere frequency of coincidence, it is less allied.Here, then, are two examples: in one, the greatest possible frequency of coincidence, with no instance whatever to the contrary, does not prove that there is any law; in the other, a much less frequency of coincidence, even when non-coincidence is still more frequent, does prove that there is a law. In both cases the principle is the same. In both we consider the positive frequency of the phenomena themselves, and how great frequency of coincidence that must of itself bring about, without supposing any connection between them, provided there be no repugnance; provided neither be connected with any cause tending to frustrate the other. If we find a greater frequency of coincidence than this, we conclude that there is some connection; if a less frequency, that there is some repugnance. In the former case, we conclude that one of the phenomena can under some circumstances cause the other, or that there exists something capable of causing them both; in the latter, that one of them, or some cause which produces one of them, is capable of counteracting the production of the other. We have thus to deduct from the observed frequency of coincidence as much as may be the effect of chance, that is, of the mere frequency of the phenomena themselves; and if any thing remains, what does remain is the residual fact which proves the existence of a law.The frequency of the phenomena can only be ascertained within definite limits of space and time; depending as it does on the quantity and distribution of the primeval natural agents, of which we can know nothing beyond the boundaries of human observation, since no law, no regularity, can be traced in it, enabling us to infer the unknown from the known. But for the present purpose this is no disadvantage, the question being confined within the same limits as the data. The coincidences occurred in certain places and times, and within those we can estimate the frequency with which such coincidences would be produced by chance. If, then, we find from observation that A exists in one case out of every two, and B in one case out of every three; then, if there be neither connection nor repugnance between them, or between any of their causes, the instances in which A and B will both exist, that is to say will co-exist, will be one case in every six. For A exists in three cases out of six; and B, existing in one case out of every three without regard to the presence or absence of A, will exist in one case out of those three. There will therefore be, of the whole number of cases, two in which A exists without B; one case of B without A; two in which neither B nor A exists, and one case out of six in which they both exist. If, then, in point of fact, they are found to co-exist oftener than in one case out of six; and, consequently, A does not exist without B so often as twice in three times, nor B without A so often as once in every twice, there is some cause in existence which tends to produce a conjunction between A and B.[pg 376]Generalizing the result, we may say that if A occurs in a larger proportion of the cases where B is than of the cases where B is not, then will B also occur in a larger proportion of the cases where A is than of the cases where A is not; and there is some connection, through causation, between A and B. If we could ascend to the causes of the two phenomena, we should find, at some stage, either proximate or remote, some cause or causes common to both; and if we could ascertain what these are, we could frame a generalization which would be true without restriction of place or time; but until we can do so, the fact of a connection between the two phenomena remains an empirical law.§ 3. Having considered in what manner it may be determined whether any given conjunction of phenomena is casual, or the result of some law, to complete the theory of chance it is necessary that we should now consider those effects which are partly the result of chance and partly of law, or, in other words, in which the effects of casual conjunctions of causes are habitually blended in one result with the effects of a constant cause.This is a case of Composition of Causes; and the peculiarity of it is, that instead of two or more causes intermixing their effects in a regular manner with those of one another, we have now one constant cause, producing an effect which is successively modified by a series of variable causes. Thus, as summer advances, the approach of the sun to a vertical position tends to produce a constant increase of temperature; but with this effect of a constant cause, there are blended the effects of many variable causes, winds, clouds, evaporation, electric agencies and the like, so that the temperature of any given day depends in part on these fleeting causes, and only in part on the constant cause. If the effect of the constant cause is always accompanied and disguised by effects of variable causes, it is impossible to ascertain the law of the constant cause in the ordinary manner by separating it from all other causes and observing it apart. Hence arises the necessity of an additional rule of experimental inquiry.When the action of a cause A is liable to be interfered with, not steadily by the same cause or causes, but by different causes at different times, and when these are so frequent, or so indeterminate, that we can not possibly exclude all of them from any experiment, though we may vary them; our resource is, to endeavor to ascertain what is the effect of all the variable causes taken together. In order to do this, we make as many trials as possible, preserving A invariable. The results of these different trials will naturally be different, since the indeterminate modifying causes are different in each; if, then, we do not find these results to be progressive, but, on the contrary, to oscillate about a certain point, one experiment giving a result a little greater, another a little less, one a result tending a little more in one direction, another a little more in the contrary direction; while the average or middle point does not vary, but different sets of experiments (taken in as great a variety of circumstances as possible) yield the same mean, provided only they be sufficiently numerous; then that mean, or average result, is the part, in each experiment, which is due to the cause A, and is the effect which would have been obtained if A could have acted alone; the variable remainder is the effect of chance, that is, of causes the co-existence of which with the cause A was merely casual. The test of the sufficiency of the induction in this case is, when any increase of the number of trials from which the average is struck does not materially alter the average.