CHAPTER V.AVIATION EQUIPMENT AND ARMAMENT.

On one of the early days in the great war a Russian aviator, aloft in one of the primitive airplanes of that time, was engaged in locating the positions of the enemy when he chanced upon a German birdman engaged in a similar mission.

In those ancient times—for they seem ancient to us now, although less than five years have elapsed—actual fighting in the air was unknown. The aviators had no equipment for battle; indeed, it was doubtful if the thought had occurred to either side to keep down the enemy's aircraft by the use of armed force borne upon wings. In the first months of aviation in the great war the fliers of both sides recognized a sort ofnoblesse obligeof the air, which, if it did not make for actual friendship or fraternizing between the rival air services, at least amounted to a respect for each other often evidenced by an innocuous waving of hands as hostile flying machines passed each other.

But now the wounds of war had begun to smart; and when the Russian saw the German flier going unhindered upon a work that might bring death to thousands of soldiers in the Czar's army, a sudden rage filled his heart, and he determined to bring down his adversary, even at the cost of his own life. Maneuvering his craft, presently he was flying directly beneath the German and in the same direction and was but a short distance below his enemy's plane. Then, with a pull on his control lever, the Russian shot his machine sharply upward, hoping to upset the German and to escape himself. The result was that the machines collided, and both crashed to the ground. This was probably the first aerial combat of the war.

It seems strange to us to-day that the highly complicated and standardized art of fighting with airplanes was developed entirely during the great war and, indeed, was only started after the war had been in progress for several months. Yet such was the case. At the beginning of the war there was no such thing as armament in aircraft, either of the offensive or defensive sort. It is true that a small amount of experimentation in this direction had occurred prior to the war and also in the early months of fighting, but it was not until the summer of 1915 that air fighting, as it is so well known to the entire world to-day, was begun.

In this country we had successfully fired a machine gun from an airplane in 1912, while at the beginning of the war the French had a few heavy airplanes equipped to carry machine guns. Yet in August, 1915, Maj. Eric T. Bradley, of the United States Air Service, but then a flight sublieutenant in the Royal Flying Corps, frequently flew over the lines hunting for Germans; and his offensive armament consisted of a Lee-Enfield rifle or sometimes a 12-gauge double-barreled shotgun.

The aviators in those pioneer days usually carried automatic pistols, but the danger to one side or the other from such weapons was slight, owing to the great difficulty of hitting an object moving as swiftly as an airplane travels. The earlier planes also packed a supply of trench grenades for dropping upon bodies of troops. Another pioneer offensive weapon for the airplane was the steel dart, which was dropped in quantities upon the enemy's trenches. Great numbers of these darts were manufactured in the United States for the allies, but the weapon proved to be so ineffective that it had but a brief existence.

It is said that before the pilots carried any weapons at all the first war aviators used to shoot at each other with Very pistols, which projected Roman candle balls. The start of air fighting may be said to have come when the Lewis machine guns were brought out for use in the trenches. Presently these ground guns were taken into the planes and fired from the observers' shoulders. Then for the first time war flying began to be a hazardous occupation so far as the enemy's attentions were concerned.

It was soon discovered that the machine gun was the most effective weapon of all for use on an airplane, because only with rapid firers could one hope to hunt successfully such swiftly moving prey as airplanes. It had become patent to the strategists that it was of supreme importance to keep the enemy's aircraft on the ground. Hence invention began adapting the machine gun to airplane use.

The swiftest planes of all were those of the single-seater pursuit type. It was obviously impossible for the lone pilot of one of these to drop his controls and fire a machine gun from his shoulder. This necessitated a fixed gun that could be operated while the pilot maintained complete control of his machine, and such necessity was the mother of the invention known as the synchronizing gear.

This ingenious contrivance, however, did not come at once. Most of the war planes were of the tractor type; that is, that they had the engine and propeller in front, this arrangement giving them better maneuvering and defensive powers in the air than those possessed by planes with the rear, pushing propellers. The first fixed machine gun was carried on the upper plane of the biplane so as toshoot over the arc described by the propeller. With the gun thus attached parallel to the line of flight, the pilot needed only to point the airplane itself directly at the target to have the gun trained on its objective. But such an arrangement proved to be unsatisfactory. A single belt or magazine of cartridges could, indeed, be fired from the gun, but there was no more firing on that trip, because the pilot could not reach up to the upper plane to reload the weapon.

So the fixed gun was brought down into the fuselage and made to fire through the whirling propeller. At first the aviators took their chances of hitting the propeller blades, and sometimes the blades were armored at the point of fire, being sheathed in steel of a shape calculated to cause the bullets to glance off. This system was not satisfactory. Then, since a single bullet striking an unprotected propeller blade would often shatter it to fragments, attempts were made to wrap the butts of the blades in linen fabric to prevent this splintering, and this protection actually allowed several shots to pierce the propeller without breaking it.

This was the state of affairs on both sides early in 1915. The French Nieuports had their fixed guns literally shooting through the propellers, the bullets perforating the blades, if they did not wreck them. As late as February, 1917, Maj. Bradley, who was by that time a flight commander in the British service, worked a Lewis gun over the Bulgarian lines with the plane propellers protected only by cloth wrappings.

