CHAPTER XIV.MISCELLANEOUS ORDNANCE EQUIPMENT.

The miscellaneous ordnance equipment of the American soldier in the recent war—that is, articles which he carried with him and which added to his comfort, his safety, or his efficiency as a fighter—while in many respects identical with the equipment used by our troops for many years, at the same time contained several novelties.

In the novelty class were helmets and armor. There is a widespread impression that helmets and body armor passed away with the invention of gunpowder and because of that invention. This impression is not at all true. Body armor came to its highest development long after gunpowder was in common use in war. The sixteenth century witnessed the most extensive use of armor; yet at that time guns and pistols formed an important part of the equipment of every army, and even a weapon which is generally fancied to be ultramodern, the revolver, had been invented.

The fact is that not gunpowder but tactics caused the decline of armor. Not that armor was unable to stop many types of projectiles shot from guns, but that its weight hampered swift maneuvering, caused it to be laid aside by the soldier. The decline of armor may be said to date from the Thirty Years' War. The armies in that period, and particularly that of the Swedes, began making long marches for surprise attacks, and the body armor of the troops was found to be a hindrance in such tactics. Thereafter armor went out of fashion.

Yet it never completely disappeared in warfare. Gen. Rochambeau is said to have worn body armor at the siege of Yorktown. Great numbers of corselets and headpieces were worn in the Napoleonic wars. The corselet which John Paul Jones wore in his fight with the Serapis is preserved at the Metropolitan Museum of Art in New York. The Japanese army was mailed with good armor as late as 1870. Breastplates were worn to some extent in the Civil War in the United States, and an armor factory was actually established at New Haven, Conn., about 1862. In the museum at Richmond, Va., is an equipment of armor taken from a dead soldier in one of the trenches at the siege of that city. There was a limited use of armor in the Franco-Prussian War. Some of the Japanese troops carried shields at Port Arthur. Helmets were worn in the Boer War. A notorious Australian bandit in the eighties for a long time defied armed posses to capture him because he wore armor and could stand off entire squads of policemen firing at him with Martini rifles at close range.

Thus it can not be said that armor, in coming into use again in the great war, was resurrected; it was merely revived. In its static condition during most of the four-year period, the war against Germany was one in which armor might profitably be used. This opportunity could scarcely be overlooked, and indeed it was not. Everybody knows of the helmets that were in general use; yet body armor itself was coming into favor again, and only the welcome but unexpected end of hostilities prevented it, in all probability, from becoming again an important part of the equipment of a soldier.

As a consequence of the attenuated but persistent use of armor by soldiers during the past two centuries and of the demand of the aristocratic for helmets and armor as ornaments, the armorer's trade had been kept alive from the days of Gustavus Adolphus to the present. The war efforts of the United States in 1917 and 1918 demanded a wide range of human talents and special callings; but surely the strange and unusual seemed to be reached when in the early days of our undertaking the Engineering Division of the Ordnance Department sought the services of expert armorers.

Through the advice of the National Research Council, which had established a committee of armor experts, the Ordnance Department commissioned in its service Maj. Bashford Dean, a life-long specialist in armor, curator in the Metropolitan Museum of Art, an institution which, learning of the Government's need, at once placed at its disposal its wonderful specimens of authentic armor, its armor repair shop where models could at once be made, and the services of Maj. Dean's assistant there whom he had brought from France, Daniel Tachaux, one of the few surviving armorers, who had inherited lineally the technical side of the ancient craft.

It may be said that there were but two nations in the great war which went to the Middle Ages for ideas as to protective armor—ourselves and Germany. The Germans, who applied science to almost every phase of warfare, did not neglect it here. Germany at the start consulted her experts on ancient armor and worked along lines which they suggested. The German helmet used in the trenches was undoubtedly superior to any other helmet given a practical use.

The first helmets to be used in the great war were of French manufacture. They were designed by Gen. Adrien, and 2,000,000 of them were manufactured and issued to the French Army. These helmets were the product of hasty pioneer work, but the fact that they saved from 2 to 5 per cent of the normal casualties of such a war as was being fought at once impelled the other belligerents to adopt the idea. Great Britain, spurred by the necessity of producing quickly a helmet in quantity, designed the most simple helmet to manufacture, which could be pressed out of cold metal.

