CHAPTER II.MILITARY RAILWAYS.

In establishing contact between our great bases of supply on the French coast and interior points, as well as with the fighters in the various fields of operations, the Department of Military Railways of the Engineer Corps found it necessary to provide thousands of miles of railway track ranging from the standard gauge down to the narrow 60-centimeter type built right up to the border of No Man's Land, to construct and ship across seas thousands of almost every kind of freight cars, to build hundreds of locomotives and transport them to Europe, to provide in addition fabricated track that could be laid under heavy shell fire, and hospital trains that could care for our wounded.

It was on July 10, 1917, that Gen. Pershing cabled stating that the French had asked for 300 locomotives and 2,000 kilometers of track, in addition to numerous items of accessories that go with an order of this size. Delivery of the locomotives was requested by October 15, 1917, and of the track by December 31, 1917.

It was ascertained that the American Locomotive Works had built consolidation engines for France of an entirely satisfactory type, and that similar locomotives for the use of British forces on French soil had been turned out by the Baldwin Locomotive Works. After the decision to adopt the consolidation type of locomotive, which is generally used in freight service in the United States, arrangements were made at once with these two concerns to build 150 locomotives each.

The consolidation locomotive weighs 166,400 pounds, and is about the heaviest that can be used in France. It has one pair of engine truck wheels and four pairs of drivers. The engine is just as large as it is possible to use within the French tunnel and platform clearances. The type sent to France was, however, not nearly so large nor so heavy as the general run of freight engines used here.

The order for 150 engines was placed with the Baldwin concern on July 19, 1917, and the first locomotive of this order was ready for shipment on August 10, 1917, just 20 working days elapsing between the date of the placing of the order and the day when the first engine was completed and all set up ready for shipment.

This is believed to have established a new record for locomotive construction in the United States and probably in the world for anengine of this size. All the other locomotives in this order were delivered promptly—36 of the Baldwin engines being freighted from the factory in August, 71 in September, and the final 43 in October. Of the locomotives ordered from the American Locomotive Works, 133 were freighted in October and the remaining 17 in November.

On account of differences in the details of construction the original price fixed for the locomotives turned out by the American Locomotive Works was $51,000 each and for those of the Baldwin Works $46,000 apiece. Advance payments on these engines reduced the price by $1,000 each.

Changes in the painting and other small details resulted in a saving of $60 additional on each locomotive built by the Baldwin Works and $400 on each engine turned out by the American Works, so that the net cost of each Baldwin locomotive was $44,940, and of each American locomotive $49,600.

After much consideration, and after this initial order had been disposed of, it was determined that the Baldwin type of engine should be made the standard, and all subsequent orders for engines went to the Baldwin Works.

As orders were placed from time to time with the Baldwin people, reductions were made in price, so that the last engines of the total of 3,340 ordered from this concern were obtained for $37,000 each. Orders for 1,500 of these engines eventually were canceled without cost to the United States Government. The saving effected by the reduction in price on the engines ordered, using the original price as a basis of comparison, was $22,989,385.

There were shipped in all to the American Expeditionary Forces 1,303 locomotives, of which 908 had been put into service by November 11, 1918.

During the severe winter weather of 1917-18 and the simultaneous shortage of motive power on American railways, 142 of these consolidation engines built for the American Expeditionary Forces were turned over to the American railways to help out a critical situation in this country. It was possible to use these engines here by making changes in the couplers and some other slight additions to meet the requirements of our safety appliance laws.

At the time these engines were turned over to the Railway Administration we were producing locomotives for France much more rapidly than it was possible to provide tonnage to transport them overseas. These locomotives were in service helping out the transportation facilities in this country an average of 6 months and 28 days each before being recalled for shipment to France. They earned profits for the Government while in service for the Railroad Administration at the rate of 32.3 per cent a year.

STANDARD GAUGE 10-WHEEL CONSOLIDATION (BALDWIN) LOCOMOTIVE. CYLINDER, 21 INCHES × 28 INCHES.Driving wheels, 56 inches; wheel base, engine, 23 feet 8 inches; wheel base, engine and tender, 57 feet 4½ inches; weight in working order, engine 166,400 pounds, tender 112,000 pounds; tractive power 35,600 pounds; capacity, water 5,400 gallons, fuel 9 tons.

STANDARD GAUGE 10-WHEEL CONSOLIDATION (BALDWIN) LOCOMOTIVE. CYLINDER, 21 INCHES × 28 INCHES.Driving wheels, 56 inches; wheel base, engine, 23 feet 8 inches; wheel base, engine and tender, 57 feet 4½ inches; weight in working order, engine 166,400 pounds, tender 112,000 pounds; tractive power 35,600 pounds; capacity, water 5,400 gallons, fuel 9 tons.

