CHAPTER VI.

Fig. 18.Fig. 18.

Fig. 18.

Fig. 19.Fig. 19.

Fig. 19.

Before proceeding to set the staff in the wax, it is necessary to make some measurements to determine its full length. Remove both cap jewels and screw the balance cock in place. Examine the cock and see if it has at any time been bent up or down or punched to raise or lower it. If so, rectify the error by straightening it and then put it in place. Now with a degree gauge, or calipers, proceed to take the distance between the outer surfaces of the hole jewels and shorten the staff to the requiredlength. Do not remove too much, but leave the staff a little long rather than cut it too short, as the length can be shortened later.

Fig. 20.Fig. 20.

Fig. 20.

A very handy tool for the purpose of making these length measurements can be constructed by adding a stop screw to the common double calipers as shown inFig. 20. The improvement consists in the fact that they can be opened to remove from the work and closed again at exactly the same place, so that an accurate measurement can be made.

Fig. 21.Fig. 21.

Fig. 21.

The all-important point in the use of wax chucks is to get a perfect center. If you are not careful you are liable to leave a small projection in the center as shown at A,Fig. 21. The ordinary wax chuck cannot be unscrewed from the spindle and restored to its proper place again with anything like a certainty of its being exactly true, and if you insist on doing this there is no remedy left but finding a new center each time. It will be found more satisfactory and economical in the long run to have a permanent chuck for a wax chuck and you will then have no necessity for removing the brass chuck.

The center, or cone for the reception of the pivot, should be turned out with the graver at an angle of about 60° and such a graver as is shown at B,Fig. 1, will answeradmirably for this purpose. After you have carefully centered your wax chuck, place a small alcohol lamp under the chuck and heat it until the wax will just become fluid and yet not be hot enough to burn the wax. Revolve the lathe slowly and insert the staff so that the pivot rests squarely and firmly in the center. Now re-heat the chuck carefully in order that the wax may adhere firmly to the staff, keeping the lathe revolving meanwhile, but not so fast that the wax will be drawn from the center, and at the same time apply the forefinger to the end of the staff, as shown inFig. 18 and 19, and gently press it squarely into place in the wax chuck. The lines inFig. 18 and 19designate about the right amount of wax after the work is ready, but it is well to add a little more than is shown in those figures, and you should be careful to keep the wax of equal bulk all around, or when it cools it will have a tendency to draw the staff to one side. Now remove the lamp and keep the lathe revolving until the wax is quite cool, when it should be removed, by means of a graver, down to the dimensions designated by the lines inFig. 18 and 19. When this is accomplished re-heat a little, but only enough to make it soft, but not liquid, and placing a sharpened peg-wood on the tool rest proceed to the final truing up, by resting the pointed end against the hub.

I have described above one of the methods in vogue for holding a staff by means of wax. It is the common method employed by most watch repairers, the popular method so to speak. The method which I am now about to describe may seem awkward at first to those who have not practiced it, but once you have fairly tried it, you will never be contented to work in any other way.

The first requisite is a true taper chuck; and it is well to purchase an extra one to be used solely for this purpose, so that you will be prepared at all times for staff work. Select a good steel taper, and having placed your chuck in the lathe, see if your taper fits well by inserting it in the chuck while running slowly. If it fits well, it will be marked almost throughout its length. Insert again in the chuck, and with a few light taps of the hammer set it firmly in place, so that you know that there is no danger of its working loose. The taper will then project about three-quarters of an inch from the face of the chuck. By means of a sharp graver, make the face of the taper smooth and straight, and cut off the taper end. Now mark a point on the taper about one-fourth of an inch from the end, and proceed to turn down the diameter from this point to the end, leaving that portion of the taper about two-thirds of its original diameter, and finishwith a nice square shoulder. Now with a long-pointed sharp graver proceed to cut a nice V-shaped center with an angle of about 60°. When you have proceeded thus far you will find that you have an implement resembling that shown inFig. 22.

Fig. 22.Fig. 22.

Fig. 22.

