TWO VIEWS OF THE FRENCH 75-MILLIMETER GUN.This type of gun has been used by the French Army since 1897, and was the gun most used by the Allies in the Great War. This gun throws a shell weighing 12.3 pounds a distance of 8,400 meters or shrapnel weighing 16 pounds a distance of 9,000 meters. The weight of the gun and carriage is 2,657 pounds. The service muzzle velocity of the shell is 1,805 feet per second, while for shrapnel it is 1,755 feet per second.
TWO VIEWS OF THE FRENCH 75-MILLIMETER GUN.This type of gun has been used by the French Army since 1897, and was the gun most used by the Allies in the Great War. This gun throws a shell weighing 12.3 pounds a distance of 8,400 meters or shrapnel weighing 16 pounds a distance of 9,000 meters. The weight of the gun and carriage is 2,657 pounds. The service muzzle velocity of the shell is 1,805 feet per second, while for shrapnel it is 1,755 feet per second.
TWO VIEWS OF THE FRENCH 75-MILLIMETER GUN.
This type of gun has been used by the French Army since 1897, and was the gun most used by the Allies in the Great War. This gun throws a shell weighing 12.3 pounds a distance of 8,400 meters or shrapnel weighing 16 pounds a distance of 9,000 meters. The weight of the gun and carriage is 2,657 pounds. The service muzzle velocity of the shell is 1,805 feet per second, while for shrapnel it is 1,755 feet per second.
This type of gun has been used by the French Army since 1897, and was the gun most used by the Allies in the Great War. This gun throws a shell weighing 12.3 pounds a distance of 8,400 meters or shrapnel weighing 16 pounds a distance of 9,000 meters. The weight of the gun and carriage is 2,657 pounds. The service muzzle velocity of the shell is 1,805 feet per second, while for shrapnel it is 1,755 feet per second.
THE 75-MILLIMETER FIELD GUN, MODEL 1917 (BRITISH).This gun throws a shell weighing 12.3 pounds a distance of 8,300 meters, and 16 pounds of shrapnel a distance of 8,900 meters. The weight of the gun and carriage is 2,887 pounds. Its muzzle velocity for shell is 1,750 feet a second and for shrapnel 1,680 feet a second.
THE 75-MILLIMETER FIELD GUN, MODEL 1917 (BRITISH).This gun throws a shell weighing 12.3 pounds a distance of 8,300 meters, and 16 pounds of shrapnel a distance of 8,900 meters. The weight of the gun and carriage is 2,887 pounds. Its muzzle velocity for shell is 1,750 feet a second and for shrapnel 1,680 feet a second.
THE 75-MILLIMETER FIELD GUN, MODEL 1917 (BRITISH).
This gun throws a shell weighing 12.3 pounds a distance of 8,300 meters, and 16 pounds of shrapnel a distance of 8,900 meters. The weight of the gun and carriage is 2,887 pounds. Its muzzle velocity for shell is 1,750 feet a second and for shrapnel 1,680 feet a second.
This gun throws a shell weighing 12.3 pounds a distance of 8,300 meters, and 16 pounds of shrapnel a distance of 8,900 meters. The weight of the gun and carriage is 2,887 pounds. Its muzzle velocity for shell is 1,750 feet a second and for shrapnel 1,680 feet a second.
The production of gun bodies for the 75-millimeter units was quite satisfactory. The Bethlehem Co., the Wisconsin Gun Co., the Symington-Anderson Co., and the Watervliet Arsenal were the contractors who built the gun bodies. Gun bodies of three types, but all of the same 75-millimeter bore, were ordered—the American type (the modified 3-inch gun), the British type (the modified 3.3-inch gun), and the French type.
Our ordnance preparation would have given us enough 75's for the projected army of 3,360,000 men on the front in the summer of 1919, together with appropriate provision for training in the United States. Of the 75's built in this country, 143 units were shipped to the American Expeditionary Forces before the armistice went into effect. Meanwhile the French had delivered to our troops 1,828 units of this size. The total equipment of 75's for our Army in France from all sources thus amounted to 1,971 guns with their complete accessories.
In the 4.7-inch field gun, model of 1906, America took to France a weapon all her own. It was a proven gun, too, developed under searching experiments and tests. There were 60 of these in actual service when we got into the war. The 4.7-inch guns, with their greater range and power, promised to be particularly useful for destroying the enemy's 77-millimeter guns.