STANDARD GAUGE 10-WHEEL CONSOLIDATION (BALDWIN) LOCOMOTIVE. CYLINDER, 21 INCHES × 28 INCHES.

Driving wheels, 56 inches; wheel base, engine, 23 feet 8 inches; wheel base, engine and tender, 57 feet 4½ inches; weight in working order, engine 166,400 pounds, tender 112,000 pounds; tractive power 35,600 pounds; capacity, water 5,400 gallons, fuel 9 tons.

RATION TRAIN NEAR MENIL-LA-TOUR, FRANCE.

RATION TRAIN NEAR MENIL-LA-TOUR, FRANCE.

RATION TRAIN NEAR MENIL-LA-TOUR, FRANCE.

It might also be noted that the Director General of Military Railways was appointed custodian of undelivered locomotives ordered by the Russian government from the Baldwin and American Works. In January, 1918, a total of 200 of these Russian locomotives was purchased, and the engines were converted to meet American requirements by a change in the gauge from 5 feet to 4 feet, 8½ inches, and a change in the coupling system to meet our standard. The price of these was $55,000 each. The Baldwin Works turned its 100 over to the Railroad Administration between February 3 and May 20, 1918, and the American Works made its deliveries between February 19 and May 30, 1918.

The combined cost of these locomotives was $11,000,000 and their total rental revenue from the railroads was $2,585,475 up to December 31, 1918, or 23.5 per cent of the cost price, or at the rental rate of 29.8 per cent per annum.

Orders for 90,103 freight cars to be used by the American Expeditionary Forces were also placed with American contractors. Of these the orders for nearly half—40,915 cars, in exact figures—had been placed just before the armistice, and these contracts were canceled at slight cost to the Government. Up to the end of the year 1918 a total of 18,313 freight cars had been shipped overseas, nearly all of these cars being of the 60,000-pound size. Close bargaining in the purchase of these cars resulted in a saving of $15,737,633 under the prices originally quoted.

For the first time in history American locomotives were shipped across the Atlantic stacked in ships on their own wheels. In our normal foreign trade, and even in the early locomotive shipments to the American Expeditionary Forces, both engines and cars had been disassembled at the seaboard and their parts put up in packages for convenient and economical loading on ships. Each of the first locomotives sent to France was crated in 19 packages, while the parts for an ordinary box car were put up in 26 packages.

On October 29, 1917, however, Gen. Atterbury called attention to the fact that the English were shipping locomotives across the Channel on their own wheels and stated that it would result in very great economies of time, money, and man power if such an arrangement could be made for shipments from the United States. Manufacturers of the locomotives, however, advised against this. So did our own embarkation people and the Shipping Control Committee. Efforts were unsuccessful to get car ferries from the Key West and Habana line and from Quebec for the transport of locomotives on their own wheels over the ocean.

Finally, however, after numerous efforts to get ships with large hatches the ore steamerFeltorewas loaded with 33 locomotives ontheir own wheels, packed in baled hay. This steamer sailed May 18, 1918, and its arrival in France resulted in the following cable from Gen. Pershing:

Shipment of erected locomotives transmitted on theFeltorevery satisfactory. Boat completely discharged of locomotives and cargoes in 13 days with saving of 15 ship's days in unloading the 33 locomotives erected as compared with same number of locomotives not erected and further saving of 14 days of erecting forces. Observations of Capt. Byron, who came with these locomotives, show that by loading locomotives in double tiers, placing cab parts and tools, now in separate packages, within tender space and fire boxes, 40 to 45 locomotives can be loaded.

Shipment of erected locomotives transmitted on theFeltorevery satisfactory. Boat completely discharged of locomotives and cargoes in 13 days with saving of 15 ship's days in unloading the 33 locomotives erected as compared with same number of locomotives not erected and further saving of 14 days of erecting forces. Observations of Capt. Byron, who came with these locomotives, show that by loading locomotives in double tiers, placing cab parts and tools, now in separate packages, within tender space and fire boxes, 40 to 45 locomotives can be loaded.

Subsequently the steamersCubore,Firmore, andSantorewere assigned to the task of carrying these engines over on their own wheels. The total number of locomotives that went abroad in this manner was 533. After the signing of the armistice we sold the French Government 485 locomotives, of which 142 had been shipped up to January 1, 1919.