[pg 377]This kind of elimination, in which we do not eliminate any one assignable cause, but the multitude of floating unassignable ones, may be termed the Elimination of Chance. We afford an example of it when we repeat an experiment, in order, by taking the mean of different results, to get rid of the effects of the unavoidable errors of each individual experiment. When there is no permanent cause, such as would produce a tendency to error peculiarly in one direction, we are warranted by experience in assuming that the errors on one side will, in a certain number of experiments, about balance the errors on the contrary side. We therefore repeat the experiment, until any change which is produced in the average of the whole by further repetition, falls within limits of error consistent with the degree of accuracy required by the purpose we have in view.175§ 4. In the supposition hitherto made, the effect of the constant cause A has been assumed to form so great and conspicuous a part of the general result, that its existence never could be a matter of uncertainty, and the object of the eliminating process was only to ascertainhow muchis attributable to that cause; what is its exact law. Cases, however, occur in which the effect of a constant cause is so small, compared with that of some of the changeable causes with which it is liable to be casually conjoined, that of itself it escapes notice, and the very existence of any effect arising from a constant cause is first learned by the process which in general serves only for ascertaining the quantity of that effect. This case of induction may be characterized as follows: A given effect is known to be chiefly, and not known not to be wholly, determined by changeable causes. If it be wholly so produced, then if the aggregate be taken of a sufficient number of instances, the effects of these different causes will cancel one another. If, therefore, we do not find this to be the case, but, on the contrary, after such a number of trials has been made that no further increase alters the average result, we find that average to be, not zero, but some other quantity, about which, though small in comparison with the total effect, the effect nevertheless oscillates, and which is the middle point in its oscillation; we may conclude this to be the effect of some constant cause; which cause, by some of the methods already treated of, we may hope to detect. This may be calledthe discovery of a residual phenomenon by eliminating the effects of chance.It is in this manner, for example, that loaded dice may be discovered. Of course no dice are so clumsily loaded that they must always throw certain numbers; otherwise the fraud would be instantly detected. The loading, a constant cause, mingles with the changeable causes which determine what cast will be thrown in each individual instance. If the dice were not[pg 378]loaded, and the throw were left to depend entirely on the changeable causes, these in a sufficient number of instances would balance one another, and there would be no preponderant number of throws of any one kind. If, therefore, after such a number of trials that no further increase of their number has any material effect upon the average, we find a preponderance in favor of a particular throw; we may conclude with assurance that there is some constant cause acting in favor of that throw, or, in other words, that the dice are not fair; and the exact amount of the unfairness. In a similar manner, what is called the diurnal variation of the barometer, which is very small compared with the variations arising from the irregular changes in the state of the atmosphere, was discovered by comparing the average height of the barometer at different hours of the day. When this comparison was made, it was found that there was a small difference, which on the average was constant, however the absolute quantities might vary, and which difference, therefore, must be the effect of a constant cause. This cause was afterward ascertained, deductively, to be the rarefaction of the air, occasioned by the increase of temperature as the day advances.§ 5. After these general remarks on the nature of chance, we are prepared to consider in what manner assurance may be obtained that a conjunction between two phenomena, which has been observed a certain number of times, is not casual, but a result of causation, and to be received, therefore, as one of the uniformities of nature, though (until accounted fora priori) only as an empirical law.We will suppose the strongest case, namely, that the phenomenon B has never been observed except in conjunction with A. Even then, the probability that they are connected is not measured by the total number of instances in which they have been found together, but by the excess of that number above the number due to the absolutely frequency of A. If, for example, A exists always, and therefore co-exists with every thing, no number of instances of its co-existence with B would prove a connection; as in our example of the fixed stars. If A be a fact of such common occurrence that it may be presumed to be present in half of all the cases that occur, and therefore in half the cases in which B occurs, it is only the proportional excess above half that is to be reckoned as evidence toward proving a connection between A and B.In addition to the question, What is the number of coincidences which, on an average of a great multitude of trials, may be expected to arise from chance alone? there is also another question, namely, Of what extent of deviation from that average is the occurrence credible, from chance alone, in some number of instances smaller than that required for striking a fair average? It is not only to be considered what is the general result of the chances in the long run, but also what are the extreme limits of variation from the general result, which may occasionally be expected as the result of some smaller number of instances.The consideration of the latter question, and any consideration of the former beyond that already given to it, belong to what mathematicians term the doctrine of chances, or, in a phrase of greater pretension, the Theory of Probabilities.

