Fig. 1. A bolster made in the form of a wedge, intended to be placed between the arm and the side of the thorax.a.Its base, which should fit the hollow of the arm-pit.b.Its summit reversed, against which the elbow is to be applied.Fig. 2. The first roller applied for the purpose of fixing the bolster against the side of the thorax.a a.Oblique casts before, passing over the opposite shoulder, in order to hold it up.b.Oblique casts from behind, crossing the first ones on the shoulder.d d.Circular casts round the trunk, covering the bolster, which they fix laterally.Fig. 3. The second roller, applied to fix the arm against the bolster.a & b.Portions of the oblique casts of the first roller, left uncovered by this one.c c.Turns of the second roller, covering those of the first, loose above, and tighter below, for the purpose of drawing the superior extremity of the humerus outwards.d.Their passage over the side opposite to the bolster.Fig. 4. The third roller intended to keep the point of the shoulder raised.a a & b.Oblique casts of the first roller, remaining uncovered.c c.Turns of the second, seen through the opening of those of the third.d.Oblique casts of the third, ascending from the arm-pit over the shoulder of the diseased side, to descend again behind, along the arm, and pass under the elbow.f k.A continuation of the preceding casts, reascending under the sound arm-pit, and from thence behind the thorax, over the diseased shoulder.e.A continuation of the same casts, descending on the fore side of the arm, passing under the elbow, and ascending again under the arm-pit of the sound side.g.The remainder of the roller, intended to be employed in circular turns, in order to secure the castse, and prevent them from slipping outward.Fig. 5. A sling which should be fastened to the oblique castd(Fig. 4), to support the hand.
Fig. 1. A bolster made in the form of a wedge, intended to be placed between the arm and the side of the thorax.
a.Its base, which should fit the hollow of the arm-pit.
b.Its summit reversed, against which the elbow is to be applied.
Fig. 2. The first roller applied for the purpose of fixing the bolster against the side of the thorax.
a a.Oblique casts before, passing over the opposite shoulder, in order to hold it up.
b.Oblique casts from behind, crossing the first ones on the shoulder.
d d.Circular casts round the trunk, covering the bolster, which they fix laterally.
Fig. 3. The second roller, applied to fix the arm against the bolster.
a & b.Portions of the oblique casts of the first roller, left uncovered by this one.
c c.Turns of the second roller, covering those of the first, loose above, and tighter below, for the purpose of drawing the superior extremity of the humerus outwards.
d.Their passage over the side opposite to the bolster.
Fig. 4. The third roller intended to keep the point of the shoulder raised.
a a & b.Oblique casts of the first roller, remaining uncovered.
c c.Turns of the second, seen through the opening of those of the third.
d.Oblique casts of the third, ascending from the arm-pit over the shoulder of the diseased side, to descend again behind, along the arm, and pass under the elbow.
f k.A continuation of the preceding casts, reascending under the sound arm-pit, and from thence behind the thorax, over the diseased shoulder.
e.A continuation of the same casts, descending on the fore side of the arm, passing under the elbow, and ascending again under the arm-pit of the sound side.
g.The remainder of the roller, intended to be employed in circular turns, in order to secure the castse, and prevent them from slipping outward.
Fig. 5. A sling which should be fastened to the oblique castd(Fig. 4), to support the hand.
Pl. 1Engrav'd by W. Kneafs.
Pl. 1Engrav'd by W. Kneafs.
Pl. 1Engrav'd by W. Kneafs.
§ I.
1. The clavicle, which forms a moveable abutment for the shoulder, and receives and sets bounds to most of the movements of that part, and of the arm, exhibits at its extremities, two articulations, essentially different from each other in their form, dispositions, and uses. These differences give rise to differences equally essential with regard to the dislocations to which they are subject.
2. On the sternal extremity, a small surface, convex from above downwards, and concave from before backwards, is fitted, by means of an intervening cartilage, to a much smaller surface of the sternum, concave and convex in opposite directions.
One capsule, two ligaments, viz. the interclavicular and costo-clavicular ligaments,5and the anterior portion of the sterno-cleido-mastoideus muscle, strengthen the connexion of these two surfaces, and tend, on one hand, to prevent their luxation, while, on the other, this luxation is favoured and facilitated by the following circumstances: 1st, the disproportion between the dimensions of the two articulatingsurfaces; 2dly, the mobility of the joint; and 3dly, by this joint’s constituting a kind of centre for the motions of the arm.
3. On the humeral side, an elliptical surface, slightly convex, and inclined downwards, is immediately joined to a corresponding surface of the acromion, elliptical also, a little concave and directed upwards. Hence two kinds of inclined plains, which would be very liable to dislocations, by sliding easily over each other, were they not firmly secured by a capsule, by accessory fibres, by the intersection of those of the deltoid and trapezius muscles, and, above all, by two ligaments, the rhomboid and the conoid.6
Having laid down these preliminary considerations, let us proceed to examine, in particular, each kind of luxation to which the clavicle is subject.
§ II.
4. The sternal articulation of the clavicle experiences different changes, according to the different movements of this bone. If these movements be in a backward direction, the articulating surface isturned forward, straining the anterior part of the capsule, the corresponding ligament, and the extremity of the sterno-cleido-mastoideus muscle. If, on the other hand, they be in a forward direction, the posterior ligament, and the adjacent portion of the capsule are overstretched. In motions directed upwards, the costo-clavicular ligament, and the external and inferior part of the capsule, and in those directed downwards, the inter-clavicular ligament, and the internal portion of the capsule, experience a similar degree of tension.
5. Hence it follows, 1st. That the natural movements of the shoulder may be regarded as predisposing causes of luxation, because at the part where tension is excessive, the ligaments are disposed to give way, and suffer the sternal extremity to escape: 2dly. That the efficient causes will be, all external forces acting on the clavicle in such a way as to increase its motions beyond their natural degree, and beyond the resistance which the ligaments are capable of making. Thus a fall on the point of the shoulder, forcing it suddenly backward and inward, produces a luxation forward. But, in general, as the strength of the articular ligaments is superior to the resistance of the clavicle itself, a fracture takes place more frequently than a luxation, in the proportion of nearly six to one.
Though falls on the point of the shoulder are oftentimes productive of luxation of the clavicle, they are not the exclusive causes of that accident. Desault has seen the sternal extremity forced from its cavity by the knee being pushed violently againstthe middle of the back, while the shoulders were drawn at the same time backwards.
Case I.A porter dislocated his clavicle in the following manner. He was carrying a very heavy burden, suspended from his shoulders by cords that passed under each arm-pit. Being desirous of resting himself by the way, he placed on a block the burden he carried, which slipping backward, drew his shoulders in the same direction, and at the instant of his attempting to retain it and prevent it from falling, produced a luxation of the clavicle.