INTERIOR AND EXTERIOR VIEWS OF THE STEEL HELMET WORN BY OUR TROOPS.

INTERIOR AND EXTERIOR VIEWS OF THE STEEL HELMET WORN BY OUR TROOPS.

INTERIOR AND EXTERIOR VIEWS OF THE STEEL HELMET WORN BY OUR TROOPS.

AVIATOR'S HELMET.

AVIATOR'S HELMET.

AVIATOR'S HELMET.

VISOR HELMET FOR SNIPERS AND MACHINE GUNNERS.

VISOR HELMET FOR SNIPERS AND MACHINE GUNNERS.

VISOR HELMET FOR SNIPERS AND MACHINE GUNNERS.

When America entered the war she had, naturally, no distinctive helmet; and the English type, being easiest to make, was adopted to fill the gap until we could design a more efficient one ourselves. Consequently 400,000 British helmets were bought in England and issued to the vanguard of the American Expeditionary Forces. Our men wore them, became accustomed to them, and came to feel that they were the badge of English-speaking troops. The British helmet thus became a habit with our men, one difficult to change, a fact which mitigated against the popularity of the more advanced and scientific models which we were to bring out.

Now, the British helmet possessed some notable defects. It did not afford a maximum of protective area. The center of gravity was not so placed as to keep the helmet from wobbling. The lining was uncomfortable and disregarded the anatomy of the head. It was vulnerable at the concave surface where bowl and brim joined.

It is not an astonishing circumstance that some of the earlier helmets worn by the men-at-arms of the days of knighthood possessed certain of these same defects, notably, that they were apt to be top-heavy and uncomfortable. Only by centuries of constant application and improvement were the armorers of the Middle Ages able to produce helmets which overcame these defects and which embodied all of the principles of defense and strength which science could put into them. The best medieval helmets stand at the summit of the art. It was the constant aim of the modern specialist, aided by the facilities of the twentieth century industries, to produce helmets as perfect technically as those rare models which are the pride of museums and collectors.

Certainly in one respect we had the advantage of the ancients in that we have nowadays at our disposal the modern alloy-steels of great resistance. An alloy of this kind having a thickness of 0.036 of an inch is able to stop at a distance of 10 feet a jacketed, automatic pistol ball, .45 caliber, traveling at the rate of 600 feet a second. This was important not only from the standpoint of helmet production, but from the further inference that body armor of such steel might still be profitably used. The records of the hospitals in France show that 7 or 8 of every 10 wounded soldiers were wounded by fragments of shell and other missiles which even thin armor plate would have kept out. The German troops used body armor in large numbers, each set weighing from 19 to 24 pounds. In this country we believed it possible to produce body armor which would not be difficult to carry and which would resist the impact of a machine-gun bullet at fairly close range.

The production of helmets, however, was our first concern; and in order to be sure of a sufficient quantity of these protective headpieces, we adopted the British model for production in the United States and went ahead with it on a large scale. For the metal we adopted after much experimentation a steel alloy with a high percentage of manganese. This was practically the same as the steel of the British helmet. Its chief advantage was that it was easy to work in the metal presses in existence and it required no further tempering after leaving the stamping presses. Its hardness, however, wore away the stamping tools much more quickly than ordinary steel sheets would do.

While we adopted the British helmet in design and substantially in metal used, we originated our own helmet lining. The lining was woven of cotton twine in meshes three-eighths of an inch square. This web, fitting tightly upon the wearer's head, evenly distributed the weight of the two-pound helmet, and in the same way distributed the force of any blow upon the helmet. The netting, together with small pieces of rubber around the edge of the lining, kept the helmet away from the head, so that even a relatively large dent could not reach the wearer's skull.

It is an interesting fact that the linings for the American helmets were produced by concerns whose ordinary business was the manufacture of shoes. There were 10 of these companies taking such contracts. Steel for the helmet was rolled by the American Sheet & Tin Plate Co. The helmets were pressed and stamped into shape by seven companies which had done similar work before the war. These concerns were:

The metal helmets and the woven linings were delivered to the plant of the Ford Motor Co. at Philadelphia, where they were painted and assembled. The helmets were painted in the olive-drab shade for protective coloring. While on dull days such objects could not be discerned at a great distance, in bright weather their rounded surfaces might catch and reflect sunbeams, thus betraying the positions of their wearers. To guard against this, as soon as the helmets were treated to a first coat of paint fine sawdust was blown upon the wet surface. When this had dried, another coat of paint was applied, and a nonreflective, gritty surface was thus produced.

