Fig. 86.
122. The Vane.—The instrument by which the wind’s direction is most generally noted, is the vane, or weather-cock, and all that need be said of it here is that the points north, east, south and west, usually attached to it, should indicate thetrueand not themagneticdirections; and that care should be taken to prevent its setting fast. Very complicated instruments are required for ascertaining the pressure and velocity of the wind, and these are calledAnemometers. The simplest isLind’s.
123. Lind’s Anemometer, or Wind-Gauge(fig. 86), invented so late as 1775, for showing the pressure of the wind, consists of a glass syphon, the limbs parallel to each other, and each limb the same diameter. One end of the syphon is bent at right angles to the limb, so as to present a horizontal opening to the wind. A graduated scale, divided to inches and tenths, is attached to the syphon tube, reading either way from a zero point in the centre of the scale. The whole instrument is mounted on a spindle, surmounted by a vane, and is moved freely in any direction by the wind, always presenting the open end towards the quarter from which the wind blows. To use the instrument, it is simply filled up to the zero point with water, and then exposed to the wind; the difference in the level of the water gives the force of the wind in inches and tenths, by adding together the amount of depression in one limb, and elevation in the other, thesum of the twobeing the height of a column of water which the wind is capable of sustaining at that time.
Table,
Showing the Force of Wind on a square foot, for different heights of the column of Water in Lind’s Wind-Gauge.
124. Modification of Lind’s Gauge.—Sir W. Snow Harrishas effected a modification of Lind’s anemometer, with a view of obtaining a hand instrument for use at sea more especially. At present the force of the wind is estimated at sea by an arbitrary scale, suggested by Sir F. Beaufort, the late hydrographer; 0 being calm, 12 the strongest hurricane, and the intermediate numerals giving the varying strength of the wind. There has been a long-felt want of instrumental means for obtaining this data at sea, if merely for the sake of checking occasionally personal estimations, which may vary considerably among different observers. Harris’s wind gauge is intended to be held by hand, while facing the wind, and keeping it in proper position by attending to a spirit-level attached. When in position, and held firmly, the tube has to be opened to the wind by pressure of the thumb acting upon jointed levers, controlled by springs. The pressure of the wind moves the enclosed liquid; and by withdrawing the thumb, the tube is closed so as to keep the liquid in its position; the reading is then taken from its scale, either in pounds on the square foot, miles per hour, or the ordinary designations of wind, as light, fresh, strong, &c.
Fig. 87.
125. Robinson’s Anemometer.—Dr. Robinson, of Armagh, is the inventor of a very successful anemometer, which determines the horizontal velocity of the wind. It was first used in 1850, in the meteorological and tidal observations made on the coast of Ireland under the direction of the Rev. Dr. Lloyd. No meteorological observatory should be without this valuable instrument, which is essential in determining the average velocity of the wind of a locality as distinguished fromthe most frequent wind of the same place. It is represented in fig. 87. Four hollow hemispherical cups,A A, are extended upon conjugate diameters, or arms, with their diametrical planes placed vertically, and facing the same way upon a vertical axis,B, which has at its lower extremity an endless screw,D. The axis is supported atCso as to turn with as little friction as possible. The endless screw is placed in gear with a train of wheels and pinions. Each wheel carries an index over a stationary dial in front; or the index is fixed, and the graduations are placed upon the wheels themselves.
Dr. Robinson has proved, both by theory and experiment, that the centre of any one of the cups so mounted and set in motion by the wind, revolves with one-third of the wind’s velocity. If, therefore, the diametrical distance between the centres of the cups be one foot, the circle described by the centres in one revolution is 3·1416 feet, and the velocity of the wind will be three times this, or 9·42 feet, which must be referred to time for the absolute rate. The instrument is sometimes made with the centres of the cups 1·12 feet apart, so that the circle described is1⁄1500of a mile in circumference. Hence, to produce one revolution of the cups, the wind must travel three times as fast, or1⁄500of a mile. Therefore, 500 revolutions will be produced by one mile of wind; so that the dials may be graduated to register the velocity in miles and tenths of miles. The simplest arrangement is with five dials, recording respectively 10, 100, 1,000, 10,000 and 100,000 revolutions.
Directions for using Robinson’s Anemometer.—The dials read off in the same manner as the register of a gas meter, commencing with the dial farthest from the endless screw.
“The figures on the first dial indicate so many hundreds of thousands of revolutions; those on the second dial so many tens of thousands; those on the third, thousands; those on the fourth, hundreds; and those on the fifth so many tens.