7. It follows from what has been said respecting the different states of the articulation, during its various motions (4), that the clavicle is not equally liable to be luxated in every direction. Inclining naturally backward, but a very slight degree of motion in that direction is necessary, to effect a luxation forward. To produce a luxation backward or inward, it is necessary, on the other hand, that the humeral extremity of the bone should make a sweep at least three times the extent of that required in the preceding case. Besides, motions in this direction are accompanied with pain, particularly if they be made by force. Luxation downward is prevented, on the one hand, by the cartilage of the first rib, which presents to the bone an insurmountable barrier. On the other hand, to produce this kind of luxation, it would be necessary for the external extremity of the clavicle to be forced upwards, an occurrence very seldom occasioned by falls. Luxation upward, or over the superior edge of the sternum, must be the effect of a stroke, which, by depressing the point of the shoulder, and forcing it at the same time forward, presses the sternal extremity against the internal and superior part of the capsule, which, being thus lacerated, suffers a luxation to take place. But such a derangement of the articulating surfaces is very rarely produced by falls. Whence it follows, that of the different kinds of luxation of the clavicle, that in a downward direction is altogether impracticable. Those backward and upward, though possible, occur but rarely in practice; while that in a forward direction, on the contrary, is not an unfrequent accident. This tends to confirm the observations of practitioners, and particularly of Desault, whose immense collection on the subject furnishes examples of the last kind of luxation only.
8. In these luxations, there is for the most part, a rupture of the capsular ligament, and an escape of the bone through the opening. But sometimes the ligament is only preternaturally distended, and then the luxation is incomplete.
§ III.
9. But whatever may be the causes or kind of the luxation, its diagnosis is always easy. If it be forward, the direction of the stroke which the shoulder has received, furnishes, at first, some ground of suspicion. The accident is certainly known by the appearance of a hard and unnatural protuberance in front of the sternum, and behind the extremity of the sterno-cleido-mastoideus muscle, by the existence of a sensible depressionor hollow at the joint, and by the situation of the shoulder, which is pushed further backward, and is less projecting and more approximated to the trunk, than in its natural state. Add to these, a difficulty in performing motions in a forward direction, which, when somewhat forced, reduce, in proportion as they are accomplished, the size of the protuberance formed by the displaced end. The head is always inclined towards the side where the luxation exists; an attitude which relieves the painful drawing or tension produced in the sterno-mastoideus muscle, by the humeral extremity pushing it forward.
10. A protuberance over the superior edge of the sternum, a difficulty in raising the shoulder, the pain which results from attempting such a motion, the diminution of the protuberance which it occasions, the absence of the sternal extremity from its natural cavity, the approximation of the shoulder to the thorax, and its depression and diminished projection, compared to its usual state, afford evidence of a luxation upwards.
11. A luxation inward or backward, would be characterized by a projection of the shoulder exteriorly, by a difficulty in performing motions in a backward direction, by the alarming effects, which, as Petit remarks, the compression of the trachea would doubtless produce, and by a depression or hollow at the joint, more perceptible here than in the two preceding cases.
12. These appearances will be more or less striking, accordingly as the membranes, lacerated or only distended, offer a greater or less resistance.
§ IV.
13. To reduce a luxation, is, in general, to make the bone re-enter its cavity, by retracing, or returning along, the same route which it followed in escaping from it. Now, in a forward luxation, the displacement is from behind forward, in an upward one from below upward, in an inward or backward one from before backward, but, in each of the three, it is more particularly from without inward. In the first case, therefore it is backward, in the second, forward, in the third downward, but, in each of the three, more particularly outward, that the powers for producing extension must be directed.
14. Hence the method generally employed by most practitioners, recommended by almost every author who has written on the subject, adopted by Petit, Duverney, Heister, &c. and which consists in placing the knee between the shoulders of the patient, as a point of resistance, by the aid of which the shoulders may be drawn backward, fulfils only half of the indication of cure; because at the time that the humeral extremity is drawn backward, it is not directed sufficiently outward.
Hence a difficulty of replacing the bone sometimes occurs, a difficulty always removed, when, pursuant to the method employed by Desault in fractures of the clavicle (see Desault’s method), the arm is made to serve as a lever of the first kind, to carry backward and outward, the head of the bone, which is displaced in the opposite directions, when the luxationis forward. This method possesses the advantage, not only of giving the powers of extension a proper direction, but also of increasing them to a degree even beyond what is necessary for effecting a reduction, by removing them further from the resisting force. Hence it is unnecessary to adopt any particular measures for restoring and preserving the form of the part, as the extension is alone sufficient for that purpose.
These principles, evidently applicable in effecting a reduction, are still more strikingly so in the means destined for retaining it. Let us apply what I have just said, to a case of dislocation in a forward direction. It will be easy to transfer it afterwards to the other kinds of luxation.
§ V.
15. Few luxations are so speedily reduced, but few are more easily displaced again, than that of the clavicle. This disposition is the reverse of that of most other luxations, which are reduced indeed with difficulty, but seldom afterwards suffer a displacement. The cause of this we find, 1st, in the extreme mobility of the clavicle, to which all the motions of the arm are communicated; 2dly, in this further consideration, that most of the muscles, which have their insertion towards the shoulder, tend to draw this bone inward, when the ligaments, in consequence of being either broken or distended, as happens in this accident, do not offer a sufficient resistance.
16. From this two-fold cause of displacement, arises a two-fold indication in the arrangement and application of the apparatus. These are, 1st, to render the clavicle immoveable, by restraining every kind of motion in the shoulder and arm; 2dly, to retain the extremity of the clavicle outward, a direction opposed to that in which it has a tendency to be displaced. But if to those indications we compare the forms of apparatus hitherto used, we will readily perceive that they are insufficient to fulfil them.
17. The figure of 8 bandage, so generally in use, and all the various modifications, under which it has been revived, without being improved, fix the clavicle in the very direction most favourable to a displacement, and even do it in the very manner in which that accident is sometimes brought about; as maybe seen in the history of the case of the porter (6). This bandage does not, under any of its modifications, prevent the motions of the shoulder, because it does not restrain those of the arm, which remains free and unencumbered. Far from constituting an antagonist power to, it even co-operates with, that which has produced the displacement. (For further light on this subject, see what has been already said on the fracture of the clavicle, pages22and25.)
