Desault has cured, at the Hotel-Dieu, a vast number of fractures of the os femoris, without the least remaining deformity, and there are but few of his pupils who have not witnessed his success, some instances of which will be cited in this memoir.
20. It is, above all, from the well combined use of these two means, the extension and compression of the muscles, that that success was derived. The advantage of extension, in diminishing muscular force, is evident, particularly in the reduction of certain luxations, those of the humerus, for example, where we are frequently unable to succeed, till after having extended the muscles for a longer or shorter time.
Fractures of the rotula and of the olecranon, prove equally the utility of compression in effecting the same purpose; for, when the muscles are not compressed by a bandage, they draw the fragment upwards with a double and even treble force.
21. Accidents relating to complications of the fracture, such as splinters, wounds, &c. are to be classed with compound fractures in general, and cannot be treated of in this place.
§ V.
22. Two great indications enter into the treatment of fractures in general, and of that of the os femoris in particular; namely, to bring the fragments into proper contact, and to maintain them so. Let us examine each of these in all their details.
Hippocrates, and every practitioner since his time, have replaced the fragments by what they call extension, counter-extension, and coaptation.23This threefold method, though sanctioned by long usage, and rendered almost venerable by age, is by no means necessary at all times in practice, as will presently be observed. Previously to having recourse to it, it is necessary to place the patient in a suitable position. But this position varies: most of the moderns adopt, after the example of the ancients, a horizontal position: so that the thigh may be extended on the body, and the leg on the thigh. This is the common practice at present in France.
23. Pott imagined, on the contrary, that if the lower extremity were kept in a half-bent position, the muscles, being more relaxed, would offer less resistanceto the efforts of the extension: he, therefore, proposed to bend the leg on the thigh, and the thigh on the pelvis, and to lay the patient on his side, a position, which, when first employed in reduction, was to be continued throughout the treatment, during which it would render the causes of displacement less active (10...15). Bell adopted this method, which indeed appears to be generally in use in England.
24. But the difficulty of making extension and counter-extension, with the limb thus situated, the necessity of making them on the fractured bone itself, and not on a part distant from the fracture, such as the lower part of the leg; the impossibility of comparing the diseased thigh with the sound one, to judge of the regularity of the conformation; the uneasiness occasioned by this position, if long continued, though it may at first appear the most natural; the troublesome and painful pressure of the body on the great trochanter of the affected side; the derangements to which the fragments are exposed when the patient goes to stool; the difficulty of fixing the leg with sufficient steadiness, to prevent it from affecting the os femoris by its motions; the evident impracticability of this method, when both thighs are broken; and, finally, experience, which, in France, has been by no means favourable to the position recommended by Pott: such were the considerations, which determined Desault to have recourse to it no more, after having tried it on two patients, in one of whom the limb was considerably shortened, notwithstanding the most scrupulous attentions.
25. Besides, all that is gained by the relaxation of some muscles, is lost, by the tension of several others. The knee cannot be bent without the triceps flexor being brought into action; an inconvenience the more serious, as this muscle acts immediately on both fragments. The rectus anterior, though relaxed by the flexion of the thigh, will be thrown into a state of tension by the flexion of the leg. The muscles attached posteriorly to the upper fragment, and even to the superior part of the lower one, will also in certain positions of the limb be rendered tense.
26. Hence it follows, that there can be no just comparison instituted as to the position proper for the limb, between fractures of the upper and those of the lower extremities; that, in the latter, the method pursued by the English surgeons presents an aggregate or general amount of inconveniences so great as to overbalance that of its advantages; and, that the position directed by Hippocrates and the other Greek physicians (22) ought to be adopted.
27. Having determined on the position, the operator proceeds to extension and counter-extension, which are to be made first in the direction of the limb as deformed or altered by the fracture, but must be changed afterwards according to the natural direction of the thigh. I need not here repeat the directions for this double operation: common to all fractures, they contain nothing particular, in relation to that of the thigh. But, on what part should extension be made? Petit, Heister, Duverney, and all their predecessors, recommend to apply the means or powers for making extension above the knee; a preceptwhich is still to be found in the surgical department of the Encyclopedia. A strap surrounding the lower part of the thigh, aided by another placed at the ancle, serves, in this respect, to draw the inferior fragment downward.
28. Dupouy was the first to remark, that this practice rendered it necessary to employ great force, and that it would be better to make extension only on the foot. To this consideration Fabre added that of the inconvenience of the pressure made on the muscles, a pressure which, by irritating them and making them contract, multiplies the obstacles to the reduction.
Desault adopted their doctrine, from nearly the same views of the subject, introduced it into the Hotel-Dieu, and the success which attended it, in his practice, contributed not a little to bring it into general use.
29. For the purpose of making extension, he used the foot as a lever of the first kind. The two hands of an assistant, grasping it in such a manner, as to make the fingers cross on the back of it, while the thumbs, also crossing each other, corresponded to the sole, represented the power; the articulation represented the centre of motion, or fulcrum, and the leg together with the lower fragment, the resistance. The requisite motion was then communicated to the foot, and in that way was the extension effected. This mode is more advantageous than that usually employed, where the hands are applied to the lower extremity of the leg; for the force of the extending power is generally in the inverse ratio of its distance from the resistance intended to be overcome.
30. What I have said of extension (28), applies also to counter-extension. The strap, which was formerly placed for this purpose in the groin of the affected side, by compressing the adductores, and the rectus internus, produced in them a contraction, which, by drawing the lower fragment towards the pelvis, opposed obstacles to the reduction, which are seldom experienced, when, like Desault, the surgeon contents himself with having the trunk held by assistants, either exclusively at the hips, or both at the hips and under the arm-pits. The resistance being always easily overcome in this affection, renders it unnecessary to have recourse to more powerful means.
31. Hippocrates advises, in fractures of the os femoris, to aid extension by coaptation, performed with the hand. All practitioners, since his time, have added this third manœuvre or process to the two first, namely, extension and counter-extension. But, what effect can the hands produce, in most cases, on the bone through the thick covering of the soft parts? Are we able to communicate to it through such a mass whatever lateral movement we please? Being quite lost in the intervening soft parts, will our efforts reach the bone, in the direction which we give them? The muscles bring the fragments into contact, much better than we can, as soon as extension has removed their overlapping. Indeed, if well executed extension makes the lower fragment return along the same track which it pursued in becoming displaced, it will then be inevitably brought into contact with the upper one by the contraction of the muscles. Besides, inmost oblique fractures, is it not evident, that the lower fragment must be made to slide from above downward, on the inclined plain presented by the upper one, and on which it has slided from below upward, in becoming displaced? Is it while extension is making that coaptation ought to be performed? Certainly not: because, if the extension be well directed, an attempt at coaptation will derange it; and if it be not well directed, its course ought to be changed. Is it after extension is finished that recourse ought to be had to coaptation? By no means: because if there be then any remains of deformity, it must be owing to extension having been improperly directed. The remedy, therefore, is, to renew the extension, and direct it properly.