AMERICAN EXPERIMENTAL MODELS OF HELMETS, LIGHT BREASTPLATES, AND ARM GUARDS.

AMERICAN EXPERIMENTAL MODELS OF HELMETS, LIGHT BREASTPLATES, AND ARM GUARDS.

AMERICAN EXPERIMENTAL MODELS OF HELMETS, LIGHT BREASTPLATES, AND ARM GUARDS.

American Helmet. Experimental Model No. 2.

American Helmet. Experimental Model No. 2.

American Helmet. Experimental Model No. 2.

American Helmet No. 8. (Visor up.)

American Helmet No. 8. (Visor up.)

American Helmet No. 8. (Visor up.)

AMERICAN LIGHT BACK PLATE. EXPERIMENTAL MODEL.

AMERICAN LIGHT BACK PLATE. EXPERIMENTAL MODEL.

AMERICAN LIGHT BACK PLATE. EXPERIMENTAL MODEL.

AMERICAN HEAVY ARMOR FOR MACHINE GUNNERS. EXPERIMENTAL MODEL 1917.

AMERICAN HEAVY ARMOR FOR MACHINE GUNNERS. EXPERIMENTAL MODEL 1917.

AMERICAN HEAVY ARMOR FOR MACHINE GUNNERS. EXPERIMENTAL MODEL 1917.

We began receiving substantial quantities of finished helmets by the end of November of the first year of the war. On February 17, 1918, practically 700,000 had been shipped abroad or were ready for shipment at the ports of embarkation. Later in the spring of 1918, when we began sending men to France much beyond our earlier expectations, the orders for helmets were greatly expanded. In July the total orders reached 3,000,000, in August 6,000,000, and in September 7,000,000. This would give us enough to meet all requirements until June, 1919.

When the armistice was signed the factories were producing more than 100,000 helmets every four days, and were rapidly approaching the time when their daily output would be 60,000. The Government canceled all helmet contracts as soon as the fighting ceased, having received up to that time a total of 2,700,000 of them.

While this manufacture was going on we were developing helmets of our own. Major Dean went to France to collect information dealing with the actual needs of the service and to present numerous experimental models of helmets for the comment and criticism of the General Staff. In numerous cases these models were accepted for manufacture here in experimental lots.

In all we developed four models which seemed to have merits recommending their adoption. The first distinctive American helmet was known as model No. 2. The Ford Co. at Detroit pressed about 1,200 of these helmets. The helmet, however, was similar in appearance to the German helmet, and for that reason was disapproved by the American Expeditionary Forces.

Helmet model No. 3 was of a deep-bowl type, but it was rejected when the Hale & Kilburn Co., of Philadelphia, after a great deal of experimentation, found that the helmet was too deep for successful manufacture by pressing.

Model No. 4 was designed by the master armorer of the Metropolitan Museum of Art. It was also found too difficult to manufacture.

Helmet No. 5 was strongly recommended by American experts, but was not accepted by the General Staff. It was designed by the armor committee at the Metropolitan Museum of Art in conjunction with the Engineering Division of the Ordnance Department. Hale & Kilburn undertook to manufacture these helmets, which were to be painted, assembled, and packed by the Ford Motor Co. at its Philadelphia plant. Various component parts of the helmet were sublet in experimental quantities to numerous manufacturers.

The No. 5 helmet, complete, weighed 2 pounds, 6½ ounces. It combined the virtues of several types of helmets. It gave a maximum of protection for its weight. It was comparatively easy to produce. This helmet, with slight variations, was later adoptedas the standard helmet of the Swiss Army. The latest German helmet, it is interesting to note, was approaching similar lines.

We also produced helmets for special services—one with a visor to protect machine gunners and snipers, and another, known as model 14, for aviators, it being little heavier than the leather helmet which airmen wore in the war and twenty times as strong a defense for the head. A third special helmet, known as model 15, was for operators of tanks. It was provided with a neck guard of padded silk to stop the lead splash which penetrated the turret of the tank. The Ordnance Department turned out 25 of these in 10 days and sent them by courier to France for a test.

