MILK

Exp. with Sulphuric Acid.A very pretty experiment to show the separation of the water from the carbon may be made by treating a little sugar in sulphuric acid. Put a tablespoon of sugar in any vessel that will bear heat, a thin glass or stout cup. Pour over enough concentrated sulphuric acid to thoroughly moisten it, let it stand for a few minutes, when it will be seen that the mass has changed color from white to a yellowish brown. The color increases in intensity until it is perfectly black, when the whole puffs and swells up, fumes are driven off, and a mass like a cinder remains. This is charcoal, or nearly pure carbon.

Exp. with Sulphuric Acid.A very pretty experiment to show the separation of the water from the carbon may be made by treating a little sugar in sulphuric acid. Put a tablespoon of sugar in any vessel that will bear heat, a thin glass or stout cup. Pour over enough concentrated sulphuric acid to thoroughly moisten it, let it stand for a few minutes, when it will be seen that the mass has changed color from white to a yellowish brown. The color increases in intensity until it is perfectly black, when the whole puffs and swells up, fumes are driven off, and a mass like a cinder remains. This is charcoal, or nearly pure carbon.

The explanation is as follows: So strong is the affinity of the acid for the water that it breaks up the chemical combination between it and the carbon, unites with the water, and leaves the carbon free. So intense is the chemical change that an enormous amount of heat is evolved,—so much, in fact, that a considerable part of the water is vaporized, leaving the more or less solid charcoal. The light color noticed during the first part of the union indicates that the chemical dissociation is just beginning, and that only a small amount of carbon has been set free.

Glucose.Glucose or grape-sugar (C6H12O6) is one of the kinds of sugar found in grapes, peaches, and other fruits. It is about two and one half times less sweet than cane-sugar. It is manufactured on a large scale from the starch of corn.

Lactose.Lactose or milk-sugar is the sugar found in the milk of theMammalia. That of commerce comes chiefly from Switzerland, where it is made by evaporating the whey of cow's milk. For sweetening drinks for infants and for the sick, milk-sugar is said to be less liable to produce acid fermentation than cane-sugar, and also to be more easily digested.

Sugar is a valuable nutrient, being very easily digested and absorbed. Cane-sugar is converted into glucose in the process of digestion by the pancreatic juice, and after absorption it is completely utilized in the body, furnishing heat and probably energy.

Effects of Heat on Sugar.Sugar undergoes various changes, with different degrees of heat, by loss of some of its water of crystallization. One of the most remarkable of these is seen in caramel sauce, which is a rich crimson-brown syrup generally supposed to contain foreign coloring matter, but which does not. It is made by melting sugar without water, and heating it until the desired hue and thickness are reached. Nothing is added, but something is taken away; that is, some of the water is driven out, with the result of change in both color and taste.

In a recent article in "The Century Magazine" (November, 1891) Prof. Atwater touches upon the subject of the production of artificial foods from the crude materials of the earth, and states, among other things, that a sugar resembling fruit-sugar has been made artificially by synthesis, by Prof. Fischer of Würzburg, Germany.

Air is a gaseous elastic body which envelops the earth on every side, extending possibly two hundred miles from its surface, but all the while growing more and more rare as the distance increases. When pure it is tasteless and odorless. We really live at the bottom of an atmospheric ocean, and are pressed upon by its weight. At the sea-level the pressure upon every square inch of surface is equal to fifteen pound.

Atmospheric Pressure Variable.Atmospheric pressurediminishes and is constantly variable, according to the height above the sea-level. If we ascend into the air 5000 feet, it is perfectly evident that there are 5000 feet less of atmosphere pressing upon us than at the point from which we started. This diminution of pressure is often measured by the temperature at which water boils at different heights.

Composition.An average composition of the atmosphere has been previously stated. Besides nitrogen and oxygen, it always contains water in the form of vapor, and carbonic acid. The amount of aqueous vapor in the air changes according to the temperature; the amount of carbonic acid is also constantly variable. Air usually contains, in addition to these, traces of ammonia, organic matter which includes micro-organisms, ozone, salts of sodium, and other mineral matters in minute and variable quantities.

Air in Motion.The atmosphere is almost always in motion. We feel it in the gentle breeze and the more forcible wind. If it moves at a slower rate than two and one half feet a second this motion is not noticeable. Motion in the air is caused by the unequal heating of portions of it. If from any cause the atmosphere over a certain region becomes warm, it will expand (all bodies expand with heat), become lighter, and its tendency will be to move in the direction of least resistance,—that is, upward; so we say heated air rises. Currents of cooler air will immediately flow in to take its place, and thus we have a breeze, a wind, or a gale, according to the velocity and force with which the currents move. It is upon a knowledge of these movements that the theory of ventilation is based. It is because of the constant motion of air-currents that out of doors, except in densely populated cities, air remains constantly pure. When poisonous gases and other impurities accumulate, winds scatter themfar and wide until they are so diluted as to be harmless; or under some conditions they unite with other things and form new and simple substances of a harmless nature, while under others, if they are compounds, they may be decomposed or washed down to the surface of the earth again.

Impurities.The chief chemical product of fires and of that slower combustion breathing is carbonic acid. Plants during the day, and under the influence of sunlight, take it up from the air for food, use the carbon for their growth, freeing the oxygen which man and the lower animals need. Thus is the balance most beautifully maintained.