Efforts were likewise made to ship over freight cars already set up but this was also met with much objection. Finally, 1,000 cars were built to go over complete but the signing of the armistice stopped the shipment. The saving in the cost of shipping locomotives on their own wheels amounted to $775 for each one, and an average of $20 a car would have been saved by sending the cars over on their own wheels. But, in addition to this, the cost of erection on the other side, amounting to $800 for each locomotive, should also be added to the saving.

The number of cars actually shipped overseas for the American Expeditionary Forces, if made into one solid train, would be 140 miles long.

In August, 1918, there came a call from abroad to produce locomotives at the rate of 300 a month and freight cars at the rate of 8,200 monthly. Machinery for getting this production was started at once and was so effectual that during the months of September and October and up to the signing of the armistice engines were actually being produced and shipped from the Baldwin Locomotive Works at this rate. This company was turning out the greatest number of locomotives ever produced by any one company in the same length of time.

Arrangements for increasing production of freight cars to meet every possibility of tonnage facilities on the ocean were also made, and had the armistice not been signed we had planned to produce during the month of December 11,000 complete freight cars and to maintain this production rate until we had filled all orders from Gen. Pershing.

LOADING RAILWAY LOCOMOTIVES, COMPLETE, ABOARD SHIP.

LOADING RAILWAY LOCOMOTIVES, COMPLETE, ABOARD SHIP.

LOADING RAILWAY LOCOMOTIVES, COMPLETE, ABOARD SHIP.

60-CENTIMETER GAUGE TANK CAR.Capacity in gallons 2,500. In pounds 22,000. Length over end sills 22 feet 1¼ inches; width over side sills, 5 feet 7 inches; weight, 12,000 pounds.

60-CENTIMETER GAUGE TANK CAR.Capacity in gallons 2,500. In pounds 22,000. Length over end sills 22 feet 1¼ inches; width over side sills, 5 feet 7 inches; weight, 12,000 pounds.

60-CENTIMETER GAUGE TANK CAR.

Capacity in gallons 2,500. In pounds 22,000. Length over end sills 22 feet 1¼ inches; width over side sills, 5 feet 7 inches; weight, 12,000 pounds.

60-CENTIMETER GAUGE V-SHAPED DUMP CARS.Capacity, 27 cubic feet. Length over couplers, 6 feet 9 inches. Width of body, 48⅝ inches.

60-CENTIMETER GAUGE V-SHAPED DUMP CARS.Capacity, 27 cubic feet. Length over couplers, 6 feet 9 inches. Width of body, 48⅝ inches.

60-CENTIMETER GAUGE V-SHAPED DUMP CARS.

Capacity, 27 cubic feet. Length over couplers, 6 feet 9 inches. Width of body, 48⅝ inches.

RAILROAD LOCOMOTIVES PACKED WITH BALED HAY IN THE HOLD OF A SHIP.

RAILROAD LOCOMOTIVES PACKED WITH BALED HAY IN THE HOLD OF A SHIP.

RAILROAD LOCOMOTIVES PACKED WITH BALED HAY IN THE HOLD OF A SHIP.

On our first purchase of rails, amounting to 102,000 tons, the price paid was $38 a ton for Bessemer steel and $40 a ton for open-hearth steel, as against a price of $59 a ton that the Russians were paying and prices between $54.36 and $61.87 that were being paid by the French. There was a saving in this item of approximately $2,040,000 as compared with the prices paid by the Russians and of $1,938,000 compared with the prices paid by the French.

In connection with our first purchase of this steel rail, it should be stated that the Lackawanna Steel Co. and the United States Steel Products Co. agreed to sell us rail on this basis. Orders were placed with these companies, but not with two other companies—the Cambria Steel Co. and the Bethlehem Steel Co.—who declined to accept the price offered.

All subsequent orders for steel rail were on the basis of $55 and $57 a ton for Bessemer and open hearth, respectively, which figure was established by the War Industries Board pursuant to the Government policy to stabilize industry by establishing fixed prices alike for all purchasers—the Government itself, the allies, and the public.

A total of 937 miles of standard-gauge railway track was laid in France with material shipped from this country.

A big money saving was effected by changing the design of the freight cars asked for by our overseas forces. Their original call was for 17,000 four-wheel cars of the French type, these varying from 10 to 20 tons capacity per car. Our investigations here convinced us that the American type of car with 30-ton capacity could be used on the French railroads. Consequently we recommended that 6,000 of the 30-ton American-type cars be sent abroad instead of smaller-capacity French cars. Our recommendation was approved by officers abroad, and as a result there was a saving of $12,640,000 in the cost of this initial order of cars. From that time all cars shipped from the United States were of the American 8-wheel type, a fact which resulted in a saving of approximately $189,600,000 over what it would have cost to build and ship the lighter French cars.