All of this makeshift operation of fixed machine guns was changed by the invention of the synchronizing device. This is an appliance for controlling the fire of the fixed gun so that the bullets miss the blades of the flying propeller and pass on in the infinitesimal spaces of time when the line of fire ahead of the gun is clear of obstruction. The term "synchronizing" is not accurate, since that word implies that the gun fires after each passage of a propeller blade across the trajectory. Such is not the truth. The propeller revolves much more rapidly than the gun fires. The device is also called an "interrupter," another inexact term, since the fire of the gun is not interrupted, but only caused at the proper moments. Technicians prefer the name "gun control" for this mechanism.

Who first invented the synchronizer is a matter of dispute, but all observers agree that the Germans in the Fokker monoplanes of 1915 were the first to use it extensively. Not until some time after this did the allies generally install similar devices. Some have attributed the original invention to the famous French flier, Roland Garros.

Two types of synchronizers were developed, one known as the hydraulic type and the other as the mechanical. In operation they are somewhat similar. In each case there is a cam mounted on the engine shaft so that each impulse of the piston actuates a plunger.The plunger passes on the impulses to the rest of the mechanism. In the mechanical control the impulse is carried through a series of rods to the gun, causing the latter to fire at the proper moments. In the hydraulic control the impulse is transmitted through oil held at a pressure in a system of copper tubes. The hydraulic synchronizer is known as the Constantinisco control, commonly called the "C. C." after the military fashion of using initials. This was the device copied for American planes in the war.

In April, 1917, we knew practically nothing about the use or manufacture of aircraft guns. We had used airplanes at the Mexican border, but not one of them carried a machine gun. The Lewis gun, which is a flexible type of aircraft weapon pointed on a universal pivot by the observer in a two-place plane, was being manufactured by the Savage Arms Corporation for the British Government; but we had never made a gun of the fixed type in this country, nor did we know anything about the construction or manufacture of synchronizers.

One special requirement of the aircraft machine gun is that it must be reliable in the extreme. It is bad enough to have a gun jam on the ground, but in the air it may be fatal, for little can be done there to repair the weapon. A jam leaves the gunner to the mercy of his adversary, so in the production of aircraft armament there must be not only special care in the manufacture of the guns, but the ammunition, too, must be as perfect as human accuracy can make it. The cartridges must be either hand-picked and specially selected from the run of service ammunition, or else manufactured slowly and expressly for the purpose, with minute gauging from start to finish of the process.

Another requirement for the aircraft gun is that it must function perfectly in any position. On the ground a machine gun is fired essentially in a horizontal position, but the airman dives and leaps in his maneuvering and must be able to shoot at any instant.

Aircraft guns are subject to extreme variations of temperature, and so they must be certain to function perfectly in the zero cold of the high altitudes, regardless of the contraction of their metal parts.

Then, too, such guns must be able to fire at a much greater rate than those of the ground service. Five hundred shots per minute is regarded as sufficient for a ground gun, but aircraft guns have been brought up to a rate of fire as high as 950 to 1,000 shots per minute. The Browning aircraft gun, never used by us, but in process of development when the armistice was signed, had been speeded up to 1,300 shots per minute, with all shots synchronized to miss the blades of the propeller.

The rate of fire in the air can not be made too swift. Suppose an airplane were flying past a long, stationary target, such as a billboard, at the relatively slow speed of 100 miles an hour. Assume onthis plane a flexible machine gun aimed at the billboard at right angles to the line of flight. If this is a fast machine gun, it may shoot 880 times a minute, at which rate the shots will come so fast that the explosions will merge into a continuous roar. Yet the bullets fired at such a rate from a machine moving at even such low speed will be spaced out along the billboard at intervals of 10 feet. But most of the fighting planes traveled much faster than 100 miles per hour. Thus it is entirely possible for two antagonists in the air to aim with complete accuracy at each other and both to pass unscathed through the lines of fire. The faster, therefore, the aircraft gun fired, the better the chances of bringing down the enemy plane.

The Lewis gun, invented by Col. Lewis, of the United States Army, was the weapon most generally used by the allies as the flexible gun for their airplanes, operated on a universal mount which permitted it to be pointed in any direction. The Lewis aircraft gun was the ground gun modified principally by stripping it of the cooling radiator and by the addition of a gas check to reduce the recoil. The Lewis was fed by a drum magazine, a more desirable feed for flexible guns than any belt system. The German flexible gun, the Parabellum, had the unsatisfactory belt feed.

The Vickers gun was the only successful weapon of the fixed type developed in the war before we became a belligerent. We were manufacturing Vickers guns in the United States prior to April, 1917; but when the Signal Corps faced the machine-gun problem, in September, 1917, it found that the Infantry branches of the Army had contracted for the entire Vickers production in this country.

Accordingly, the equipment division of the Signal Corps, in the face of marked opposition, took up the development of the Marlin gun as an aircraft gun of the fixed type. This gun, however, proved to be extraordinarily successful and was regarded by our Flying Service and by the aviators of the allies to be the equal of the Vickers in efficiency. Because of this development, when there came the need of tank guns, in June, 1918, the Aircraft Board, which had succeeded the Signal Corps as the director of aerial activities, was able to supply 7,220 Marlin machine guns within two weeks for this purpose.