“The instrument should be read every morning at 9 o’clock; and, usually, it will only be necessary to read the first three dials. The figures can be entered as they are read off. Should the index pointbetweentwo figures, the less of the two is to be taken.
“For example, if the first dial points to 7, or between 7 and 8; while the second dial indicates 4; and the third, 5; the entry to be made is 745 (indicative of 745thousandrevolutions).
“Every time the index of the first dial is found to have passed zero (0), a cross or star is to be prefixed to the next (a lower) reading.
“To ascertain how manythousandsof revolutions have been made during the month, it will simply be necessary to subtract the first reading from the last, and prefix to the three figures thus obtained a figure corresponding to the number of stars in the column. For everythousandrevolutions there are two miles of wind: we have therefore only to multiply by 2 to find how many miles of wind have passed during the month.
“Two entries must be made for the last day of each month (the one being written under the other), so as to bring the readings down to 9A.M.on the 1st of the following month. The same entry which ends one month, will therefore begin the next. This repetition of one entry is necessary, in order to prevent losing a day’s wind.
“The foregoing directions are all which require to be regularly attended to. But it may be interesting at times to find the velocity of the wind during a period of a few minutes. This may be ascertained by observing the difference of two readings of all the dials, with an interval of some minutes between them, when a very brief calculation will suffice; but perhaps the simplest method is the following:—
Fig. 88.
“Take two readings, with an interval of 12 minutes between them. The difference of these readings, divided by 10, is the velocity of the wind in miles per hour. Thus—if the reading of the five dials (from left to right) at noon is 15206, and at 12 minutes past 12 is 15348, the velocity of the wind is 14·2 miles per hour.”—Admiral FitzRoy, F.R.S.
A lever and clutch are sometimes fitted to this anemometer, as in fig. 88, for throwing the train out of gear when not required to register. It may also be connected with clock-work so as to be self-recording, by causing the mechanism to impress a mark upon prepared paper moved by the apparatus, at certain intervals of time.
This anemometer should be fixed in an exposed situation, as high above ground as may be convenient for reading. It may be made very portable, by the arms which carry the cups being fitted to unscrew or to fold down. When fitted in gimbals, it can be used at sea with much advantage.
The pressure of the wind has been experimentally proved to vary as the square of the velocity; the relation beingV²= 200 ×P. From this formula, therefore, the pressure can be calculated corresponding to the observed velocity.
126. Whewell’s Anemometer.—This apparatus, the invention of the celebrated Dr. W. Whewell, registers the horizontal motion of the air with the direction. Its mechanism may be described in general terms, as follows:—
A horizontal brass plate is attached to a vertical spindle, which passes through the axis of a fixed cylinder, being supported by a bearing at the lower end, and working in a collar at the upper. A vane is attached, by which the plate is moved about according to the direction of the wind. A fly, having eight fans, each fixed at an angle of 45° with the axle, is placed upon the plate so that the axle is in the line of direction of the vane. An endless screw on the axle turns a vertical wheel having one hundred teeth, the axle to which has also an endless screw working into a horizontal wheel, having a like number of teeth, and which communicates motion to a vertical screw fifteen inches long. On this screw is placed a moveable nut, which carries a pencil. Round the cylinder is wrapped daily a paper divided for the points of the compass. The wind acting upon the vane will cause the plate to turn; and the screw which carries the pencil will travel with it, so that the pencil will mark upon the paper the direction of the wind. The fly will also be set in motion, and thereby the nut upon the screw will descend, so that the attached pencil will trace a vertical line upon the paper. When the fans on the axle are 2·3 inches from axis to end, and 1·9 inches wide, and the thread of the screw such that forty-five revolutions will cause the nut to descend two inches, 75·85 miles of wind will cause the pencil to descend through a vertical space of two inches; but the actual trace upon the paper will be longer in proportion to the magnitude of change of azimuth, or direction, of the wind.
127. Osler’s Anemometer, and Pluviometer.—Mr. Follet Osler is the inventor of a self-recording apparatus which registers the direction and pressure of the wind, and the amount and duration of rain, upon the same sheet of paper. His apparatus has met with very much approbation, and has been erected in many observatories. The mechanism may be modified in various ways, and the following is a description of the simplest and most recent arrangement.
Fig. 89.