Bell, in condemning the figure of 8 bandage, not so much because of its action being insufficient, as because of its obstructing respiration, proposes, as a substitute for it, a kind of machine analogous to the iron cross of Heister, which, being fixed by straps passing under the arm-pit, and round the neck and body, is intended to retain the parts firm and immoveable. But the motions of the arm not being restrained, nor the action of the muscles of the shoulder opposed by an antagonizing power, places this piece of apparatus in the same class with those, which, from not being devised and constructed on a proper view and conception of the causes of displacement, have no affinity to rational practice.
18. The apparatus for a continued extension, invented by Desault, for fractures of the clavicle, fulfil here all those indications in which the others fail.
By this, 1st. The aim, being firmly fixed against the side, by means of the roller (c cFig. 3), can communicate no motion either to the shoulder, or the clavicle. 2dly. The shoulder itself, being forcibly drawn outward, with the upper extremity of the humerus, by the action of the kind of lever into which this bone is converted, and to which the bolster (a bFig. 1) serves as a fulcrum, cannot, by its movements, derange the luxated bone. 3dly. The sternal extremity, being drawn both by the muscles which tend to displace it inwardly, and by the bandage which acts on it in an opposite direction, remains fixed between those two antagonizing forces, which thus destroy each other. Hence the apparatus of Desault, when accurately applied, offers to both of these powers of displacement, a resistance perfectly calculated to combat them.
20. We must, however, admit that this apparatus partakes of one inconvenience, common indeed to all bandages, but which is perhaps more particularly applicable to this in consequence of the numerous casts of the rollers that form it, namely, the great facilitywith which it becomes relaxed. Hence one cause of displacement, which the most exact and scrupulous attention cannot at all times prevent.
Case.Desault had, for a long time, the care of a patient, whose luxation, having been neglected for four days, was reduced on the fifth, by a surgeon, who, for the purpose of retaining it, employed a bandage of a particular kind. An hour afterwards, a motion of the shoulder backward, displaced the luxated extremity: a new reduction was the consequence; on the day following, another displacement, and so on in succession, for ten days, at the expiration of which, Desault being consulted, applied to the part the bandage formerly described.
On being examined the next day, the apparatus was found in a favourable state. On the day following, a slight displacement rendered necessary a new application of the bandage, which, this time, continued longer than before. But, about the expiration of the third day, the projection of the bone was again considerable. Finally, the patient recovered, with a very perceptible protuberance in front of the sternum, and a difficulty of motion, great at first, but less afterwards, and which exercise succeeded ultimately in removing.
21. The application of the apparatus differs from that intended for a fracture of the clavicle, only in this, that it is of service to place on the luxated extremity, graduated compresses,7calculated to makepressure backward and outward, and which are to be secured by the turns of the roller (bFig. 4).
A second precaution, not less essential, is, to push the humeral extremity of the clavicle, a little forward, and fix it in that direction, in order that the sternal being directed backward, may be removed from the place8through which it has a tendency to escape.
22. Desault almost always obtained complete success by this process, and by the most accurate attention to prevent the relaxation of the bandage. In the mean time, a stiffness, more or less considerable, always remains in the joint for a long time after the reduction, and it is not unfrequently a month or two before the part recovers its usual facility of motion.
The following cases, collected by Brochier, confirm the doctrine for which I have been contending.
Case II.A man luxated the clavicle by falling on the point of his shoulder, and forcing it backward. He was immediately brought to the Hotel-Dieu, where Desault demonstrated to his pupils, that the head of the bone, carried in front of the sternum, was removed nearly an inch from its natural cavity, the ligaments of which were no doubt lacerated.
Here, as in the fracture of the clavicle, the application of the bandage answered the purpose of reduction, and removed the protuberance formed by the extremity of the bone.
The patient, being strong and vigorous, and having received besides a violent contusion, was bled twice, and confined to a low diet. On the following day, no derangement; on the fourth day, a slight displacement of the bone, the rollers a little relaxed, bandage applied anew. Eighth day, no sensible displacement. Eleventh day, some swelling around the joint; compresses, wet with vegeto-mineral water, ordered to be frequently renewed. Twentieth day, the swelling almost gone, and no disposition to a displacement; the apparatus was removed; motions at first difficult, and contracted. Twenty-ninth day, more free and easy. Thirty-fourth day, returned to their natural state.
Case III.Mary Rivert luxated her clavicle, on the seventh day of January 1789. Being brought some time afterwards, to the Hotel-Dieu, she was treated in the same manner as the foregoing patient, and with the same result, except that a very slight protuberance remained at the extremity of the bone, and the confined state of the motions continued a little longer. Desault related, in his lectures, other instances of cures being performed without the least remaining deformity.
After all, even supposing the method just proposed, to possess no other advantage, than that of diminishing the protuberance of the bone, which, under other modes of treatment, is almost inevitable, and by that means preventing the motions of the part from being confined, it would still, without doubt, be a great step towards the perfection of the art.
23. Should a luxation backwards occur, the same process of reduction should be adopted, with this difference, that the extension ought to be made forward and outward; and the same apparatus should be applied for retaining the parts, except that the humeral extremity ought to be directed a little backward, in order that the sternal extremity, being carried forward, may be removed from the place of laceration in the capsule.
In like manner, should the bone be luxated upwards, it would be necessary to draw the arm outwards, and elevate slightly the point of the shoulder, for the purpose of depressing the sternal extremity.
§ V.
24. Luxations of the humeral extremity of the clavicle, take place, according to Petit, in two ways, 1st, under, and 2dly, over the acromion. If we attend to the disposition of the articulating surfaces, the superior of which rests obliquely on the inferior; if we examine, in particular, the relative position of the corocoid apophysis with respect to the clavicle, it will be difficult to conceive how the first kind of luxation can occur, without being accompanied by a fracture. Yet some facts added by Desault to the doctrine of Petit, on this point, seem to demonstrate the possibility of the clavicle sliding under the acromion. As to luxations forward and backward, the mobility of the shoulder, the facility with which it yields to motions impressed on it in these two directions, and the want of a resisting power, make the two bones that compose it, move together, still preserving their relative position.
The luxation upward, then, is that which ought chiefly to occupy the attention of the practitioner. Yet even this is less frequent than the luxation of the sternal extremity, on account of the very great strength of the retaining ligaments, which, when this luxation occurs, must be, if not lacerated, at least very much distended.
§ VI.