The first order for Marlin guns was placed on September 25, 1917; and over 37,500 of them had been produced before December, 1918. The Marlin-Rockwell factory began producing 2,000 guns per month in January, 1918, and increased this rapidly until as many as 7,000 guns were built in one month. The Marlin gun shoots at the rate of 600 to 650 shots per minute and is fed by a belt of the disintegrating metal-link type.

As to Lewis guns, which we adopted as our flexible weapon, more than 35,000 of them were delivered to the Air Service up to December, 1918. In February, 1918, the Savage Arms Corporation built 1,500 of them, increasing their monthly deliveries until in themonth of October, 1918, they turned out 5,448 of these weapons. The Lewis gun which the British had been using carried 47 cartridges in its magazine. A notable accomplishment of the manufacture of Lewis guns for our use was to increase the capacity of the magazine to hold 97 cartridges.

In our De Haviland-4 planes we installed two Marlin fixed guns, each firing at the rate of 650 shots per minute, equipping the weapons with Constantinisco controls to give the plane a maximum fire of 1,300 shots per minute through the blades of a propeller whirling at a rate as high as 1,600 revolutions per minute. Four fixed guns have also been successfully fitted to one plane and timed so that none of the bullets struck the propeller blades.

At the time the armistice was signed the rate of production of special aircraft ammunition, a classification including tracer bullets, incendiary bullets, and armor-piercing bullets, exceeded 10,000,000 rounds per month.

The original estimate for the quantity of ammunition our Flying Service should have was later greatly increased because the squadrons at the front began installing as many as four guns on a single observation plane.

Although different aviators had their own notions about the loading of ammunition belts, certain sequences in the use of the three types of special ammunition were usually observed. First usually came the tracer cartridge, which assists the gunner in directing his aim; then two or three armor-piercing cartridges, relied upon to injure the hostile engine or tap the gasoline tank; and finally one or two incendiary cartridges to ignite the enemy's gasoline as it escaped, sending him down in flames. Such a sequence would be repeated throughout the ammunition belt or magazine container.

The belts for the fixed guns carry a maximum of 500 rounds of cartridges. The belt which we furnished to our fliers at the front was made of small metallic links fastened together by the cartridges themselves. As the gun was fired and the cartridges ejected, the links fell apart and cleared the machine through special chutes. The total production of such belting in this country amounted to 59,044,755 links. Although the links are extremely simple in design, the great accuracy required in their finish made production of them a difficult manufacturing undertaking. The production and inspection of each link involved over 36 separate operations. It actually cost more to inspect belt links than to manufacture them.

We produced 12,621 British unit sights for airplane guns and sent 1,550 of them overseas. We also bought an adequate number of small electric heaters to keep the gun oil from congealing in the cold of high altitudes.

A novel undertaking for our photographic manufacturers was the production of the so-called gun cameras which are used to trainairplane gunners in accuracy of fire. Target practice with a machine gun in an airplane is dangerous to the innocent bystander; and it was found to be impracticable, moreover, to tow suitable targets for actual machine-gun fire. Consequently, quite early in the war, the air services of the allies adopted the practice of substituting cameras for the machine guns on the practice planes.

One of these gun cameras, invented by Thornton Pickard, of Altringham, England, imitated in design a Marlin aircraft machine gun; and in order to make a picture with it, the gunner must go through the same movements that he would employ in firing a Marlin gun. Thus, if the gun were pointed directly on the target, the target would appear squarely in the center of the picture taken; and this showed the gunner's accuracy as well as if he had fired cartridges from the actual weapon.

These gun cameras were of two sorts. One type took a single picture each time the trigger was pulled. Those of the other sort took a number of pictures automatically at a speed approximately that of the firing of a machine gun. This latter type was much the same as a moving picture camera, the resulting film being a string of silhouettes of the target, each exposure showing whether the aim of the gunner was exact at the instant the picture was taken.

In September, 1917, the Eastman Kodak Co. began the development of a camera gun of the "burst" or automatic moving-picture type. After our authorities had seen the model, the Navy ordered a number of them, while the Air Service placed increasing orders for these instruments until 1,057 had been produced and delivered to the Government by November, 1918. This camera was not used in the fixed airplane guns, but was designed to train the operators of the flexible Lewis gun. The camera exactly replaced the ammunition magazine on a Lewis gun.

Of the single-shot gun cameras 150 were delivered during the hostilities. This design was obtained from Canada and duplicated here.

The use of the so-called Bromotype paper in gun cameras was one of the interesting phases of this development. As everyone acquainted with photography knows, a picture is made ordinarily by exposing a sensitized plate or film, developing the latter to make a negative, then exposing sensitive print paper to the light that comes through the negative, thus reversing the lights and shadows and creating a positive in the exact semblance of the subject photographed. A concern in Cleveland, Ohio, the Positype Co., produced Bromotype paper which could be exposed directly in the camera, coming out of the developing process as a positive without the intervention of a film or plate negative.

Bromotype paper is much more highly sensitized than ordinary print paper, so that it may be adequately exposed in an instantaneous,high-speed snapshot. The exposure is then developed in the ordinary way in the dark room, the familiar negative image appearing on the surface in the ruby light of the lantern. At this point the special developing process enters. The paper negative, without being fixed, is immersed in a bath of chemicals that dissolves away the sensitized surface that has been oxidized by the light from the camera lens—that is, the image—leaving on the paper only the unoxidized, or unexposed, parts of the sensitization. The paper now presents an unbroken white surface. It is then redeveloped by a special solution, and the picture in its true values of light and shade thus comes into existence. The entire development and finishing of this paper requires only 2½ to 3 minutes.