The carriage model of 1906 for the 4.7-inch gun is of the long recoil type, the recoil being 70 inches in length. The recoil is checked by a hydraulic cylinder, and a system of springs thereupon returns the gun to the firing position. The gun's maximum elevation is 15 degrees, at which elevation, with a 60-pound projectile, the gun has a range of 7,260 meters, or 4½ miles. With a 45-pound projectile a range of 8,750 meters, or nearly 5½ miles, can be obtained at 15 degrees elevation. It is possible to increase this range to about 10,000 meters, or well over 6 miles, by depressing the trail into a hole prepared for it, a practice often adopted on the field to obtain greater range. The total weight of the gun carriage with its limber is about 9,800 pounds.
An order for 250 of the 4.7-inch carriages was placed with the Walter Scott Co., at Plainfield, N. J., July 12, 1917, upon the recommendation of committees of the Council of National Defense, who were assisting the Ordnance Department in the selection of industrial firms willing to accept artillery contracts. Of the 250 ordered from this concern, 49 were delivered up to the signing of the armistice.
The Rock Island Arsenal had also been employed previously in turning out 4.7-inch carriages; and the capacity of that plant, although small, was utilized. Under the date of July 23, 1917, the arsenal was instructed to deliver 183 carriages. Late in December, 1917, the Studebaker Corporation was given an order for 500. On September 30, 1918, Rock Island Arsenal was given an additional order for 120 carriages, while the Studebaker order was reduced to 380. Additional plant facilities had to be provided at both the Walter Scott Co. and the Studebaker Corporation.
Up to December 12, 1918, a total of 381 carriages of the 4.7-inch type had been completed and delivered. These carriages included the recoil mechanism. In the month of October, 1918, alone, 113 were produced, and this rate would have been continued had the armistice not been signed.
Cannon for the 4.7-inch units were turned out at the Watervliet Arsenal and the Northwestern Ordnance Co., Madison, Wis. Deliveries from the Watervliet Arsenal began in June, 1918, totaling 120 up to December, while the Northwestern Ordnance Co., starting its deliveries in August, had completed 98 by December.
Up to the 15th of November, 64 complete 4.7-inch units had been floated for our forces overseas.
Forgings for the 4.7-inch gun cannon were made by the Bethlehem Steel Co. and the Heppenstall Forge & Knife Co., of Pittsburgh, Pa.
Owing to the great difference in cross section between muzzle and breech end of the jacket, great difficulty was experienced in the heat treatment of these forgings, particularly on the part of manufacturers who had had no previous experience in the production of gun forgings.
FRONT AND REAR VIEWS OF OUR 4.7-INCH GUN AND CARRIAGE, MODEL 1906, WITH WHICH OUR TROOPS HAVE BEEN EQUIPPED FOR A LONG TIME.This gun throws a projectile weighing 45 pounds a distance of about 6 miles.
FRONT AND REAR VIEWS OF OUR 4.7-INCH GUN AND CARRIAGE, MODEL 1906, WITH WHICH OUR TROOPS HAVE BEEN EQUIPPED FOR A LONG TIME.This gun throws a projectile weighing 45 pounds a distance of about 6 miles.
FRONT AND REAR VIEWS OF OUR 4.7-INCH GUN AND CARRIAGE, MODEL 1906, WITH WHICH OUR TROOPS HAVE BEEN EQUIPPED FOR A LONG TIME.
This gun throws a projectile weighing 45 pounds a distance of about 6 miles.
TWO VIEWS OF 155-MILLIMETER GUN, MODEL 1918, G. P. F.The upper view shows the piece mounted on an auto truck for quick moving about.
TWO VIEWS OF 155-MILLIMETER GUN, MODEL 1918, G. P. F.The upper view shows the piece mounted on an auto truck for quick moving about.
TWO VIEWS OF 155-MILLIMETER GUN, MODEL 1918, G. P. F.
The upper view shows the piece mounted on an auto truck for quick moving about.
In order to produce enough forgings to supply the finish-machining shops, an order for 50 jackets was later given to the Edgewater Steel Co., of Pittsburgh, Pa., where the jackets were forged. These were then sent to the Heppenstall Forge & Knife Co. for rough machining and finally returned to the Edgewater Steel Co. for heat treating. An order for 150 jackets was also given to the Tacony Ordnance Corporation.
Shortly before the signing of the armistice, the jacket was redesigned so that the heavy breech end was forged separately in the shape of a breech ring. This design, however, was not produced.
It was desired to develop a 4.7-inch gun carriage having the characteristics of the split-trail 75-millimeter gun carriage, model of 1916, so that greater elevation and wide traverse could be obtained. The Bethlehem Steel Co. was given a small order for 36 carriages of their own design prior to the war, and their pilot carriage had been undergoing tests at the proving ground. The design was, however, not sufficiently advanced to be used in the war.