The instrument, of which fig. 89 is a diagram rather than a picture, consists, first, of a vane,V, of a wedge-shape form, which is found to answer better than a flat vane; for the latter is always in a neutral line, and therefore is not sufficientlysensitive. A wind-mill governor has been substituted for the vane to get the direction of the wind, with advantage. At the lower end of the tube,T T, is a small pinion, working in a rack,r, which moves backwards and forwards as the wind presses the vane. To this rack a pencil,x, is attached, which marks the direction of the wind on a properly ruled paper, placed horizontally beneath, and so adjusted as to progress at the rate of half an inch per hour, by means of a simple contrivance connecting it with a good clock. The paper is shown in the illustration upon the table of the instrument.
The pressure plate,F, for ascertaining the force of the wind, is one foot square, placed immediately beneath, and at right angles with the vane; it is supported by light bars, running horizontally on friction rollers, and communicating with flattened springs, 1, 2, 3, so that the plate, when affected by the pressure of the wind, acts upon them, and they transfer such action to a copper chain passing down the interior of the direction tube, and over a pulley at the bottom. A light copper wire connects this chain with the spring lever,y y, carrying a pencil which records the pressure upon the paper below. Mr. Osler much prefers a spring to any other means for ascertaining the force of the wind, because it is of the highest importance to have as little matter in motion as possible, otherwise the momentum acquired will cause the pressure plate to give very erroneous indications. The pressure plate is as light as is consistent with strength. It is kept before the wind by the vane, and is urged out by three or more springs, so that with light winds one only is compressed, and two, or more, according to the strength of the wind.
Thepluviometeris placed on the right in the figure,P Pbeing the plane of the roof of the building. The rain funnel,R, exposes an area of about 200 square inches. The water collected in it is conveyed by a tube through the roof of the building into a glass vessel,G, so adjusted and graduated as to indicate a quarter of an inch of rain for every 200 square inches of surface,i. e.50 cubic inches.Gis supported by spiral springs,b b, which are compressed by the accumulating rain. A glass tube, open at both ends, is cemented into the bottom ofG, and over it is placed a larger one closed at the top like a bell glass. The smaller tube thus forms the long leg of a syphon, and the larger tube acts as the short leg. The water, having risen to the level of the top of the inner tube, drops over into a little copper tilt,t, in the globe,S, beneath the reservoir. This tilt is divided into two equal partitions by a slip of copper, and placed upon an axis not exactly balanced, but so that one end or the other preponderates. The water then drops into the end of the tilt which happens to be uppermost, and when quite full it falls over, throwing the water into the globe,S, from which it flows away by the waste pipe. In this way an imperfect vacuum is produced in the globe, quite sufficient to produce a draught in the small tube of the syphon, or the long leg; and the whole contents of the reservoir,G, immediately run off, and the spiral springs,b b, elevate the reservoir to its original position. To produce this action, a quarter of an inch of rain must have fallen. The registration is easily understood. A spring lever,z,carrying a pencil, is attached by a cord,c, toS. This spring always keeps the cord tight, so that as the apparatus descends during the fall of rain, the spring advances the pencil more and more from the zero of the scale upon the paper beneath, until a quarter of an inch has fallen, when the pencil is drawn back to zero by the ascent of the reservoir.
The clock movement carries the registering paper forward by one of the wheels working into a rack attached to the frame.
The adjustment of the instrument should be carefully made at its first erection. The scale for pressure should be established experimentally, by applying weights of 2, 4, 6, &c., lbs., to move the pressure plate.
The registration trace for twenty-four hours is readily understood. The direction is recorded on the centre part; the pressure on one side, and the rain on the other. Lines parallel to the length of the paper show no rain, steady wind, and constant pressure. On the rain trace, a line parallel to the width of the paper shows that the pencil had been drawn back to zero, a quarter of an inch of rain having fallen. The hour lines are in the direction of the width of the paper.
At the International Exhibition 1862, Messrs. Negretti and Zambra exhibited an improved Osler’s anemometer, having combined with it Robinson’s cups, so that the pressure and velocity appear on the same sheet, on which a line an inch in length is recorded at every ten miles; thus the complete instrument shows continuously the direction, pressure, and velocity of the wind.
128. Beckley’s Anemometer.—Mr. R. Beckley, of the Kew Observatory, has devised a self-registering anemometer, which consists of three principal parts: Robinson’s cups for the determination of velocity; a double fan, or wind-mill governor, for obtaining the direction; and a clock to move a cylinder, around which registration paper is wrapped. The paper records the time, velocity, and direction of the wind for twenty-four hours, when it must be replaced. It has a cast-iron tubular support, or pedestal to carry the external parts—the cups and the fans,—which must be erected upon the roof of the building upon which it is desired to mount the instrument.