25. A fall on the point of the shoulder is the most frequent cause of this luxation. The two articulating surfaces, representing an inclined plain, slide along each other, in such a manner, that that which belongs to the acromion is pushed inward, while that of the clavicle is directed outward. The capsule being stretched, gives way, and then the displacement is manifested by a preternatural protuberance over the acromion; by a stiffness in the motion of the shoulder; by the direction of this part, which is evidently drawn inward and downward; by the inclination of the head of the patient to the side affected; by a bending of the body; and by severe pains in the luxated part. These characters are essentially distinct, and ought to have prevented the error ofGalen, who mistook a case of this kind for a luxation of the os humeri downward. Hippocrates and Ambrose Pare have foreseen the possibility of this mistake and even warned young practitioners to be on their guard against it. But, as citizen Sabattier judiciously observes, the position of the head of the humerus, under the arm, in a luxation of that bone, will remove all uncertainty respecting the nature of the injury.
§ VII.
26. The reduction, in this case, is generally attended with but little difficulty. The acromion being drawn outward, by the upper end of the os humeri, which, by means of a fulcrum placed under the armpit, is made to act as a lever of the first kind, is restored, without much trouble, to its natural contact with the corresponding surface of the clavicle. But, it soon becomes deranged again, unless it be retained in its place by a proper apparatus. Now, on what principle ought this apparatus to be constructed? To prevent the displacement, which generally occurs from without inwards, it ought evidently to act from within outwards. Whence it follows, that the rollers in the figure of 8 bandage, recommended in this case by all writers, instead of preventing, actually favour the displacement (17), because they act in the same direction with, and therefore assist, the powers that produce it.
27. Here, in like manner as in the preceding case, the bandage of Desault fulfils with precision the indications of cure, because, by it, the point of the shoulder is, particularly, drawn outward; and if, in certain cases, a slight projection of the humeral extremity still remains, it is to be attributed to the inefficacy of the means of execution, and not to the principles on which they are founded.
§ I.
1. There is no part of the scapula more liable to fractures than the acromion. Being but slightly covered by the soft parts, this insulated kind of appendix has not, in all positions of the humerus, a solid point of support. A strong muscular force oftentimes acts on it with great energy. Being large in front, it presents in that direction a considerable surface to receive the action of external bodies. Whence it follows, that if it is not oftentimes broken, this is to be attributed, not so much to its natural disposition, as to the position which it generally assumes in falls.
2. The fracture, which is almost always transverse, is sometimes at the summit, and sometimesat the base of this apophysis, and is usually produced by a violent shock from a body falling on the shoulder, by a blow received on that part, &c.
3. But in whatever place it occurs, it greatly resembles a fracture of the humeral extremity of the clavicle, of which the acromion appears like a continuation. There is accordingly a strong analogy between the phenomena, the consequences, and the modes of treating these two kinds of fractures.
4. This accident is characterized, 1st, By a severe pain experienced by the patient, at the place of the fracture. This pain is increased by the elevation of the arm, which, generally hangs motionless down along the side. 2dly, If the humerus be removed from the trunk, the hand being at the same time placed on the acromion, the extremity of this apophysis is felt sinking downward, creating thereby an evident depression in the part. 3dly, Generally, the two fragments lose, of their own accord, their relative position; and unless the precaution about to be mentioned be used, their displacement becomes manifest, being produced by the weight of the arm, and the contractions of the deltoid muscle. 4thly, The head is inclined to the affected side.
§ II.
5. Two different processes have been long in use for the reduction of fractures of the acromion. One consists in elevating the arm almost to a right angle with the body, in order, as Heister remarks,to throw the deltoid muscle into a state of relaxation, and then to be able, with the fingers, to place the fragments in their natural situation. In the other mode, the humerus is suffered to retain the position it has assumed, that is, to hang down the side; the surgeon then taking hold of the elbow, pushes it vertically from below upwards, in such a manner, that the head of the bone, pressing against the acromion, elevates and replaces it.
6. Petit seems to have adopted indiscriminately these two methods, one of which, however, is greatly superior to the other. Indeed, it is evident, that if the humerus be removed from the trunk, its head will necessarily sink down in the glenoid cavity. Being thus separated from the fractured apophysis, it leaves beneath it a hollow or vacancy, into which the fragment will be pushed, should it be in any measure, compressed by the casts of the roller, during the application of the bandage.
7. On the other hand, if the arm still fixed against the side, be pushed upwards, it will afford to the acromion a solid point of support, which, during the application of the apparatus, will prevent its displacement downwards. This consideration is unquestionably of moment, during the process of reduction; but ought more particularly, to command the attention of the practitioner, in the choice of means destined to maintain the reduction.
§ III.
8. As the displacement is most likely to occur downwards, particularly in motions of the arm, it is necessary that a continued resistance be opposed to this tendency. But this resistance should be made by the head of the humerus, which, if properly directed, will represent, during the treatment, a kind of splint, which art ought to render fixt and immoveable lest, being contiguous to the divided surfaces, it might derange, by its motions, the work of nature in effecting their reunion. Hence it follows, that the precise and immediate intention of the whole apparatus destined to support fractures of the acromion apophysis, is, 1st, to keep the head of the humerus constantly elevated or pushed upwards: 2dly, carefully to prevent all motions of the arm and shoulder.
9. If the means, heretofore employed in this fracture, be examined, it will be perceived that they by no means fulfil this twofold indication.
A compress placed immediately over the fracture; a roller passed round this to secure it; a ball or bolster9put into the hand; the fore-arm supported in a sling; such is the apparatus recommended by Petit. In addition to this, Duverney judiciously advises to keep the sling elevated, for the purpose of keeping the head of the humerus applied under the fractured pieces. He employed also the spica-bandage which has been equally recommended by Heister.
10. But, in the employment of these means, the arm, not being confined against the trunk, can move with ease, and derange the fragments, and, therefore, the second indication is not fulfilled. Will even the first be fulfilled? By no means. The sling, being soon deranged, by the movements of the arm, which are oftentimes involuntary, suffers it to sink down again, and then the fragments, being no longer supported, are displaced. Hence the difficulties attending the treatment, difficulties which have not escaped the notice of authors, and which Heister thus expresses: “Nemo ita curari solet,ut brachium postea, liberi sursum attollere queat,” an observation, which the celebrated Cheselden made before him, in describing the scapula.
11. These inconveniences will be avoided, by fixing the arm, as recommended by Desault, firmly against the trunk, by converting, so to speak, the arm and the trunk into one single and solid piece, in such a manner, that the humerus having no other motions but those in common to it and the thorax, may not be able to communicate any others to the fragments, which are supported by its head. This advantage can be easily obtained, by means of the bandage, already described, for fractures of the clavicle, modified agreeably to the circumstances of the case, in which it is to act.
12. A bolster or pad of an equal thickness in all its parts, is placed under the arm. The arm is then to be pressed down on this, in like manner as in the bandage for the clavicle. The fractured apophysis is now to be covered by two compresses; one extendingfrom the clavicle to the spinous processes of the vertebræ, while the other, lying over this, and running in a contrary direction, crosses it at the place of the fracture. The whole is then to be secured by a roller, which, starting from the arm-pit of the sound side, pursues nearly the same course with that destined, in fractures of the clavicle, to retain the shoulder upwards. (See what has been said on this subject, when treating of the structure of the bandage.)