Under this system, of course, only one finished print of each exposure can be made; but the airplane gunners needed only one print to show their aim. Positype paper was thus admirably adapted for use in the airplane gun cameras; and because of its cheapness and the simplicity and rapidity of its use, it was rapidly supplanting film at the training camps in this country when the armistice was signed.

The American production of bombs to be dropped from airplanes was not started so soon as production in some of the other branches of ordnance development, due to numerous difficulties encountered in working up the design of this new matériel. Although aerial bombing was steadily increasing in effectiveness and magnitude when hostilities ended, yet this kind of fighting was a development that came relatively late in the war; and the lack of perfected standards at the time this country became a belligerent helped to impede our program.

Some of the bombs first designed and put into production were later rejected by our forces in France, as they had become obsolete before being shipped overseas. We managed to manufacture a great quantity of unloaded bombs by the time the armistice was signed, enough, in fact, to provide for the Army's needs during another year of warfare. These had to be loaded with explosives before they were ready for use. We lacked adequate facilities for loading bombs with explosives, although these facilities were being provided rapidly when the war ended. The result was that the thousands of completed American bombs remained unloaded, while practically all the bombs used by our fliers in France were of foreign manufacture.

Military science had had some small experience with aerial bombing prior to the great war. Italian aviators had dropped bombs of an ineffective sort during Italy's war in Africa. When Mexico was having a civil war in 1914 American air-sailors of fortune on one side or the other dropped bombs on troops from their planes.

In the great war the first nation to attempt bombing on any systematic scale was Germany, who sent her Zeppelins over London and Paris early in the conflict and released bombs upon the heads of the helpless civilians. Yet this early and impressive effort was, in its difficulties, out of all proportion to the actual damage done to the city of London, largely due to the fact that Germany had not yet produced effective aerial bombs. The frightful scenes and noises of a bomb raid probably did more to reduce the morale in these early days than the destruction caused by the exploding missiles.

It is an exceedingly difficult trick to drop a bomb from any considerable altitude and hit what you are aiming at. The speed of the airplane, its height above the ground, the shape of the bomb itself, and the currents of air acting on the falling missile influence its line of flight. The aviator approaching an enemy target drops the bomb long before his airplane is directly above the object aimed at.

The line of the bomb's flight is a parabolic curve. The speed at which the airplane travels at first propels the bomb forward, almost as if it had been shot from a stationary gun. As the downward velocity of the bomb increases very rapidly, it soon becomes so great in proportion to velocity forward that the course of the missile bends sharply downward until, as it nears the ground, it is falling nearly in a vertical line. Hence, it becomes evident that accurate bomb dropping is an art attained only by much practice on the part of the aviator.

The latest bombing machines were equipped with sights which enabled the birdman to drop these deadly objects with greater accuracy than had been possible earlier in the war. While some of the expert European bombers scorned the new inventions in sights and preferred to continue the use of makeshift sights which they themselves had invented and installed on their planes, the average accuracy of bomb dropping was considerably greater after bomb sights came into general use.

These sights were adjusted to height, air speed, and strength of wind. When these adjustments had been made, the two sighting points were in such position that, if the bomb were dropped when the target was in line with them, an accurate hit would be registered.

We adopted a British sight, tested and found satisfactory by the Royal Flying Corps, and known as the High Altitude Wimperis, and in the United States as the Bomb Sight Mark I-A. On November 11, 1918, American factories, working on contracts placed by the Ordnance Department, had produced 8,500 of them. The job of turning out this intricate mechanism was turned over to Frederick Pearce & Co., of New York City, in January, 1918. Later in the year additional contracts were given to the Edison Phonograph Works and to the Gorham Manufacturing Co. These contracts called for 15,000 sights. By December 12, 1918, these concerns had completed a total of 12,700 of them.

A 250-POUND DEMOLITION BOMB CARRYING 125 POUNDS OF EXPLOSIVE AND HAVING HEAVY CAST-STEEL NOSE AND PRESSED SHEET STEEL REAR BODY.

A 250-POUND DEMOLITION BOMB CARRYING 125 POUNDS OF EXPLOSIVE AND HAVING HEAVY CAST-STEEL NOSE AND PRESSED SHEET STEEL REAR BODY.

A 250-POUND DEMOLITION BOMB CARRYING 125 POUNDS OF EXPLOSIVE AND HAVING HEAVY CAST-STEEL NOSE AND PRESSED SHEET STEEL REAR BODY.

A 25-POUND FRAGMENTATION BOMB CARRYING 3 POUNDS OF EXPLOSIVES, DESIGNED FOR USE AGAINST TROOPS.

A 25-POUND FRAGMENTATION BOMB CARRYING 3 POUNDS OF EXPLOSIVES, DESIGNED FOR USE AGAINST TROOPS.

A 25-POUND FRAGMENTATION BOMB CARRYING 3 POUNDS OF EXPLOSIVES, DESIGNED FOR USE AGAINST TROOPS.

A 40-POUND INCENDIARY BOMB OF THE INTENSIVE TYPE, WITH STEEL NOSE AND FUSIBLE ZINC REAR CASING.