Sixteen of these units, also 48 which were previously on hand, were floated for overseas up to November 11, 1918.
In the war emergency America sought to put on the front every pound of artillery she could acquire from any source whatsoever. Accordingly, before any of the manufacturing projects were even started, the Ordnance Department conducted a preparedness inventory of the United States to see what guns already in existence we might find that could be improvised for use as mobile artillery in France. The search discovered a number of heavy cannon that could serve the purpose—part of them belonging to the Army, these being the guns at our seacoast fortifications; part belonging to the Navy, in its stores of supplies for battleships; and part of them beingthe property of a private dealer, Francis Bannerman & Son, of New York.
The guns for this improvised use were obtained as follows:
From the Coast Artillery, a branch of the Army, we obtained ninety-five 6-inch guns, 50 calibers in length, and twenty-eight 5-inch guns, 44.6 calibers; from the Navy stores came forty-six 6-inch guns, ranging from 30 to 50 calibers in length; from Francis Bannerman & Son, thirty 6-inch guns, 30 calibers long. This was a total of 199 weapons of great destructive power, awaiting only suitable mobile mounts to make them of valiant service on the western front. It was the task of the Ordnance Department to take these guns and as swiftly as possible mount them on field artillery carriages of an improvised type that could be most quickly built.
Minor changes had to be made on many of the guns obtained in this manner in order to adapt them for use on field artillery carriages. The various seacoast guns were retained as they were in length, because it was planned to return them eventually to the fortifications from which they had been taken. The Navy guns, all of the 6-inch size, were shipped to the Watervliet Arsenal to be cut down to a uniform length of 30 calibers.
The need for speed in manufacture demanded that the carriages for these guns should be of the simplest design consistent with the ruggedness required for field operations and the accuracy necessary for effectiveness. When tests of the first carriages produced were made it was found that requirements had been more than met.
Orders were placed on September 24, 1917, with the Morgan Engineering Co., of Alliance, Ohio, for 70 mounts for the 6-inch units. A few days later this number was increased to 74, while on the 28th of September, 1917, the same company was given an order for 18 additional 6-inch gun mounts and 28 mounts for the 5-inch guns. Orders for limbers were placed with the same company on December 1.
It was soon discovered that big transport wagons would be required to carry the long 6-inch seacoast guns separately because of their great weight. On February 15, 1918, the Morgan Engineering Co. was ordered to build these necessary transport wagons.
Difficulties in securing skilled labor, necessary materials, and tools delayed production of these mounts, but the eighteen 6-inch gun mounts ordered September 28, 1917, were completed in March, 1918, while the twenty-eight 5-inch gun mounts ordered on the same date were finished in April. In August, 1918, the seventy-four 6-inch gun mounts were turned out. The production of an additional order for thirty-seven 6-inch gun mounts was just beginning when the armistice was signed.
The 6-inch gun carriage, bearing the gun, weighs about 41,000 pounds. A maximum range of over 10 miles can be obtained by this weapon. The complete 5-inch gun unit weighs about 23,500 pounds and has a maximum range of more than 9 miles. In understanding the difficulties that faced the Ordnance Department in building carriages for these guns, it should be recalled that these big weapons were originally built for fixed-emplacement duty and were therefore much heavier than mobile types. This fact complicated the problem of designing the wheeled mounts. They proved to be more difficult to maneuver than the lighter types of guns.
It is a testimonial to the adaptability and skill of American industry that we were able to duplicate successfully in this country the celebrated 155-millimeter howitzer, before 1917 built only in the factory of its original designer, the great firm of Schneider et Cie., in France. This powerful weapon is a fine example of the French gun builders' art, in a country where the art of gun-making has been carried to a perfection unknown anywhere else.
The 155-millimeter howitzer's history dates back to the nineteenth century. In its development the French designers had so strengthened its structure, increased its range, and improved its general serviceability, that in 1914 it was ready to take its place as one of the two most-used and best-known weapons of the allies, the other being the 75-millimeter field gun.
As thus perfected the howitzer weighs less than 4 tons and is extremely mobile for a weapon of its size. It can hurl a 95-pound projectile well over 7 miles and fire several times a minute. The rapidity of fire is made possible by a hydropneumatic recoil system that supports the short barrel of the gun and stores up the energy of the recoil by the compression of air. With the gun pointing upward at an angle of 45 degrees, the recoil mechanism will restore it into battery in less than 13 seconds. The carriage of the gun is extremely light, being built of pressed steel parts that incorporate many ingenious features of design to reduce the weight. The shell and the propelling charge of powder are loaded separately.