Air is purest over the sea and over wind-swept heights of land. It, however, always contains some foreign substances, and always micro-organisms except over mid-ocean. Even the upper strata of atmosphere are not free from microscopic forms of life, as has been shown in experiments made with hail at the Johns Hopkins Hospital in 1890 by Dr. Abbott. Large hailstones were washed in distilled and sterilized water, and then melted, and cultures made from different layers; in all of these organisms were found, showing that they extend into the air a long distance from the earth.[12]

Impurities of various kinds are constantly passing into the air, but so vast is the expanse of the atmosphere as compared with the impurities daily thrown into it from the lungs of man and the lower animals, from fires, manufactories, and decomposing matter, that they quickly disappear.

Air is the greatest or, as one writer says, the most immediate necessity of life. We could live withoutit only a few seconds. We constantly use it, whether sleeping or waking, and perhaps this accounts in part for the utter carelessness and indifference which most people have for the quality of that which they breathe. Even those persons who know something of the nature of air, make but little effort to provide themselves with a constantly pure supply.

Effects of Breathing Bad Air.If the effects of breathing bad air were immediate, there would then be an immediate remedy for the present total lack of any systematic means of ventilation in most houses. But the effects of breathing bad air are, like those of some slow and insidious poison, not noticeable at once, and often manifested under the name of some disease which gives no clue to the true cause.

Dr. Van Rensselaer, in the Orton Prize Essay on Impure Air and Ventilation, makes the statement that statistics show that of the causes of mortality the most important and farthest-reaching is impure air.

Amount of Air Required for one Person.Sanitarians have agreed that each individual requires at least 3000 cubic feet of air every hour. A room 10 × 15 × 20 holds 3000 cubic feet of air, which should be changed once every hour in order that one individual shall have the required amount. If three persons are in the room, it must be changed three times.

The effect of bad ventilation is well illustrated by the condition of the horses in the French army some years ago. With small close stables the mortality was 197 in every 1000 annually. The simple enlargement of the stables, and consequent increase of breathing-space, reduced the number in the course of time to 68 in every 1000, and later, from 1862 to 1866, with some attention paid to the air-supply, the number fell to 28½ per 1000.[13]

Necessity for a Constant Supply of Pure Air.When we consider that the food we eat and digest cannot nourish the body until it has been acted upon by oxygen in the lungs, and that this action must be constant, never ceasing, it will help us to understand the necessity for a constant supply of air such as shall furnish us a due proportion of the life-giving principle, oxygen, and which shall not contain impurities that interfere with its absorption.

We take into the lungs a mixture of nitrogen, oxygen, and carbonic acid. We give out a mixture which has lost some of its oxygen, and gained in carbonic acid. Now, unless the amount of oxygen is what it should be, the blood will not gain from an inspiration the amount it should receive, consequently it will be but imperfectly purified and able but imperfectly to nourish the body. So the whole system suffers, and if a person for a long time continues to breathe such an atmosphere, the condition of the body will become so reduced as to produce disease. Even though in other ways one lives wisely, all the factors of health multiplied together cannot withstand the one of impure air. We eat food three or four times daily. Some of us are very particular about its quality. We breathe air every instant of our lives, but generally we give but little consideration as to whether it is pure or impure.

Ventilation.No attempt will be made here to explain different devices for ventilation, but only to touch upon the principle it involves. Its objects are (1) to remove air which has been breathed once; (2) to remove the products of combustion, whether from fires, lamps, gas, or other sources; (3) to carry away all other substances which may be generated from any cause, in a room or building, as the impurities from manufacturing, those arising from decaying matter,and micro-organisms. In a climate where artificial warmth is necessary a part of the year, it is difficult to warm and ventilate a room at the same time, without causing unpleasant drafts; but with some knowledge of the necessity of ventilation, and of the properties of air, one may in some measure work out a scheme of ventilation adapted to the circumstances in which he finds himself.

There are always the doors and windows, which may be thrown wide open at intervals, and in many houses there are fireplaces. If a window be opened at the bottom at one side of a room, and another be opened at the top on an opposite side, a current of air will be established from the first window, passing through the room and out at the second. This plan will do very well in warm weather when the temperature outside is about the same as that of the room, but it would be impracticable in cold weather. Then we may resort to the very simple plan of placing a board about eight or ten inches wide across the window at the bottom and inside of the sash. Then when the lower half of the window is raised, a space is left between the upper and lower sashes, through which the air passes freely as it enters, and, being sent into the room in an upward direction, causes no draft. The board is for the purpose of closing the window below, and should fit quite close to the sash.

Fireplaces are good, though not perfect, ventilators. Then there are the preventive measures, such as burning the gas or lamp low at night, avoiding oil- and gas-stoves, etc.; the latter are the worst possible means of heating rooms, for not only do they draw oxygen for burning from the air, but they give out the polluting carbonic acid and other products of combustion, which in a coal- or wood-stove go up the chimney.

A well-ventilated room should have an inflow ofwarm, pure air, and a means for the removal of the same after it has been used, the current being so controlled that, although the air is kept in motion, there is no perceptible draft.

The plan for the heating and ventilation of the Johns Hopkins Hospital, Baltimore, Maryland, is a most admirable one. Air from out of doors is conveyed by a flue into a chamber in the wall, in which are coils of pipe filled with hot water. The air in passing over these becomes warm, and, rising, passes into the room to be heated through a register. On the opposite side of the room is a chimney-like flue, running to the top of the building and containing two registers, by the opening and closing of which the movements of the air in the room can be controlled. The temperature is maintained by the temperature of the water in the pipes, and the rapidity of the flow.[14]

The ventilation by this method of heating is the most perfect known to the author, who has lived for two years in a building thus supplied with warmth and fresh air. The rooms were invariably comfortable as to temperature, and the air as invariably sweet and pure.