§ 1. Considering, then, as empirical laws only those observed uniformities respecting which the question whether they are laws of causation must remain undecided until they can be explained deductively, or until some means are found of applying the Method of Difference to the case, it has been shown in the preceding chapter that until a uniformity can, in one or the other of these modes, be taken out of the class of empirical laws, and brought either into that of laws of causation or of the demonstrated results of laws of causation, it can not with any assurance be pronounced true beyond the local and other limits within which it has been found so by actual observation. It remains to consider how we are to assure ourselves of its truth even within those limits; after what quantity of experience a generalization which rests solely on the Method of Agreement can be considered sufficiently established, even as an empirical law. In a former chapter, when treating of the Methods of Direct Induction, we expressly reserved this question,174and the time is now come for endeavoring to solve it.

We found that the Method of Agreement has the defect of not proving causation, and can, therefore, only be employed for the ascertainment of empirical laws. But we also found that besides this deficiency, it labors under a characteristic imperfection, tending to render uncertain even such conclusions as it is in itself adapted to prove. This imperfection arises from Plurality of Causes. Although two or more cases in which the phenomenonahas been met with may have no common antecedent except A, this does not prove that there is any connection betweenaand A, sinceamay have many causes, and may have been produced, in these different instances, not by any thing which the instances had in common, but by some of those elements in them which were different. We nevertheless[pg 373]observed, that in proportion to the multiplication of instances pointing to A as the antecedent, the characteristic uncertainty of the method diminishes, and the existence of a law of connection between A andamore nearly approaches to certainty. It is now to be determined after what amount of experience this certainty may be deemed to be practically attained, and the connection between A andamay be received as an empirical law.

This question may be otherwise stated in more familiar terms: After how many and what sort of instances may it be concluded that an observed coincidence between two phenomena is not the effect of chance?

It is of the utmost importance for understanding the logic of induction, that we should form a distinct conception of what is meant by chance, and how the phenomena which common language ascribes to that abstraction are really produced.

§ 2. Chance is usually spoken of in direct antithesis to law; whatever, it is supposed, can not be ascribed to any law is attributed to chance. It is, however, certain that whatever happens is the result of some law; is an effect of causes, and could have been predicted from a knowledge of the existence of those causes, and from their laws. If I turn up a particular card, that is a consequence of its place in the pack. Its place in the pack was a consequence of the manner in which the cards were shuffled, or of the order in which they were played in the last game; which, again, were effects of prior causes. At every stage, if we had possessed an accurate knowledge of the causes in existence, it would have been abstractedly possible to foretell the effect.

An event occurring by chance may be better described as a coincidence from which we have no ground to infer a uniformity—the occurrence of a phenomenon in certain circumstances, without our having reason on that account to infer that it will happen again in those circumstances. This, however, when looked closely into, implies that the enumeration of the circumstances is not complete. Whatever the fact be, since it has occurred once, we may be sure that ifallthe same circumstances were repeated it would occur again; and not only if all, but there is some particular portion of those circumstances on which the phenomenon is invariably consequent. With most of them, however, it is not connected in any permanent manner; its conjunction with those is said to be the effect of chance, to be merely casual. Facts casually conjoined are separately the effects of causes, and therefore of laws; but of different causes, and causes not connected by any law.

It is incorrect, then, to say that any phenomenon is produced by chance; but we may say that two or more phenomena are conjoined by chance, that they co-exist or succeed one another only by chance; meaning that they are in no way related through causation; that they are neither cause and effect, nor effects of the same cause, nor effects of causes between which there subsists any law of co-existence, nor even effects of the same collocation of primeval causes.