13. By this mean, the two-fold indication of keeping the humerus immoveable, and directed upwards (8), is evidently fulfilled, as I have already proven at full length, when treating of fractures of the clavicle; and a reunion, without deformity, may be looked for, of which we have an instance in the following case, recorded by Derrecagaix.
Case I.Nicholas Gay, aged twenty-nine, was struck, in passing under a decayed building, by a stone, which, having become loosened, fell on the point of his shoulder. In an instant he experienced severe pain, and a difficulty of moving his arm, particularly upwards. Soon afterwards there occurred a swelling of the shoulder, and a large echymosis at the place where the blow was received. The pain, not so acute during a state of rest, was increased by the motions of the arm, and even by leaning the head towards the opposite side, which latter circumstance was, no doubt, owing to the contraction of the trapezius muscle.
A surgeon being called, judged it sufficient to make use of discutient applications, to which the swelling and the echymosis appeared to yield in thecourse of a few days. On a more accurate examination, a fracture was discovered, supposed to be in the external part of the clavicle, and for which the patient was sent to the Hotel-Dieu.
The fracture was discovered to be in the middle of the acromion, which it divided transversely. The bandage already mentioned (12) was applied, and, from the first day, the patient was left to his usual regimen. Fifth day, a renewal of the apparatus which had become relaxed: seventh day, a fresh displacement, in consequence of an unguarded motion: a fresh application of the bandage, which continued in its place till the sixteenth day, when it was replaced anew: thirty-second day, reunion complete; a stiffness in the motions of the part, which exercise removed by degrees, and of which the patient felt no remains after the forty-eighth day.
§ IV.
14. Next to the acromion, the lower angle of the scapula is that portion of the bone most liable to be fractured. The usual causes of it are, falls on the side, or blows received on the part. It is characterized by a displacement which is always perceptible. On the one hand, the fleshy portion of the serratus-major, which is attached to the inferior fragment, draws it directly forward, while it is drawn upward by the teres-major, and some of the fibres of the latissimus dorsi. On the other hand, the body of the bone itself remains behind, being held by the rhomboid muscles. Hence arises a separation, which renders it difficult to mistake the fracture. Should any doubts still remain, let the shoulder be drawn backwards and the scapula along with it: let the fingers be, at the same time, placed on the lower angle, to ascertain whether or not it follows the motions of the bone; if it does, there is no division: but if, on the contrary, it remains stationary, the existence of the fracture is evident.
§ V.
15. Here, as in all other fractures, the means of reduction must be founded on the causes of displacement. To effect the replacement, therefore, it is necessary, either to push backward and downward, the angle which is displaced in a contrary direction, in order that it may be brought into contact with the body of the bone, or else to draw the body of the bone forward and upward, that it may meet the displaced angle. It is thus, that in a fracture of the condyle, the body of the jaw, is drawn into contact with the fragment.
16. But the first mode of reduction is difficult, and the means of maintaining it impracticable. It is necessary, therefore to have recourse to the second, which is the more easily executed, as the scapula follows the movements of the arm, and as, by drawing this limb forward, and the elbow of it outward, that bone is removed from the spinous processes of the vertebræ, and directed in such a manner, as to be brought into contact with its inferior fragment. This situation possesses another advantage, as it throws into a state of relaxation the muscles which tend to displace the lower fragment.
Hence it follows, 1st, That here, in like manner as in fractures of the clavicle, it is not on the fractured bone, that the force must act, but on the humerus. 2dly, That the humerus ought to be, during the whole treatment, immoveably fixed, because its motions, being communicated to the scapula, must soon derange the contact necessary to a reunion.
18. On these principles were founded the apparatus of Desault, and his process of reduction, which consisted, 1st, in drawing the arm forward, and separating the elbow a little from the thorax; 2dly, in fixing the fore-arm at an angle sufficiently acute, to direct the hand to the point of the opposite shoulder; and 3dly, to bring afterwards into proper apposition and form, the fragments already approximated to each other by the first movements.
19. To retain this reduction, the arm and fore-arm must be permanently fixed in the above position. This object is attained in the following manner, 1st, A bolster in form of a wedge, being placed between the arm and the side, its apex situated in the arm-pit, affords the double advantage of keeping the elbow at a distancefrom the thorax, and of rendering the position of the arm less fatiguing by serving as a point of support to it. 2dly, Compresses wet with some discutient liquid, are applied on the part corresponding to the fracture. 3dly, The whole is now to be secured by a roller, seven or eight yards long. The first turns of this roller, must secure the hand of the affected side on the sound shoulder to which it had been applied, during the reduction, and running afterwards from before backwards, pass over the place of the fracture, for the purpose of retaining the compresses on it. The wedge-formed bolster is to be secured on the thorax, by circular turns around it. Then, passing under the sound arm-pit, after having made these circular turns, the roller must be brought behind again, conducted obliquely over the shoulder of the diseased side, along the anterior part of the arm, under the elbow, and behind the thorax, where it is carried obliquely, in order to pass again under the sound arm-pit. From this place it ascends again anteriorly over the affected shoulder, redescends along the posterior part of the arm, repasses under the elbow, returns under the arm-pit, and terminates finally in circular turns round the trunk, and arm together. Hence it may be observed, that, in the first turns of the roller, this bandage greatly resembles the third roller applied in the fracture of the clavicle, to retain the point of the shoulder upward and backward (Fig. 4. plate I.)
20. By this, 1st, The movements of the arm being entirely impeded, they cannot have any influence on those of the shoulder; hence, in this respect, the fragments are suffered to remain in contact. 2dly,The serratus-major and teres-major muscles, being kept in a state of habitual relaxation, can no longer draw the inferior fragment forward, which cannot, therefore, be separated from the body of the bone. 3dly, Nor can the body of the bone, being permanently held in this situation, be removed from the fragment; whence, in both respects, a displacement will be effectually prevented. This threefold advantage is not possessed by any of the different kinds of apparatus hitherto proposed, such as the sling and cross-bandage, employed by Petit, which have the fault of suffering the arm to move backward, of allowing the scapula to be easily separated from its insulated angle, of retarding by that means the cure, and even of preventing it entirely, while, by the process just described, it is usually completed by the thirtieth day.