32. Hence, it follows, in general, that coaptation is here a feeble assistant towards reduction; that if it renders any service, it is only in cases of displacement laterally, or in the direction of the cross-diameter of the bone; and that it is by giving the proper direction to extension, by managing it according to the disposition of the muscles, and by knowing when to augment and when to slacken it, that the fragments are brought into regular contact.
33. If the inferior fragment has experienced a rotatory motion on its own axis outwards or inwards (18), the assistant ought, in making extension, to turn the limb very gradually in the opposite direction.
34. Extension was formerly attended with difficulties, which are rarely met with at the present day. Oftentimes, if we give credit to authors, it was altogether useless to endeavour, in the first instance, toreduce the fracture, and restore the limb to its natural length, as the contraction of the muscles rendered the operation absolutely impracticable. Hence, applications of a soothing and sedative nature were employed, previously to an attempt at reduction. The following circumstances have been assigned as the cause of these difficulties. The upper strap, irritating and drawing upwards the adductores and the rectus internus, drew the lower fragment in the same direction, while the semi-tendinosus, semi-membranosus, biceps, &c. being drawn downwards by the lower strap applied over them, drew the pelvis also downwards, and, consequently, the superior fragment connected with it. From this double action arose a double motion directly opposed to that which ought to be produced by extension.
35. There are still cases, where the muscles, in consequence of being irritated by projections or points of bone, by the efforts of the assistants, and by a morbid state of the nerves, increase their contraction to such a pitch that no practicable force can bring the fragments into apposition. What means are then to be employed? All those, in general, that diminish irritability, varied according to circumstances, such as diet, venesection, &c. In such cases, Desault obtained the most happy effects, by placing the limb in a state of continued extension; fatigued by the permanent tension in which they are thus kept, the muscles relax by degrees; their force diminishes; at length they yield, and the reduction is accomplished.
§ VI.
36. The mere reduction of a fracture of the os femoris, is but one step towards the cure. In this, more than in the fracture of any other bone, causes which act incessantly (13) tend to subvert the momentary work of art; it is here, then, in particular, that means ought to be devised for maintaining this work. But, the first of these means is a suitable position of the limb. I have already mentioned the inconveniences that result, both as to the reduction and subsequent treatment, from that proposed by Pott (24...26). The patient must, then, be laid horizontally on a plain exactly even, and not capable of being affected or rendered uneven by the weight of the body. Instead of feather beds generally used in other cases at the Hotel-Dieu, Desault, in cases of fractures, substituted firm and hard mattresses, which, not sinking in the least, by the pressure of the body, give no cause to apprehend those continual displacements, to which a soft bed exposes the patient. These mattresses supersede the advice of certain authors who direct a plank to be placed under the patient.
37. The second means, not less efficacious than the first, consist in the forms of apparatus, in which the limb is placed, and which, being differently modified according to the fancies of their different authors, present us with an assemblage of various splints, compresses, &c. To appreciate, with accuracy and correctness, the advantage and disadvantage of these, let us first unfold the curative indications which they ought to fulfil; we will then compare their mode of action with these indications, from whence will result, as necessary inferences, the object of our research.
38. The intention of every form of apparatus being, to prevent the displacement of the fragments, the causes of this displacement ought to be the basis or foundation of its mechanism and construction. But these causes in the present case are, 1st, the muscular action drawing the inferior fragment upwards (10); 2dly, the weight of the body pushing the superior fragment downwards (14); whence every form of apparatus intended to keep the os femoris in place when fractured obliquely, ought, 1st, to draw the lower fragment downward and retain it there; 2dly, to draw and retain upwards the superior fragment, and the trunk which bears on its upper end. This principle is applicable generally, and subject only to a few exceptions which I shall notice when treating of transverse fractures, where the displacement is lateral, or in the direction of the cross-diameter of the bone, or where no displacement at all exists. 3dly, The apparatus must also be so constructed as to prevent the rotatory motions of the lower fragment (18), and secure the immobility of the limb, lest by means of some motion being communicated to it, the fragments might be deranged.
§ VII.
39. If to these indications we compare the mode of action of the different pieces that unite in composing our common forms of apparatus which do not make permanent extension, such as common bandages, splints, compresses, bolsters, &c. we will perceive that they are but ill calculated to fulfil them: and first of bandages. Whether the common roller, or the eighteen-tailed bandage be employed, their mode of operation is the same: their only action is, to add a second exterior and artificial covering to the natural cutaneous and aponeurotic covering of the thigh; to press against the fragments the muscles which form for them a kind of natural case intended to keep them in apposition; and to augment, by this pressure, the lateral resistance of the soft parts. By this contrivance, lateral displacements will, in part, be well guarded against, and, in this respect, these bandages are useful in transverse fractures. But what is there in them to prevent the two inclined plains of an oblique fracture from sliding on each other? What provision is there in them to secure the limb from the effects of motions and shocks which may be accidentally impressed on it from without? Will the pelvis be kept steady by them? or will muscular action be sufficiently checked and kept under by them? The force of the muscles will indeed be slightly diminished by means ofcompression; and to make this compression is the principal use of these bandages in oblique fractures. But will mere compression be sufficient to prevent a displacement in the longitudinal direction of the bone, particularly if the rollers be slack, as certain practitioners recommend, on the ground of the fallacious theory of Duhamel, who conceived, that a constriction too tight, would injure the action of the periosteum, which, according to him, is the sole agent in the formation of callus? So much, then, for bandages, whose only use is to prevent, by compression, the swelling of the limb, and to diminish, in some degree, the contraction of the muscles, which they press against the fractured bone.
40. These remarks apply equally well to the use of compresses; which make but a very feeble resistance against a powerful cause, and cannot be considered as any obstacle whatever to displacement. What can be said of those surgeons who, from servile attachment to a particular form of apparatus, do not consider a fracture as reduced, unless a certain quantity of compress secured by a given quantity of roller, be applied on the limb. Servile imitators in an art which calls for genius in its votaries, they are only capable of following, without reflection or judgment, the steps of their predecessors.
41. Bandages will do nearly as much harm as good in fractures of the os femoris, if, as was practised by the ancients, they be formed by a single roller surrounding the limb: in such a case, the limb being necessarily raised up at each time of their reapplication, will be exposed to continual displacements.Hence the ingenious idea of applying to simple fractures of the lower extremities the eighteen-tailed bandage, invented for compound fractures, and by means of which the thigh may be suffered to remain at rest. But to this bandage belongs also an inconvenience. The pieces which compose it, being stitched together, cannot be separated, and if one of them be soiled they must all be changed. Hence the superiority of the bandage of slips, known in former times, and engraved by Scultel, but long since forgotten, till Desault revived the use of it, and adopted it exclusively, both in simple and in compound fractures.