The American-built 155-millimeter howitzer was practically identical with that built in France. Any of the important parts of the American weapon would interchange with those which had come from the Schneider factory. We equipped the wheels of our field carriage, however, with rubber tires, and gave the gun a straight shield of armor plate instead of a curved shield.
In the spring of 1917 we bought the plans of the howitzer from Schneider et Cie. and began at once the work of translating the specifications into American measurements. This work monopolized the efforts of an expert staff until October 8, 1917.
In order to facilitate the reproduction here, we divided the weapon, as a manufacturing proposition, into three groups—the cannon itself, the carriage, and the recuperator or recoil system—and placed each group in the hands of separate contractors. There was, of course, the usual difficulty in finding manufacturers willing to undertake production of such an intricate device and who also possessed machine shops that had the equipment and talent required for such work, and in procuring for these shops the highly specialized machinery that would be necessary.
The American Brake Shoe & Foundry Co., of Erie, Pa., whose magnificent work in building a special plant has been described in the preceding chapter, took an order in August, 1917, for 3,000 howitzer cannon and by October, 1918, was producing 12 of them every day. The company turned out its first cannon in February, 1918, approximately six months after receiving the contract, having in the interim built and equipped a most elaborate plant. It is doubtful if the annals of industry in any country can produce a feat to match this.
In fact, the production of cannon by the Erie concern so outstripped the manufacture of carriages and other important parts for the howitzer that it was possible by September, 1918, for us to sell 550 howitzer bodies to the French Government. When the armistice was signed on November 11, 1918, the company had completed 1,172 cannon.
In November, 1917, we placed orders for 2,469 carriages for this weapon, splitting the order between the Osgood-Bradley Car Co., of Worcester, Mass., and the Mosler Safe Co., of Hamilton, Ohio. Then followed a long battle to secure the tools and equipment, the skilled mechanical labor, and the necessary quantities of the best grades of steel and bronze, an effort in which the contracting companies were at all times aided by the engineers of the Ordnance Department. All obstacles were overcome and the first carriages were ready for testing in June, 1918. When the armistice was signed 154 carriages had been delivered, and production was moving so rapidly that one month later this number had been run up to 230.
The limbers were manufactured by the Maxwell Motor Car Co., which had orders to turn out 2,575 of them. The first deliveries of limbers came in September, 1918, and seven a day were being turned out in October, a total of 273 having been completed by the day of the armistice. A month later the number of completed limbers totaled 587.
It was in the making of the recuperator systems that the greatest problems were presented. No mechanism at all similar to this had ever been made in this country. No plant was in existence here capable of turning out such a highly complicated, precise, and delicate device.
Finally, after much Governmental search and long negotiation, the Dodge Bros., of Detroit, motor car builders, agreed to accept the responsibility. In this effort they built and equipped the splendid factory, costing $10,000,000, described elsewhere.
This howitzer recuperator is turned out from a solid forging, weighing 3,875 pounds, but the completed recuperator weighs only 870 pounds. Each cylinder must be bored, ground, and lapped to a degree of fineness and accuracy that requires the most painstaking care.
Difficulties of almost every sort were experienced with the forgings and other elements of the recuperators. The steel was analyzed and its metallurgical formulas were changed. The work of machining proceeded favorably until the very last operation—that of polishing the interior of the long bores to a mirrorlike glaze and still retaining the extreme accuracy necessary to prevent the leakage of oil past the pistons. Such precision had been theretofore unknown in American heavy manufacture. Until the many processes could be perfected, the deliveries were held back.
Even with the delivery of the first recuperator, difficulties did not vanish. This mechanism has no adjustments which can be made on the field, but depends for its wonderful operation upon the extreme nicety of the relation of its parts. It required the alteration of certain small parts before the first trial models could be made to function.
However, all obstacles and difficulties were finally overcome, and in the plant that had been erected during the bitter cold of one of our severest winters, and with practically entirely new machinery and workmen, production got under way, and the first recuperator was delivered early in July, 1918, nine months after the contract was signed. Production in quantity began to follow shortly after that month, and by November an average of 16 recuperators a day was being turned out. Of the 3,120 recuperators contracted for, 898 had been finished when the armistice was signed, and this quantity was increased to 1,238 one month later.
The steel required for the recuperators in these 155-millimeter howitzers, and also for those of the 155-millimeter guns, was of special composition; yet all the forge capacity in this country was being utilized in other war manufacture. New facilities for the manufacture of these forgings had to be developed by increasing the capacity of the Mesta Machine Co. of Pittsburgh, until it could meet our requirements. The Government itself contracted for these forgings and supplied them to Dodge Bros.