Milk is one of our most perfect types of food, containing water and solids in such proportions as are known to be needful for the nourishment of the body. A proof of this is seen in the fact that it is the only food of the young of theMammaliaduring the time of their greatest growth. It contains those food principles in such amounts as to contribute to the rapidformation of bone and the various tissues of the body, which takes place in infancy and childhood; but after this growth is attained, and the individual requires that which will repair the tissues and furnish warmth and energy, milk ceases to be a complete food.

Composition of Cow's Milk.The composition of cow's milk varies with the breed and age, care and feeding, of the animals. Cows which are kept in foul air in stables all the year, and fed upon bad food such as the refuse from breweries and kitchens, give a quality of milk which is perhaps more to be dreaded than that from any other source; for such animals are especially liable to disease, and are often infected with tuberculosis, pneumonia, and other fatal maladies. Cows are particularly susceptible to tuberculosis, and may convey it to human beings either in their milk or flesh. According to Dr. Miller, cow's milk contains the following ingredients:

Water87.4%Fat4.0%Sugar and soluble salts5.0%Nitrogenous matter and insoluble salts3.6%

Another analysis is that of Uffelmann:

Water87.6%Albuminoids4.3%Fat3.8%Sugar3.7%Salts.6%[15]

Characteristics.Milk from healthy, well-nourished cows should be of full white color, opaque, and witha slightly yellowish tinge sometimes described as "cream white." It should vary but slightly in composition from the above analyses. The fat should not be less than 2.5%. The amount of fat may be easily determined with a Feser's lactoscope (Eimer and Amend, New York), directions for the use of which come with the instruments. It will generally vary from 3% to 4% in good milk. Should it fall below 2.5% the milk should be rejected as too poor for use. Such milk has probably been skimmed, or comes from unhealthy or poorly fed cows.

The specific gravity of milk should be from 1.027 to 1.033. This may be found with a Quevenne's lactometer. If it falls below 1.027, one has a right to claim that the milk has been watered or that the cows are in poor condition.[16]

The reaction of good milk varies from slightly alkaline to slightly acid or neutral. That from the same cow will be different on different days, even under the same apparent conditions of care, varying from one to the other, probably because of some difference in the nature of the food she has eaten. However, if the reaction isdecidedlyalkaline, and red litmus-paper becomes a distinct blue, the milk is not good, and possibly the animal is diseased. Should the reaction be decidedly acid, it shows that the milk has been contaminated, either from the air by long exposure, or from the vessels which held it, with those micro-organisms which by their growth produce an acid, acertain amount of which causes what is known as "souring."

Milk from perfectly healthy and perfectly kept cows isneutral, leaving both red and blue litmus-paper unchanged; but as a general thing milk is slightly acid, even when transported directly from the producer to the consumer and handled by fairly clean workmen in fairly clean vessels. Such milk two or three hours old when examined microscopically is found to contain millions of organisms. Milk is one of the best of foods for bacteria, many of the ordinary forms growing in it with exceeding rapidity under favorable conditions of temperature. Now it has been found that such milk, although it may not contain the seeds of any certain disease, sometimes causes in young children, and the sick, very serious digestive disturbances, and may thus become indirectly the cause of fatal maladies.[17]

All milk, unless it ispositively knownto be given by healthy, well-nourished animals, and kept in thoroughly cleaned vessels free from contamination, should be sterilized before using. Often the organisms found in milk are of disease-giving nature. In Europe and America many cases of typhoid fever, scarlatina, and diphtheria have been traced to the milk-supply. In fact milk and water are two of the most fruitful food sources of disease. It therefore immediately becomes apparent that, unless these two liquids are above suspicion, they should be sterilized before using. Boiling water for half an hour will render it sterile, but milk would be injured by evaporation and other changes produced in its constituents by such long exposure to so high a degree of heat. A better method, and one which should be adopted by all who understand something of the nature of bacteria, is to expose the milkfor a longer time to a lower temperature than that of boiling.

To Sterilize Milk for Immediate Use.(1) Pour the milk into a granite-ware saucepan or a double boiler, raise the temperature to 190° Fahr., and keep it at that point for one hour. (2) As soon as done put it immediately into a pitcher, or other vessel, which has been thoroughly washed, and boiled in a bath of water, and cool quickly by placing in a pan of cold or iced water. A chemist's thermometer, for testing the temperature, may be bought at any pharmacy for a small sum, but if there is not one at hand, heat the milk until a scum forms over the top, and then keep it as nearly as possible at that temperature for one hour. Do not let it boil.

To Sterilize Milk which is not for Immediate Use.Put the milk into flasks or bottles with narrow mouths; plug them with a long stopper of cotton-wool, place the flasks in a wire frame to support them, in a kettle of cold water, heat gradually to 190° Fahr., and keep it at that temperature for one hour. Repeat this the second day, for although all organisms were probably destroyed during the first process,sporeswhich may have escaped will have developed into bacteria. These will be killed by the second heating. Repeat again on the third day to destroy any life that may have escaped the first two.