Care must be taken that the center is quite true, and that no projection is left like that illustrated inFig. 21, no matter how minute it may be. Now examine the center by the aid of a strong glass, and after you are satisfied with its appearance proceed to test it. Take a large sized pin with a good point, and placing the point in the center, maintain it in position by pressing upon the head, and while revolving the lathe slowly proceed to examine by means of your glass. If the center is a good one there will be no perceptible vibration of the pin.

Now procure a piece of small brass tubing with an internal diameter a little less than that of the turned down portion of your taper. If the brass tubing cannot be procured readily, you can substitute a piece of brass wire a little larger than the taper, and by means of a drill a little smaller in diameter than the turned down portion you can readily make a small tube about one-half inch long. Now by means of a broach proceed to open the tube to a point one-quarter inch from one end, and carefully fit it on theturned down portion of your taper. After fitting tightly to the shoulder of the taper, proceed to turn out the other end until it will take in the hub of your staff easily and leave a little room to spare. Now turn your tube down in length until a little of the hub is exposed either way you put the staff in. Turn the outside of the tube smooth and to correspond with the outline of the taper, so you will have a nice looking job when completed. Just below where the hub will come drill a small hole in the tube and remove all burr, both inside and out, that may have been made in drilling, so that the shellac or wax will not adhere to it. This little hole acts as an outlet for the air in the tube; and as the hot shellac enters at the end of the tube the air is expelled through this vent. It also helps to hold the cement firmly in place. Now try your staff in the tube again, and be sure that it is quite free, and that you will be able to work on the portions of it above and below the hub, according as one end or the other is inserted.

You are now ready to insert your staff and proceed with your work. Hold your shellac in the flame of your lamp a moment until it is quite liquid, and then smear both the inside and outside of the tube with it. Heat the shell or tube gently by means of the lamp, keeping the lathe revolving slowly all the while, and taking the staff in your tweezers proceed to insert it carefully into the tube. Press firmly back, making sure that it has reached the bottom of the V-shaped center. Pack the cement well in around the staff, and while centering remove the lampand allow the whole to cool, keeping the whole revolving until quite cool. Now remove the superfluous cement by means of the graver, and heating the tube again slightly, proceed to center exactly by means of a pointed peg-wood, resting on your T rest to steady it. Turn slowly in the lathe and examine with glass to see that it is quite true. Your completed instrument will resembleFig. 23.

Fig. 23.Fig. 23.

Fig. 23.

The advantage of the device is that your center is always ready, and all you have to do is to insert your chuck in the lathe, warm it, and you are ready to insert your staff and proceed to work. As I said in the first place, it is well to employ a taper chuck exclusively for this work, and not attempt to use it for any other, for if you try to remove your taper and replace it again, you will surely find that your work is out of center, and you will be compelled to remove the brass shell and find a new center each time you use it. You can avoid all this trouble, however, by purchasing an extra chuck and devoting it exclusively to wax work. Of course, the brass shell can be removed and placed in position again without in any way affecting the truth of the center, and any number, shape and size of shells can be made to fit the one taper, and these shells will be found very useful for holding a variety of work, aside from balance staffs.

The two popular methods of holding a balance staff in wax have been described and illustrated; the reader may take his choice. The turning and finishing of the other end of the staff is performed as previously described. That portion on which the hair-spring collet goes should be turned to nearly the proper size, making due allowance for the grinding and polishing that is to come. The balance seat should be slightly undercut, so that the balance can be driven on tightly and all riveting dispensed with. The size for the pivot can be determined from its jewel, as previously described. Finish the ends of the pivots flat and round the corners off slightly; and right here comes a point worthy of consideration in all watch work. Leave no absolutely square corners in any of your work, but round them off very slightly. This may seem a very little thing, but it is one of the small things that go to make up first-class work. You can judge pretty accurately of a watchmaker by the corners he leaves on his work, as well as by the appearance of his gravers and screw-drivers.