Each howitzer required some 200 items of miscellaneous equipment, such as air and liquid pumps and other tools. These were purchased from many sources, and many of these contractors had just as much difficulty with the small parts as the larger firms had with the more important sections of the howitzers.
Many of the problems involved in turning out the complete unit could not be known or understood until they were met with in actual manufacture. Mechanical experts representing Schneider et Cie. were on hand at all times to help solve difficulties as they arose.
The Government turned to France for an auxiliary supply of carriages for the American-built howitzers, placing orders for 1,361 with French concerns. Of this number 772 had been completed when the armistice was signed, and the French expected soon to turn out the carriages at the rate of 140 per month. It might also be noted here that we placed an order in England for 302 British 6-inch howitzers, a piece very like the French howitzer. The British contract was to be completed April 1, 1919.
The various parts of the 155-millimeter howitzer were assembled into complete units and tested at the Aberdeen Proving Grounds. After being assembled and tested, the whole unit was taken apart and packed into crates especially designed for overseas shipment. One crate held two howitzer carriages with recuperators in less space than would have been occupied by one carriage on its wheels.
It will be noted that the first gun body of the 155-millimeter howitzers made in this country was delivered in February and the first recuperator in July. Before the recuperators were ready, the other parts of the howitzer had been proof-tried by using a recuperator of French manufacture.
During the months of August and September, 1918, the first regiment equipped with 155-millimeter howitzers was made ready at Aberdeen. The big weapons were packed and on the dock for shipment overseas when the armistice was signed. These first ones were to be followed by a steady stream of howitzers. All arrangements had been made to assemble units and crate them for overseas at the Erie Proving Ground at Port Clinton, Ohio.
None of the 155-millimeter howitzers built here reached the American Expeditionary Forces, but French deliveries of the weapon up to the signing of the armistice totaled 747.
The reproduction in the United States of the French 155-millimeter G. P. F. (the French designation) gun presents much the same story as that of the howitzer of equal size—a story of difficulties in translating plans, writing into them the precision of finishing measurements that the French factory usually leaves to the skill of the mechanic himself, difficulties in finding manufacturers willing to undertake the work, and then of providing them with suitable raw materials and machinery, and, above all, of locating the necessary skilled mechanics.
This strange, big monster of a weapon is of rugged design. The entire unit weighs 19,860 pounds. The gun has the extremely high muzzle velocity of 2,400 feet per second, a rate of propulsion that throws the 95-pound projectile 17,700 yards, or a little more than 10 miles.
The wheels of the carriage have a double tread of solid rubber tire. By an ingenious arrangement a caterpillar tread can be applied to the wheels in a few minutes whenever soft ground is encountered.
The center of gravity of the unit is low. The wheels are of small dimensions and the cradle is trunnioned behind in such a fashion as to reduce the height of the cannon. The carriage has a split trail, which allows for a large clearance for recoil at a high elevation and a large angle of traverse. The carriage when traveling is supported on semielliptical springs, as is also the carriage limber.
Two large steel castings make up the carriage of this unit. The bottom part of the carriage is supported by the axle, which carries the two sections of the split trail upon the hinge pins. The top part of the carriage is supported by and revolves upon the bottom carriage and carries in trunnioned bearings the recuperator. The principal difficulty in carriage manufacture was to obtain in this country the extremely large steel castings of light-section, high-grade steel.
The carriages, 1,388 in number, were ordered in November, 1917, from the Minneapolis Steel & Machinery Co. The first delivery of carriages was made in August, 1918, and in the last week of October they were being turned out at the rate of seven a day. Up to the armistice date 370 had been produced, of which 16 had been sent overseas.
We also placed orders in France for 577 of these carriages, of which 216 had been completed upon the signing of the armistice. The American monthly rate of production of carriages in October was 162.
The 155-millimeter gun itself is far from being simple to manufacture. It is of considerable length and is built of a number of jackets and hoops to give the required resistance to the heavy pressures exerted in firing, this being a high-velocity gun. Except for a slight change in the manner of locking the hoops to the jacket, our gun is identical with that of the French.
Orders for 2,160 cannon were given to the Watervliet Arsenal and the Bullard Engineering Works, at Bridgeport, Conn., in November, 1917. The Bullard Engineering Works had to construct new buildings and to purchase and install special equipment, and the Watervliet Arsenal had to extend its shops and also purchase and install much additional machinery—a job that took time at both places.
The first deliveries of cannon came from Watervliet Arsenal in July, 1918. During October 50 cannon were delivered, and it seemed certain that by early in 1919 the projected eight cannon per day would be the rate attained. We shipped 16 of the cannon overseas. By November 11 we had received 71 cannon, a number increased to 109 by December 12.