The fans keep their axis at right angles to the wind; and with any change of direction they move, carrying with them an outer brass tube, which rests upon friction balls on the top of the pedestal, and is attached to a tubular shaft passing through the interior of the pedestal, and terminating with a mitre wheel. The mitre wheel, working with other cogged wheels, communicates the motion of the direction shaft to a cylinder carrying a pencil, to record the direction.
The shaft carrying the cups is supported upon friction balls, placed in a groove formed on the top of the direction shaft, and passing through the interior of that shaft, comes out below the mitre wheel, where it is terminated in an endless screw, or worm.
Upon the wind moving the cups, motion is given to the innermost shaft,thence to the worm-wheel, whence motion is given to a pencil which registers the velocity.
De la Rue’s metallic paper is used in registration, it having the property of receiving a trace from a brass pencil. The pencils can, therefore, be made in the most convenient form. Mr. Beckley forms each pencil of a strip of brass wrapped round a cylinder, making a very thin threaded screw, so that the contact of the pencil cylinder and the clock cylinder is a mere point of the metallic thread. The pencil cylinders are placed side by side upon the cylinder turned by the clock, and require no spring or other appliance to keep them to their work, but always make contact with the registration paper by their own gravity. They therefore require no attention, and being as long as the trace which they make, they will last a long time.
The velocity pencil has only one turn on the cylinder, and its pitch is equal to a scale of fifty miles upon the paper. The direction pencil has likewise one turn on its cylinder, its pitch being equal to a scale of the cardinal points of the compass upon the paper.
The clock gives a uniform motion of half an inch per hour to the cylinder upon which the paper is fastened.
The registering mechanism of the instrument is very compact, requiring only a space of about 18 inches by 8 inches.
In the Report of the British Association for 1858, Mr. Beckley has given a detailed description of his anemometer, with drawings of all the parts.
129. Self-Registering Lind’s Anemometer.—A Lind’s wind-gauge, designed to register the maximum pressure, was exhibited at the International Exhibition 1862, by Mr. E. G. Wood. The bend of the syphon is contracted to obtain steadiness. On the leeward limb a hole is drilled corresponding in size with the contracted portion of the tube. The edge of the hole corresponds with the zero of the scale. On the pressure of the wind increasing, as much of the water as would have risen above the aperture flows away, and therefore the quantity left indicates the greatest pressure of the wind since the last setting of the instrument, which is done by filling it with water up to the zero point.
130. Anemometric Observations.—To illustrate the value of anemometric observations, we quote from a paper by Mr. Hartnup, on the results obtained from Osler’s Anemometer, at the Liverpool Observatory. The six years’ observations, ending 1857, gave for the yearly average of the winds: North-easterly, on 60 days, at 7·8 miles per hour; North-westerly, on 112 days, at 15·4 miles per hour; South-easterly, on 115 days, at 11·0 miles per hour; South-westerly, on 77 days, at 13·8 miles per hour; and one day calm. From the same observations, the average variation in the strength of the wind during the 24 hours is:—11 miles per hour, the minimum force, occurring at 1½ a.m.; until 6 a.m. it remains much the same, being then 11·3 miles per hour; at 10 a.m. it is 13·4 miles per hour; at 1½ p.m.the wind is at its maximum strength, being 14·8 miles per hour; at 5 p.m. it is again 13·4 miles per hour, and at 9 p.m. 11·3 miles per hour. Hence it appears that the wind falls to its minimum force much more gradually than it rises to its maximum; that the decrease and increase are equal and contrary, so that the curve is symmetrical; and that generally the force of wind is less at night than during the day.
“There is evidence,” says Admiral FitzRoy, “in Mr. Hartnup’s very valuable anemometrical results, which seems to prove that to his observatory, in a valley, with buildings and hills to the north-eastward, the real polar current does not blow from N.E., but nearer S.E. By his reliable digest of winds experienced there, it appears that those most prevalent were from W.N.W. and S.S.E. But in England, generally, theprevailingwinds arebelievedto be westerly, inclining to south-westerly, and north-easterly; while of all winds, the south-easterly is about the rarest.