The Germans issued body armor only to troops holding exposed positions under heavy machine-gun and rifle fire; but such use was distinctly valuable, as was shown by captured German reports.

The Engineering Division of the Ordnance Department developed a body defense including a light front and body plate, these together weighing 9½ pounds. One lot of 5,000 sets was manufactured by the Hale & Kilburn Corporation. The linings of these plates were of sponge rubber, and they were made by the Miller Rubber Co., of Akron, Ohio. All of these sets were shipped abroad for testing; but the report was not favorable, as the American soldier did not wish to be hampered with armor. He had learned to wear his helmet, but he had yet to be convinced of the practical value of body armor.

We developed a heavy breast plate with thigh guards, weighing 27 pounds, which stopped machine gun bullets at 150 yards. An experimental lot of these were completed in 26 days by the Mullins Manufacturing Co., of Salem, Ohio. These were also shipped abroad for test.

A few defenses for arms and legs were prepared which, although light in weight, would protect the wearer from an automatic-pistol ball at 10 feet. About 70 per cent of the hospital cases in France were casualties caused by wounds in the arms and legs. These defenses, however, were rejected on account of their impeding to a certain degree the movements of the wearer.

Our development in armor also produced an aviator's chair weighing 60 pounds. It would protect the pilot from injury from below and from the back, withstanding armor-piercing bullets fired at a distance of 50 yards. Since the piercing of the gas mask canister by a bullet might result in the death of the soldier by admitting gas directly into the breathing system of his mask, the Ordnance Department designed an armored haversack for the gas mask and its canister, this haversack incidentally serving as a breast defense.

Another large ordnance operation was the production of bayonets for the service rifles. The British bayonet had proved to be highly satisfactory in the war; and, since it was already designed to fit the Enfield rifle, which we had adopted for our own, we took the British bayonet as it was and, with only one slight alteration, set out to produce it in this country.

The Government found both the Remington Arms-Union Metallic Cartridge Co. at its Bridgeport, Conn., works, and the Winchester Repeating Arms Co. building these bayonets for the English Government. The latter's bayonet needs by 1917 were being well supplied by home manufacture, and this permitted us to buy approximately 545,500 bayonets which had already been manufactured for the British.

The Ordnance Department at once started out these two concerns on contracts for bayonets for the American Government, Remington with total orders for 2,820,803 bayonets and Winchester with orders for 672,500. Remington delivered in all 1,565,644 bayonets and Winchester 395,894. This was a total of 1,961,500 bayonets.

The total production of 1917 rifles was about 2,520,000. These figures indicate that we were short over 500,000 bayonets at the time hostilities ceased; and as a matter of fact this shortage had already become acute, especially in the training camps.

The bayonets had not come as rapidly as we had expected, because to produce them at the rate originally planned would have interfered with the more essential production of rifles by these same companies. Accordingly in 1918 additional contracts for bayonets were made. Landers, Frary & Clark, of New Britain, Conn., engaged to manufacture 500,000 bayonets, and the National Motor Vehicle Co., 255,000. These latter contracts, however, were suspended after the armistice was signed. The additional orders had made it certain that there would be no bayonet shortage by the spring of 1919.

While this production was under way we were also manufacturing bayonets for the model 1903 Springfield rifle. The Springfield Armory produced 347,533 of these and the Rock Island Arsenal 36,800. In addition the Springfield Armory delivered 50,000 bayonet blades as spare parts.

We not only had to provide bayonets but also the scabbards to hold them in. The scabbard of the 1917 bayonet was of simple manufacture and there were no difficulties in securing sufficient quantities. The Jewell Belt Co. delivered 1,810,675 of them; Graton & Knight delivered 1,669,581; while the Rock Island Arsenal produced 3,000. This gave us a total of 3,480,000 scabbards, a quantity greatly in excess of the production of either bayonets or rifles.

A new weapon which had come into use during the great war as part of the soldier's individual equipment was the trench knife. The question of making such knives was taken up by the Government with various manufacturers throughout the country and they were given a general idea of what was required and, in conjunction with the Ordnance Department, were requested to develop details. The design submitted by Henry Disston & Sons, of Philadelphia, received the most favorable consideration. This knife was manufactured and known as model 1917. It was a triangular blade 9 inches long. The triangular blade was deemed the most efficient because of the ease with which it would pierce clothing and even leather. This knife was slightly changed as regards handle and given a different guard to protect the man's knuckles, and was known as model 1918. These knives were sent abroad in large quantities to be used by the American Expeditionary Forces. Landers, Frary & Clark produced 113,000 of these knives and the Oneida Community (Ltd.), Oneida, N. Y., 10,000.