42. Splints of different kinds, which form the second division of the pieces of apparatus, used for fractures of the os femoris, have the advantage of fixing the limb in a solid and firm manner, and securing it from any displacement that might result from jolts, or muscular contraction, arising from the inattention of patients: these prevent, more effectually than bandages, any displacement laterally, and, on this account, their use is sufficient, even without extension, in transverse fractures: they also prevent, particularly if they be made of wood, the rotatory motion of the thigh either outwards or inwards (18). But if the division be oblique, will they prevent the gliding of the fragments over one another, and the consequent shortening of the limb? They can evidently produce this effect in no other way, than by the forcible pressure made by the pieces of apparatus, particularly by the straps or bandages that secure the splints, and then, to make effectual resistance, it would be necessary to apply them with such a degree of tightness aswould endanger the life of the limb. Will splints prevent the trunk from sinking downwards, and pushing the superior fragment before it? Will they prevent the muscles from acting on the lower fragment? Can they, in a word, fulfil all the indications formerly pointed out (28)? Certainly they cannot. Splints, then, are calculated only to prevent displacement in the lateral or cross direction of the bone, and to secure, better than bandages, the immobility of the limb. Whence it follows, that they ought not, in this case, to be confined to the thigh alone, but should extend to the leg, whose movements, if communicated to the os femoris, may derange the contact of the ends of the bone. The neglect of this precaution, contributed formerly not a little to displacement and deformity.
43. In former times a kind of splints was in use, which were made by securing bundles of straw round sticks proportioned in length to the length of the limb to which they were to be applied. But as these, from being of a round or cylindrical form, touched the limb with but a narrow surface, they did not retain the fracture with sufficient firmness. They were, therefore, very properly exchanged for flat and strong wooden splints, (such as Desault used) which retain the fracture much better, in consequence of presenting to the limb a broad surface, and thereby rendering it in some measure immoveable.
44. The bolsters for filling up interstices, being less intended to prevent displacement, (in which respect they are, notwithstanding useful) than to guard the limb from the immediate pressure of the splints, usually consist of several folds of old linen; this is theform adopted at the Hotel-Dieu; but to these Desault preferred small pallets or bags filled with chaff, which, fashioned according to the form and disposition of the limb, may, at the pleasure of the surgeon, be made thicker or thinner, to suit the inequalities of the surface, in consequence of the ease with which the chaff may be moved from one part of the bag to another.
45. From the foregoing examination of the action of bandages and splints, it appears, that the common apparatus, formed by their union, but not calculated to effect a permanent extension, may perhaps answer in cases of transverse fractures, which indeed but rarely occur, but are always insufficient when the division is oblique, because they cannot fulfil the double indication of drawing the inferior fragment down, and retaining the superior one up (38).
§ VIII.
46. By what means then can this indication be effectually fulfilled? By that which will perpetuate, throughout the whole treatment, the action of those means by which reduction was effected; by that which, to the ever active power of the muscles, will oppose a resistance constant in its action; by that which, forming on the exterior of the thigh a kind of artificial muscle, may become an antagonist to the natural muscles of the part, and neutralize their efforts, by acting in a contrary direction, and which, by pushing up the pelvis and retaining it there, mayprevent it from being pushed downward by the weight of the trunk (14). But what other mean than that of permanent extension, unites these advantages? Whatever form of apparatus may be employed to obtain it, it is permanent extension alone that can prevent the displacement, because it alone is founded on principles calculated to meet and obviate the causes by which displacement is produced.
47. The ancients, though less informed than we are respecting the nature of these causes, knew better how to appreciate their effects. All their forms of apparatus made a permanent extension, a measure which has been abandoned by most of the moderns, and regarded, even at present, in France, by a great number of practitioners, as always dangerous, and seldom useful. Let us set in opposition to the vain fears which it inspires, a few thoughts, and much experience.
48. It is from the very object which is proposed to be attained, that the first difficulties arise. What must we think of a limb in a state of preternatural tension, where all the parts being overstretched must experience an uneasiness not to be supported? I answer, that it is not a preternatural elongation that extension produces; on the contrary, being intended to prevent a preternatural shortening, it has for its object to restore the parts to their ordinary state, and to give to the muscles their habitual degree of tension, by opposing such contractions in them as are not habitual: under this point of view, it performs, in relation to the muscles, those very functions which are discharged by the bone itself, when sound and unbroken, as is fully experienced by all patients, when the apparatus is applied. Its use not only does not increase pain, but is alone calculated to diminish it, because, by bringing the fragments into apposition, it prevents the soft parts from being irritated by the points of the bones.
49. Is the swelling of the limb to be dreaded, as some pretend? But whence can this swelling arise? From the over-stretching of the parts? I have already proved that they are not over-stretched. From the pressure of the straps? Perhaps this cause might produce a swelling, if, as formerly, it were applied above the knee; but, by placing it, as Desault did, near to the ancle, by surrounding, with a thick compress, the lower part of the leg, where the straps pass, and by securing the foot with a tight bandage under the straps, if their action be dreaded, this fear must be done away; and, besides, experience, which is the only true test of the dangers of a process, by no means justifies the apprehension. The venæ saphenæ and the absorbents that accompany them, are free from the compression, which bears principally on the tendo Achillis, and the malleoli.
50. What shall we say in reply to the censure thrown on the process of permanent extension, in the memoirs of the academy, where it is charged with having been oftentimes productive of ulceration and even gangrene, in consequence of the pressure of the upper strap? What method can escape censure, if it be unskilfully pursued? What process will not be injurious, if mutilated and ill managed by ignorance or a want of discretion? To represent the thing properly, let us suppose the worst: a circular bandage, in consequence of being drawn too tight, produces mortification in the subjacent parts; must circular bandages be on this account entirely rejected? An unskilful hand, in an operation for cancer, opens the axillary artery; must we therefore cease to search under the arm-pit for schirrous glands?
51. Permanent extension is, say some, insufficient to overcome muscular action; it is opposing to a power equal to 1000, a resistance equal to only 100. But this force of the muscles, which is oftentimes so great at the time of reduction, diminishes gradually, by the pressure of the bandages, by the immobility of the limb, and, above all, by long continued extension; for a continued effort equal to 10, will soon perform what could not be effected by a temporary exertion of a force equal to 100. Let us pass over the more minute objections made against permanent extension, and search among the different modes of performing it, that to which practitioners ought to give a preference.