“At Lord Wrottesley’s observatory, in Staffordshire, about 530 feet above the sea, there appears to be considerably less strength of wind at any given time, when a gale is blowinggenerally, than occurs simultaneously at places along the sea-coast: whence the inference is, that undulations of the land’s surface and hills, diminish the strength of wind materially by frictional resistance.
“All the synoptic charts hitherto advanced at the Board of Trade exhibit a marked diminution of force inland compared with that on the sea-coast. Indeed, the coast itself offers similar evidence, in its stunted, sloping trees, and comparative barrenness.”[14]
INSTRUMENTS FOR INVESTIGATING ATMOSPHERIC ELECTRICITY.
Fig. 90.
131. Atmospheric Electroscope.—The simplest instrument for ascertaining at any time the electric condition of the atmosphere is an electroscope composed of two equal pieces of gold leaf, suspended from a brass support, and insulated, as well as protected from the movement of the air, by a glass covering. Fig. 90 represents such an instrument. The cap of the brass support is fitted for the reception, in the vertical direction, of a metallic rod, not less than two or three feet in length. The top of the rod carries a clip. The instrument acts according to the law, that bodies similarly electrified repel each other; but when dissimilarly electrified, they attract each other. To make an observation, the instrument is placed in the open air, and a lighted piece of cigar fusee, or touch-paper, is fixed in the clip. The electricity of the air is collected by the substance undergoing combustion, and conducted by the rod to the gold leaf; and the pieces, being similarly electrified, separate more or less according to the amount of electricity present. The kind is determined by the effect of either an excited stick of sealing-wax or rod of glass upon the electrified gold leaf. A rod of glass, when rubbed briskly with a silk handkerchief or piece of woollen cloth, becomes positively electrified, or excited, as it is termed. A stick of sealing-wax, similarly treated, acquires the negative state. If, therefore, an excited glass rod be presented to the cap of the instrument, and it cause the pieces of gold leaf to diverge still further, the electric state of the air must be analogous to that of the glass, that is,positive; if they approach, it isnegative. On the contrary, if a stick of sealing-wax be used, the pieces will be repelled more apart if they have acquired negative electricity from the air; and they will converge if they have a positive charge.
By means of this very simple instrument, meteorological observers can readily ascertain the electric condition of the lower air at any time.
Note.—A book containing strips of gold leaf is sent with the Electrometer to replace the gold leaves when torn or broken in use.
To mount fresh gold leaves, unscrew the brass plate to which is attached the rod supporting the leaves; then moisten with the breath the flat piece of brass, and press it gently down on one strip of gold, whilst the book is only partly opened; the second leaf is attached in the same manner.
132. Volta’s Electrometeris similar to the instrument just described, except that instead of gold leaf two light pieces of straw, or two pith balls, are freely suspended from the conductor; the amount of the electric charge being estimated from the degrees of divergence, shown by a graduated arc.
133. Peltier’s Electrometeris a much superior instrument in point of sensibility. A tall glass tube an inch or more in diameter, is connected to a glass receiver, mounted on a base fitted with levelling screws. At the top of the tube is formed a globe from four to five inches in diameter, which is thickly gilt on the exterior, so as to form a good conducting surface. A wire passes from the ball down the tube into the receiver, where it is bent up, and ends in a steel point over the centre of the base. A bent wire, carrying a small magnetic needle, is balanced on the steel point, so that the magnet, with the fine wire, arranges itself horizontally in the direction of the magnetic meridian. If any cloud or portion of air in the neighbourhood be in an electrical state, it will act by induction upon the gilt ball, and the needle will be deflected from its north and south direction.
A graduated circle indicates the number of degrees of the deflection, which will be greater or less according to the tension of the electricity. To ascertain whether the electricity is positive or negative, a stick of shellac or glass must be employed, as already described.
Fig. 91.