On June 1, 1918, the American Expeditionary Forces made an exhaustive test, comparing the various trench knives used abroad. The four knives tested were as follows; United States, model 1917; Hughes; French; and British knuckle knife. These tests were made to determine the merits of the different knives as to the following points:

It was found that the model 1917, although a satisfactory knife, could be improved. Therefore the trench knife known as Mark I was developed partially by the American Expeditionary Forces and partially by the Engineering Division of Ordnance. This knife was entirely different from the model 1917, having a flat blade, metal scabbard, and a cast-bronze handle. It was a combination of all the good points of all the knives used by the foreign armies.

The Government placed orders for 1,232,780 of the new knives. Deliveries were to have begun in December, but before that time peace had come and the orders had been reduced to 119,424. The new model knives were to have been manufactured by A. A. Simons & Son, Dayton, Ohio; Henry Disston & Son, Philadelphia; Landers, Frary & Clark, and the Oneida Community (Ltd.). All contracts were canceled except the one with Landers, Frary & Clark.

1917 MODEL OF TRENCH KNIFE AND SCABBARD.

1917 MODEL OF TRENCH KNIFE AND SCABBARD.

1917 MODEL OF TRENCH KNIFE AND SCABBARD.

MARK I TRENCH KNIFE WITH FLAT BLADE, DESIGNED BY A. E. F.

MARK I TRENCH KNIFE WITH FLAT BLADE, DESIGNED BY A. E. F.

MARK I TRENCH KNIFE WITH FLAT BLADE, DESIGNED BY A. E. F.

WIRE CUTTER (ONE HAND).

WIRE CUTTER (ONE HAND).

WIRE CUTTER (ONE HAND).

FRENCH WIRE CUTTERS.

FRENCH WIRE CUTTERS.

FRENCH WIRE CUTTERS.

WIRE CUTTER, MODEL 1918, SHOWING SPECIAL RUBBER HANDLES. TESTED AT 10,000 VOLTS.

WIRE CUTTER, MODEL 1918, SHOWING SPECIAL RUBBER HANDLES. TESTED AT 10,000 VOLTS.

WIRE CUTTER, MODEL 1918, SHOWING SPECIAL RUBBER HANDLES. TESTED AT 10,000 VOLTS.

Another new article in the equipment of our soldiers was the trench periscope, a device enabling a man to look over the edge of the trench without exposing himself to fire. The ordinary periscope was merely a wooden box 2 inches square and 15 inches long, with an inclined mirror set at each end. Production was commenced in October, 1917, by two companies, and 81,000 were delivered by the middle of January. In August, 1918, an additional lot of 60,000 was ordered, but the deliveries of these were slow.

An even simpler periscope was merely a mirror about three inches long and an inch and a half wide which could be placed on a bayonet or a stick and set up over the trench so that it gave a view of the ground in front. A total of 100,000 of these was delivered before the end of July, 1918, and 50,000 additional ones before November. Further facts about periscopes are set down in the chapter in this report relating to sights and fire-control apparatus.

At the beginning of the war all textile equipment, such as cartridge belts, bandoleers to carry ammunition, haversacks, pack carriers, pistol holsters, canteen covers and similar material were supplied in woven material. Only two concerns in this country could manufacture articles of this quality. They were the Mills Woven Cartridge Belt Co., Worcester, Mass., and the Russell Manufacturing Co., Middletown, Conn. Although these two concerns practically doubled their output and worked day and night to supply the material, the demand was too great, and belts and carriers were designed to be stitched and sewn and not woven. Equipment made in this manner is inferior to the woven article. However, the Mills Woven Cartridge Belt Co. produced approximately 3,200,000 of these articles and the Russell Manufacturing Co., 1,500,000. Large producers of the stitched and sewn material were the Plant Brothers Co., Boston, Mass.; R. H. Long Co., Framingham, Mass.; L. C. Chase Co., Watertown, Mass.