A 40-POUND INCENDIARY BOMB OF THE INTENSIVE TYPE, WITH STEEL NOSE AND FUSIBLE ZINC REAR CASING.

A 40-POUND INCENDIARY BOMB OF THE INTENSIVE TYPE, WITH STEEL NOSE AND FUSIBLE ZINC REAR CASING.

AIRPLANE FLARE.

AIRPLANE FLARE.

AIRPLANE FLARE.

MARK I, HIGH CAPACITY DROP BOMB. A 105-POUND DEMOLITION BOMB, CARRYING 55 POUNDS OF EXPLOSIVE.

MARK I, HIGH CAPACITY DROP BOMB. A 105-POUND DEMOLITION BOMB, CARRYING 55 POUNDS OF EXPLOSIVE.

MARK I, HIGH CAPACITY DROP BOMB. A 105-POUND DEMOLITION BOMB, CARRYING 55 POUNDS OF EXPLOSIVE.

MARK II, HIGH CAPACITY DROP BOMB, NOW OBSOLETE, HAVING BEEN FOUND TOO SMALL FOR DEMOLITION PURPOSES.

MARK II, HIGH CAPACITY DROP BOMB, NOW OBSOLETE, HAVING BEEN FOUND TOO SMALL FOR DEMOLITION PURPOSES.

MARK II, HIGH CAPACITY DROP BOMB, NOW OBSOLETE, HAVING BEEN FOUND TOO SMALL FOR DEMOLITION PURPOSES.

MARK II—A FRAGMENTATION DROP BOMB.A 20-pound fragmentation bomb, made from a converted 3-inch artillery shell, carries 1½ pounds of explosives to be used against troops. Projection at nose causes burst to take place above ground.

MARK II—A FRAGMENTATION DROP BOMB.A 20-pound fragmentation bomb, made from a converted 3-inch artillery shell, carries 1½ pounds of explosives to be used against troops. Projection at nose causes burst to take place above ground.

MARK II—A FRAGMENTATION DROP BOMB.

A 20-pound fragmentation bomb, made from a converted 3-inch artillery shell, carries 1½ pounds of explosives to be used against troops. Projection at nose causes burst to take place above ground.

A 20-pound fragmentation bomb, made from a converted 3-inch artillery shell, carries 1½ pounds of explosives to be used against troops. Projection at nose causes burst to take place above ground.

DROP BOMB, MARK III.

DROP BOMB, MARK III.

DROP BOMB, MARK III.

Airplane bombs are shaped so as to offer the least possible resistance to the air. They have fins on their tails to steady them lest they tumble over and over. On the smaller types of bombing planes, such as the De Haviland-4, the bombs were usually carried underneath the lower wings or under the fuselage, hanging horizontally by hooks or fastened by bands around the bodies of the bombs, according to their type. The bombs were dropped by a quick-release mechanism operated by a small lever within the fuselage. The production of these release mechanisms, of which several types were made, was one of the troublesome jobs in connection with the airplane bombing.

All bombs are carried on the planes either suspended under the wings or fuselage of the plane or in a compartment in the fuselage. The manner of carrying and the design of the release mechanism is determined by the type of plane used. Since the weight-carrying capacity of the planes is limited, release mechanisms must be designed with a view to lightness as well as safety. These mechanisms are so designed that the observer can release any desired number of bombs either as a salvo or in a "trail fire," and the order of releasing must be so arranged that the balance of the plane will be disturbed as little as possible; that is, if bombs are carried under the wings they should be released alternately from each wing. All bombs are fitted with a safety mechanism which enables the observer to drop them either "armed" or "safe," i. e., so that they will explode or not as desired. An occasion might develop where the aviator would have to get rid of his bombs over his own lines. These various points are all taken care of in the design of the release mechanism and are controlled by the observer with an operating-control handle placed in the observer's cockpit.

All of the bombs used by our fliers and by the fliers of the other nations at war were of three distinctive types—demolition bombs, fragmentation bombs, and incendiary bombs.

Our Ordnance Department built demolition bombs in five different weights: 50 pounds, 100 pounds, 250 pounds, 500 pounds, and, finally, the enormous bomb weighing 1,000 pounds—half a ton. The most frequently used demolition bombs, however, were those of the 100-pound and 250-pound sizes. The demolition bombs were for use against ammunition dumps, railways, roads, buildings, and all sorts of heavy structures where a high-explosive charge is desired. These bombs had a shell of light steel which was filled with trinitrotoluol—T. N. T., as it is more commonly known—or some other explosive of great destructive power. The charge was set off by a detonator held apart from the dangerous contents of the bomb by a pin. As thebomb was released by the mechanism the pin was automatically drawn out, and the detonator slid down into position so as to explode the bomb the instant it struck its object.

The first contract let for drop bombs of any type was given to the Marlin-Rockwell Corporation of Philadelphia in June, 1917. This contract was for the construction of 5,000 heavy drop bombs of the design known as the Barlow, and also for 250 sets of release mechanisms for this bomb. We were able to go ahead with the production of this bomb at this early date since it was the only one of which we had completed designs and working drawings when we entered the war. In November, 1917, this order was increased to 13,000, and in April, 1918, to 28,000.