134. Bohnenberger’s Electroscopemay be fitted with a metallic conductor, and used with great advantage for observing atmospheric electricity. “The principal parts of the instrument, as improved by Becquérel, are the following:—A B, fig. 91, is a small dry galvanic pile of from 500 to 800 pairs, about a quarter of an inch in diameter; when the plates are pressed together, such a pile will be from 2 to 2½ inches in length. The wires, which are bent so as to stand above the pile, terminate in two plates,PandM, which are the poles of the pile. These plates, which are 2 inches by ½ an inch, are parallel and opposite to each other. It is convenient for their opposite sides to be slightly convex, for them to be gilded or coated with platinum, and for them to run on the polar wires, by the latter being made to pass through a small hole in them. One of these plates will always be in a state of positive,and the other of negative, electricity; between them suspend the very fine gold leaf,D G, which is attached to the conductor,C D, of copper wire. If the leaf hang exactly between the two plates, it is equally attracted by each, and will therefore be in a state of repose. The apparatus should be protected by a bell-glass, fitting exactly, and having an opening at the top through which the copper wire,C D, passes; the wire, however, is insulated by its being contained in a glass tube, which is made to adhere to the bell-glass by means of a small portion of shellac or gum-lac. Screw on a metal ball or plate, to impart to it the electricity you wish to test, which will be conveyed by the copper wire to the gold leaf, and the latter will immediately move towards the plate which has the opposite polarity. This electroscope is, beyond doubt, one of the most delicate ever constructed, and is well adapted to show small quantities of positive and negative electricity.
“To ensure the susceptibility of electroscopes and electrometers placed under bell-glasses, precautions should be taken to render the air they contain as dry as possible, which may be effected by enclosing in a suitable vessel a little melted chloride of calcium beneath the glass.”
The galvanic pile employed in this electroscope is that invented by Zamboni. “It differs from the common hydro-electric batteries principally in this, that the presence of the electromotive liquid is dispensed with, and that in its place is substituted some moist substance of low conducting power, generally paper. The electromotors in these piles are composed for the most part of Dutch gold (copper) and silver (zinc) paper pressed one on the other, with their paper sides together, out of which discs are cut with a diameter of from a quarter of an inch to an inch. More powerful pairs of plates may be obtained by using only the silver paper and smearing its paper side with a thin coat of honey, on which some finely pulverized peroxide of manganese has been sprinkled, and all the sides similarly coated are presented one way. Powerful pairs of plates may also be made by pasting pure gold leaf on the paper side of zinc-paper. These plates are then to be arranged, just as in the ordinary voltaic pile, one above the other, so that the similar metallic surfaces may all lie one way; press them tightly together; tie them with pretty stout silk threads, and press them into a glass tube of convenient size. The metal rims of the tubes, which must be well connected with the outermost pairs of plates, form the poles of the pile, the negative pole being in the extreme zinc surface, and the positive in the extreme copper or manganese surface.
“The electromotive energy called into action in these dry piles is less than that excited in the moist or hydro-electric piles, principally on account of the imperfect conduction of the paper. The accumulation of electricity at their poles also goes on less rapidly, and consequently the electrical tension continues for a long while unaltered; whereas, in all moist piles, even in the most constant of them, the tension is maintained, comparatively speaking, for but a short time, on account ofthe chemical action and decomposition of the electromotive fluid—causes of disturbance which do not exist in the dry pile.”[15]
135. Thomson’s Electrometer.—Professor W. Thomson, of Glasgow, has devised an atmospheric electrometer, which is likely to become eminently successful, in the hands of skilful observers. It is mainly a torsion balance combined with a Leyden-jar. The index is an aluminium needle strung on a fine platinum wire, passing through its centre of gravity, and stretched firmly between two points. The needle and wire are carefully insulated from the greater part of the instrument, but are in metallic communication with two small plates fixed beside the two ends of the needle, and termed the repelling plates. A second pair of larger plates face the repelling plates, on the opposite side of the needle, but considerably farther from it. These plates are in connection with the inner coating of a Leyden-jar, and are termed the attracting plates. The whole instrument is enclosed in a metal cage, to protect the glass Leyden-jar and the delicate needle.
The Leyden-jar should be charged when the instrument is used. Its effect is two-fold: it increases greatly the sensibility of the instrument, and enables the observer to distinguish between positive and negative electrification.
The air inside the jar is kept dry by pumice-stone, slightly moistened with sulphuric acid; by which means very perfect insulation is maintained.
Electrodes, or terminals, are brought outside the instrument, by which the Leyden-jar can be charged, and the needle system connected with the body, the electric state of which is to be tested.
For the purpose of testing the electric state of the atmosphere, the instrument is provided with a conductor and support for a burning match, or, preferably, with an arrangement termed a water-dropping collector; by either of which means the electricity of the air is conveyed to the needle system.
The needle abuts upon the repelling plates when not influenced by electricity, in which position it is at zero. It can always be brought back to zero by a torsion-head, turning one end of the platinum wire, but insulated from it, and provided with a graduated circle, so that the magnitude of the arc, that the torsion-head is moved through to bring the needle to zero, measures the force tending to deflect it.