If the same casual coincidence never occurred a second time, we should have an easy test for distinguishing such from the coincidences which are the results of a law. As long as the phenomena had been found together only once, so long, unless we knew some more general laws from which the coincidence might have resulted, we could not distinguish it from a casual one; but if it occurred twice, we should know that the phenomena so conjoined must be in some way connected through their causes.

There is, however, no such test. A coincidence may occur again and again, and yet be only casual. Nay, it would be inconsistent with what we know of the order of nature to doubt that every casual coincidence will sooner or later be repeated, as long as the phenomena between which it occurred do not cease to exist, or to be reproduced. The recurrence, therefore, of the same coincidence more than once, or even its frequent recurrence, does not prove that it is an instance of any law; does not prove that it is not casual, or, in common language, the effect of chance.

And yet, when a coincidence can not be deduced from known laws, nor proved by experiment to be itself a case of causation, the frequency of its occurrence is the only evidence from which we can infer that it is the result of a law. Not, however, its absolute frequency. The question is not whether the coincidence occurs often or seldom, in the ordinary sense of those terms; but whether it occurs more often than chance will account for; more often than might rationally be expected if the coincidence were casual. We have to decide, therefore, what degree of frequency in a coincidence chance will account for; and to this there can be no general answer. We can only state the principle by which the answer must be determined; the answer itself will be different in every different case.

Suppose that one of the phenomena, A, exists always, and the other phenomenon, B, only occasionally; it follows that every instance of B will be an instance of its coincidence with A, and yet the coincidence will be merely casual, not the result of any connection between them. The fixed stars have been constantly in existence since the beginning of human experience, and all phenomena that have come under human observation have, in every single instance, co-existed with them; yet this coincidence, though equally invariable with that which exists between any of those phenomena and its own cause, does not prove that the stars are its cause, nor that they are in anywise connected with it. As strong a case of coincidence, therefore, as can possibly exist, and a much stronger one in point of mere frequency than most of those which prove laws, does not here prove a law; why? because, since the stars exist always, theymustco-exist with every other phenomenon, whether connected with them by causation or not. The uniformity, great though it be, is no greater than would occur on the supposition that no such connection exists.

On the other hand, suppose that we were inquiring whether there be any connection between rain and any particular wind. Rain, we know, occasionally occurs with every wind; therefore, the connection, if it exists, can not be an actual law; but still rain may be connected with some particular wind through causation; that is, though they can not be always effects of the same cause (for if so they would regularly co-exist), there may be some causes common to the two, so that in so far as either is produced by those common causes, they will, from the laws of the causes, be found to co-exist. How, then, shall we ascertain this? The obvious answer is, by observing whether rain occurs with one wind more frequently than with any other. That, however, is not enough; for perhaps that one wind blows more frequently than any other; so that its blowing more frequently in rainy weather is no more than would happen, although it had no connection with the causes of rain, provided it were not connected with causes adverse to rain. In England, westerly winds blow during about twice as great a portion of the year as easterly. If, therefore, it rains only twice as often with a westerly as with an easterly wind, we have no reason to infer that any law of nature is concerned in the coincidence. If it rains more than twice[pg 375]as often, we may be sure that some law is concerned; either there is some cause in nature which, in this climate, tends to produce both rain and a westerly wind, or a westerly wind has itself some tendency to produce rain. But if it rains less than twice as often, we may draw a directly opposite inference: the one, instead of being a cause, or connected with causes of the other, must be connected with causes adverse to it, or with the absence of some cause which produces it; and though it may still rain much oftener with a westerly wind than with an easterly, so far would this be from proving any connection between the phenomena, that the connection proved would be between rain and an easterly wind, to which, in mere frequency of coincidence, it is less allied.

Here, then, are two examples: in one, the greatest possible frequency of coincidence, with no instance whatever to the contrary, does not prove that there is any law; in the other, a much less frequency of coincidence, even when non-coincidence is still more frequent, does prove that there is a law. In both cases the principle is the same. In both we consider the positive frequency of the phenomena themselves, and how great frequency of coincidence that must of itself bring about, without supposing any connection between them, provided there be no repugnance; provided neither be connected with any cause tending to frustrate the other. If we find a greater frequency of coincidence than this, we conclude that there is some connection; if a less frequency, that there is some repugnance. In the former case, we conclude that one of the phenomena can under some circumstances cause the other, or that there exists something capable of causing them both; in the latter, that one of them, or some cause which produces one of them, is capable of counteracting the production of the other. We have thus to deduct from the observed frequency of coincidence as much as may be the effect of chance, that is, of the mere frequency of the phenomena themselves; and if any thing remains, what does remain is the residual fact which proves the existence of a law.