For the Browning automatic rifle and the Browning machine gun there were specially designed belts and bandoleers. The rifleman had his own special belt, and his first and second assistants had their own individual belts, and the assistants also had two bandoleers each, one right and one left, which were carried across their shoulders. These were manufactured in quantities by the following manufacturers:

Many small articles of textile equipment were produced in immense quantities. There were approximately four and a half million canteen covers produced prior to November 1. Large contractswere placed with the following concerns: Perkins-Campbell Co., Cincinnati, Ohio; Brauer Bros., St. Louis, Mo.; L. C. Chase Co., Watertown, Mass.; Miller-Hexter Co., Cleveland, Ohio; Powers Manufacturing Co., Waterloo, Iowa; R. H. Long Co., Framingham, Mass.; Bradford Co., St. Joseph, Mich.; Galvin Bros., Cleveland, Ohio; Progressive Knitting Works, Brooklyn, N. Y.

Approximately four and a half million haversacks were produced and delivered prior to November 1, 1918. Large manufacturers producing these were as follows: Canvas Products Co., St. Louis, Mo.; Rock Island Arsenal, Rock Island, Ill.; Plant Bros., Boston, Mass.; Simmons Hardware Co., St. Louis, Mo.; R. H. Long Co., Framingham, Mass.; Liberty, Durgin (Inc.), Haverhill, Mass.; Wiley, Bickford & Sweet, Hartford, Conn.

It is impossible here to enumerate the entire range of ordnance munitions produced, outside of the development of guns and their ammunition; but their manufacture, in orders that ordinarily amounted to the millions of individual pieces, engaged the activities of a large number of manufacturers of the United States.

The Government ordered about 1,200,000 axes to be used in trench operations, of which 661,690 were delivered. Bags of all sorts for horse feed, grain, rations, and supplies totaled in their deliveries about 2,250,000. The Government received 809,541 saddle blankets; about 3,750,000 carriers for entrenching shovels, axes, and picks; nearly 4,450,000 covers for the breech locks of rifles; over 1,000,000 currycombs; 76,230 lariats; 727,000 entrenching picks; nearly 4,750,000 first-aid pouches, and over 2,000,000 pouches for small articles; 234,689 Cavalry saddles; 134,092 Field Artillery saddles; 15,287 mule saddles; 482,459 saddle bags; nearly 1,800,000 entrenching shovels; 2,843,092 spur straps; 70,556 steel measuring tapes each 5 feet long.

These figures selected at random from thousands of miscellaneous items indicate to some extent the scale on which America went into the war.

The old model 1910 American wire cutter, although efficient in times past, was not capable of cutting specially constructed manganese wire which the Germans used. Therefore it became necessary for this country to develop a better cutter. A meeting of the plier manufacturers of the country was called and the question was put before them. The spirit of cooperation of the American manufacturers was evident, inasmuch as over 90 per cent of the manufacturers attended the meeting.

CARTRIDGE BELT, CAL.30, MODEL OF 1910 (DISMOUNTED)CARTRIDGE BELT, CAL.30, MODEL OF 1910 (MOUNTED)GARRISON BELT, MODEL OF 1910, FOR ENLISTED MEN.GARRISON BELT, MODEL OF 1910, FOR NON COM STAFF OFFICERS AND FIRST SERGEANTS.MAGAZINE POCKET, WEB, DOUBLE.WIRE CUTTER CARRIER, MODEL OF 1910.

CARTRIDGE BELT, CAL.30, MODEL OF 1910 (DISMOUNTED)CARTRIDGE BELT, CAL.30, MODEL OF 1910 (MOUNTED)GARRISON BELT, MODEL OF 1910, FOR ENLISTED MEN.GARRISON BELT, MODEL OF 1910, FOR NON COM STAFF OFFICERS AND FIRST SERGEANTS.MAGAZINE POCKET, WEB, DOUBLE.WIRE CUTTER CARRIER, MODEL OF 1910.

CARTRIDGE BELT, CAL.30, MODEL OF 1910 (DISMOUNTED)

CARTRIDGE BELT, CAL.30, MODEL OF 1910 (MOUNTED)

GARRISON BELT, MODEL OF 1910, FOR ENLISTED MEN.

GARRISON BELT, MODEL OF 1910, FOR NON COM STAFF OFFICERS AND FIRST SERGEANTS.

MAGAZINE POCKET, WEB, DOUBLE.