Spores or resting-cells are the germinal cells from which new bacteria develop, and are capable of surviving a much higher temperature than the bacteria themselves, as well as desiccation and severe cold.[18]Some writers give a lower temperature than 190° Fahr. as safe for sterilization with one hour's exposure, but190 may be relied upon. Milk treated by the last or "fractional" method of sterilization, as it is called, should keep indefinitely, provided of course the cotton is not disturbed. Cotton-wool or cotton batting in thick masses acts as a strainer for bacteria, and although air will enter, organisms will not.

All persons who buy milk, or in any way control milk-supplies, should consider themselves in duty bound to (1) ascertain by personal investigation the condition in which the cows are kept. If there is any suspicion that they are diseased, a veterinary surgeon should be consulted to decide the case. If they are healthy and well fed, they cannot fail to give good milk, and nothing more is to be done except to see that it is transported in perfectly cleansed and scalded vessels. (2) If it is impossible to obtain milk directly from the producer, and one is obliged to buy that from unknown sources, it should be sterilized the moment it enters the house. There is no other means of being sure that it will not be a bearer of disease. Not all such milk contains disease-producing organisms, but it all may contain them, and there is no safety in its use until all bacteria have been deprived of life.

Definition.Digestion is the breaking up, changing, and liquefying of the food in the various chambers of the alimentary canal designed for that purpose. The mechanical breaking up is done principally by the teeth in the mouth, the chemical changes and liquefying by the various digestive fluids.[19]

Digestive Fluids.The digestive fluids are true secretions. Each is formed from the blood by a special gland for the purpose which never does anything else; they do not exist in the blood as such. Their flow is intermittent, taking place only when they are needed. The liver, however, is an exception to all the others. It is both secretory and excretory, and bile is formed all the time, but is most abundant during digestion.[20]

Saliva.The fluid which is mixed with the food in the mouth is secreted by a considerable number and variety of glands, the principal of which are the parotid, submaxillary, and sublingual. Smaller glands in the roof and sides of the mouth, in the tongue, and in the mucous membrane of the pharynx contribute to the production of saliva, the digestive fluid of the mouth. The flow from the parotid gland is greatest. The flow from all the glands is greatly increased when food is taken, especially if it be of good flavor. Sometimes the amount is increased by smell alone, as when a nice steak is cooking, or a savory soup, and sometimes the saliva is made copious by thought, as when we remember the taste of dishes eaten in the past, and we say, "It makes the mouth water just to think of them."

Amount of Saliva.According to Dalton the amount of saliva secreted every twenty-four hours is 42½ oz. Its reaction is almost constantly alkaline. It is composed of water, organic matter, and various mineral salts. Ptyalin is its active principle, and is called by some authorsanimal diastase, or starch converter.

Gastric Juice.Gastric juice is the digestive fluid of the stomach. It is acid. Its flow is intermittent, occurring only at times of digestion. Its active principle is pepsin.

It is worthy of notice here that the character of thedigestive fluids when food is taken is different from what it is when the organs are at rest. For instance, the gastric juice which flows in abundance under the stimulus of food, is not like the fluid secreted when the stomach is collapsed and empty.

Pancreatic Juice.Pancreatic juice is the digestive juice of the pancreas, and is poured into the small intestine a short distance below the pyloric opening. Its reaction is alkaline. Its flow is entirely suspended during the intervals of digestion.

Bile.Bile, the fourth in order of the digestive liquids, is the secretion of the largest gland of the body—the liver. It is poured into the small intestine by a duct which empties side by side with the duct from the pancreas. The flow of bile is constant, but is greatest during digestion.

Intestinal Juice.Intestinal juice has been to physiologists a difficult subject of study. It is mingled with the salivary and gastric juices at the times of digestion, when it is most desirable to notice its action. Nearly all authorities agree that it is alkaline, and that its function is to complete the digestion of substances which may reach it in an undigested condition.

Mucus of Large Intestine.The mucus secreted by the large intestine is for lubricating only.

Digestion in Different Parts of the Alimentary Tract.Different substances in food are digested in different portions of the alimentary canal, and by different means. Let us begin in the mouth. Taking the classes of foods, starch, one of the carbohydrates, is the one most affected by the ptyalin, or animal diastase, of the saliva. So energetic is the action of ptyalin on starch that 1 part is sufficient to change 1000 parts. Starch is not acted upon by the gastric juice of the stomach at all; however, the continued action of the saliva is not probably interrupted in thestomach. The digestion of starch is completed by the action of the pancreatic and intestinal juices, and consists in its being changed into soluble glucose, which is absorbed in solution.

Sugar.Cane-sugar, or common sugar (also calledsucrose), passes through the mouth, unchanged, to the stomach, where it is converted into glucose by the slow action of the acid (hydrochloric) of the gastric juice. Dilute hydrochloric acid has the same action on sugar outside of the stomach.

The action of pancreatic juice on sugar is very marked; it immediately changes cane-sugar into glucose. The effect of intestinal fluid is not well understood, but there is the general agreement that it does not change cane-sugar, neither is cane-sugar, as such, absorbed in the intestine. Bile does not affect it, therefore cane-sugar is digested or converted into glucose either by the stomach or pancreas, or both. It will now be seen that ultimately the same substance, glucose, is obtained from both starch and sugar.