The frequency of the phenomena can only be ascertained within definite limits of space and time; depending as it does on the quantity and distribution of the primeval natural agents, of which we can know nothing beyond the boundaries of human observation, since no law, no regularity, can be traced in it, enabling us to infer the unknown from the known. But for the present purpose this is no disadvantage, the question being confined within the same limits as the data. The coincidences occurred in certain places and times, and within those we can estimate the frequency with which such coincidences would be produced by chance. If, then, we find from observation that A exists in one case out of every two, and B in one case out of every three; then, if there be neither connection nor repugnance between them, or between any of their causes, the instances in which A and B will both exist, that is to say will co-exist, will be one case in every six. For A exists in three cases out of six; and B, existing in one case out of every three without regard to the presence or absence of A, will exist in one case out of those three. There will therefore be, of the whole number of cases, two in which A exists without B; one case of B without A; two in which neither B nor A exists, and one case out of six in which they both exist. If, then, in point of fact, they are found to co-exist oftener than in one case out of six; and, consequently, A does not exist without B so often as twice in three times, nor B without A so often as once in every twice, there is some cause in existence which tends to produce a conjunction between A and B.

Generalizing the result, we may say that if A occurs in a larger proportion of the cases where B is than of the cases where B is not, then will B also occur in a larger proportion of the cases where A is than of the cases where A is not; and there is some connection, through causation, between A and B. If we could ascend to the causes of the two phenomena, we should find, at some stage, either proximate or remote, some cause or causes common to both; and if we could ascertain what these are, we could frame a generalization which would be true without restriction of place or time; but until we can do so, the fact of a connection between the two phenomena remains an empirical law.

§ 3. Having considered in what manner it may be determined whether any given conjunction of phenomena is casual, or the result of some law, to complete the theory of chance it is necessary that we should now consider those effects which are partly the result of chance and partly of law, or, in other words, in which the effects of casual conjunctions of causes are habitually blended in one result with the effects of a constant cause.

This is a case of Composition of Causes; and the peculiarity of it is, that instead of two or more causes intermixing their effects in a regular manner with those of one another, we have now one constant cause, producing an effect which is successively modified by a series of variable causes. Thus, as summer advances, the approach of the sun to a vertical position tends to produce a constant increase of temperature; but with this effect of a constant cause, there are blended the effects of many variable causes, winds, clouds, evaporation, electric agencies and the like, so that the temperature of any given day depends in part on these fleeting causes, and only in part on the constant cause. If the effect of the constant cause is always accompanied and disguised by effects of variable causes, it is impossible to ascertain the law of the constant cause in the ordinary manner by separating it from all other causes and observing it apart. Hence arises the necessity of an additional rule of experimental inquiry.

When the action of a cause A is liable to be interfered with, not steadily by the same cause or causes, but by different causes at different times, and when these are so frequent, or so indeterminate, that we can not possibly exclude all of them from any experiment, though we may vary them; our resource is, to endeavor to ascertain what is the effect of all the variable causes taken together. In order to do this, we make as many trials as possible, preserving A invariable. The results of these different trials will naturally be different, since the indeterminate modifying causes are different in each; if, then, we do not find these results to be progressive, but, on the contrary, to oscillate about a certain point, one experiment giving a result a little greater, another a little less, one a result tending a little more in one direction, another a little more in the contrary direction; while the average or middle point does not vary, but different sets of experiments (taken in as great a variety of circumstances as possible) yield the same mean, provided only they be sufficiently numerous; then that mean, or average result, is the part, in each experiment, which is due to the cause A, and is the effect which would have been obtained if A could have acted alone; the variable remainder is the effect of chance, that is, of causes the co-existence of which with the cause A was merely casual. The test of the sufficiency of the induction in this case is, when any increase of the number of trials from which the average is struck does not materially alter the average.