When your staff is completed and nicely polished, remove from the wax and boil in alcohol to clean, and when dried it is ready for the balance. Great care must be exercised in removing the balance from the old staff,especially if it be a compensation balance, that you do not distort it any way. If the balance has been riveted on extra care will have to be exercised. The riveting may be cut by means of a graver, or a hollow drill made from Stubb's steel wire. The recess in the drill should just fit over the shoulder left for the reception of the hair-spring collet. The edge of the hollow drill has small teeth formed upon it similar to a fine file, and will cut quite rapidly.

After removing the balance, if it appears to be sprung in the arms, the result of removal or previous bad treatment, proceed to bend them straight, and then to true up the rim carefully, and stake on with a flat end punch. Now put on your roller and drive it down to the hub and see that the roller is free from the fork. See that jewel pin reaches fork properly and that the guard pin also reaches the roller. See that your balance is free from the plate and the bridge. If the balance is true and all right, you are ready to put on your hair-spring. See that it is in beat. It is well to make a mark on the balance before taking off the old staff, showing positions of hair-spring stud and jewel pin.

Three-quarter plate English lever and Swiss lever balance staffs differ only in detail, except that they are sprung under balances. The general operations for making, however, are similar to those described.

I have not described the method of poising the balance for two reasons; first, the mere poising of a balance for a cheap movement is so simple that it needs no explanation;and second, to describe the poising of the balance of a fine watch is a lengthy task, and can hardly be included under the heading of staffing and pivoting. The ground has been thoroughly and conscientiously covered by Mr. J. L. Finn, in a little volume entitled Poising the Balance,[A]and I would advise all watchmakers, both young and old, to read what he has to say.

Good pivoting is an art in itself, and although there are many who undertake to do this work, there are but few who can pivot a staff in such a manner that it will bear close inspection under the glass. We often hear watchmakers brag of the secrets they possess for hardening pivot drills, but I fancy they would be somewhat surprised if they traveled around a little, to find how many watchmakers harden their drills in exactly the same way that they do. The great secret, so-called, of making good drills, is to first secure good steel, and then use care to see that you do not burn it in the subsequent operations. The fewer times the steel is heated the better. My experience teaches me that you can do no better than to select some nice pieces of Stubb's steel for your pivot drills. Many watchmakers make their drills from sewing needles, say No. 3 or 4, sharps. The steel in these needles is usually of good quality, but the great drawback is that a drill made from a needle will not resist any great pressure, and is liable to break just at the time that you have arrived at the most important point. Ifyour drill is made from a piece of Stubb's steel wire, or an old French or Swiss graver, you not only know that the material in it is first-class, but you can leave the base of the drill solid and substantial, with enough metal in it to resist considerable pressure. The part of the drill which actually enters the pivot is very short, and the end can be turned down to the desired diameter. Turn or reduce your wire by means of a pivot file so as to be smooth and conical, as shown atA,Fig. 24.

Fig. 24.Fig. 24.

Fig. 24.

The conical form is given to the drill for exactly the same reason that it is given to the balance pivots, because it gives additional strength. Heat to a very pale red for about one-half inch from the end, and then spread the point, as shown atB,Fig. 24, by a slight blow of the hammer. We are now ready to temper our drill, and we must exercise a little care that the steel is not burnt and that the drill is not bent or warped when hardening. The flame of the alcohol lamp should be reduced as small as possible, or otherwise the steel may become overheated and lose all its good qualities. If needles are used for making drills there is a great liability of their warping when hardening, but when a larger piece of wire is used there is not much danger, if care is exercised in introducing the drill that it goes into the compound straight and point foremost. If a needle is used, it is well to construct a shield for it, to be used when heating and hardening. This shield canbe made from a small piece of metal tubing, broached out to fit loosely over the shank and point of the drill. The drill is introduced into this shield as shown inFig. 25, and a little soap may be introduced into the endabefore plunging. Various hardening devices are used, but in my experience beeswax or sealing wax will be found as good as any. Heat the drill (or if a needle, the drill and shield both), to a pale red and plunge straight into the wax. In the latter case, where the shield is used, the shield, on striking the wax, will run up the shank of the drill, allowing the point to pierce the wax. Some watchmakers introduce the extreme point of the drill into mercury first and then plunge into the wax. This hardens the extreme point of the drill very hard, so hard, in fact, that it will penetrate the hardest steel, but care must be exercised with such a drill because the mercury makes it not only very hard but very brittle.C,Fig. 24, shows a drill after it has been finished on the Arkansas stone. This shape of drill will withstand the pressure necessary to drill into hard steel. Many watchmakers reduce the temper of every staff before drilling. This, I think, is quite unnecessary. There are very few cases in which it is necessary to reduce the temper of the staff, and even then it should only be reduced as far as it is to be drilled, and then not in excess of a good spring temper.