Protein.We now come to the consideration of the digestion of the protein compounds, of which albumen may be taken as a type. Possibly no action except breaking up and moistening takes place in the mouth.[21]Its digestion begins in the stomach, where its structure is broken up and a separation and dissolution of the little sacs which hold it take place. The same thing is partially accomplished outside of the stomach when white of egg is slightly beaten and strained through a cloth. Gastric juice further acts on the albumen itself, forming it into what is called albumen peptone. The digestion of raw and carefully cooked albumen has been found to be carried on very rapidly in the stomach, and the change isessentially the same in both cases, but in favor of the slightly coagulated. When the albumen is rendered hard, fine, and close in consistency by over-cooking, then it is less easy of digestion than when raw.

Absorption.It is probable that the greater portion of the process of digestion and absorption of albumen takes place in the stomach.

Fibrin.Fibrin is also digested in the stomach, and made into fibrin peptone.

Casein.Liquid casein is immediately coagulated by gastric juice, both by the action of free acid and organic matter.

Gelatin.Gelatin is quickly dissolved by gastric juice, and afterward no longer has the property of forming jelly on cooling. Gelatin is more rapidly disposed of than the tissue from which it is produced.

Vegetable Protein.The digestion of the vegetable protein compounds, such as the gluten of wheat and the protein of the various grains, such as corn, oatmeal, etc., is undoubtedly carried on in the stomach, but they must be well softened and prepared by the action of heat and water, or they will not be digested anywhere; and often corn, beans, and grains of oatmeal are rejected entirely unchanged. Partially or imperfectly digested proteins are affected by intestinal juice. It is probable that the function of this fluid is to complete digestive changes in food which have already begun in the stomach.

To summarize: The digestion and absorption of nitrogenous compounds take place in both the stomach and the intestines.

One of the important points to bring to the notice of pupils in the study of cookery is the phenomenonof nutrition. It is astonishing how vague are the ideas that many people have of why they eat food, and vaguer still are their notions of the necessity of air, pure and plenty. Once instruct the mind that it is the air we breathe and the food we eat which nourish the body, giving material for its various processes, for nervous and muscular energy, and for maintaining the constant temperature which the body must always possess in order to be in a state of health, and there is much more likelihood that the dignity and importance of proper cooking and proper food will not be overlooked.

A knowledge that the health and strength of a person depend largely upon what passes through his mouth, that even the turn of his thinking is modified by what he eats, should lead all intelligent women to make food a conscientious subject of study.

In general, by the term "nutrition" is meant the building up and maintaining of the physical framework of the body with all its various functions, and ultimately the mental and moral faculties which are dependent upon it, by means of nutriment or food.

The word is derived from the Latinnutrire, to nourish. The word "nurse" is from the same root, and in its original sense means one who nourishes, a person who supplies food, tends, or brings up.

Anything which aids in sustaining the body is food; therefore, air and water, the two most immediate necessities of life, may be, and often are, so classed.

Nutriment exclusive of air is received into the body by means of the alimentary canal. The great receiver of air is the lungs, but it also penetrates the body through the pores of the skin, and at these points carbonic acid is given off as in the lungs. The body is often compared to a steam-engine, which takes in raw material in the form of fuel and converts it intoforce or power. Food, drink, and air are the fuel of the body,—the things consumed; heat, muscular and intellectual energy, and other forms of power are the products.

Food, during the various digestive processes, becomes reduced to a liquid, and is then absorbed and conveyed, by different channels constructed for the purpose, into the blood, which contains, after being acted upon by the oxygen of the air in the lungs, all those substances which are required to maintain the various tissues, secretions, and, in fact, the life of the system.

Some of the ways in which the different kinds of food nourish the body have been found out by chemists and physiologists from actual experiments on living animals, such as rabbits, dogs, pigs, sheep, goats, and horses, and also on man. Often a scientist becomes so enthusiastic in his search for knowledge about a certain food that he gives his own body for trial. Much valuable work has been done in this direction during the last decade by Voit, Pettenkofer, Moleschott, Ranke, Payen, and in this country by Atwater.

No one can explain all the different intricate changes which a particle of food undergoes from the moment it enters the mouth until its final transformation into tissue or some form of energy; but by comparing the income with the outgo, ideas may be gained of what goes on in the economy of the body, and of the proportion of nutrients used, and some of the intricate and complex chemical changes which the different food principles undergo in the various processes of digestion, assimilation, and use.[22]Probablyhundreds of changes take place in the body, in its various nutritive functions, of which nothing is known, or they are entirely unsuspected, so that if we do our utmost with the present lights which we possess for guidance to health, we shall still fall far short of completeness. The subject of food and nutrition, viewed in the light of bacteriology and chemistry, is one of the most inviting subjects of study of the day, and is worthy of the wisest thought of the nation.

The body creates nothing of itself, either of material or of energy; all must come to it from without. Every atom of carbon, hydrogen, phosphorus, or other elements, every molecule of protein, carbohydrate, or other compounds of these elements, is brought to the body with the food and drink it consumes, and the air it breathes. Like the steam-engine, it uses the material supplied to it. Its chemical compounds and energy are the compounds and energy of the food transformed (Atwater). A proof of this is seen in the fact that when the supply from without is cut off, the body dies. The raw material which the body uses is the air and food which it consumes, the greater portion of which is digested and distributed, through the medium of the blood, to all parts of the body, to renew and nourish the various tissues and to supply the material for the different activities of life.