52. We may throw into two classes the general modes proposed by different authors for effecting permanent extension. Under the one are included those modes requiring simple means, such as straps, splints, &c. while the other embraces such as, from being complex, necessarily call for the use of different machines.
53. In the first class are comprehended:
1st, The method employed in the first instance by the Arabians, adopted afterwards by their successors in medicine, and proposed, at a still later period, by Petit, Heister, and Duverney, and whichconsists in fixing, at the head and foot of the bed, during the whole treatment, straps intended for the purpose of extension.
2dly, The mode of extension, adopted by many practitioners, which consisted in suspending to a strap fixed at the knee, and reflected over some suitable body, a weight proportioned to the power of the cause which it was intended to combat.
3dly, The ingenious idea of Bruninghausen, who, confining by a kind of stirrup, the diseased leg against the sound one, made the latter serve as a splint to retain the fractured limb on its proper line, and thus preserve its natural length.
4thly, Under this class also must we arrange the means employed by Desault, and which we will presently describe.
54. The second class of means invented for the purpose of making permanent extension, in fractures of the thigh, comprehends:
1st, The Glossocome, the bed of Hippocrates,24and other machines, used by the ancients, to effect a reduction, in fractures of the os femoris, and, at the same time, to maintain the reduction, by being left on the limb.
2dly, Numerous machines, invented for the purpose of suspending a weight intended to make extension. These have been differently varied andmodified, more by the imagination than the judgment. Engravings of some of them are to be found in Scultet, Fabricius of Hilden, Pare, &c.
3dly, The machine of Bellocq, proposed to the Academy of Surgery, a description of which is contained in their memoirs, and which possesses an advantage not found in the others, namely, that of taking its point of extension at the lower part of the leg.
4thly, The machine of Nook, surgeon at Norwich, improved by Aitkin, an engraving of which is given by Bell.
5thly, A new Glossocome, published in the works of Manne, and a great number of other machines, the ephemeral offspring of the genius of their authors, the utility of which experience has seldom confirmed, and which were even dead-born in the opinion of practitioners. I barely mention these, because a circumstantial description of them would lead me from my subject.
55. We may discover at a single glance the comparative merits of these two classes of apparatus. Extension produced by simple means, such as straps, splints, &c. (50), may at all times, and under all circumstances, be had recourse to; because the means necessary for making it may always and every where be found. Are we desirous, on the other hand, of having recourse to machines (54)? These are seldom at hand, and oftentimes not to be obtained: the expense attending the purchase of them, prevents most surgeons from procuring them. They no doubt possess the advantage of multiplying forces, and renderingthem more powerful: but, I have already said (51), that a gentle resistance, if long continued, is sufficient to overcome at length the contraction of the muscles, though at first extremely active and energetic.
56. In the first point of view, the first class of means is doubtless preferable to the second. But they both partake generally of the inconvenience of placing the point of extension above the knee. I have already mentioned the effects which this produces with respect to muscular action, at the time of the reduction (28). To the injurious effects there stated may be added the swelling of the limb, arising from the compression made by the straps, the disadvantage of the mobility of the leg, which is not fixed, and the motions of which, being communicated to the thigh, may separate the fragments after they have been brought into apposition. Further, the straps may readily slip down over the knee, and thus leave the fragments subject to the mischievous influence of muscular contraction.
57. To these general disadvantages, add those peculiar to each form of apparatus, which are too tedious to be detailed at present, and you will perceive, that the little success hitherto obtained from continued extension, is owing, not to the nature of the measure itself, but to the manner of employing it, and that, in the present case, as in cases of fractured clavicles, another step towards perfection remained to be made.
58. Desault, in the first instance, attempted only to improve the ancient process, which consisted in fixing the straps for extension to the foot and head ofthe bed. He remedied the inconvenience of fixing the straps at the knee, by doing, throughout the whole treatment, what Fabre and Dupouy did only at the time of reduction (29); that is, he placed the seat of extension at the foot. The hold for counter-extension was also changed. This he made by a bandage for the body, fastened round the breast, and drawn only moderately tight, lest it might impede the patient’s respiration. The rest of the apparatus was nearly as I shall presently describe.
59. This was, for a long time, the only apparatus which Desault used. He introduced it into the Hotel-Dieu, after having employed it at the hospital of Charity, with great success. In the mean time, the utmost care and attention were here indispensable: every day it was necessary to examine the rollers several times, as they readily became relaxed. The pelvis, not being well secured, could communicate motion to the fracture: it was difficult to raise the patients to the close-stool. Besides, the slightest disease of the chest, rendered the pressure of the body-bandage insupportable. It was this very inconvenience which, having, in a certain case, rendered the preceding apparatus inadmissible, suggested to Desault the following one.
60. This consists, to speak in general terms, in taking the points of extension, above, on the tuberosity of the os ischium of the diseased side, and below, on the malleoli; in securing the straps or rollers, destined for making extension, on the two ends of a strong splint, placed along the outside of the limb; and in converting, so to speak, the pelvis,the thigh, the leg, and the foot into one entire and solid piece.
The pieces which compose it are, 1st, A common junk-cloth25(FFFplate II.), accommodated to the size of the limb and the splints: 2dly, a bandage for the body (BB) and one passing under the thigh (H) to secure the first on the side opposite to the fracture: 3dly, three stiff splints, an inch and a half wide, the external one of which (AA) being very strong, must be long enough to extend from the spine of the ileum, to the distance of four inches below the sole of the foot. This splint is hollowed out or notched at its lower end, and has a mortise in it a little higher up. The upper splint (CC) occupies the space included between the fold of the groin and the upper part of the knee: and the internal one, which reaches from the upperand internal fold of the thigh, to the sole of the foot: 4thly, three bolsters, an external, an internal, and an upper one (d d d d) consisting of small bags of chaff: 5thly, a bandage of strips (E) accommodated as to number to the circumstances of the case, separate from one another, each three inches broad, and long enough to go twice round the limb, arranged from below upwards, and overlapping each other, about one third of their breadth: 6thly, one long and two circular compresses, intended to be applied immediately on the limb next to the skin: 7thly, two strong rollers (g g and L) intended for extension and counter-extension, at least an ell and a half long: 8thly, one long and thick compress, and a sufficient number of bits of tape.
61. Every thing being ready, previously to putting the patient to bed, the pieces of apparatus are to be arranged on that part of the bed corresponding to the fractured thigh, in the order in which they are to be successively applied. If the patient has been already laid in the place where he is to remain, the limb must be raised with great caution, and, during the extension, each piece gently slipped under it, or the whole must be passed under at once, being first rolled round the several splints, in such a manner, that the apparatus requires only to be opened.
62. Extension is now made in the mode already pointed out (29 and 30), and then the application of the apparatus is begun, for which the surgeon must be situated on the external side of the fractured thigh, while an aid, placed on the other side, gives him assistance.