Fig. 25.Fig. 25.

Fig. 25.

The centering of a staff in wax has been thoroughly described and in pivoting the proceeding is the same asin staffing. After accurately centering your work, make a small cut in the center for the reception of the drill and make this mark deep enough to take the entire cutting head of the drill. Keep the drill firmly pressed into this center and kept wet constantly with turpentine. Do not revolve the work all one way, but give the lathe an alternating motion. At first give but a third or a half revolution each way, until the drill begins to bite into the staff, when you can then safely give it a full revolution each way. Care must be exercised, however, not to give the work too rapid a motion, for if you do the friction is apt to draw down the temper of your drill. Many watchmakers find that their drills cut well for a certain distance and then refuse to work altogether, and one of the chief reasons is that they are in too great a hurry with their drilling.

If you find it absolutely necessary to reduce the hardness of your staff before drilling, do so by drilling a hole in the end of a small piece of copper wire that will just fit over the part to be softened, and apply the heat to this copper wire, say one-fourth of an inch from the staff. The heat will run down the copper wire and heat the staff just where you wish to draw the temper. Be careful and do not draw the temper too much, nor let it extend down the staff too far.

The plug for the new pivot should be carefully made, perfectly round, with a very little taper, and should be draw-filed before being driven in. Some workmen dip the plug in acid before driving in, as they declare that thepivot is less liable to be loosened while turning, if so treated. The acid simply rusts the pivot and the hole, but I cannot see that this will hold it any more firmly in place while finishing. If the taper is a gradual one and the pivot a good close fit, there will be little danger of it loosening while dressing to shape. If too great a taper is given to the plug, there is danger of splitting the end of the staff, and this involves the making of an entire new staff.

The turning up of a new pivot does not differ in any way from the instructions given for turning pivots on a new staff. With a little care both in turning and finishing, a new pivot can be put in so nicely that only the initiated can tell it, and then only with the aid of a strong glass.

In pivoting cylinders there is some danger of breaking them. To avoid this, select a piece of joint wire, the opening of which is slightly larger than the diameter of the cylinder at the lower end, and cut off a piece the length of the cylinder proper, leaving the pivot projecting. Now fill the cylinder with lathe wax, and while the wax is warm, slip on the joint wire. You can now proceed to true up the pivot in the usual manner, and when the wax is quite cold, proceed to turn and polish the pivot before removing from the lathe. If the joint wire is properly cemented on the cylinder, it is almost impossible to break it. After all the work is done, the wax can be dissolved in alcohol. In pivoting pinions to cylinder escape-wheels and third wheels, it is not necessary toremove the wheels, but great care should be used in handling. In the latter case use plenty of wax. Do all your centering by the outside of the pinion. Perfect centering and sharp tools are requisite to good pivoting. Do not try to rush your work, especially while drilling. Proceed deliberately with your work and aim to restore the watch to the condition it was in originally, and you will find staffing and pivoting is not half as hard as some workmen would have you believe.

[A]POISING THE BALANCE, by J. L. Finn, Geo. K. Hazlitt & Co., publishers, Chicago.

[A]POISING THE BALANCE, by J. L. Finn, Geo. K. Hazlitt & Co., publishers, Chicago.


Back to IndexNext