Had the light French type of cars, as originally suggested, been adopted, 270,309 cars would have been required instead of 90,103 cars, and probably twice as much tonnage would have been necessary to transport these cars overseas.

Most of the steel rails were purchased from the Cambria Steel Co., the Lackawanna Steel Co., the Bethlehem Steel Co., the United States Steel Products Co., and the Sweets Steel Co. Raised pier, gantry, and locomotive cranes were turned out by the several crane builders in proportion to their ability to produce. The Standard Steel Car Co. made millions of dollars' worth of metallic parts for freight cars, and the Colorado Fuel & Iron Co. produced rails and bars. As previously mentioned, the Baldwin Locomotive Works got the bulk of the orders for locomotives, although the American Locomotive Co., the Vulcan Co., the H. E. Porter Co., and the Davenport Locomotive Works also made locomotives for our Expeditionary Forces.

Ambulance trains were called for by Gen. Pershing in his cablegram of July 15, 1917. It was stated in this message that plans for these ambulance trains would be furnished by the Surgeon General of the Army.

To build these ambulance trains, with their complicated designs and specialized equipment, in this country would have entailed lengthy delay and very heavy expense, as after they had been constructed it would have been necessary to knock them down for shipment. With this fact in mind our officers here took up the question with Sir Francis Dent, of the British railway commission, who was in this country at the time. He stated that ambulance trains built by the London & North Western Railway, which had proved wholly satisfactory in three years of service, could be turned out by that same concern there quickly if the English design were adopted for our Army.

After considerable discussion and consideration the English design was followed, and orders for our ambulance trains were placed abroad. Up to December 7, 1918, there had been completed for our Army 19 of these trains, with a total of 304 cars, and there were in the course of completion at that time or under order 29 additional ambulance trains.

Information from England shows that it was indeed the part of wisdom to order these ambulance trains abroad, as figures from England stated that the first 14 of these trains were produced at a cost to us of £3,845 per car, including repair parts. This means that at the present rate of exchange the cost of each coach was $18,302.20, while to have built these cars in this country, knocked them down, and shipped them overseas would have cost $40,000 each.

The urgent necessity for narrow-gauge railway equipment for our armed forces in Europe was first brought home to us when Gen. Pershing cabled on July 15, 1917. In this message he asked for large quantities of 60-centimeter locomotives, cars, and track. The types requested were entirely new in this country.

Specifically, there were required 195 60-centimeter steam locomotives with a low center of gravity and with a maximum of 3½ tons axle load; 126 40-horsepower gasoline locomotives; 63 20-horsepower gasoline locomotives; and 3,332 freight cars of various types, including box cars and flat cars of 10-ton capacity, tank cars, and dump cars. To aid in the building of this new equipment many photographs and designs brought over from France were used. It was decided to build the 10-ton cars fitted with small 4-wheel trucks at each end, rather than to make them of the 4-wheeled type, as with this construction they would be better adapted for the rounding of short curves.

60-CENTIMETER GAUGE STEAM LOCOMOTIVE; TRACTIVE POWER, 6,225 POUNDS. CYLINDERS, 9 × 12, DRIVING WHEELS 23½ INCHES, WHEEL BASE 5 FEET 10 INCHES; WEIGHT IN WORKING ORDER 34,500 POUNDS; CAPACITY: WATER 476 GALLONS, FUEL 1,700 POUNDS.

60-CENTIMETER GAUGE STEAM LOCOMOTIVE; TRACTIVE POWER, 6,225 POUNDS. CYLINDERS, 9 × 12, DRIVING WHEELS 23½ INCHES, WHEEL BASE 5 FEET 10 INCHES; WEIGHT IN WORKING ORDER 34,500 POUNDS; CAPACITY: WATER 476 GALLONS, FUEL 1,700 POUNDS.

60-CENTIMETER GAUGE STEAM LOCOMOTIVE; TRACTIVE POWER, 6,225 POUNDS. CYLINDERS, 9 × 12, DRIVING WHEELS 23½ INCHES, WHEEL BASE 5 FEET 10 INCHES; WEIGHT IN WORKING ORDER 34,500 POUNDS; CAPACITY: WATER 476 GALLONS, FUEL 1,700 POUNDS.

60-CENTIMETER GAUGE STEAM LOCOMOTIVE; 50 HORSEPOWER. CYLINDERS 5½ × 7, DRIVING WHEELS 30 INCHES, WHEEL BASE 4 FEET; WEIGHT IN WORKING ORDER 14,000 POUNDS; FUEL CAPACITY, 30 GALLONS.