Ways in which Food Supplies the Wants of the Body.Food supplies the wants of the body in several ways—(1) it is used to form the tissues of the body—bones, flesh, tendons, skin, and nerves; (2) it is used to repair the waste of the tissues; (3) it is stored in the body for future use; (4) it is consumed as fuel to maintain the constant temperature which the body must always possess to be in a state of health; (5) it produces muscular and nervous energy.[23]Theamount of energy of the body depends upon two things—the amount in the food eaten, and the ability of the body to use it, or free it for use.

With every motion, and every thought and feeling, material is consumed, hence the more rapid wearing out of persons who do severe work, and of the nervous—those who are keenly susceptible to every change in their surroundings, to change of weather, even to the thoughts and feelings of those about them.

We easily realize that muscular force or energy cannot be maintained without nutriment in proper quality and amount. An underfed or starving man has not the strength of a well-fed person. He cannot lift the same weight, cannot walk as far, cannot work as hard. We do not as easily comprehend the nervous organism, and generally have less sympathy with worn-out or ill-nourished nerves than muscles, but the sensibilities and the intellectual faculties, of which the nerves and brain are but the instruments, depend upon the right nutrition of the whole system for their proper and healthful exercise.

So many factors enter into the make-up of a thought that it cannot be said that any particular kind of food will ultimately produce a poem; but of this we may be sure, that the best work, the noblest thoughts, the most original ideas, will not come from a dyspeptic, underfed, or in any way ill-nourished individual.

The classification of foods has been usually based upon the deductions of Prout that milk contains all the necessary nutrients in the best form and proportions, viz., the nitrogenous matters, fat, sugar, water, and salts; the latter being combinations of magnesium, calcium, potassium, sodium, and iron, with chlorin, phosphoric acid, and, in smaller quantities, sulphuric acid.

These different classes seem to serve different purposesin the body, and are all necessary for perfect nutrition. Some of them closely resemble each other in composition, but are quite different in their physiological properties, and in the ends which they serve. For instance, starch (C6H10O5) has almost the same chemical formula as sugar (C12H22O11), and yet the one cannot replace the other to its entire exclusion.

The Protein Compounds.In general it may be said that the carbohydrates are changed into fats, and are used for the production of force, and that the fats are stored in the body as fat and used as fuel. The protein compounds do all that can be done by the fats and carbohydrates, and in addition something more; that is, they form the basis of blood, muscle, sinew, skin, and bone. They are, therefore, the most important of all the food compounds. The terms "power-givers" and "energy-formers" are sometimes applied to them, because wherever power and energy are developed they are present, though not by any means the only substances involved in the evolution of energy. Probably the fats and carbohydrates give most of the material for heat and the various other forces of the body. In case of emergency, where these are deficient, the proteins are used; but protein alone forms the basis of muscle, tendons, skin, and other tissues. This the fats and carbohydrates cannot do (Atwater). The different tissues are known from analysis to contain this complex nitrogenous compound, protein. Now, since the body cannot construct this substance out of the simpler chemical compounds which come to it, it becomes perfectly evident that the diet must have a due proportion of protein in order to maintain the strength of the body. We get most of our proteins from the flesh of animals, and they in turn get it from plants, which construct it from the crude materials of earth and air.

The Extractives, usually classed with the protein compounds, such as meat extract, beef tea, etc., are not generally regarded as direct nutrients, but, like tea and coffee, are valuable as accessory foods, lending savor to other foods and aiding their digestion by pleasantly exciting the flow of the digestive fluids. They also act as brain and nerve stimulants, and perhaps also in some slight degree as nutrients.

The principal proteins or nitrogenous substances arealbumenin various forms, casein both animal and vegetable,blood fibrin,muscle fibrin, andgelatin. All except the last are very much alike, and probably can replace one another in nutrition.

Modern chemists agree that nitrogen is a necessary element in the various chemical and physiological actions which take place in the body to produce heat, muscular energy, and the other powers. Every structure in the body in which any form of energy is manifested is nitrogenous. The nerves, muscles, glands, and the floating cells[24]in the various liquids are nitrogenous. That nitrogen is necessary to the different processes of the system, is shown by the fact that if it be cut off, these processes languish. This may not occur immediately, for the body always has a store of nitrogen laid by for emergencies which will be consumed first, but it will occur as soon as these have been consumed. The energy of the body is measured by its consumption of oxygen. Motion and heat may be owing to the oxidation of fat, or of starch, or of nitrogenous substances; but whatever the source, the direction is given by the nitrogenous structure—in other words, nitrogen is necessary to all energy generated in the body.

Protein matter nourishes the organic framework, takes part in the generation of energy, and may beconverted into non-nitrogenous substances.[25]The necessity of the protein compounds is emphasized when we realize that aboutone halfof the body is composed of muscle,one fifthof which is protein, and the nitrogen in this protein can be furnished only by protein, since neither fats nor carbohydrates contain it. It is therefore evident that the protein-containing foods, such as beef, mutton, fish, eggs, milk, and others, are our most valued nutrients. Our daily diet must contain a due proportion.

The proteins are all complex chemical compounds, which in nutrition become reduced to simple forms, and are then built up again into flesh. The animal foods are in the main the best of the protein compounds, for they are rich in nitrogenous matter, are easily digested, and from their composition and adaptability are most valuable in maintaining the life of the body.

A diet of lean meat alone serves to build up tissue. If nothing else be taken, the stored-up fat of the body will be consumed, and the person will become thin.[26]Athletes while in training take advantage of this fact, and are allowed to eat only such food as shall furnish the greatest amount of strength and muscular energy with a minimum of fat. The lean of beef and mutton, with a certain amount of bread, constitute the foundation of the diet.