1. The language of the surgeon differs, in this case, from that of the anatomist, and by the expression, “fracture of the neck of the humerus,” is heremeant not that of the slight circular depression, which separates the head from the tuberosities of the bone, but rather that of the contracted or diminished portion of the bone, which commences at the tuberosities above, and being continued down the body of the bone, receives at its lower end the insertion of the tendons of the pectoralis major, the latissimus dorsi, and the teres major. Many practitioners consider this neck or contracted portion as extending even to the insertion of the deltoid muscle.
2. Several facts, the truth of which it is difficult to call in question, attest the possibility of a fracture of the neck of the bone, so called in anatomical language. I have myself seen, in the humerus of a young man, aged seventeen years, the head of the bone exactly separated from its body, by a division which had but slightly affected the upper extremity of the tuberosities. But the examples of this nature which occur in the annals of surgery are too few, to enable us to lay down any general principles for the treatment of such fractures.
§ II.
3. The operation of external bodies, active, when they are thrown against the shoulder, passive, when the shoulder, or the arm, is forcibly driven against them, is always the cause of a fracture of the neck of the humerus. From the mechanism of the part, the division is sometimes direct, and sometimes the effect of a counter-stroke.
The first of these arises very generally from a fall on the point of the shoulder, and as in such a case, the commotion or shock must be very great, to extend with sufficient force through the thick mass which forms the deltoid muscle, that muscle sometimes suffers both contusion and an echymosis. Blood may even escape from a rupture of some of the arteries or veins of the joint, and form, as Desault has observed, a collection or tumour which it would be imprudent to open.
The other is the effect of a fall on the elbow, separated, at the time, some distance from the trunk, or on the hand, which, by a natural instinct, is thrown out, together with the arm and fore-arm, in order to break the violence of the fall.
4. The varieties of this kind of fracture originate, 1st, from the spot which it occupies, being either the middle or the lower part, rarely the upper part, of the neck of the humerus: 2dly, from the state of the surrounding soft parts, which sometimes remain quite natural, and at other times become distended and tumefied. This circumstance always involves the diagnosis in more or less uncertainty; 3dly, from the direction of the fracture, which is sometimes transverse, but usually oblique, particularly when produced in the second mode, that is, by a counter-stroke (3); 4thly, from the relative situation of the fragments, which may remain in contact, an occurrence however but very rare, or may separate from one another in a direction inwardly or upward; and, 5thly, from different complications, with which it may be attended.
§ III.
The whole of the signs of a fracture of the neck of the humerus, taken together, characterize its existence in a manner sufficiently evident. But it is not always an easy matter to take a view of them all at once, and in such a case, there are more difficulties attending the diagnosis here, than in any other fracture of the humerus.
An acute pain is felt at the instant of the fall; and sometimes a crack or report is plainly heard. There is always a sudden inability to move the limb, which, being left to itself, hangs motionless. But if any external force act on it, it yields to it without resistance, and may be moved by it with great ease in every direction.
These motions are accompanied with severe pain, and, if carried too far, may give rise to very troublesome affections, as has been observed in patients, where the fracture was mistaken for a luxation.
Beneath the acromion, is discovered a depression, always situated lower down, than that which accompanies the fracture of that apophysis. If one hand be placed on the head of the bone, while the other is employed in moving the lower fragment in different directions, or, while an assistant, engaged in making the necessary extension, communicates to this fragment a rotatory motion, 1st, the head will be perceived to remain motionless; 2dly, the friction of the two divided ends will produce a crepitation more orless perceptible. This twofold sign is always decisive as to the existence of a fracture; but the swelling of the joint may occasionally prevent the practitioner from availing himself of it.
The fragments remain sometimes in contact, without experiencing any displacement, in which case, most of the signs not manifesting themselves, the diagnosis is rendered more difficult. But most frequently a displacement occurs, and then it is the inferior fragment that is deranged, and not the superior one which is so short that it can be but little effected by the action of the muscles.
7. The displacement is in general but slightly perceptible in the longitudinal direction of the bone, unless when, in a very oblique fracture, the fragments present points which irritate the muscles, excite them to contraction, and augment their force; or, when a blow of great violence, continuing to act after the bone is broken, causes the fragments to overlap each other. Thus has the body of the bone been forcibly drawn upwards, or driven in the same direction, till having passed through the deltoid muscle, and the external integuments, it has even risen considerably above the level of its head.
But in general, as Petit observes, the weight of the limb hanging down the side, opposes to the action of the muscles a sufficient degree of resistance; and it is in the direction of the cross-diameter or thickness of the bone, that the displacement most frequently occurs. It is to be observed, that the lower fragment is driven either inward or outward, rarely in any other direction. In the first case, which is byfar the most common, the elbow is somewhat removed from the body, and cannot be brought near to it without pain; in the second, which is more rarely met with, it is moved in an opposite direction.
In the one, the contractions of the deltoid muscle and the natural curve of the humerus, in the other, the united action of the pectoralis major, the latissimus dorsi, and the teres-major, appear to have an essential influence on the displacement.
In each case, the displacement is facilitated by the mobility of the lower fragment, and of the shoulder, when an apparatus from being improperly constructed, fails to prevent the movements of the whole extremity.
8. The signs which have just been detailed, do not always furnish such luminous evidence, particularly to an inexperienced practitioner, as to prevent the occurrence of very serious mistakes. Of this Desault related many examples in his lectures.
Case.J. M*** Est*** falling on his elbow, fractured the neck of the humerus. A surgeon was immediately called, who, finding a depression beneath the acromion, a protuberance in the hollow of the arm-pit, and the humerus directed outwards, pronounced, without further examination, that there existed a luxation in a downward direction. Wishing to reduce it immediately, he employed, to no purpose, the common processes. Acute pains were the consequence. The opening in the capsule being too narrow was irritated, and the member subjected to great violence of motion. At length the pains became insupportable; the operators gave over their fruitless efforts, and Desault was called.
He discovered the mistake from the immobility of the head; from the depression beneath the acromion being lower down than in a luxation; and from the existence of a crepitation. A reduction was effected without loss of time; the apparatus was applied, but in the evening a considerable swelling occurred around the arm-pit; soon afterwards inflammation was superadded; a vast collection of matter succeeded, and, notwithstanding the utmost attention, it was five months before the patient was restored to health.
9. To this example, I could add others, where the most serious accidents have resulted from a similar mistake. It must be acknowledged, however, that, if, in a fracture, the displacement be inward and a little forward, the greater part of the signs herein detailed (5) apply equally to a fracture and a luxation: but then, as we have just seen in the preceding case, the immobility of the head, the place of the depression beneath the acromion, and the crepitation, will remove any doubts that may be excited in the mind of the surgeon, by the protuberance in the arm-pit, the direction of the arm, &c. &c.
§ IV.