The Barlow bomb, however, was destined never to cut any figure in our fighting in France. The production was slow, due to the necessity of constant experimentation to simplify a firing mechanism which was regarded as too complicated by the experts of the War Department. Finally, in June, 1918, when 9,000 of these bombs and 250 sets of release mechanisms had been produced, a cablegram came from the American Expeditionary Forces canceling the entire contract.

Meanwhile, the final type of demolition bomb, known variously as the Mark I, II, III, IV, V, or VI, depending upon its size, had been developed here. In December, 1917, a contract for 70,000 of the size known as Mark II, weighing 25 pounds, was given to the Marlin-Rockwell Corporation. But in June the American Expeditionary Forces informed us that this bomb would not be of value to the Air Service abroad because of its small explosive charge, and the contract was cut down to 40,000 bombs, which number the Army could use in training its aviators. By the end of November, 1918, bomb bodies of the Mark II size to the number of 36,840 had been completed.

By the end of March, 1918, we had developed here a series of demolition bombs that promised to meet every need of our Air Service abroad in projectiles of their class. We let contracts for the manufacture of 300,000 of the 50-pound Mark III size, these contracts being reduced later to a total of 220,000. The manufacturers were the A. O. Smith Corporation, an automobile parts concern of Milwaukee, Wis.; the Edward G. Budd Manufacturing Co. of Philadelphia; and Hale & Kilburn of Philadelphia. Six months later the A. O. Smith Corporation had reached a production of 1,200 of these bombs a day, and completed their contract in October. Both the other concerns also completed their contracts in the autumn of 1918.

TWO OF THE LARGEST DEMOLITION DROP BOMBS.The larger of these two bombs weighs 1,000 pounds and carries 570 pounds of explosive. The smaller weighs 550 pounds and carries 280 pounds of explosive. They are both made with a heavy cast-steel nose and pressed metal rear body.

TWO OF THE LARGEST DEMOLITION DROP BOMBS.The larger of these two bombs weighs 1,000 pounds and carries 570 pounds of explosive. The smaller weighs 550 pounds and carries 280 pounds of explosive. They are both made with a heavy cast-steel nose and pressed metal rear body.

TWO OF THE LARGEST DEMOLITION DROP BOMBS.

The larger of these two bombs weighs 1,000 pounds and carries 570 pounds of explosive. The smaller weighs 550 pounds and carries 280 pounds of explosive. They are both made with a heavy cast-steel nose and pressed metal rear body.

The larger of these two bombs weighs 1,000 pounds and carries 570 pounds of explosive. The smaller weighs 550 pounds and carries 280 pounds of explosive. They are both made with a heavy cast-steel nose and pressed metal rear body.

MARK II BOMB RELEASE MECHANISM FOR HANDLEY-PAGE MACHINE, SHOWING MARK I AND MARK IV BOMBS IN PLACE.

MARK II BOMB RELEASE MECHANISM FOR HANDLEY-PAGE MACHINE, SHOWING MARK I AND MARK IV BOMBS IN PLACE.

MARK II BOMB RELEASE MECHANISM FOR HANDLEY-PAGE MACHINE, SHOWING MARK I AND MARK IV BOMBS IN PLACE.

MARK IX-A RELEASE MECHANISM AS ATTACHED TO MARK II RELEASE FOR HANDLEY-PAGE PLANE.

MARK IX-A RELEASE MECHANISM AS ATTACHED TO MARK II RELEASE FOR HANDLEY-PAGE PLANE.

MARK IX-A RELEASE MECHANISM AS ATTACHED TO MARK II RELEASE FOR HANDLEY-PAGE PLANE.

The A. O. Smith Corporation had tooled up their factory so as to become one of our largest producers of airplane bombs. In addition to the contract already mentioned, during 1918 this concern received orders for approximately 300,000 demolition bombs of the 100-pound (Mark I) size. By November 11, 1918, they had turned out 153,000 of these and had developed a capacity for building 7,000 drop bombs daily. Another large manufacturer of drop bombs was McCord & Co., of Chicago, a concern which in 1918 received orders for nearly 100,000 bombs of the 250-pound, 550-pound, and 1000-pound sizes. By the day the armistice was signed this concern had produced 39,400 completed bombs. These bombs were the heaviest and largest ones intended for use by our service abroad.

The fragmentation bombs differ from the demolition bombs in that they have thick metal walls and consequently smaller charges of explosive. They throw showers of fragments like those of high-explosive artillery shell. The demolition bombs contain, on the other hand, the maximum possible amount of explosive and produce destruction by the force of explosion. Fragmentation bombs always have instantaneous firing mechanisms, while demolition bombs are usually provided with delayed fuses, allowing them to penetrate the target before explosion.

The fragmentation bombs produced by the Ordnance Bureau were smaller than the demolition type, the size most commonly used weighing 24 pounds. These bombs had thick cases and were constructed so that they would explode a few inches above the ground. As the bombs reach a velocity downward of over 500 feet per second, the mechanism had to operate to an accuracy of less than one-thousandth of a second. They were designed for use against bodies of troops.