Fats.Most of the fatty substances of food areliquefied at the temperature of the body. When eaten in the form of adipose tissue, as the fat of beef and mutton, the vesicles or cells in which the fat is held are dissociated or dissolved, the fat is set free, and mingles with the digesting mass. This is done in the stomach, and is a preparation for its further change in the intestines.

Fats are not dissolved—that is, in the sense in which meats and other foods are dissolved—in the process of digestion; the only change which they undergo is a minute subdivision caused principally by the action of the pancreatic juice. In this condition of fine emulsion they are taken up by the lacteals; they may also be absorbed by the blood-vessels.

It has been found that fat emulsions pass more easily through membranes which have been moistened with bile, and it is probable that the function of bile is partly to facilitate the absorption of fat. That the pancreatic juice is the chief agent in forming fats into emulsion was discovered in 1848. Bile is, however, essential to their perfect digestion, and we may therefore say that they are digested by the united action of the pancreatic juice and the bile.[27]

Fat forms in the body fatty tissues, and serves for muscular force and heat; it is also necessary to nourish nerves and other tissues,—in fact, without it healthy tissues cannot be formed. A proper amount of fat is also a sort of albumen sparer.

It is probable that the fat which is used in the body either to be stored away or for energy, is derived from other sources than directly from the fat eaten. From experiments made by Lawes and Gilbert on pigs, it is evident that the excess of fat stored in their bodies must be derived from some other source than the fat contained in their food, and mustbe produced partly from nitrogenous matter and partly from carbohydrates, or, at least, that the latter play a part in its formation. It would appear from this that life might be maintained on starch, water, salts, and meat free from fat; but although the theory seems a good one, practically it is found in actual experiment[28]that nutrition is impaired by a lack of fat in the diet. The ill effects were soon seen, and immediate relief was given when fat was added to the food. Besides, in the food of all nations starch is constantly associated with some form of fat; bread with butter; potatoes with butter, cream, or gravy; macaroni and polenta with oil, and so forth. A man may live for a time and be healthy with a diet of albuminoids, fats, salts, and water, but it has not yet been proved that a similar result will be produced by a diet of albuminoids, carbohydrates, salts, and water without fat. Fat is necessary to perfect nutrition. Health cannot be maintained on albuminoids, salts, and water alone; but, on the other hand, cannot be maintained without them.

Probably the value of fats, as such, is dependent upon the ease with which they are digested. The fats eaten are not stored in the body directly, but the body constructs its fats from those eaten, and from other substances in food,—according to some authorities from the carbohydrates and proteids, and according to others from proteids alone.

Fats arestored awayas fat,furnish heat, and areused for energy; at least, it is probable that at times they are put to the latter use. The fats laid by in the body for future use last in cases of starvation quite a long time, depending, of course, upon the amount. At such times a fat animal will live longer than a lean one.

Doubtless in the fat of food the body finds material for its fats in the most easily convertible form. Of the various fatty substances taken, some are more easily assimilated than others. Dr. Fothergill, in "The Town Dweller," says that the reason that cod-liver oil is given to delicate children and invalids is, that it is more easily digested than ordinary fats, but it is an inferior form of fat; the next most easily digested is the fat of bacon. When a child can take bread crumbled in a little of this fat, it will not be necessary to give him cod-liver oil. Bacon fat is the much better fat for building tissues. Then comes cream, a natural emulsion, and butter. He further says there is one form of fat not commonly looked at in its proper dietetic value, and that is "toffee." It is made of butter, sugar, and sometimes a portion of molasses. A quantity of this, added to the ordinary meals, will enable a child in winter to keep up the bodily heat. The way in which butter in the form of toffee goes into the stomach is particularly agreeable.

Carbohydrates.The principal carbohydrates arestarch,dextrine,cane-sugaror common table sugar,grape-sugar, the principal sugar in fruits, andmilk-sugar, the natural sugar in milk. They are substances made up, as before stated, of carbon, hydrogen, and oxygen, but no nitrogen. They are important food substances, but are of themselves incapable of sustaining life.

The carbohydrates, both starch and sugar, in the process of digestion are converted into glucose. This is stored in the liver in the form ofglycogen, which the liver has the power of manufacturing; it then passes into the circulation, and is distributed to the different parts of the body as it is needed. (The liver also has the power of forming glycogen out of other substances than sugar, and it is pretty conclusivelyproved that it is from proteids, and not from fats. Carnivorous animals, living upon flesh alone, are found to have glycogen in their bodies.)

It is impossible to assign any especial office to the different food principles; that is, it cannot be said that the carbohydrates perform a certain kind of work in the body and nothing else, or that the proteids or fats do. The human body is a highly complex and intricate organism, and its maintenance is carried on by complex and mysterious processes that cannot be followed, except imperfectly; consequently, we must regard the uses of foods in the body as more or less involved in obscurity. It is, however, generally understood that the proteids, fats, and carbohydrates each do an individual work of their own better than either of the others can do it. They are all necessary in due amount to the nutrition of the body, and doubtless work together as well as in their separate functions. They are, however, sometimes interchangeable, as, for instance, in the absence of the carbohydrates, proteids will do their work. The carbohydrates are eminently heat and energy formers, and they also act as albumen sparers.