10. A fracture of the neck of the humerus assumes, in general, a character not very troublesome; and if, as Heister says, “a fracture near the head is worse, and more difficult to be cured,” this is less owing to the nature and seat of the disease, than to the difficulty of keeping the fragments in contact.
Seldom have the reunion of the bone, and the removal of all the disagreeable effects accompanying the accident, required a longer time than is necessary for the cure of other fractures. The numerous examples, which occurred in the Hotel-Dieu, during Desault’s direction of the surgical department, confirm the truth of this assertion, notwithstanding some doubts that may have been raised respecting it, by prejudices formerly entertained, on the subject of fractures in the vicinity of joints.
From twenty-six to thirty days are sufficient for the reunion: this was the term commonly required in the Hotel-Dieu.
11. If judiciously managed, art readily removes all the accidents attendant on this fracture; but, if otherwise, the consequences are apt to prove troublesome. It is here, much more particularly than in other places, that all deformity of the part ought to be prevented; because, the neck of the humerus being near to the centre of the motions of the arm, will very essentially impede those motions if it be not properly reunited. A deformed callus has been known to produce, in the hollow of the arm-pit, a protuberance, which has, in part, prevented abduction, and appeared to keep up an habitual swelling in the limb.
It is, then, from the perfection of the apparatus, and not from the vicinity of the injury to a joint, that the prognosis is to be formed, both as to the consequences, and as to the duration of the fracture. Keep the fragments in exact and regular contact, and there will be no obstacle to that success which seldom forsook Desault.
§ V.
12. The reduction in this case is usually attended with but little difficulty, and the great multiplicity of means hitherto used for that purpose, demonstrate only the barrenness of the art.
Most of the machines destined to reduce the luxation of the humerus, have been applied to this fracture. Thus the ladder,11* the door,† and the club,‡ placed under the arm-pit, served at once the purposes of counter-extension, and conformation, while the powers for producing extension were applied to the elbow, and more rarely to the wrist. Thus Hippocrates recommended a wooden cross, the effect and mode of action of which are nearly the same. These means, in general, besides being insufficient, are liable to a further objection, in consequence of their acting on the edges of the pectoralis major, latissimus dorsi, and teres major, which being thus forced upwards, draw the fragment to which they adhere in the same direction, and thereby constitute an obstacle to the reduction. (See what will be advanced on the subject of luxations of the humerus.)
13. To machines succeeded the use of straps, weights suspended to the limb, &c. These processeswere entirely useless, in as much as they were intended only to increase the natural powers of the operator, which are already more than sufficient of themselves. They will, therefore, in a short time, exist only in the history of surgery.
Petit proposed to reduce this fracture, by first raising the arm to a right angle with the body, and then directing one assistant to make the requisite extension, by taking hold of the elbow with his hands, while another grasped the point of the shoulder, for the purpose of counter-extension. This method was attended with the threefold inconvenience, of subjecting the patient to great fatigue and pain, of weakening the extending powers, by bringing them too near to the point required to be moved, and of irritating the muscles that draw the lower fragment upwards, and thus exciting them to contract. Hence the difficulties sometimes attendant on reduction, which is always simple in itself, when, after the trunk is properly fixed, gentle extensions are made by taking hold of the fore-arm in a half-bent state. The following is the mode of reduction practised by Desault.
14. The patient is seated either on a chair or on the side of a bed. The arm is slightly separated from the body, and carried a little forward.
One assistant is directed to fix and secure the trunk in a proper manner. This he does by pulling at the arm of the sound side, taking hold of it near to the hand, and extending it in a direction perpendicular to the axis of the body. This mode of counter-extension is preferable to that commonly employed, which consists in applying the hands to the upper partof the patient’s shoulder. Indeed, on the one hand, the power being farther removed from the resisting force, need not be so great. And, on the other, the body being entirely unencumbered, renders it easy for the surgeon to apply the roller without discontinuing, or in any way disturbing, the extension.
Another assistant makes extension on the fore-arm, which serves him as a lever, where, one hand being placed behind or on the back of the wrist, forms the point of support, (or fulcrum), while the other applied to the anterior and middle part of the fore arm, on which it makes pressure from above downward, represents the power; the fragments to be brought into contact constitute the resistance.
The relaxation of the muscles produced by this semi-flexion of the fore-arm, and the slight separation of the arm from the trunk, greatly favour this mode of extension; a mode recommended by the ancients, adhered to by the English, and which possesses the advantage of leaving uncovered all that portion of the limb on which the apparatus is to be applied, and by that means of allowing the hands of the assistant to keep the same position during the whole time of the application.
A small degree of force, judiciously directed according as the displacement is inward or outward, is sufficient to effect the reduction, which even takes place of its own accord, under this process. If the surgeon lays his hands on the place of fracture, it is rather to examine the state of the fragments, than to assist in bringing them into apposition.
§ VI.
16. All kinds of apparatus for fractures, being nothing but resistances opposed by art, to the powers which produce displacement, it follows, that they should all act in directions precisely opposed to the directions of those powers. But, we have seen (7), that, in the present case, these powers are, 1st, the action of external bodies, favoured by the extreme mobility of the arm and shoulder; 2dly, the action of the latissimus dorsi, the pectoralis major, and the teres major, which carry the inferior fragment inward, or, what is more common, of the deltoid muscle, which draws it outward; 3dly, the contractions of the muscles of the arm, which have a slight tendency to draw the same fragment upwards.
17. Therefore, 1st, to render the arm and shoulder immoveable; 2dly, to carry the upper end of the lower fragment outward or inward, according to the direction in which it is displaced; and, 3dly, to draw this fragment downward, are the three indications that ought to be fulfilled by every bandage intended for a fracture of the neck of the humerus. The last merits less attention than the other two, because, as already observed, the weight of the limb alone is nearly sufficient to answer it.
18. Let us inquire, whether or not the kinds of apparatus, hitherto employed, have been adequate to the fulfilment of these indications.
The ancients, in obedience to the precept of Hippocrates, fixed the arm against the breast, and confined it there by a bandage recommended by Celsus, and constantly employed by Paul of Egina. “Præstat antem, says he,brachium, ad thoracem moderate deligare, ut ne, si id commoveatur, figuram avertat.” Pare still preserved this process, which the moderns have now entirely abandoned, and which, taken alone, could properly fulfil only the first indication. The second indication was less happily fulfilled, by a kind of bandage added to the first, by Celsus, Paul of Egina, and the Arabians, the necessary effect of which was, to force the lower fragment outwards. It is surprising that Heister and Lamotte should have confined themselves to the use of this for the retention of the fragments.