1st, On the thigh, next to the skin, are first applied the long and circular compresses, accurately spread out so as to have no wrinkles in them, and previously wet with vegeto-mineral water. Around it are then applied, in succession and from below upwards, each strip of the bandage (EE) moderately tight.
2dly, The lower end of the leg is now covered with a thick compress, intended to prevent the impression of the roller (L), which is fixed in such a manner, that its middle is first laid on the tendo Achillis, a little above the heel, while its two ends, crossing each other on the upper part of the foot, are carried on each side to its sole, where crossing again, they are then laid down till the close of the application of the apparatus.
3dly, Along the thigh are placed laterally two bolsters, which, from their thickness being easily increased or diminished in consequence of the moveable nature of the chaff, mould themselves to the inequalities of the limb.
4thly, Around the two lateral splints, the surgeon and his assistant roll, each on his respective side, the two edges of the junk-cloth, so that both splints, by being accurately applied on the bolsters, may make a uniform compression on the whole part.
5thly, The third bolster (d d d d) is then applied on the anterior part of the limb, and over it the splint (CC).
6. The bits of tape passed under the apparatus to the number of four for the thigh, and three for the leg, are tied in succession on the external splint, lest the knots, should they correspond to the thigh, might, bytheir contact, prove troublesome. That one next to the fracture is tied first, and they are all drawn as tight as the patient can bear them without uneasiness.
7. The body-bandage is now fixed on the pelvis, in such a manner, as to secure laterally the external splint, and is itself retained by the sub-femoral bandage (H), that is, the bandage passing under the thigh.
8. A thick compress placed beneath the tuberosity of the ischium, serves as a cushion or bolster to protect the part from the pressure of the roller (g g) which, being passed first under the apparatus, and drawn afterwards obliquely from within outwards, and from above downwards, takes its points of bearing or action, in one part, on the tuberosity of the ischium, and in the other, on the upper end of the external splint, and is tied in the fold or hollow of the groin.
9. The two ends of the bandage (L) previously made to cross each other on the sole of the foot, are passed the one through the mortise, and the other through the hollow or notch in the lower end of the same splint, and then, being drawn forcibly, are tied in a firm knot, so as to act as a substitute for the hands of the assistant, who now lets go the patient’s foot.
10. If the roller (g g) become relaxed, it is tightened again, and the patient being laid in a suitable position, the limb is protected from the pressure of the bed clothes, by a kind of basket placed over it.
11. A roller (K k) laid first on the sole of the foot, and then brought across over its upper side, and fastened laterally to each splint, serves to secure that part from turning outward or inward, and thus prevents the rotation of the limb.
63. If the mode of operation of this bandage be compared with the general indications formerly established (38) for all oblique fractures of the os femoris, it will be easy to perceive that, conformably to those indications, it tends, 1st, to draw the inferior fragment downward; 2dly, to retain the superior one up; 3dly, and to prevent the rotation of the lower fragment, and secure the immobility of the limb.
64. It is evident that the bandage or roller (g g) so unites the pelvis to the external splint (AA), that the latter cannot be pushed upwards, without drawing the former in the same direction, as well as the superior fragment which adheres to it. But if, after this roller is fixed, the lower one (L) be tightened, the first effect produced is, to push the external splint forcibly upwards; the second, to draw the leg, and with it the inferior fragment downwards; so that, by fixing the roller (L) in the notch and mortise of the splint with the necessary degree of tightness, extension and counter-extension are made permanent. By this means the muscles, being kept on a stretch, lose by degrees their power of contraction, which is still further diminished, by the immoveable state in which they are kept, and by the compression made on them by the bandage of strips. So that, on the one hand, the inferior fragment will have no tendency to rise upwards, and even if it had, it will meet with a sufficient resistance to prevent it; while, on the other hand, the superior fragment will not be pushed downwards by the pelvis.
65. To this advantage is added that of a state of perfect immobility. The pelvis, the leg, the thigh,and the foot being firmly fixed on the external splint, constitute one entire whole, all the parts of which must retain, with respect to each other, the same relative position. Should even a stroke be accidentally given to this assemblage of parts now converted into a solid whole, each portion of it will move at the same time, there will be no partial motion, and the relative position of the parts will not be changed. Hence the advantage of being able to raise the patient without apprehension; a most desirable circumstance indeed, in a position so painful and so long continued (26). The external splint, being extended beyond the sole of the foot, prevents the lower fragment from obeying a tendency, which it sometimes has, to displace itself by a rotation on its axis. Should this tendency be towards the internal side, an occurrence much more rare, the lengthening of the internal splint will effectually prevent it.
66. These considerations induced Desault to renounce his ancient mode of making permanent extension, and employ this exclusively, in the latter years of his practice. Like all other kinds of apparatus, formed principally of rollers, this is very subject to become relaxed; and requires, therefore, great attention on the part of the surgeon. It ought to be examined attentively every day, particularly the two extending bandages (L and g g). As soon as they become relaxed, they must be immediately tightened again: without this precaution, the effect of the apparatus will be lost. Be vigilant also, with respect to the compress placed between the roller (g g) and the tuberosity of the ischium. Should this slip, the rollerbeing frequently tightened, and pressing immediately on the skin, may produce excoriations and ulcers difficult to be healed, particularly in females. The roller itself may slip, and then, having no longer a solid point of support and action on the tuberosity of the ischium, it makes extension in but an imperfect manner.
67. One of the charges brought against this apparatus is, the facility with which the upper roller becomes displaced, a facility that imposes a degree of care and attention, of which few surgeons are capable, and which, when bestowed even by Desault himself, did not always prevent the shortening of the limb.
68. Further, the extension made on the fold of the thigh, partakes, a little, of the inconvenience that accompanied the ancient mode of reduction, namely, that of compressing and irritating the muscles of the upper and internal part of the thigh (30). This inconvenience would be still more sensible, if, for want of extending to a sufficient distance up the pelvis, the upper splint should allow the roller to cross the muscles at an angle somewhat acute, as it would then enclose and press on the greater part of them.
69. If some unfavourable cases, resulting without doubt from these inconveniences, did occur in the practice of Desault, a multitude of successful ones still attest the advantages of this method; and there is not a pupil who attended any time at the Hotel-Dieu, without witnessing them. I will relate but one case, collected by Chorin, to furnish a detail of the treatment subsequent to reduction, referring the reader for further information to the Journal of Surgery.
Case II.Theresa Little-John, aged 45 years, fell, drawn by the weight of her own body, through a window in a balcony, from which she was leaning. She was instantly taken up, carried to her own house, and from thence to the Hotel-Dieu, which she entered on the 28th of October, 1790. From the signs mentioned (9), a fracture was discovered towards the lower part of the thigh; its oblique disposition required an apparatus to make permanent extension. This was applied in the usual manner, and, in an instant, the patient, who had experienced, since her fall, severe pain, became calm, and was completely relieved.