WIRE CUTTER CARRIER, MODEL OF 1910.

GARRISON BELT, MODEL OF 1910, FOR MOUNTED ORDERLIES, MOUNTED SCOUTS AND MEMBERS OF MACHINE GUN PLATOONS.GARRISON BELT, MODEL OF 1910, TRUMPETER SERGEANT AND MUSICIANS.POUCH MODEL OF 1910, FOR FIRST AID PACKET.SLIDE WEB.SHOVEL CARRIER, MODEL OF 1919.CANTEEN COVER, MODEL OF 1910.HAND AX CARRIER, MODEL OF 1910.PICK MATTOCK CARRIER, MODEL OF 1910.

GARRISON BELT, MODEL OF 1910, FOR MOUNTED ORDERLIES, MOUNTED SCOUTS AND MEMBERS OF MACHINE GUN PLATOONS.GARRISON BELT, MODEL OF 1910, TRUMPETER SERGEANT AND MUSICIANS.POUCH MODEL OF 1910, FOR FIRST AID PACKET.SLIDE WEB.SHOVEL CARRIER, MODEL OF 1919.CANTEEN COVER, MODEL OF 1910.HAND AX CARRIER, MODEL OF 1910.PICK MATTOCK CARRIER, MODEL OF 1910.

GARRISON BELT, MODEL OF 1910, FOR MOUNTED ORDERLIES, MOUNTED SCOUTS AND MEMBERS OF MACHINE GUN PLATOONS.

GARRISON BELT, MODEL OF 1910, TRUMPETER SERGEANT AND MUSICIANS.

POUCH MODEL OF 1910, FOR FIRST AID PACKET.

SLIDE WEB.

SHOVEL CARRIER, MODEL OF 1919.

CANTEEN COVER, MODEL OF 1910.

HAND AX CARRIER, MODEL OF 1910.

PICK MATTOCK CARRIER, MODEL OF 1910.

MEAT CAN, MODEL 1918.

MEAT CAN, MODEL 1918.

MEAT CAN, MODEL 1918.

CANTEEN, MODEL 1910.

CANTEEN, MODEL 1910.

CANTEEN, MODEL 1910.

PACK CARRIER, MODEL OF 1910.HAVERSACK, MODEL OF 1910.MEAT CAN POUCH.

PACK CARRIER, MODEL OF 1910.HAVERSACK, MODEL OF 1910.MEAT CAN POUCH.

PACK CARRIER, MODEL OF 1910.

HAVERSACK, MODEL OF 1910.

MEAT CAN POUCH.

CONDIMENT CAN, MODEL 1910.

CONDIMENT CAN, MODEL 1910.

CONDIMENT CAN, MODEL 1910.

KNIFE, MODEL 1910.

KNIFE, MODEL 1910.

KNIFE, MODEL 1910.

FORK, MODEL 1910.

FORK, MODEL 1910.

FORK, MODEL 1910.

The model submitted by Kraeuter & Co., Newark, N. J., was adopted and 5,000 were manufactured and sent to France. Although this was the best cutter developed in this short time, it was evident that it was not the right article, and the Engineering Division of Ordnance continued experimenting to make a more satisfactory one. In this connection a one-hand wire cutter was developed by the William Schollhorn Co., of New Haven, Conn. This cutter was a very efficient and satisfactory article, and, although it was never adopted by the American Army during the war, it is worthy of consideration. The American Expeditionary Forces eventually sent back drawings and sample of the French wire cutter, which was developed abroad and known as model 1918. This was a large, two-handed cutter. Production was started. The article was found difficult to manufacture, but the manufacturers undertook it with a will and production was well under way when the armistice was signed.

The mess equipment of the soldier included the following items: meat can, condiment can, canteen and cup, knife, fork, and spoon. These articles were practically the same as the Army had always used, with one exception—the meat can. Advice was received from the American Expeditionary Forces that the meat cans in which the soldiers' food was placed by the cooks of the various organizations were not large enough to hold the portions that the American doughboys needed when they were fighting at the front. Although production was well under way with various American manufacturers on the old model, a new model can was designed which was half an inch deeper. The American manufacturers immediately, with a great deal of trouble to themselves, changed their dies and tools and manufactured a new meat can which was larger than the old. Thousands of cans were turned out daily.


Back to IndexNext