What shall we say of the eighteen-tailed bandage exclusively adopted by Petit and Duverney? The arm, not being fixed by it, was liable to be moved, and the fragments to be displaced by the least shock. There was nothing to prevent the lower fragment from obeying the powers tending to carry it either inward or outward. Indeed the bandage was of no avail whatever in giving support to a fracture, as was observed by Louis, in his “Dissertation on Petit’s Diseases of the Bones.”
Suppose the arm, as some have advised, to be supported only by a sling. Not one of the indications just established (17) could by such means be fulfilled.
Perhaps the bolster of tow proposed by Moscatti, would have surpassed all these means, in the advantages it offered, had it not, by leaving the arm moveablebelow, and the shoulder above, still favoured a displacement.
Le Dran has also advised the use of a bolster composed of that of Moscatti, and bole Armenian. It fixed the arm more firmly against the trunk and in this respect, certainly approached nearer to the attainment of the object in view.
19. It is obvious, from this comparison between the indications of cure (17), and the means hitherto employed for the fulfilment of them (18), that nothing satisfactory had yet been done, and that a proper apparatus was still a desideratum. The success experienced by Desault, in the use of that which we are about to describe, has perhaps proven, that this desideratum exists no longer.
20. The pieces which compose it, are, 1st, Two rollers, the one from five to six, and the other from eight to ten yards long, each one about three inches wide: 2dly, Three strong splints, of different lengths, each about two inches broad: 3dly, A small bolster made of linen, from three to four inches thick, at one end, tapering like a wedge to the other, and of a sufficient length to reach from the arm-pit to the elbow; 4thly, A sling for the purpose of supporting the fore-arm; 5thly, A piece of linen to surround the whole apparatus.
Every thing being properly arranged, the reduction, effected in the manner already stated (14), and the assistants still continuing the extension:
1st, The surgeon takes the first roller, wet with vegeto-mineral water, fixes one end of it by two circular turns on the upper part of the fore-arm, andcarries it up along the arm by oblique turns, moderately tight, and overlapping each other about two-thirds of their breadth. Having reached the upper part of the limb, he makes some reversed turns to prevent the wrinkles that would be caused by the unevenness that occurs in this place. He then passes two casts of the roller under the opposite arm-pit, and bringing the ball to the top of the shoulder again, gives it into the hand of an assistant.
2dly, The first splint is then placed before, and reaches from the fold of the arm, to a level with the acromion. The second on the outside, reaching from the external condyle to the same level. The third behind, reaching from the olecranon to the fold of the arm-pit. The bolster placed between the arm and the thorax is a substitute for a fourth splint, which is by that rendered unnecessary. An assistant now secures them, by grasping them with his hand towards the curvature of the elbow, so as not to hinder the application of the remaining part of the bandage.
3dly, The surgeon takes hold of the roller again, descends by oblique and reversed turns along the splints, which he fixes by binding them moderately tight, and terminates the bandage at the upper part of the fore-arm, where he had commenced.
4. The assistants still continuing the extension, the surgeon places the bolster between the arm and the trunk, taking care that the thick end be uppermost, if the displacement be in an inward direction, but lowermost, if it be in an outward one, as is most commonly the case (7). The bolster is to be fastened at top by two pins to a cast of the roller.
5. The arm is now pressed towards the trunk, and fixed against the bolster, by means of the second roller. This roller is applied like that which, in fractures of the clavicle, fastens down the arm to the bolster, by the oblique turnsc. c.(Fig. 3. plate I.), with this difference, that in the present case, the turns ought to be very tight below, and looser above, if the displacement be in an inward direction. But, on the other hand, if it be outwardly, they must be loose below, and tight above.
6. The fore-arm is now to be suspended in a sling, and the whole apparatus afterwards surrounded by a piece of linen, which, by protecting the casts of the roller from friction, prevents them from being disturbed.
21. If we now compare the action of this apparatus with the indications of cure formerly laid down (17), it will be easy to perceive, that, by it, they are extremely well fulfilled. Indeed, the arm, being firmly fixed against the trunk, cannot move, otherwise than by motions common to it and the trunk, and nothing can derange the lower fragment, which is equally immoveable. Nor can the shoulder communicate any motion to the superior fragment. The bolster being differently disposed, according to the direction in which the lower fragment is displaced, will serve to move it in an opposite direction.
Should this fragment be forced inwards, the thick head of the bolster will separate it to a distance from the thorax. It will be maintained in this state of separation, by the casts of the roller, which, being very tight below, will act on it as on a lever of the firstkind, of which the bolster, forms the fulcrum, while the resistance to be overcome is the action of the latissimus dorsi, the pectoralis major and the teres major. The casts of the roller, by pressing the elbow to the body, will draw the fractured end of the bone in a contrary direction; and, in this respect, the bandage may be considered as an artificial muscle, forming a perfect antagonist to the natural ones.
22. If the displacement be in an external direction, as most commonly occurs (7), a contrary effect must be produced, as well by the pressure made by the bandage, on the upper extremity of the displaced fragment, as by the situation of the elbow which is directed outwards by means of the thick end of the bolster being placed lowermost. The external splint will also prevent the displacement outwards, as well by opposing to the bone a mechanical resistance, as in compressing the deltoid muscle, which is the principal cause of the displacement. The derangement of the lower fragment forward and backward, will be prevented by the two splints before and behind.
The displacement longitudinally, already checked by the weight of the limb, will be still further prevented, by the compression made on the muscles of the arm, which are the instruments of displacement, by the splints and the bandage.
23. To the advantage of keeping the fragments exactly in place, this apparatus unites that of not confining the patient, who is not obliged to keep his bed, and to whom a lying position is even, in general, more troublesome and injurious than an erect one. Thisobservation applies to the treatment of fractures of the clavicle, of the scapula, and even of the fore-arm, when no accident has rendered them complicated.
Desault has cured several patients, but more particularly two, who, being obliged to travel daily, did not, except on the day of the accident, deviate in any measure from their usual mode of life.
An inexperienced surgeon sometimes applies the rollers too tight, in which case, a swelling of the fore-arm is the consequence. This is remedied by relaxing the bandage; but if, notwithstanding this, the swelling still continues, it will be necessary to extend the bandage from the hand to the shoulder.
§ VII.
24. The pain ceases as soon as the apparatus is applied, because the fragments, now brought into perfect contact, cease to irritate the surrounding parts. Nor does it return during the treatment, as they are firmly retained, and not suffered again to separate.
It is rare that any serious accident follows this fracture, and, among the numerous examples met with by Desault, he has scarcely ever had one such to encounter: yet he generally paid but little attention to those internal means which are usually combined with external ones. In most cases, the patients pursued the regimen to which they had been accustomed.