Limbers in the same quantity as carriages were ordered from the Minneapolis Steel & Machinery Co., which produced a limber to accompany each one of its delivered carriages. This limber has an extremely heavy axle, similar to the automobile front axle. Its size and weight caused difficulty in obtaining it as a drop forging.
To Dodge Bros. was assigned the task of producing the recuperators for this gun in their special plant. The 155-millimeter gun recuperators, however, were made secondary to the production of the recuperators for the 155-millimeter howitzers, which were the easier of the two sorts to build.
Forgings were available and work started on recuperators in April, 1918. No rapid completion of these intricate mechanisms was possible, however, as the first forgings encountered many delays in their machinings. In the cycle of operations, with everything speeded up to the limit, more than three months must elapse from the day the recuperator forging is received to the day when the completed mechanism can be turned over to the inspector as an assembled article.
155-MILLIMETER HOWITZER, MODEL 1918 (SCHNEIDER).This weapon throws shell or shrapnel weighing 95 pounds. Muzzle velocity for shell is 1,420 feet per second. The weight of the howitzer and carriage is 7,600 pounds.
155-MILLIMETER HOWITZER, MODEL 1918 (SCHNEIDER).This weapon throws shell or shrapnel weighing 95 pounds. Muzzle velocity for shell is 1,420 feet per second. The weight of the howitzer and carriage is 7,600 pounds.
155-MILLIMETER HOWITZER, MODEL 1918 (SCHNEIDER).
This weapon throws shell or shrapnel weighing 95 pounds. Muzzle velocity for shell is 1,420 feet per second. The weight of the howitzer and carriage is 7,600 pounds.
8-INCH HOWITZER, MODEL 1917.
8-INCH HOWITZER, MODEL 1917.
8-INCH HOWITZER, MODEL 1917.
It was in October, 1918, that the first 155-millimeter gun recuperator was delivered. The factory expected to reach a maximum capacity of 10 a day. The company built 12 more by December 1. After the armistice was signed the company's order was reduced to 880, which had all been completed by May 1, 1919.
In order to have recuperators available for use for the units shipped from the United States minus these mechanisms, 110 rough-machined recuperator forgings were shipped to France, where the work of machining and completing was done.
The translation of the French plans for this weapon furnished one of the most difficult pieces of work undertaken by the Ordnance Department. Without counting in the gun pieces, the carriage and limber is made up of 479 pieces, while the recoil mechanism itself has 372 pieces. A total of 150 mechanical tracings had to be made by our draftsmen for the carriage and test tools; 50 for the carriage limbers; 142 for the recoil mechanism; 74 for the tools and accessories; or a total of 416. It was extremely difficult to secure draftsmen who could do this work, and the translation, accomplished in a few weeks, is regarded as a remarkable achievement.
The cannon for this gun were tested at the Erie Proving Grounds and there packed for overseas shipment. We had many cannon and carriages awaiting shipment when the armistice was signed, the plan being to send them to France, where they would be equipped with recuperators.
In the early days of the war the British designed an 8-inch field howitzer that proved itself on battle fields in France. Great Britain loaded her own plants with orders for this weapon and then turned to the United States for additional facilities. The Midvale Steel & Ordnance Co. at Nicetown, Pa., was manufacturing this unit for the British at the time we entered the war.
On April 14, 1917, exactly eight days after we had formally announced our purpose of warring with Germany, an order for 80 of these 8-inch howitzers was placed with the Midvale Steel Co. It was understood that production on our order was to be begun uponthe completion of the British contract on which the Midvale Co. was then engaged. The order included the complete units, with carriages, limbers, tools, and accessories, all to be built in accordance with British specifications.
Contracts for the trails were sublet by the Midvale Co. to the Cambria Steel Co; for the wheels, to the American Road & Machinery Co.; for the limbers and firing platforms, to the J. G. Brill Co.; and for the open sights, to the British-American Manufacturing Co. Panoramic sights for these guns were furnished by the Frankford Arsenal.
So satisfactory did the production proceed that on December 13, 1917, the first of the 8-inch howitzers was proof-tried with good results. Early in January, 1918, the complete units began to come through at the rate of three a week, increasing to four a week in April and to six a week in May.
A subsequent contract with Midvale brought the total number of howitzers ordered from that plant up to 195. These weapons, all of the model known as the Mark VI, were all produced and accepted before the signing of the armistice, 96 of them being shipped overseas, with their full complement of accessories. Each completed unit cost in the neighborhood of $55,000. These weapons throw a 200-pound projectile 11,750 yards.