The body always has a store of material laid by for future use. If it were not for this a person deprived of food would die immediately, as is the case when he is deprived of oxygen. (Air being ever about us, and obtainable without effort or price, there is no need for the body to lay by an amount of oxygen; consequently only a very little is stored, and that in the blood.)

The great reserve forces of the body are in the form of fatty tissues, and glycogen, or the stored-away carbohydrates of the liver; the latter is given out to the body as it is needed during the intervals of eating to supply material for the heat and energy of daily consumption, and in case of starvation. That they aretrue reserves is shown by the fact that they disappear during deprivation of food. The glycogen, or liver-supply, disappears first; then the fat (Martin). The heat of the body can be maintained on these substances, and a certain amount of work done, although no food except water be taken.

The principal function of the liver is to form glycogen to be stored away. It constantly manufactures it, and as constantly loses it to the circulation. Glycogen is chemically allied to starch, having the same formula (C6H10O5), but differing in other ways. Its quantity is greatest about two hours after a full meal; then it gradually falls, but increases again when food is again taken. Its amount also varies with thekindof food eaten: fats and proteids by themselves give little, but starch and sugars give much, for it is found in greatest quantity when these form a part of the diet.

Inorganic Matter and Vegetable Acids.Water and other inorganic matter, as the salts of different kinds, and vegetable acids, as vinegar and lemon-juice, can scarcely be said to be digested. Water is absorbed, and salts are generally in solution in liquids and are absorbed with them.

Wateris found in all parts of the body, even in the very solid portions, as the bones and the enamel of the teeth; it also constitutes a large proportion of its semisolids and fluids, some of which are nearly all water, as the perspiration and the tears.

Water usually is found combined with some of the salts, which seem to act as regulators of the amount which shall be incorporated into a tissue. Water is a necessary constituent of all tissues, giving them a proper consistency and elasticity. The power of resistance of the bones could not be maintained without it. It is also valuable as a food solvent, assisting inthe liquefying of different substances, which are taken up by the various absorbent tubes, conveyed into the blood, and so circulated through the body. Most of the water of the body is taken into it from without, but it is also formed in the body by the union of hydrogen and oxygen.[29]

Sodium chlorid, or common salt, is found in the blood and other fluids, and in the solids of the body, except the enamel of the teeth; it occurs in greatest proportion in the fluids. The part that this salt plays in nutrition is not altogether understood. "Common salt is intermediate in certain general processes, and does not participate by its elements in the formation of organs" (Liebig). Salt is intimately associated with water, which plays an intermediate part also in nutrition, being a bearer or carrier of nutritious matters through the body.

Salt seems to regulate the absorption and use of nutrients. It is found in the greatest quantity in the blood and chyle. It doubtless facilitates digestion by rendering foods more savory, and thus causing the digestive juices to flow more freely. Sodium chlorid is contained in most if not all kinds of food, but not in sufficient quantity to supply the wants of the body; it therefore becomes a necessary part of a diet.

Potassium chloridhas similar uses to sodium chlorid, although not so generally distributed through the body. It is found in muscle, liver, milk, chyle, blood, mucus, saliva, bile, gastric juice, and one or two other fluids.

Calcium phosphateis found in all the fluids and solids of the body, held in solution in them by the presence of CO2; both it and calcium carbonate enter largely into the structure of the bones.

Sodium carbonate,magnesium phosphate, and other salts play important parts in nutrition.

The various salts influence chemical change as well as act in rendering food soluble. For example, serum albumen, the chief proteid of the blood, is insoluble in pure water, but dissolves easily in water which has a little neutral salts in it.[30]Salts also help to give firmness to the teeth and bones.

To recapitulate, food is eaten, digested, assimilated, and consumed or transformed in the body by a series of highly intricate and complex processes. It is for the most part used for the different powers and activities of the system; there is, however, always a small portion which is rejected as waste. The first change is in the mouth, where the food is broken up and moistened and the digestion of starch begins; these changes continue in the stomach until the whole is reduced to a more or less liquid mass. As the contents of the stomach pass little by little into the duodenum, the mass becomes more fluid by the admixture of bile, pancreatic juice, and intestinal juice, and, as it passes along, absorption takes place; the mass grows darker in color and less fluid, until all good material is taken up and only waste left, which is rejected from the body.

That portion of the food which is not affected by the single or united action of the digestive fluids is chiefly of vegetable origin. Hard seeds, such as corn, and the outer coverings of grains, such as the husk of oatmeal and those parts which are composed largely of cellulose, pass through the intestinal canal without change.

It may be remarked here that since the digestive mechanism is so perfect a structure, and will try to dissolve anything given it, and select only that which is good, why should there be the necessity of giving any special attention to preparing food before it is eaten? The answer is that the absorptive vesselscannot take up what is not there, neither can the digestive organssupplywhat the food lacks; therefore, the food must contain in suitable proportions all substances needed by the body. Also, food which contains a large proportion of waste, or is difficult of digestion from over or under cooking, or is unattractive by insipidity or unsavoriness, overworks these long-suffering organs (the extra power or force needed being drawn from the blood), and causes the whole system to suffer. Mal-nutrition, with the long line of evils which it entails, is the cause, direct or indirect, of most of the sickness in the world, for it reduces the powers of the system, and thus enfeebles its resistance to disease.

Ideal Diet."The ideal diet is that combination of food which, while imposing the least burden upon the body, supplies it with exactly sufficient material to meet its wants" (Schuster).

In general the digestibility of foods may be summarized as follows:


Back to IndexNext