This kind of elimination, in which we do not eliminate any one assignable cause, but the multitude of floating unassignable ones, may be termed the Elimination of Chance. We afford an example of it when we repeat an experiment, in order, by taking the mean of different results, to get rid of the effects of the unavoidable errors of each individual experiment. When there is no permanent cause, such as would produce a tendency to error peculiarly in one direction, we are warranted by experience in assuming that the errors on one side will, in a certain number of experiments, about balance the errors on the contrary side. We therefore repeat the experiment, until any change which is produced in the average of the whole by further repetition, falls within limits of error consistent with the degree of accuracy required by the purpose we have in view.175

§ 4. In the supposition hitherto made, the effect of the constant cause A has been assumed to form so great and conspicuous a part of the general result, that its existence never could be a matter of uncertainty, and the object of the eliminating process was only to ascertainhow muchis attributable to that cause; what is its exact law. Cases, however, occur in which the effect of a constant cause is so small, compared with that of some of the changeable causes with which it is liable to be casually conjoined, that of itself it escapes notice, and the very existence of any effect arising from a constant cause is first learned by the process which in general serves only for ascertaining the quantity of that effect. This case of induction may be characterized as follows: A given effect is known to be chiefly, and not known not to be wholly, determined by changeable causes. If it be wholly so produced, then if the aggregate be taken of a sufficient number of instances, the effects of these different causes will cancel one another. If, therefore, we do not find this to be the case, but, on the contrary, after such a number of trials has been made that no further increase alters the average result, we find that average to be, not zero, but some other quantity, about which, though small in comparison with the total effect, the effect nevertheless oscillates, and which is the middle point in its oscillation; we may conclude this to be the effect of some constant cause; which cause, by some of the methods already treated of, we may hope to detect. This may be calledthe discovery of a residual phenomenon by eliminating the effects of chance.

It is in this manner, for example, that loaded dice may be discovered. Of course no dice are so clumsily loaded that they must always throw certain numbers; otherwise the fraud would be instantly detected. The loading, a constant cause, mingles with the changeable causes which determine what cast will be thrown in each individual instance. If the dice were not[pg 378]loaded, and the throw were left to depend entirely on the changeable causes, these in a sufficient number of instances would balance one another, and there would be no preponderant number of throws of any one kind. If, therefore, after such a number of trials that no further increase of their number has any material effect upon the average, we find a preponderance in favor of a particular throw; we may conclude with assurance that there is some constant cause acting in favor of that throw, or, in other words, that the dice are not fair; and the exact amount of the unfairness. In a similar manner, what is called the diurnal variation of the barometer, which is very small compared with the variations arising from the irregular changes in the state of the atmosphere, was discovered by comparing the average height of the barometer at different hours of the day. When this comparison was made, it was found that there was a small difference, which on the average was constant, however the absolute quantities might vary, and which difference, therefore, must be the effect of a constant cause. This cause was afterward ascertained, deductively, to be the rarefaction of the air, occasioned by the increase of temperature as the day advances.

§ 5. After these general remarks on the nature of chance, we are prepared to consider in what manner assurance may be obtained that a conjunction between two phenomena, which has been observed a certain number of times, is not casual, but a result of causation, and to be received, therefore, as one of the uniformities of nature, though (until accounted fora priori) only as an empirical law.

We will suppose the strongest case, namely, that the phenomenon B has never been observed except in conjunction with A. Even then, the probability that they are connected is not measured by the total number of instances in which they have been found together, but by the excess of that number above the number due to the absolutely frequency of A. If, for example, A exists always, and therefore co-exists with every thing, no number of instances of its co-existence with B would prove a connection; as in our example of the fixed stars. If A be a fact of such common occurrence that it may be presumed to be present in half of all the cases that occur, and therefore in half the cases in which B occurs, it is only the proportional excess above half that is to be reckoned as evidence toward proving a connection between A and B.

In addition to the question, What is the number of coincidences which, on an average of a great multitude of trials, may be expected to arise from chance alone? there is also another question, namely, Of what extent of deviation from that average is the occurrence credible, from chance alone, in some number of instances smaller than that required for striking a fair average? It is not only to be considered what is the general result of the chances in the long run, but also what are the extreme limits of variation from the general result, which may occasionally be expected as the result of some smaller number of instances.

The consideration of the latter question, and any consideration of the former beyond that already given to it, belong to what mathematicians term the doctrine of chances, or, in a phrase of greater pretension, the Theory of Probabilities.


Back to IndexNext