The progress of the war moved so swiftly, however, that there soon was need for artillery units of this same size but with longer range. Accordingly, a new design, known as the Mark VIII½, was brought out, having a range of over 13,000 yards. On October 2, 1918, we placed with the Midvale Co. an order for 100 of these 8-inch howitzers, specifying carriages of the new, heavier type.
When we entered the war the Bethlehem Steel Co., at Bethlehem, Pa., was producing for the British Government a howitzer with a bore of 9.2 inches. The Bethlehem Co. expected to complete these British contracts in July, 1917. The 9.2-inch howitzer was approximately the same size as the 240-millimeter howitzer which we were getting ready to put into production. However, in our desire to utilize every bit of the production facilities of the country, we ordered 100 of the 9.2-inch howitzer units from the Bethlehem Steel Co. and placed additional orders for 132 of these units in England. The British concerns delivered 40 howitzers before the armistice was signed.
THE 9.2-INCH HOWITZER, MODEL 1917.This gun shoots shell weighing 290 pounds 8,690 meters. The weight of the howitzer and carriage is 29,100 pounds.
THE 9.2-INCH HOWITZER, MODEL 1917.This gun shoots shell weighing 290 pounds 8,690 meters. The weight of the howitzer and carriage is 29,100 pounds.
THE 9.2-INCH HOWITZER, MODEL 1917.
This gun shoots shell weighing 290 pounds 8,690 meters. The weight of the howitzer and carriage is 29,100 pounds.
TWO VIEWS OF THE 240-MILLIMETER HOWITZER, MODEL 1918.
TWO VIEWS OF THE 240-MILLIMETER HOWITZER, MODEL 1918.
TWO VIEWS OF THE 240-MILLIMETER HOWITZER, MODEL 1918.
The scheme of production of the French 240-millimeter howitzers was entirely aimed at the year 1919; since even if American heavy manufacturing establishments had not been loaded with war orders, it would have been well-nigh impossible to turn out this mighty engine of destruction in quantities in any shorter period of time.
Although approximately the same size as the British 9.2-inch howitzer (the exact diameter of the bore of the 240 being 9.45 inches) and only a little larger than the 8-inch howitzer, the French gun was far more powerful than either. The 8-inch and the 9.2-inch howitzers had ranges in the neighborhood of 6 miles, while their shell weighed from 200 to 290 pounds. The 240, on the other hand, hurled a shell weighing 356 pounds and carrying a bursting charge of between 45 and 50 pounds of high explosive. Its range was almost 10 miles.
We produced the 8-inch and the 9.2-inch howitzers to fill the gap during the two years which must elapse before we could get into quantity production of the 240. The French and British governments in the fall of 1917 asserted their ability to equip our first 30 combat divisions in 1918 with heavy howitzers, so that if our production came along in the spring of 1919 it could meet the requirements of the war situation.
Consequently we planned to equip our first army of 30 divisions with 8-inch and 9.2-inch howitzers in equal numbers of each. Our second army of 30 divisions should be wholly equipped with 240-millimeter howitzers; and our expected production of these, being beyond our own contemplated needs, would serve to replace such 8-inch and 9.2-inch howitzers as had been lost in the meantime.
As we adapted it from the French Schneider model, the 240-millimeter howitzer consisted of four main parts—the howitzer barrel, the top carriage, the cradle with recoil and mechanism, and the firing platform. Each of these four parts had its own transportation wagon and limber drawn by a 10-ton tractor. The weapon was set up with the aid of an erecting frame and a small hand crane.
Each of the main sections is composed of numerous smaller assembled parts made up of various grades of iron and steel and raw materials, all requiring the greatest precision in their manufacture and all having to pass rigid and exacting tests for strength and dimensions.
The production of even one of these enormous weapons would have been a hard job for any American industrial plant, but to manufacture over 1,200 of them, and that within the comparatively limited time allowed and under the abnormal industrial and transportation conditions then prevailing, was a task of tremendous difficulty and complexity.
On September 1, 1917, an order was placed with the Watertown Arsenal for 250 carriages for the American 240's, to be turned out complete with the recoil mechanism, transportation vehicles, tools, and accessories. To show the size of the job, an allotment of $17,450,000 was set aside to cover the estimated expenses at the arsenal.
Well equipped as the Watertown Arsenal was said to be at the time for the production of heavy gun carriages, it was found necessary, in order to handle this job, to construct a new erecting shop that had a capacity practically as large as all the other buildings of the plant put together. The number of employees at the arsenal was increased from 1,200 to more than 3,000.