In the night, pains returned; agitation; some spasmodic motions; an anodyne draught administered in the morning. In the course of the day, these troublesome symptoms disappear; a slight swelling at the ancle. Third day, no pain; swelling gone; aliment increased. Sixth day, patient permitted to return to her usual regimen; extending rollers relaxed; lower one tightened: eleventh day, apparatus renewed; fragments in perfect contact: thirteenth day, limb moved incautiously; a slight shortening; apparatus reapplied; extending bandages drawn tight: sixteenth day, a disposition slightly bilious; evacuants administered with success: twenty-fourth day, a third application of the bandage: thirtieth day, progress in consolidation already very evident; the limb straight: fortieth day, extending rollers laid aside: fifty-second day, consolidation complete without the least deformity.
70. The muscular force, in children, being weak, and the weight of the body inconsiderable, have, in general, much less influence in producing a displacement in them than they do in adults. When, therefore, fractures occur in subjects under six or seven years old, the resistance, on the part of the apparatus, need not be so great. In general the lateral pressure which it makes, and the bearing of its different pieces against the limb, are sufficient to prevent the return of deformity, when this has been perfectly removed by reduction.
71. In such cases Desault covered the thigh with a circular bandage, made of a roller seven ells long, and three inches broad. Beginning with this below, near to the condyls, he carried it upwards, by oblique and reversed turns, to the pelvis, round which he threw a cast; then, giving the ball into the hand of an assistant, he applied four splints, one before, another behind, and one on each side: directing these to be held at their lower part near to the knee, he resumed the roller, and secured them firmly by a second series of circular and reversed turns, descending to the lower extremity of the thigh. The limb was then placed in a proper position, and, in general, of whatever kind the fracture was, whether oblique or transverse, this simple bandage, without the aid of permanent extension, was sufficient to retain it.
72. It would be difficult to determine the period necessary for the consolidation of fractures of the os femoris. Numerous circumstances concur to influence this work of nature, which is, in general, extended beyond the term of forty days, vulgarlyassigned to it by the people at large. Besides, a stiffness of the limb, the inevitable effect of its long state of rest, still adds to the length of the patient’s confinement, by retarding the necessary motions, the return of which, as in other similar cases, can be accelerated only by exercise.
73. Complicated fractures of the os femoris, being included in the general class of solutions of continuity of that description, cannot be at present particularly considered. We will only remark, that here, in like manner, as in fractures of the clavicle, permanent extension constitutes the most effectual method of preventing the pains, oftentimes insupportable, occasioned by splinters or points of bone irritating the soft parts, from being pressed against them by muscular action in its tendency to shorten the limb.
§ IX.
74. I will close this article by a few remarks on the advantages of permanent extension in old fractures. Nature reunites fractures differently, according to the relation of the divided surfaces to each other. Are those surfaces in perfect contact? If so, they are chiefly instrumental in the formation of callus, which then probably acts in a manner similar to the reunion of wounds. On the other hand, does an overlapping of the fragments separate the divided surfaces from each other; the reunion takes place then principally on the sides, by a kind ofenlargement of the bones, produced no doubt by the periosteum. Such is the mode of consolidation, which, on opening dead bodies, is found in most oblique fractures of the os femoris, succeeded by a shortening of the limb.
75. Hence it follows, that this shortening, which would readily yield to extension, at the time of the fracture, becomes obstinate in its resistance, in proportion to the age of the accident. In such a case, indeed, the substances destined to reunite the overlapping fragments, acquiring daily more and more solidity, oppose to the reduction obstacles constantly increasing. Hence, most practitioners regard this reduction as beyond the resources of art, after the expiration of the twelfth or fifteenth day. Nor is this opinion entertained without some foundation, for at a later period, almost all efforts at reduction, however powerful, have proved unavailing. But that which cannot be performed by a very powerful effort, acting momentarily, is, notwithstanding, oftentimes easily attainable by a much weaker one, provided it be long continued. The following cases are in proof of this.
Case III.Ann Gallot, of Melun, aged sixty-nine, having fractured her right thigh, by falling down the steps of a cellar, remained twenty-two days without assistance, and without even knowing the nature of the accident, when, on consulting a surgeon, she was sent to the hospital at Versailles. From the long standing of the disease, a reduction being despaired of, and no one being willing even to undertake it, the patient was sent to the Hotel-Dieu, on the 27th of February, 1791.
A shortening of four inches distinguished the diseased thigh from the sound one. The overlapping was sensible to the touch: in the mean time, a slight mobility at the place of fracture, inspired a hope of being able, if not to restore to the limb its natural form, at least to diminish the contraction. Several efforts were made at first, but without success, as Desault foresaw. The apparatus for permanent extension was applied: on the day following, the extending rollers being a little relaxed, were again tightened. Fourth day, a sensible increase in the length of the limb; apparatus renewed. Ninth day, the left thigh but an inch longer than the other: eleventh day, equality in length almost re-established. After this, the apparatus was kept constantly applied and renewed from time to time.
Fortieth day, consolidation already perceptible: forty-sixth day, symptoms of a putrid fever have made their appearance: fiftieth day, symptoms worse; fifty-second, something better: fifty-fifth, worse again: fifty-seventh, dead. On opening the body, an oblique fracture was found, its surfaces very nearly in apposition, and already united by a very solid callus.
Case IV.Joseph Maugrin, a saddler, broke his thigh in the month of July, 1793. A surgeon being called to him, placed his limb in an old form of apparatus, which did not prevent a shortening, to the extent of an inch and a half, from showing itself on the following day: hence a new reduction, and a new application of the apparatus: but soon afterwards, another shortening; the same means toremove it; the same failure of means. Weary of such trials, the surgeon abandoned the limb to its fate, contenting himself with merely keeping it in the apparatus.
On the twenty-ninth day, Desault being called in consultation, and finding the thigh shorter by three inches than that on the opposite side, proposed permanent extension, persuaded that this expedient alone would soon be sufficient to re-establish the contact of the fragments. The proposal was acceded to. On the day following, the effects were already perceptible; the thigh was lengthened by almost an inch. By the sixth day, it was equal in length to the other: during this period, the extending rollers were tightened twice a day.
At the end of two months the consolidation was complete, and the patient walked perfectly well, except that there was a little shortening of the limb, trifling though indeed, compared to what would have been the consequence, had the original treatment been continued.