The fragmentation bombs were a late development in this class of work. The timing device to explode the bomb at the proper distance from the ground was undertaken by three concerns. The contracts for approximately 600,000 of these devices were let in July, 1918. The John Thomson Press Co. of New York City completed its contract for 100,000 mechanisms by the end of October, 1918. The National Tool & Manufacturing Co. of St. Louis completed its contract for 100,000 shortly after the armistice was signed. The Yale & Towne Manufacturing Co., Stamford, Conn., which had contracted to build approximately 400,000 of these devices, had turned out 150,000 by the end of November, 1918. Other concerns which manufactured various parts for the fragmentation bombs were the American Seating Co. of Grand Rapids, Mich., makers of school desks and seats, and the Dail Steel Products Co. of Lansing, Mich.

Some idea of the quantity of fragmentation bombs in our program may be gained from the fact that the contract for the Cordeau-Bickford fuse used in the fragmentation bomb, let to the Ensign-Bickford Co. of Simsbury, Conn., called for the manufacture of 550,000 linear feet of fuse, or more than 100 miles of it. The contracts for fuse were placed in August and September, 1918, and the Ensign-Bickford Co. finished up the job on November 7, four days before the armistice was signed.

The Government discovered that 3-inch shell rejected for various reasons could be re-machined and used to make these airplane fragmentation bombs. The various arsenals had a large supply of them in storage. In August and September, 1918, contracts were let to large numbers of concerns to convert over 500,000 of these shell into fragmentation bombs, and by November 30, nearly 21,000 of the new bombs had been delivered.

These bombs, made from the 3-inch shell, as far as the machining of the bodies is concerned were turned out in various quantities by the following firms:

The nose-firing mechanism for these bombs was produced by the Yale & Towne Manufacturing Co., Stamford, Conn.; the National Tool & Manufacturing Co., St. Louis, Mo.; and the John Thomson Press Co., New York City; while the rear cap stabilizer assemblies were produced by the Dail Steel Products Co., Lansing, Mich., and the American Seating Co., Grand Rapids, Mich.

The last item on the bomb program to come into production was the fragmentation bomb Mark II-B, which was an exact copy of the British Cooper bomb, the most effective bomb of this type in use by the allied nations. Contracts for this bomb were not let until August 17, 1918, to the Lycoming Foundry & Machine Co., of Williamsport, Pa., and the Paige-Detroit Motor Car Co., of Detroit, Mich. The former company by December 1 was producing these bombs at the rate of 500 per day and the latter was just coming into quantity production the first week in December.

TWO VIEWS, MARK V RELEASE TRAP (RIGHT HAND) WITH UNIVERSAL NOSE AND TAIL BEAM, MOUNTED ON T-RAILS UNDER RIGHT WING OF DH-4 PLANE.Upper—Front view, showing operating tube connected to alternating cam in fuselage. Two Mark III demolition drop bombs (150 pounds) held by supporting straps; one bomb released, showing free supporting strap. Lower—Rear view, showing method of retaining stabilizer by tail clip with three Mark III demolition drop bombs.

TWO VIEWS, MARK V RELEASE TRAP (RIGHT HAND) WITH UNIVERSAL NOSE AND TAIL BEAM, MOUNTED ON T-RAILS UNDER RIGHT WING OF DH-4 PLANE.Upper—Front view, showing operating tube connected to alternating cam in fuselage. Two Mark III demolition drop bombs (150 pounds) held by supporting straps; one bomb released, showing free supporting strap. Lower—Rear view, showing method of retaining stabilizer by tail clip with three Mark III demolition drop bombs.

TWO VIEWS, MARK V RELEASE TRAP (RIGHT HAND) WITH UNIVERSAL NOSE AND TAIL BEAM, MOUNTED ON T-RAILS UNDER RIGHT WING OF DH-4 PLANE.

Upper—Front view, showing operating tube connected to alternating cam in fuselage. Two Mark III demolition drop bombs (150 pounds) held by supporting straps; one bomb released, showing free supporting strap. Lower—Rear view, showing method of retaining stabilizer by tail clip with three Mark III demolition drop bombs.

Upper—Front view, showing operating tube connected to alternating cam in fuselage. Two Mark III demolition drop bombs (150 pounds) held by supporting straps; one bomb released, showing free supporting strap. Lower—Rear view, showing method of retaining stabilizer by tail clip with three Mark III demolition drop bombs.

TWO VIEWS OF MARK X RELEASE TRAP ON PLANES.Shows Mark X release trap (Cooper) mounted upon T-rails under wing of DH-4 plane. Bowden control wire and casing connected to fuselage. Two Mark II-B fragmentation bombs suspended—one arming vane retained, the other free.

TWO VIEWS OF MARK X RELEASE TRAP ON PLANES.Shows Mark X release trap (Cooper) mounted upon T-rails under wing of DH-4 plane. Bowden control wire and casing connected to fuselage. Two Mark II-B fragmentation bombs suspended—one arming vane retained, the other free.

TWO VIEWS OF MARK X RELEASE TRAP ON PLANES.

Shows Mark X release trap (Cooper) mounted upon T-rails under wing of DH-4 plane. Bowden control wire and casing connected to fuselage. Two Mark II-B fragmentation bombs suspended—one arming vane retained, the other free.

Shows Mark X release trap (Cooper) mounted upon T-rails under wing of DH-4 plane. Bowden control wire and casing connected to fuselage. Two Mark II-B fragmentation bombs suspended—one arming vane retained, the other free.