60-CENTIMETER GAUGE STEAM LOCOMOTIVE; 50 HORSEPOWER. CYLINDERS 5½ × 7, DRIVING WHEELS 30 INCHES, WHEEL BASE 4 FEET; WEIGHT IN WORKING ORDER 14,000 POUNDS; FUEL CAPACITY, 30 GALLONS.

60-CENTIMETER GAUGE STEAM LOCOMOTIVE; 50 HORSEPOWER. CYLINDERS 5½ × 7, DRIVING WHEELS 30 INCHES, WHEEL BASE 4 FEET; WEIGHT IN WORKING ORDER 14,000 POUNDS; FUEL CAPACITY, 30 GALLONS.

ARMORED RAILWAY MOTOR CAR. HALL-SCOTT GASOLINE ENGINE; LENGTH 62 FEET 9 INCHES, WIDTH 9 FEET 11 INCHES, TRUCK CENTERS 46 FEET.

ARMORED RAILWAY MOTOR CAR. HALL-SCOTT GASOLINE ENGINE; LENGTH 62 FEET 9 INCHES, WIDTH 9 FEET 11 INCHES, TRUCK CENTERS 46 FEET.

ARMORED RAILWAY MOTOR CAR. HALL-SCOTT GASOLINE ENGINE; LENGTH 62 FEET 9 INCHES, WIDTH 9 FEET 11 INCHES, TRUCK CENTERS 46 FEET.

ARMORED MOTOR CAR, OIL-ELECTRIC ENGINE.

ARMORED MOTOR CAR, OIL-ELECTRIC ENGINE.

ARMORED MOTOR CAR, OIL-ELECTRIC ENGINE.

ARMORED CAR EQUIPPED WITH 3-INCH GUN AND SEARCHLIGHT ON CAR ATTACHED.

ARMORED CAR EQUIPPED WITH 3-INCH GUN AND SEARCHLIGHT ON CAR ATTACHED.

ARMORED CAR EQUIPPED WITH 3-INCH GUN AND SEARCHLIGHT ON CAR ATTACHED.

In turning out the different kinds of locomotives for the 60-centimeter railways new designs were made in order to produce locomotives that would run with equal facility in either direction. For the gasoline locomotives, designs of types similar to standard-gauge engines, a few of which had been in the service in this country, were made, and orders were placed with the Baldwin Locomotive Works for the first lot.

The first steam locomotives were delivered by the builders on October 3, 1917, and the first gas locomotives on November 7, 1917.

Orders for the freight cars for these narrow-gauge railways were placed with a number of the larger car-building companies of the country. The first of these cars were delivered November 24, 1917.

When the armistice was signed a total of 1,841 locomotives and 11,229 cars of the narrow-gauge type had been ordered and 427 locomotives and 6,134 cars completed. Up to the 11th of November 361 of the locomotives and 5,691 of the cars had been shipped overseas.

Of the 361 locomotives sent to France, 191 were steam engines, 108 had 50-horsepower gasoline engines, and 62 had 35-horsepower gasoline engines. Of the 5,691 cars that went to the Expeditionary Forces prior to the signing of the armistice, 600 were box cars, 166 were tank cars, 500 were flat cars, 1,555 were 8-wheeled gondola cars, 330 were dump cars, 100 were artillery truck cars, 970 were motor cars, 180 were inspection cars, 300 were hand cars, and 990 were push cars.

For the construction of the narrow-gauge railroad used in the combat areas behind the front line trenches a special type of fabricated track was designed. This consisted of short sections of rail bolted to steel crossties. The American narrow-gauge railway was so arranged that it could be packed in knockdown shape to save shipping space. Most of this track was in 5-meter lengths, although many shorter sections were used. All, however, were in multiples of 1¼ meters, accurately sawed so as to insure absolute fit of intermediate sections when shell fire made replacement necessary. Vast quantities of curved track, as well as innumerable switches and turnouts, also were built.

In all about 605 miles of fabricated, narrow-gauge steel track were purchased and 460 miles shipped to France. All but 192 miles of the fabricated track was built at the Lakewood Engineering Co., near Cleveland. The balance was obtained through the United States Steel Products Co. The cost of the straight track was about $7,400 a mile, while the cost of the curved sections was $8,000 a mile.

Much of this narrow-gauge track that went to France was manufactured at the rate of between 5 and 6 miles of completed track a day.

Great quantities of the fabricated track produced by the Lakewood Engineering Co. were loaded upon camouflaged steamers in Cleveland in May, 1918, and sent direct to France, via Lake Erie, the Welland Canal, and the St. Lawrence River.


Back to IndexNext