76. The lengthening of the limb, in these cases, was evidently owing to the continued action of the apparatus, which effected, in a length of time, what the momentary efforts of the surgeon could not accomplish. This it did, by destroying or gradually lengthening the medium of union, which already connected the overlapping fragments, by that means bringing their separated surfaces or ends into contact, and almost restoring to the bone its primitive form.
Art cannot always, with certainty, command such success, and perhaps, even at a less advanced period,a more rapid progress of reunion might leave but little ground for hope. But, could only an inch in length be gained by permanent extension, would it not be proper to have recourse to it, particularly as no inconvenience can result from the trial? To prevent deformity altogether, is the first object of art; but when that cannot be attained, to lessen it is the second.
The history of fractures of the upper end of the os femoris, includes, 1st, Those of the great trochanter: 2dly, Those of the neck. These fractures, sometimes existing together, and at other times separately, are very different with regard to the frequency of their occurrence: the one taking place very rarely, has but slightly engaged the attention of practitioners, who have multiplied their researches with regard to the other, particularly in late years.
§ X.
77. Fractures of the great trochanter are the effect either of falls on that protuberance, or of the action of bodies striking against it. Oblique or transverse, situated sometimes at its summit, and sometimes atits base, these fractures may be either simple or complicated. They are rendered complicated sometimes by splinters and a swelling, as happens when a ball produces the division, and at other times by a fracture of the neck of the bone, an example of which we find in the Journal of Surgery, in the case of a man seventy years of age, who had been long subject to the itch.
78. Whatever the varieties may be, the fracture will be characterized, 1st, By a facility of moving the great trochanter in every direction, while the pelvis and the thigh remain without motion: 2dly, By a crepitation, arising from the friction of the divided surfaces against each other: 3dly, By there being no shortening of the limb, when the fracture exists alone: 4thly, By the fragments being brought together in abduction, and separated in adduction: 5thly, By the position of the great trochanter being higher and more anterior than natural. The presence of these signs is the more readily perceived, because, being superficially situated, this protuberance can be easily felt, and yields to the motions impressed on it.
§ XI.
79. The reduction is effected, by pushing the separated fragment in the direction opposite to that of its displacement, by bringing it to its natural level, and, in certain cases, by moving the thigh a little outwards; it is retained by means of some compressesplaced by its sides, and secured by a roller directed obliquely from the sound hip towards that part of the thigh corresponding to the fracture, and representing a true spica bandage.
80. A fracture produced by a gun-shot wound, always renders large incisions necessary, for the purpose of extracting foreign bodies, and relaxing the aponeurosis of the fascia lata, which suffers too great a degree of tension in this place, and might, if not dilated, produce a very troublesome stricture. A fracture complicated by splinters, but without an external wound, and produced by a body striking against the part, seldom requires any particular apparatus, because, adhering as yet to the periosteum, the separated portions of the os femoris may unite again, either among themselves, or with the fragments.
§ XII.
81. The neck of the os femoris, being surrounded by a large mass of soft parts, and protected by the great trochanter, which forms its external boundary, is almost completely secured from the immediate action of external bodies, and consequently from direct fractures. Whenever it sustains a fracture, it is always by a true counter-stroke, resulting from a fall, sometimes on the great trochanter, and at other timeson the sole of the foot or the knee. But fractures produced in the first mode, are much more frequently met with in practice, than those produced in the second, doubtless because, in the latter, the motion is weakened by the extent of parts through which it is distributed, previously to its arrival at the neck of the os femoris. Out of thirty observations made by Desault, on fractures of this description, twenty-four of them were produced by falls on the side. All those recorded by Sabatier, in his interesting memoir, appear to have been produced by similar falls.
§ XIII.
82. Fractures of the neck of the os femoris may occur, 1st, in the middle part of it, where it is smallest, and where nature has not thrown together, as she does in the middle of the long bones so often exposed to fractures, a great quantity of compact substance: 2dly, at its upper end, where it is united to the head of the bone: 3dly, at its junction with the great trochanter, where the solution of continuity may be outside of the joint, a circumstance which doubtless happens much more frequently than has been hitherto suspected.
83. The division, rarely oblique, is almost always transverse: sometimes, in the latter case, the neck remains enclosed or imbedded, as it were, in the body of the bone, being fractured in such a way, as to present a hollow or notch of greater or less depth. Several cases of this kind occurred to Desault; one ofthem, modelled in wax, is deposited in the collection of the School of Health, and the original preparation is in my possession. The fracture, though frequently simple, is sometimes complicated with that of the great trochanter.
Case V.A man having received a kick from a horse, on the external and upper part of the left thigh, fell down, and, not being able to move, was carried home. Desault being called to him, discovered, 1st, that the great trochanter, separated from the bone, yielded readily to every impression it received: 2dly, that the limb was perceptibly shortened; that the least effort was sufficient to restore to it its natural length; and, that the foot was turned outwards, all which are characteristic signs of a fracture of the neck.
§ XIV.
84. Whatever may be the mode and place of the fracture, its diagnosis presents difficulties which experience and habit may doubtless overcome, but which too frequently puzzle and embarrass the most enlightened practitioner. Let us endeavour to diminish them somewhat, by tracing, in their order of succession, the symptoms which characterize the accident.
85. At the time of the fall, a sharp pain is felt; sometimes a report is plainly heard; a sudden inability to move the limb occurs; the patient cannot rise, a circumstance, however, which does not always take place. A case is recorded in the fourth volume of theMemoirs of the Academy of Surgery, where the patient walked home after the fall, and even rose up on the following day. Some examples of a similar nature fell under the notice of Desault, one of which he has recorded. The interlocking of the two fragments formerly mentioned (83), may serve to explain this fact, which is, however, in general, very rare.
86. A shortening almost always occurs in the broken limb, but this is more or less perceptible, according as the extremity of the fragments is retained by the capsule, or as, the division being without the cavity, no resistance is made to their displacement. The muscular action, drawing the lower fragment upwards, and the weight of the trunk, pushing the pelvis and the superior fragment downwards, furnish here, as in fractures of the body of the bone, the two-fold cause of this shortening. I will not repeat what has been already said on this subject (10...14); I will only observe, that, in the present case, the influence of the muscles is even more considerable, because, the lower fragment being much longer, is of course attached to a greater mass of muscular fibres. A slight effort is sufficient, in general, to remove this shortening, which, however, soon returns, when the effort ceases. This circumstance Goursault and Sabatier have observed, not to occur in certain cases, till some time after the accident. A tumefaction appears in the anterior and upper part of the thigh, almost always proportioned to its shortening, of which it appears to be the effect.
87. The projection of the great trochanter is almost entirely removed. That protuberance, beingdirected upward and backward, is approximated to the spine of the ilium. But if it be pushed in the opposite direction, it readily yields, and then, returning to its proper level, allows the patient to move the thigh.