The action of the instrument is as follows:—The Leyden-jar is to be highly charged, say negatively; and the repelling plates are to be connected with the earth. The needle will then be deflected against a stop, under the combined influence of attraction from the Leyden-jar, or attracting plates, and repulsion from the repelling plates due to the positive charge induced on the needle and its plates by the Leyden-jar plates. The platinum wire must then be turned round by the torsion-head so as to bring back the needle to zero; and the number of degrees of torsion required will measure the force with which the needle is attracted. Next, let the needleplates be disconnected from the earth, and connected with the insulated body, the electric state of which is to be tested. In testing the atmosphere, the conductor and lighted match, or water-dropping apparatus, must be applied.
If the electricity of the body be positive, it will augment the positive charge in the needle plates, induced by the Leyden-jar plates; and consequently the needle will be more deflected than by the action of the jar alone. If the electricity of the body be negative, it will tend to neutralize the positive charge; and the needle will be less deflected. Hence the kind of electricity present in the air becomes at once apparent, without the necessity of an experimental test. The platinum wire must then be turned till the needle is brought to zero, and the number of degrees observed; which is a measure of the intensity of the electrification.
Any loss of charge from the Leyden-jar which may from time to time occur, reducing the sensibility inconveniently, may be made good by additions from a small electrophorus which accompanies the instrument.[16]
The instrument may be made self-recording by the aid of clockwork and photography. To effect this, a clock gives motion to a cylinder, upon which photographic paper is mounted. The needle of the electrometer is made to carry a small reflector; and rays from a properly adjusted source of light are thrown by the reflector, through a small opening, upon the photographic paper. It is evident, that as the cylinder revolves, a trace will be left upon the paper, showing the magnitude of, and variations in, the deflection of the needle.
136. Fundamental Facts regarding Atmospheric Electricity.—Thegeneralelectrical condition of the atmosphere ispositivein relation to the surface of the earth and ocean, becoming more and more positive as the altitude increases. When the sky is overcast, and the clouds are moving in different directions, it is subject to great and sudden variations, changing rapidly from positive to negative, and the reverse. During fog, rain, hail, sleet, snow, and thunderstorms, the electrical state of the air undergoes many variations. The intensity of the electricity increases with hot weather following a series of wet days, or of wet weather coming after a continuance of dry days. The atmospheric electricity, in fact, seems to depend for its intensity and kind upon the direction and character of the prevailing wind, under ordinary circumstances. It has an annual and a diurnal variation. There is a greater diurnal change of tension in winter than in summer. By comparing observations from month to month, a gradual increase of tension is perceived from July to February, and a decrease from February to July. The intensity seems to vary with the temperature. The diurnal variation exhibits two periods of greatest and two of least intensity. In summer, themaximaoccur about 10 a.m. and 10 p.m.; theminimaabout 2 a.m. and noon. In winter, themaximatake place near 10 a.m. and 8 p.m.; theminimanear 4 a.m. and 4 p.m.
The researches of Saussure, Beccaria, Crosse, Quétèlet, Thompson, andFitzRoy have tended to show that during the prevalence of polar currents of air positive electricity is developed, and becomes more or less active according to the greater or less coldness and strength of wind; but with winds from the equatorial direction there is little evidence of sensitive electricity, and when observable, it is of the negative kind. Storms and gales of wind are generally attended, in places, with lightning and thunder; and as the former are very often attributed to the conflict of polar and equatorial winds, the difference of the electric tension of these winds may account for the latter phenomena. It is not our intention to enter upon the general consideration of thunderstorms; the facts which we have given may be of service to the young observer; and finally, as it is interesting to be able to judge of the locality of a thunderstorm, the following simple rule will be of service, and sufficiently accurate:—Note by a second’s watch the number of seconds which elapse from the sight of the lightning to the commencement of the thunder; divide them by five, and the quotient will be the distance in miles. Thus, if thunder is heard ten seconds after the lightning was seen, the distance from the seat of the storm will be about two miles. The interval between the flash and the roll has seldom been observed greater than seventy-two seconds.