When the United States entered the war no satisfactory incendiary bombs had yet been produced by any country, and consequently a long period had to be given over to experimentation before quantity production could be attained. We produced two types of incendiary bombs, the first being of the scatter type, designed for use against light structures, grain fields, and the like, and the second of the intensive type, for use against large structures. Later on in our program we abandoned the manufacture of the scatter type incendiary bombs on cable instructions from abroad, as it was found that the wet climate made a bomb of this type of little value. The American intensive bomb, while it had not yet come up to our ideal and was in process of evolution during its manufacture, nevertheless was regarded by our officers as more effective than any other bomb of its type in existence, since it produced a larger and hotter flame.

Our intensive incendiary bombs weighed about 40 pounds each and contained charges of oil emulsion, thermit, and metallic sodium, a combination of chemicals that burns with intense heat. These bombs were used against ammunition depots or any structures of an inflammable nature. The sodium in the charge was designed to have a discouraging effect upon anyone who attempted to put out the fire of the burning charge, since metallic sodium explodes with great violence if water is poured upon it.

Of the scatter bombs we built 45,000 before abandoning the manufacture, an action taken in September, 1918. When hostilities ceased we had out contracts for 122,886 of the intensive bombs and about 86,000 of them had been delivered ready for loading.

One of the large manufacturers of incendiary bombs was the Conron-McNeal Co., of Kokomo, Ind., manufacturers of skates. The company had to equip its plant with new machinery especially for handling this novel manufacturing enterprise. In all, they produced 50,000 bombs and were turning them out at the rate of 400 per day when the armistice was signed. This concern was the pioneer in the manufacture, the subsequent contractors profiting by the experience of the Conron-McNeal Co., and consequently being able to obtain quantity production more quickly than the Kokomo plant had been able to reach it. The Globe Machine & Stamping Co., of Cleveland, Ohio, built 30,000 bombs and 36,400 firing mechanisms before hostilities closed, and eventually reached a production rate of 500 bombs and 1,000 firing mechanisms per day. Parrish & Bingham, also of Cleveland, produced 13,000, and were turning them out at the rate of 400 daily when the production was stopped. The C. R. Wilson Body Co., of Detroit, built 42,562 of the intensive bombs and reached a daily production of 500. The New Home Sewing Machine Co., of Orange, Mass., manufactured 20,000 firing mechanisms for the scatter-type bombs.

One of the interesting phases of the bomb manufacturing program grew out of the necessity for target practice for our aviators. For this work we built dummy bombs of terra cotta, costing about a dollar apiece. Instead of loading these bombs with explosive, we placed in each a small charge of phosphorus and a loaded paper shotgun shell, so that the bomb would eject a puff of smoke when it hit its object. The aviators could see the smoke puffs and thereby determine the accuracy of their aim.

The Gathmann Ammunition Co. of Texas, Md., was the first contractor for dummy bombs, building 10,000, which were delivered in the spring of 1918. In the spring and summer of 1918, the Atlantic Terra Cotta Co., the New Jersey Terra Cotta Co., both of Perth Amboy, N. J., and the Federal Terra Cotta Co. of Woodbridge, N. J., each built 25,000 of these bombs. In September additional contracts for 50,000 dummy bombs were given to each of these three concerns, while another contract for 25,000 went to the Northwestern Terra Cotta Co. of Chicago. By the end of November these concerns had delivered nearly 34,000 of the 175,000 bombs contracted for, and were turning them out at the rate of 1,300 per day.

The Essex Specialty Co. manufactured 10,000 phosphorus rolls for dummy bombs, and the Remington Arms-U. M. C. Co. supplied 10,000 shotgun shells for the first bombs produced. Later the Remington Arms Co. produced 100,000 shotgun shells for dummy bombs.

In four days of the final drive of the Yankee troops in the Argonne district the American photographic sections of the Air Service made and delivered 100,000 prints from negatives freshly taken from the air above the battle lines. This circumstance is indicative of the progress made by military intelligence from the days when a commander secured information of the enemy's positions only by sending out patrols, or from spies. The coming of the airplane destroyed practically all possibility for the concealment by day of moving bodies of men or of military works. Mere observation by the unaided eye of the airmen, however, soon proved inadequate to utilize properly the vantage point of the plane. The insufficient and often crude and inaccurate drawings brought in by the airplane observer were early succeeded by the almost daily photographing of the entire enemy terrain by cameras, which recorded each minute feature far more accurately than the human eye could possibly do. The airplane, to quote the common saying, had become the eye of the Army, but the camera was the eye of the airplane.

This development in military information-getting from start to finish was entirely the product and an evolution of the great war. When the war broke out in 1914 there were no precedents for the military photographer to go by, nor had any specialized apparatus ever been designed by either side for this purpose. As a result the first crude makeshifts were rapidly succeeded by more and more highly developed equipment.

At the outset of the war, before antiaircraft guns were brought to efficiency, it was possible for the observation planes of the British, the French, and the Germans to fly at low altitudes and take satisfactory pictures with such photographic appliances as were then in common use. But as the "Archies" forced the planes to go higher in the air, special equipment had to be designed for longer distance work under the adverse conditions of vibration and speed, such as exist on airplanes. It is a tribute to the photographic technicians of the world that they were able to produce at all times equipment to meet these increasing demands.


Back to IndexNext