88. The knee is a little bent. A severe pain always accompanies the motions of abduction, when they are communicated to the limb. If, while the hand is applied to the great trochanter, the limb be made to rotate on its axis, this bony protuberance is perceived to turn on itself as on a pivot, instead of describing, as it does in its natural state, the arch of a circle, of which the neck of the os femoris is the radius. This sign, which was first observed by Desault, is very perceptible, when the fracture is at the root of the neck, less, when it is in the middle, and very little, when it exists towards the head of the bone; these are circumstances, the cause of which it is unnecessary to unfold. In rotatory motions, the lower fragment, rubbing against the upper one, produces a distinct crepitation, a phenomenon which does not however always occur.
89. The point of the foot is usually turned outwards; a position which Sabatier, Bruninghausen, and most other practitioners regard as a necessary effect of the fracture, although Ambrose Pare and Petit have borne witness that it does not always exist. Two cases, reported on this subject by celebrated surgeons, have been thought unfounded by Louis, who has attributed them either to an error in language, or a mistake of the transcriber. But the practice of Desault has fully confirmed their possibility. The first patient whom he had under his care, at the hospital of Charity, after he was appointed surgeon in chief, laboured under a fracture which presented this phenomenon. Many other examples occurred to him afterwards, and he believed it might be laid down as an established principle, that, in fractures of the neck of the os femoris, the direction of the foot outwards is to that inwards as 8 to 2.
90. The common opinion is, that this direction outwards is to be attributed to the muscles that perform rotation. But, were that the case, 1st, it is evident that it would always exist: 2dly, all the muscles running from the pelvis towards the trochanter, except the quadratus, are in a state of relaxation, in consequence of the approximation of the os femoris to their points of insertion: 3dly, muscles in a state of contraction would not allow the point of the foot to be drawn so easily inwards. Is it not more probable, that the weight of the part draws it in the direction in which it is usually found.
91. From the foregoing considerations, it follows, that none of the signs of a fracture of the neck of the os femoris, is exclusively characteristic, that the whole of them, taken separately, would be insufficient, and that it is their assemblage alone which can throw on the diagnosis that light which is oftentimes wanting to it, even in the view of able practitioners. But after all, in the present case, as in every other one, should any doubt exist, it is right to take the safe side, and apply the apparatus, which is indeed useless but not dangerous if the disease does not exist, but indispensably necessary if it does.
§ XV.
92. The existence of a fracture being ascertained, what prognosis is to be formed respecting it? In answer to this general question, it will be sufficient, I think, to resolve the following particular ones. What accidents accompany the fracture in the first instance? What phenomena make their appearance during its reunion? In what manner does it affect the patient, as to his power of walking, after reunion has taken place.
93. If we attend to the opinion of authors, on this fracture, we will find that they represent it in very dismal colours, as if it were necessarily productive of the most serious effects. Inflammation of the parts adjacent to the neck of the os femoris, numerous and repeated abscesses arising from this inflammation, propagating themselves externally and communicating with the interior of the joint, gangrene itself, as Morgagni remarks in a particular case, convulsions of the limb, an œdema occurring in it, and a slow fever destroying the patient by degrees; such is the dismal catalogue of misfortunes, generally considered as necessarily attendant on the kind of fracture under consideration. Bruninghausen remonstrated against this fatal prognosis of authors, and Siebold, one of the most celebrated German practitioners, among a great number of cases that fell under his care, had no such accidents to encounter. Desault never experienced them. Doubtlessthey are prevented by our more exact and more skilful modes of treatment. It is thus that under a more judicious treatment, fractures of the olecranon and of the rotula, are no longer marked with those terrible consequences formerly attributed to them.
94. In as much as the organization of the os femoris, is nearly the same in its neck and in its body, it is difficult to conceive how the progress of nature can be different in fractures of these two parts; why the first, in being denied the power of healing or reunion should be, in this respect, distinguished from all other living parts of animals, which are particularly characterized by that power, when they have sustained a solution of continuity. Many practitioners, even at the present day, advocate this doctrine, which is built, one while, on the circumstance of the periosteum not being continued along the neck of the os femoris; another while, on a belief that the head of this bone cannot receive a sufficiency of nourishment for the work of consolidation, in consequence of being attached to the rest of the system, only by the round ligament, and again, on an opinion, that the synovial fluid, by wetting the divided surfaces, prevents their reunion.
95. But is the periosteum the only agent in the formation of callus? Modern experience has refuted this opinion, which, like many others, will therefore in a short time exist only in the history of our errors. Were it even true that the periosteum is here indispensably necessary, is not its place supplied by the fold of the capsule, which surrounds both the head and neck of the os femoris? Besides, why cannotcallus be formed by that part which has had sufficient power to accomplish ossification, since it is universally acknowledged, that, in these two processes, the labour of nature is nearly the same.
96. The head of the bone, separated from the soft parts, and attached to the acetabulum by the round ligament, always receives through that ligament a sufficiency of nutriment to enable it to live in that cavity; for, there is no instance of its having suffered mortification in consequence of a fracture. Why, then, should it not partake of the properties of life, and particularly of the faculty of reunion when placed in regular apposition with the body of the bone?
97. What shall we say respecting the idea of the synovia wetting the divided surfaces, and by that means preventing their reunion? The history of fractures communicating with joints, better known at the present day, answers this objection, which is indeed nothing but the offspring of mere hypothesis. To these considerations, which are dictated by reason, and to which many more might be added, let us unite the proofs derived from experience, and we will find numerous examples of cures actually performed, particularly in latter times; the truth of this is attested by many cases collected by Desault, both at the hospital of Charity and the Hotel-Dieu. Bruninghausen and Siebold, have had equal success. Many analogous facts have been presented to the Academy of Surgery. In the cabinet of the School of Health, are deposited some preparations obtained from the cabinet of Desault, calculated to remove all difficulties and doubts from this subject.
98. We must acknowledge, however, that in persons advanced in years, the cure is always difficult, often very tedious, and sometimes impracticable, however carefully the treatment may be conducted. But this is only a necessary consequence of the laws of ossification, which, constantly accumulating in the bones too great a quantity of calcareous matter, seems to deprive them by degrees both of life and all its properties. Yet Lesne laid before the academy a case of reunion obtained in a subject at the advanced age of eighty-four.
99. The observations of some modern practitioners seem to prove, that the reunion here is not produced by a substance similar to common callus, but by a kind of ligamento-cartilaginous tissue, in like manner as in the rotula, and the olecranon. But why need we inquire after the means employed by nature? those of art must be the same. It will be always necessary to favour the reunion, by bringing the fragments into contact, and maintaining them so. Without this contact, either a cure will never be obtained, or the substance destined to effect a reunion, becoming deformed and too bulky, will impede motion.