137. Lightning Conductors.—“The line of danger, whether from the burning or lifting power of lightning, is the line of strong and obstructed currents of air, of the greatest aerial friction.”[17]Trees, church spires, wind-mills and other tall structures, obstruct the aerial currents, and hence their exposure to danger. The highest objects of the landscape, especially those that are nearest the thunder cloud, will receive the lightning stroke. The more elevated the object, the more likely is it to be struck. Of two or more objects, equally tall and near, the lightning is invariably found to select the best conductor of electricity, and even to make a circuitous path to get to it. Hence the application and evident advantage of metallic rods, calledlightning conductors, attached to buildings and ships. A lightning conductor should be pointed at top, and extend some feet above the highest part of the edifice, or mast. It should be made of copper, which is a better conducting medium than iron, and more durable, being less corrosive. It must be unbroken throughout its length, and extend to the bottom of the building, and even some distance into the ground, so as to conduct the electricity into a well or moist soil. If it be connected with the lead and iron work in the structure of the house, it will be all the better, as affording a larger surface, and a readier means of exit for the fluid. In a ship, the lower end of the conductor should be led into communication with the hull, if of iron, and with the copper sheathing, if a wooden vessel; so that, spread over a large surface, it may escape more readily to the water.
138. Precautions against Lightning.—Experience seems to warrant the assumption that any building or ship, fitted with a substantial lightning conductor,is safe from danger during a thunderstorm. Should a house or vessel be undefended by a conductor, it may be advisable to adopt a few precautions against danger. In a house, the fire-place should be avoided, because the lightning may enter by the chimney, its sooty lining being a good conductor. “Through chimneys, lightning has a way into most houses; and therefore, it is wise, by opening doors or windows, to give it a way out. Wherever the aerial current is fiercest, there the danger is greatest; and if we kept out of the way of currents or draughts, we keep out of the way of the lightning.”[18]Lightning evinces as it were a preference for metallic substances, and will fly from place to place, even out of the direct line of its passage to the earth, to enter such bodies. It is therefore well to avoid, as much as possible, gildings, silvered mirrors, and articles of metal. The best place is perhaps the middle of the room, unless a draught passes, or a metallic lamp or chandelier should be hanging from the ceiling. The neighbourhood of bad conductors, such as glass windows, not being open, and on a thick bed of mattrasses, are safe places. The quality of trees as lightning conductors is considered to depend upon their height and moisture, those which are taller and relatively more humid being struck in preference to their fellows; therefore, it is unwise to seek shelter under tall and wet trees during a thunderstorm. In the absence of any other shelter, it would be better to lie down on the ground.
OZONE AND ITS INDICATORS.
139. Nature of Ozone.—During the action of a powerful electric machine, and in the decomposition of water by the voltaic battery, a peculiar odour is perceptible, which is considered to arise from the generation of a substance to which the term ozone has been given, on account of its having been first detected by smell, which, for a long time after its discovery, was its only known characteristic. A similar odour is evolved by the influence of phosphorus on moist air, and in other cases of slow combustion. It is also traceable, by the smell, in air,—where a flash of lightning has passed immediately before. Afterwards it was established that the same element possessed an oxidising property. It was found to be liberated at the oxygen electrode when water was decomposed by an electric current; and has been regarded by some chemists as what is termed anallotropicform of oxygen, while others speak of it as oxygen in thenascentstate, and some even regard it as intimately related to chlorine. So various are the existing notions of the nature of this obscure agent.
Its oxidising property affords a ready means for its detection, even when the sense of smell completely fails. The methods of noting the presence and measuring the amount of ozone present in the air, are very simple; being the free exposure to the air, defended from rain and the direct rays of the sun, of prepared test-papers. There are two kinds of test-papers. One kind was invented by Dr. Schonbein, the original discoverer of ozone; and the other, which is more generally approved, by Dr. Moffat.
140. Schonbein’s Ozonometerconsists of strips of paper, previously saturated with a solution of starch and iodide of potassium, and dried. The papers are suspended in a box, or otherwise properly exposed to the air, for a given interval, as twenty-four hours. The presence of ozone is shown by the test-paper acquiring a purple tint when momentarily immersed in water. The amount is estimated by the depth of the tint, according to a scale of ten tints furnished for the purpose, which are distinguished by numbers from 1 to 10. The ozone decomposes the compound which iodine forms with hydrogen, and, it is presumed, combines as oxygen with hydrogen, while the iodine unites with the starch, giving the blue colour when moist.
141. Dr. Moffat’s Ozonometerconsists of papers prepared in a somewhat similar manner to Schonbein’s; but they do not require immersion in water. Thepresence of ozone is shown by a brown tint, and the amount by the depth of tint according to a scale of ten tints, which is furnished with each box of the papers.
Moffat’s have the advantage of preserving their tint for years, if kept in the dark, or between the leaves of a book; and are simpler to use.