The greatest difficulty experienced was in obtaining the large number of heavy machine tools required, and experts were sent out to scour the country in an effort to locate these tools wherever they might be available. Raw materials could not be procured in sufficient quantities, while numerous transportation delays impeded the work.
Finally, in October, 1918, the pilot carriage was completed and sufficient progress had been made on the entire contract to assure production of the required number of units in the early part of 1919.
A second carriage contract (Nov. 16, 1917) went to the Standard Steel Car Co., of Hammond, Ind. This called for the delivery of 964 carriages complete with transportation vehicles, limbers, tools, etc., but not with recuperators. These the Otis Elevator Co., of New York, undertook to deliver.
The Standard Steel Car Co. is one of the most important builders of railway cars, freight and passenger, in the country, and it possessed a large and well-equipped plant. Nevertheless, the company was compelled to construct several additional buildings and practically to double the capacity of its huge erecting shop in order to prepare adequately for the tremendous task undertaken.
As a means to save time, subcontracts were immediately placed with more than 100 firms throughout the East and Middle West for the production and machining of as many as possible of the component parts needed by the Standard Steel Car Co. Wherever practicable, the subcontractors working on similar contracts for the Watertown Arsenal were retained by the Indiana company, so that better prices might be obtained, parts standardized, and the whole production greatly facilitated.
Once the work was well under way the ramifications of this one contract, with its subcontracts for parts, materials, tools, building construction, etc., extended throughout practically the entire industrial facilities of the eastern and central sections of the country.
As in the case of the contract given the Watertown Arsenal, there were many difficulties in obtaining tools and raw materials. In a large majority of cases allocations, partly of iron and steel products, had to be obtained through the War Industries Board. When allocations had been granted, priority orders had to be secured, as the producers of these materials were already overworked with Government orders of varying importance.
With the pilot carriage complete in the early part of October, production on all the main parts had progressed by November to such an extent that a large output of finished carriages was assured for December and thereafter, had not the signing of the armistice intervened and ended the necessity for further expedition of the work.
Orders for howitzer bodies were placed as follows:
The Watervliet Arsenal on November 20, 1917, was instructed to do the machining of forgings so as to turn out 250 gun bodies for the 240-millimeter howitzers, and three months later this order was doubled. On November 7, 1918, an additional 660 were ordered from Watervliet, making a grand total of 1,160 howitzer cannon of this caliber ordered machined and completed at the Watervliet Arsenal. The arsenal contracted to reach an output of 100 cannon a month and deliver the last of the 1,160 not later than September 30, 1919.
It was found necessary to erect an entirely new shop for the machining of these howitzers. This shop was completed in May, 1918. During the war period $13,164,706 was spent or allotted to the Watervliet Arsenal for increasing its facilities. Forgings were furnished to the arsenal by the Government, but the forging situation was never a delaying factor in the production of 240-millimeter howitzers.
In all, 158 sets, of 1,467 ordered, were delivered up to December 12, 1918. The pilot howitzer was delivered by the Watervliet Arsenal to the proving ground on August 24, 1918.
In the summer of 1918 the Watertown Arsenal contracted to build 252 additional recuperators for these howitzers. Work was started at once in the shops, and, though additional facilities had to be prepared and much new equipment added, the production of the first recuperator was begun without delay. It was found that the planing equipment at the arsenal was not sufficient to handle the work, and therefore a great deal of the rough planing was done by subcontractors.
The Watertown Arsenal was to furnish its own forgings, but it was quickly found that an additional source of supplies was required.The Carnegie Steel Co. had been given an order on December 27, 1917, for 1,300 recuperator forgings, and some of these were sent to the Watertown Arsenal.
The first recuperator was completed October 28, 1918, and 16 had been finished up to December 31, 1918, when 280 forgings were in the process of machining.
To handle its order for 1,039 recuperators, the Otis Elevator Co., of New York, found it necessary to rebuild a plant which it owned in Chicago. Forgings were furnished by the Government.
On May 1, 1918, the Otis Elevator Co. started its rough machining. Hard spots were found in the metal, causing great trouble at first, but this difficulty was overcome by changes in the heat treatment. The Carnegie Steel Co. was then instructed to rough-machine the forgings before sending them to the Otis Elevator Co. An order was also given to the Midvale Steel Co. to rough-machine 24 forgings. Early in November, 1918, the Otis Elevator Co. finished its first recuperator.
One 240-millimeter howitzer unit was completed at the time of the signing of the armistice, out of a total of 1,214 contracted for; but had war conditions continued, the expectation was for a monthly capacity of 80 units by 1919. Actual deliveries are given below: