POSTAGE STAMPS.About the year 1850, it was noticed that stamps of different colors and design were received in the mails from various parts of the world. Then the idea of collecting stamps came into vogue. After a time children and young people generally began to collect and to study stamps. Every minute variation of paper, with style of printing, gum, water mark, and other differences was considered as making a different issue, and in some cases as many as fifty distinct styles of a single stamp have been collected.An extra fee of ten cents secures the immediate special delivery by messenger of any letter thus sent. Merchandise parcels can be sent as well as letters and papers. There is a money order system and at the present time a great deal of thought is put upon the question of post-office savings banks,which have already been successfully established in Great Britain and other countries of Europe.By the Constitution of the United States, Congress has power "to establish post-offices and post-roads." Before roads were common between one State and another, the mail was carried on horseback. Later, mail wagons were used to convey the mails from one office to another. As stagecoaches multiplied they were used as mail wagons, the Government paying the stage company a sum of money for carrying the mail pouches.ASSORTING MAIL ON THE TRAIN.The general introduction of railroads modified this system of mail carriage. Almost every railroad has become a postal road, the mail being carried upon its trains. Most of the trains upon the main lines of railroads have each a postal car fitted up with the proper conveniences for receiving and delivering the mail at the various stations and sorting it while the train is moving.Suppose a mail pouch to be received at New Haven; before reaching Bridgeport its contents are sorted; all that isto go to Bridgeport is put into a separate pouch and dropped off at that place; that which is to go to Greenwich is put into another pouch and left there, and so on. The mail of New York City is put into various pouches according to its destination. The mail matter for the sub-offices, like Station A and Station B, is put into separate pouches and sent from the railroad station on 42d Street directly to these offices, while that for the central office is so sorted that there is no delay in sending it out after its arrival at the office. The letters for lock boxes are placed together by sections, while those for carriers are put up in divisions so as to be delivered at once to the several carriers. Meantime mail matter which is to go beyond New York is put into proper pouches so that one can be dropped off at Trenton, another at Philadelphia, and so on.It will readily be seen that vast improvements have been made in postal arrangements. The condition of the United States postal system has been greatly improved each year. It seems almost marvelous that the mail service is so reliable and that the transmission of mail matter is so expeditious and satisfactory. If mail matter should happen to be lost, which is very rarely the case, the facilities for finding it are sometimes quite surprising, as the following incident will show.A young lady in Iowa sent by mail a piece of crocheted edging to her cousin in Dorchester, which is a part of Boston, Massachusetts. The contents slipped out somewhere and the wrapper was delivered to its proper address, but without the edging. A letter had already been received in which the sending of the article was mentioned, so that the receiver knew from whom the wrapper came. She notified the sub-postmaster in charge of the Dorchester office, and he began the system of tracing by means of blanks prepared for that purpose. He wrote out the description of the article and thefacts of the case, and sent these blanks to the postmaster at Boston. The Boston postmaster forwarded them to Chicago; from Chicago the blanks were sent to the several offices west of Chicago until they reached the point of departure, in Iowa. No trace was found to answer the description, and the blanks came back to Chicago. They were then sent eastward. At Cleveland the missing article was found and forwarded to the postmaster at Chicago, whence the blanks had last been sent out. The Chicago postmaster forwarded the same to Boston with the missing article; from Boston the description and the merchandise were sent to Dorchester. Meantime the family had moved to Salem, and the Dorchester postmaster forwarded them to Salem. The receiver secured the missing article and receipted for the same, while the description with its various entries of travel, from Dorchester to Boston, from Boston to Chicago, from Chicago to the various offices in Iowa, then back to Chicago, thence to the different offices as far as Cleveland, and then from Cleveland to Chicago, Boston, Dorchester, and Salem, furnished a document of considerable interest.In 1790 there were 70 post offices and 1,875 miles of post roads. That year the number of letters and papers delivered did not exceed 2,000,000. In 1890, one hundred years afterward, there were more than 65,000 post offices and more than 30,000 mail routes. During that year more than 10,000,000,000 pieces of mail matter were handled. The receipts and expenditures of the post-office department in the United States amount annually to about $75,000,000.This résumé of the postal service plainly shows the energy, enterprise, and intelligence of our people, the success attained by our Government, and the tremendous growth and development of our country.CHAPTER IV.SIGNALING.Thetransmission of letters from one point to another always requires time. Even when a letter is dropped into the post office it will not go until the next regular mail. It was long ago seen that occasions frequently arose when it was necessary to send messages quickly. This was especially important in times of war, when each army desired to know immediately the movements of the enemy. This necessity led to various devices for transmitting messages instantaneously. Any form of signaling would be satisfactory if the signals were visible to the eye of the distant observer.The earliest method of signaling was the use of the beacon fire or the sending of messages by light. In the early colonial period in this country, during the anxious times of Indian hostilities, beacon poles were here and there set up and from them large kettles were suspended which held combustible matter. The burning of this material conveyed the intelligence that danger was at hand.One of the earliest beacon poles was erected on Beacon Hill, in Boston, about 1634. A watchman was constantly at the place to give the signal on the approach of danger. That beacon pole was a tall mast, firmly supported, about seventy feet in height. Tree nails were driven into it to enable the watchman to ascend, and near its top an iron crane projected which supported an iron skeleton frame. In this frame was placed a barrel of tar to be fired when the occasionrequired the signal. This beacon was more than two hundred feet above the sea level, and the light of it, therefore, could be seen for a great distance inland. Many of the early settlements in New England were made upon the tops of hills in order that the people might the more quickly and easily see the approach of Indians and signal the news to other settlements by bonfires.SIGNALING BY BEACON FIRES.A second method of signaling was by the use of the semaphore. This was invented by Claude Chappe and was adopted by the French Government in 1794. It consists of an upright post, which supports a horizontal bar or arm, which can be put at various angles. In order to carry out this system of signaling, stations must previously be agreed upon and signal officers constantly on duty. If the intelligence was to be conveyed to a considerable distance intermediate stations must be had. The second station received the signal from the first and transmitted it to the third, and so on. This proved to be a very difficult operation and was never extensively used.A third and successful form of signaling was by the motion of flags. During our Civil War the army made much use of military signals. The system was devised by Major Myer and was continued through the war, not only in thearmy but on naval vessels. When the stations were less than five miles apart signaling was considered to be at very short range. Messages have been sent ten miles by means of a pocket handkerchief attached to a twelve-foot rod. With the regular flags and staffs used by the signal corps during the war, signals were often read twenty-five miles away, and it is said that single words have been read at a distance of forty miles.In the early spring of 1863 General Peck was in command of the Union forces at Suffolk, Virginia. He had under him about ten thousand men and had thoroughly fortified the place by a connected system of forts, redoubts, and breast-works. His outmost signal station was placed on an elevated plateau across the Nansemond River. This station was made by sawing off the top of a tall pine tree and placing thereon a small platform surrounded by a railing. The signal officer would tie his horse at the foot of the tree and mount to the platform by a rope ladder.Early one morning in March, this signal officer suddenly observed the head of a column of troops emerging from the woods in the rear. This was the advance guard of two Confederate corps under General Longstreet. Instantly he caught up his signal flag and as quickly as possible signaled to the town the approach of the enemy. Picking up his signal book he hurried down the ladder, mounted his horse and galloped away. Before he could reach his saddle, however, the Confederates were within rifle range and fired at him. They did not succeed in hitting him and he escaped safely to his friends.The signal had been seen and was quickly repeated to all parts of the fortified town. The drums instantly beat the long roll and, within five minutes from the time his signalwas given, and before General Longstreet could swing out his light battery and open fire, the entire Federal force was under arms and the artillery in the nearest battery had opened a raking fire. The briskness of this fire from the Federal battery soon obliged Longstreet to withdraw his forces to the cover of the woods. Had it not been for the promptness of the signal officer it is possible that the town might have been captured.A notable use of this system of army signals occurred in the campaign of General Miles against the Apaches in New Mexico and Arizona in 1886. He established a system of thirteen signal stations in that country, over which, during a period of four months, more than eighteen hundred messages were sent. The savages were surprised and confounded by the way intelligence of their movements became known hundreds of miles distant.As early as 1861 Moses G. Farmer introduced a successful method of signaling which afterward was employed by the officers of the United States Coast Survey on Lake Superior. This system was by means of mirrors which were able to reflect the sunlight between stations ninety miles apart. This method is called the heliographic system. The French have used it among the islands of the Indian Ocean where the stations are on mountain peaks sometimes 135 miles apart. Even this long-range signaling has been surpassed by our own Signal Corps, which has succeeded in sending messages by our method from Mount Uncompahgre in Colorado to Mount Ellen in Utah, a distance of 183 miles. During the siege of Paris, messages by the use of the calcium light, concentrated and directed by lenses, were sent from one point to another.A very unique form of signaling was employed by NewYork State at the opening of the Erie Canal, in 1825. The cannon, which had been captured by Commodore Perry at the time of his famous victory on Lake Erie, were placed at intervals along the line of the canal. When the first canal boat started from Buffalo, the first cannon was fired. When the sound was heard at the second cannon, that was discharged; and so on, the entire length of the canal. Two hours after the start at Buffalo the news had reached New York.All these various methods of communication at long range have proved more or less objectionable and unsatisfactory. It was natural, therefore, that as soon as it was known that electricity could be conducted by wires from one place to another, experiments should be begun in the hope of finding some possible means of conveying intelligence by it. Perhaps the earliest suggestion was in a letter published inThe Scots Magazine, of February, 1753. The letter was signed "C. M.", which probably meant Charles Morrison, a young Scotch surgeon. He proposed to use as many insulated conductors as there were letters in the alphabet. Each wire was to represent one letter only, and the message would be sent by charging the several wires in succession so that the operator in receiving it would be obliged to notice the order of movement among the wires. From that simple beginning inventors proceeded to suggest first one thing and then another, but they found so many difficulties that it seemed impossible to overcome them all.CHAPTER V.THE TELEGRAPH.ELECTRIC WIRES.Onthe second day of April, 1872, in the city of New York, the life of a benefactor of his race, an aged man who had seen more than fourscore years of mingled trial and triumph, was ended. That man was Prof. Samuel Finley Breese Morse, the inventor of the electric telegraph. His name is as widely known the world over as that of Washington, or Cæsar, or Aristotle. His long life had been extremely checkered. He had passed through troubles, trials, anxieties, disappointments, bereavements; he had been subject to persecutions, losses, poverty, toil, discouragements; he had met with successes, gains, wealth, luxury, honors, fame; and finally the homage of republics, kingdoms, empires had been laid at his feet. He was never cast down, never unduly elated. He bore all his poverty and disappointmentsand wore all his honors and wealth with the "grace of a Christian and the calmness of a philosopher."Professor Morse was born at the foot of Breed's Hill in Charlestown, Massachusetts, April 27th, 1791. He was the oldest of three brothers. His father was a very distinguished man in his day; for more than thirty years the pastor of a church in Charlestown, a noted preacher, a good historian, the author of many books, and, particularly, the father of the science of geography in the United States. Professor Morse inherited from both his father and his mother those traits of character which enabled him to succeed in his great life work, in spite of discouragements, obstacles, and opposition. His ancestors were all noted for their "intelligence, energy, original thinking, perseverance, and integrity."How we would like to step into the little schoolroom and see Samuel at his first school. He was four years of age. His teacher was known as "Old Ma'am Rand," an invalid who could not leave her chair. She governed the uneasy little urchins with a long rattan that would reach across the small room where she kept her school. At seven years of age Samuel was sent to Andover to a preparatory school, kept by Mr. Foster; here he fitted for Phillips Academy and, in that famous institution, under the direction of Mark Newman, he prepared for Yale College, where he was graduated in 1810.While in college he was under the instruction of Jeremiah Day in natural philosophy and paid great attention to the subject of electricity, getting everything that was known about it at that time. Professor Day said: "Morse was often present in my laboratory during my preparatory arrangements and experiments, and thus was made acquainted with them." On leaving college Morse had a burning ambition to be a portrait painter. He put himself under the instructionof Washington Allston, and went with him to England to pursue his favorite study. Is it not a little singular that Morse, who invented the telegraph, was a student under Allston, and that Robert Fulton, who invented the American steamboat, was a student under West, another famous American painter?One day Mr. Allston introduced young Morse to Benjamin West, whose fame at that time was as wide as the world of art. West was in his studio painting his "Christ Rejected." After a time he began a critical examination of Mr. Morse's hands and at length said: "Let me tie you with this cord, and take that place while I paint the hands of our Saviour." Morse of course complied; West finished his work and, releasing him, said, "You may say now, if you please, you had a hand in this picture."Morse had many interesting experiences in England during his four years' study under Allston. He returned to America in 1815, and from that time for about fifteen years devoted himself to painting and inventing. He was for some time professor of the fine arts in the University of the City of New York, and during all these years he paid much attention to the study of electricity.After three years spent in Europe, he returned in 1832 on the packet shipSully. In the early part of the voyage, one day at the dinner table, the conversation turned to the subject of electro-magnetism. Professor Morse remarked: "If the presence of electricity can be made visible in any part of the circuit, I see no reason why intelligence may not be transmitted by electricity."His mind could think of nothing else; this one idea had taken complete possession of his soul; all that he had learned in former years, his experiments with Professor Day at YaleCollege, and his later studies, were all revived and drawn upon for ways and means to accomplish the thing he had in mind. He withdrew from the table and went upon deck. He was in mid-ocean, the sky everywhere above him, the sea everywhere below him. As the lightning comes out of the east and shines unto the west, so swift and so far was that instrument to work which was taking shape in his mind.He could not fail, for patience, perseverance, and hope were hereditary traits in his character. He was just at the maturity of manhood, forty-one years of age; from that time this one idea absorbed his mind. All his powers were concentrated upon this one subject, the electric telegraph.Now began a series of experiences such as probably no other man ever passed through. Scarcely did any one ever suffer so much, endure so much, fail so many times to accomplish his darling object, as did Morse. He completed his invention; he perfected it. He devised his alphabet consisting of long and short marks and dots; he obtained a patent for it; but he had not the money to put the invention in operation. Years of trouble and even abject poverty followed. He was so reduced at one time that he was without food for twenty-four hours. He applied to Congress again and again for a grant to enable him to build and put in operation a trial line between Baltimore and Washington.On the morning of the 4th of March, 1843, as Professor Morse came down to breakfast, at his hotel in Washington, a young lady met him and said:"I have come to congratulate you, sir.""For what, my dear friend?" asked the professor."On the passage of your bill."That bill was for the appropriation by Congress of $30,000 for the purpose of "constructing a line of electric-magnetictelegraph" under the direction of Professor Morse. The bill had passed the House some days before. It had been favorably reported to the Senate, but there were a hundred and forty bills before it upon the calendar which were to be taken up in their regular order. Professor Morse had remained in the Senate chamber till late in the evening. His friends informed him that it was impossible for the bill to be reached, as the Senate was to adjourn at midnight. He had, therefore, retired to his hotel thoroughly discouraged. Imagine then, if you can, his surprise and his joy when Miss Ellsworth the daughter of his friend, Hon. H. L. Ellsworth, of Connecticut, the commissioner of patents, told him that in the closing moments of the session the bill had passed without a division.MORSE HEARS OF HIS SUCCESS.He had invented the recording electric telegraph eleven years before on board the packet shipSully, upon his return voyage from Europe. He had spent eleven years in perfecting his plans, and in striving to secure the means for placing this great invention before the American people. During this time he had converted all his property into money and used all that money in pushing the enterprise. His only hope now was the bill before Congress. That bill had passed! With streaming eyes Professor Morse thankedMiss Ellsworth for her joyous announcement, and promised her that she should dictate the first message which should be sent over the wires.And so it came to pass that on the 24th of May, 1844, these words furnished by Miss Ellsworth were telegraphed by Professor Morse from the Capitol at Washington, to his friend and assistant, Mr. Alfred Vail, at Baltimore, and immediately repeated back again:"What hath God wrought!"Well may we believe that the inventor spoke from the heart when he said years later: "No words could have been selected more expressive of the disposition of my own mind at that time, to ascribe all the honor to Him to whom it truly belongs."A singular circumstance brought this invention to the attention of the people of the whole country as hardly anything else could have done. The National Democratic convention was in session at Baltimore. They had unanimously nominated James K. Polk for the Presidency. They then nominated Silas Wright as their candidate for Vice-President. This information was immediately telegraphed by Mr. Vail to Professor Morse and at once communicated by him to Mr. Wright, then in the Senate chamber. A few minutes later the convention was astonished by receiving a telegram from Mr. Wright, declining the nomination. The members were incredulous and declared that it was a trick of Mr. Wright's enemies. They voted to send a committee to Washington to interview Mr. Wright, and adjourned until the next morning.On the return of this committee the truth of the message was corroborated, and thus this new telegraph, just completed, with a line just open for public patronage, was advertised through the delegates of this national convention to the peopleof every State in the Union. Astonishment was the sensation of the hour. The work bordered upon the miraculous. Ordinarily the motto is true that "To see is to believe," but this result staggered everybody.Although the invention was complete and now in practical operation, yet Professor Morse's trials were not over. He received the congratulations of his friends, but he was also brought to the notice of his enemies. Let us pass over these trials and give attention to the more pleasant duty of considering his triumphs. The telegraph rapidly came into general use between the great cities of the country. Nor was its use confined to America; almost immediately it was successfully introduced into the various countries of Europe.In 1854, the Supreme Court of the United States decided unanimously in favor of Professor Morse on all points involving his right to the claim of having been the original inventor of the electro-magnetic telegraph. In 1846, Yale College conferred upon him the degree of Doctor of Laws (LL.D.). He was made a member of various learned societies in France, Belgium, and the United States. He received a diamond decoration from the Sultan of Turkey, a gold snuff box containing the Prussian gold medal for scientific merit, the great gold medal of Arts and Science from Würtemberg, and the great gold medal of Science and Art from the Emperor of Austria. Other honors were conferred upon him by Denmark, Spain, Portugal, Italy, and Great Britain. At the instance of Napoleon III., Emperor of the French, representatives from various countries met in Paris in 1858 and decided upon a collective testimonial to Professor Morse, and the result of their deliberations was a vote of 400,000 francs.No invention in ancient or modern times has wrought such a revolution—a revolution in all business, in commerce,trade, manufacturing and the mechanic arts, in politics, government, and in religious affairs. It is not given to mortal man to comprehend the greatness, to duly appreciate the grandeur, or to measure the utility of this remarkable invention. Over the mountains, through the valleys, under the seas flies the electric current, conveying all-important items of news from place to place, from country to country, from continent to continent."This electric chain from East to WestMore than mere metal, more than mammon can,Binds us together—kinsmen, in the best;Brethren as one; and looking far beyondThe world in an electric union blest."CHAPTER VI.THE ATLANTIC CABLE.Thegrowth of the telegraph was very much like that of the railroad. In 1844, the first line was opened, as we have seen, between Baltimore and Washington, a distance of forty miles. Within a few years lines were extended to the principal cities of the United States. In 1847, the Morse telegraph was introduced into Germany and rapidly spread over the entire continent of Europe. For the most part the wires were placed by the side of the railroad tracks,—wherever the railroad penetrated the telegraph went also.Before many years had passed time was in a sense obliterated. Whatever happened in New York might be immediately known in Chicago. Incidents that took place in New Orleans might be narrated in Boston almost as soon as they occurred. London and Rome, Madrid and St. Petersburg, were united by the lightning rapidity of the telegraphic current. Meanwhile London and New York were as far apart as ever. News could be conveyed between the two hemispheres only by the comparatively slow-moving steamers. The next step in the development of communication must be the connecting of Europe with America by a telegraph wire.The year before the passage of the act by which Congress provided Professor Morse with the means for completing the first telegraph line, he had stretched a wire under the water from Castle Garden, New York City, to Governor's Island in the harbor. He had thus proved that telegraph messagescould be sent under water. Ten years later a "submarine telegraph" was constructed, connecting England with the continent of Europe. Other short submarine cables were laid and successfully operated. To undertake, however, to lay a cable from Europe to America, thousands of miles long and hundreds of fathoms below the surface of the ocean, was an entirely different matter. A few enthusiastic men, among them Professor Morse, believed that it could be done, but the majority of people viewed it as an impossibility.Was there any other way to connect the two worlds by an electric wire? Might it not be possible to build a telegraph line from Europe, starting from some point in Russia, across Northern Asia, to the Behring Straits? Might not a comparatively short cable be laid to Russian America (for Alaska had not then been sold to the United States), which could connect with a telegraph line to be erected across the continent to New York City?Think of the magnitude of this proposition! In place of laying a submarine cable across the Atlantic Ocean it was proposed to traverse the entire circuit of the earth, except the Atlantic, by a telegraph line. It was proposed to construct across the wilds of Siberia, where no railroad had been built, a telegraph line thousands of miles in length; and, besides laying a cable, to build another line of great length from the Aleutian Islands to the Pacific coast of the United States, and thence across the Rockies, where at that time there was no railroad.The undertaking was a great one, but a company was formed for the purpose of erecting a Russian-American telegraph. Experienced men were selected from English and American telegraphers and sent to Siberia to push the work. The prospects of success for the great enterprise were favorablewhen the news arrived that the long-talked-of Atlantic cable was at last laid and in complete working order. The Russian-American telegraph could not hope to compete with the cable, and the project was abandoned.To Cyrus W. Field belongs the honor of pushing forward to successful completion the Atlantic cable. At the early age of fifteen Cyrus left the parsonage at Stockbridge, Connecticut, the home of his father, Rev. David Dudley Field, for New York. On arriving in the city he obtained employment as an errand boy in the dry-goods establishment of A. T. Stewart. Three years later, when he decided to give up his place as clerk in the store, the proprietor showed his appreciation of the boy's merits by urging him to remain, making him a liberal offer if he would do so. He decided to make a change, however, and was soon engaged with a brother in Lee, Massachusetts.When young Field was twenty years of age he went into business for himself, and for the next thirteen years was known as one of New York's successful merchants. He then retired from active business, but found it a difficult task to do nothing. After a long voyage to South America, he returned to New York, where he gladly welcomed the opportunity that then came to busy himself.The Newfoundland Electric Telegraph Company had been engaged for a year in the work of erecting a line on that island, preparatory to connecting it with the mainland by a cable. The company was compelled to stop work, however, for lack of the necessary means to continue. The leading member of the company, Frederick N. Gisborne, appealed to Mr. Field for material assistance. After several interviews, in the course of which he became deeply interested in the scheme, Mr. Field came to the conclusion not only thatthe plan of connecting Newfoundland with the United States was feasible, but also that Newfoundland was the best starting point for a cable to Ireland.With characteristic energy Mr. Field went at once to work. He formed a new company and obtained extensive privileges from the governments of Newfoundland, Prince Edwards Island, and the State of Maine. Many months were spent in erecting the land telegraph across Newfoundland, over wild marsh and waste moor, rocks, hills, and forests. A cable, obtained in England, was unsuccessfully laid across the Gulf of St. Lawrence in 1855. The next year a second attempt was successful. The preliminary work was now completed.More means and more influence were needed. Mr. Field organized in London the Atlantic Telegraph Company, and showed his own faith by personally subscribing for one-quarter of the stock. The governments of Great Britain and the United States liberally aided the new company and furnished ships for laying down the cable.On the 7th of August, 1857, theNiagaraand theAgamemnonsailed from Ireland, each carrying 1,250 miles of cable. TheNiagarabegan paying out her line and all went well for three days. At nine o'clock on the evening of the tenth, however, the cable ceased working. Three hours later the electric current returned, to the intense relief of all; but before morning came the cry, "Stop her! back her! the cable has parted!"With flags at half-mast the ships returned to Ireland. Half a million dollars had been lost already. Disheartened, but not discouraged, the company voted to increase its capital and try again the next year. This time the two steamers sailed directly to mid-ocean, spliced the two parts of thecable, and sailed away from each other, theAgamemnonfor Ireland and theNiagarafor Newfoundland. On the 17th of August the extremities of the cable were connected with the instruments and the work was done. In the space of thirty-five minutes there was flashed under the ocean the message:"Europe and America are united by telegraph. Glory to God in the highest; on earth peace; good will toward men."LAYING AN OCEAN CABLE.Messages and replies from the Queen to the President of the United States and from the mayor of London to the mayor of New York followed. The American people were wild with enthusiasm; they declared the Atlantic cable to be the greatest achievement of the age, and they heaped boundlesspraise upon the head of the persistent and courageous Field. Eighteen days afterward, the signals became unintelligible and the first Atlantic cable ceased to work.Was all the time and money so far spent thrown away? No! for this first experiment paved the way for another and successful attempt. It is said also that one message, sent during these few days, saved the commercial world no less a sum than two hundred and fifty thousand dollars. For the time being, however, the project of an Atlantic cable was allowed to remain quiet.THE GREAT EASTERN.Mr. Field was financially ruined. The Civil War in the United States occupied the thoughts of all for several years. But in time the company was ready to try again. A newly prepared cable was made, the twenty-three hundred miles of which weighed more than four thousand tons. The largest vessel in the world, theGreat Eastern, was employed to carry and lay it. On July 23d, 1865, the steamer started from Ireland and continued on its westward course until August 2d; then the cable parted, more than a thousand miles from the starting point. Nine days were spent in attempts to grapple for the cable, but all in vain.The next year theGreat Easternagain set sail, with a new cable and with sufficient wire to complete the cable ofthe previous year, if possible. In fourteen days the steamer entered the harbor in Newfoundland. Two months later the same steamer again reached Newfoundland, having captured the missing end of the other wire, thereby completing two cables from Europe to America.July 27th, 1866, was a joyous day in the life of Cyrus W. Field. For thirteen years he had thought of little else but the submarine cable. Failure after failure had not discouraged him; loss of property only stimulated him to further efforts. Now success had come. The new cable was more substantial than the other of eight years before. That had failed, but this would succeed. It did succeed. From that day to this telegraphic communication between Europe and America has been constant.Submarine cables are now in extensive operation in all parts of the world. More than half a dozen cross the Atlantic, and lines have been constructed from England to India, from India to Australia, and from the United States to Mexico and South America. At the present time there are perhaps two hundred cables belonging to companies, and about five hundred belonging to government systems. These cables, all told, cover a distance of nearly a hundred thousand miles.A recent incident is told that shows something of the greatness of the telegraph. In June, 1897, a great celebration took place in London, in honor of the sixty years that Queen Victoria had been upon the British throne. The Queen rode in a procession through streets packed with millions of people. Just as she left the palace she pressed an electric button. Instantly this message was sent to her colonies all over the world:"From my heart I thank my beloved people. May God bless them. Victoria, R. I."To forty different points in her empire sped the electric message. In sixteen minutes a reply came from Ottawa in Canada; then one by one answers came in from more remote provinces; until, before the Queen reached London Bridge, the Cape of Good Hope, the Gold Coast of Africa, and the great continent of Australia had sent responses to her message.CHAPTER VII.THE TELEPHONE.Whenthe telegraph was invented, years ago, it seemed little less than a miracle that a message could be dictated in one city and received almost instantaneously in another city far distant from the sender. Scientists, however, began at once on the invention of something more wonderful. The telegraph lacks in one respect. By it messages must be sent exactly as dictated and cannot be corrected until the reply is received. In a sense, sending and receiving messages by telegraph is a form of conversation, but a conversation at arm's-length. To carry on a real conversation at long distances would be a great advance. An instrument prepared for this purpose would be called a telephone.In 1875 Alexander Graham Bell invented the first successful electric telephone. This was exhibited at Salem, Massachusetts, and at Philadelphia at the Centennial Exhibition, and a patent for it was obtained. The apparatus of Bell's telephone is very simple, and practically consists of four parts: the battery, the wire which runs from the speaker to the hearer, a diaphragm against which the vibrations of the air produced by the voice of the speaker strike, and another diaphragm at the other end of the wire which reproduces similar vibrations and sends them to the ear of the listener. Elisha Gray of Boston made a similar invention and applied for a patent two hours after Bell's application was filed. The invention of Mr. Bell has proved a decided success.All telephonic operations, since this invention, have been based upon the instrument which he patented in 1876.Mr. Bell was the son of a distinguished Scotch educator, Alexander Melville Bell. The father is noted for the invention of a new method for improving impediments in speech. This system of instruction is called "Bell's Visible Speech." It is used with great success in teaching deaf-mutes to speak.A TELEPHONE.His son Alexander was born in Edinburgh in 1847 and was educated at the University of Edinburgh. He removed to London when he was twenty years of age and was for a time in the University there. Three years later he went to Canada with his father, and at the age of twenty-five took up his residence in the United States, and became professor of vocal physiology in Boston University. He had been in this country but three years when he made his great invention, and its complete success gave him immense wealth. Later he invented the "photophone," in which a vibratory beam of light is substituted for a wire in conveying speech. This instrument has attracted much attention but has not proved of practical use. Professor Bell is a member of various learned societies and has published many scientific papers. His present home is in Washington.Within ten years the art of telephoning has rapidly developed. This has stimulated inventions and brought into use a vast number of special contrivances for local and long-distancetransmission. The principal inventors of these new contrivances are Bell, Berliner, Edison, Hughes, Dolbear, Gray, Blake, and Peirce.Nearly all of the telephone business of our country is carried on under licenses from the American Bell Telephone Company. The telephone lines at present in the United States would aggregate a distance of more than six hundred thousand miles, and there are more than half a million instruments in our country alone. The longest telephone line extends from Portland, Maine, via Boston, New York, and Chicago, to Milwaukee, a distance of more than thirteen hundred miles.ALEXANDER BELL USING A LONG-DISTANCE TELEPHONE.Let us consider for a moment the wonders of this marvelous invention, as compared with another no less marvelous in its way.In 1867 Anson Burlingame was appointed by the Chinese Government special envoy to the United States and the great European governments, with power to frame treaties of friendship with those nations. This was an honor never before conferred on a foreigner. Mr. Burlingame accepted the appointment and, at the head of a large mission of distinguished Chinese officials, arrived in this country early in 1868, negotiated with our Government the "Burlingame Treaty," proceeded the same year to England, thence to France, the next year to Denmark, Sweden, Holland, andPrussia, and finally reached Russia early in 1870. He died in St. Petersburg after a few days' illness, on the 23d of February.Now see what the telegraph did. His death occurred about half-past nine in the morning. As soon as possible the fact was telegraphed to our minister in Paris. He forwarded the news to our minister in London; by him it was cabled across the Atlantic, transmitted from the cable to Washington and delivered to Nathaniel P. Banks, a member of the House of Representatives from Massachusetts. General Banks read the dispatch to the House, and delivered offhand an extended eulogy upon the distinguished son of Massachusetts. That speech of General Banks was written out, sent to the telegraph office, transmitted by the electric current to the various cities of the country, put into type, printed in the evening newspapers, and the writer of this chapter read it at four o'clock in the afternoon of the same day that Mr. Burlingame died. This was done as early as 1870.But what is that compared to the greater wonders of the telephone? That a man can "talk into" the little instrument, and his voice be heard and recognized, and his words understood, by his friend in a city five hundred or one thousand miles away, is indeed a miracle. Consider for a moment what is done by means of the switchboard in the central telephone office of a great city. Every one of the thousands of subscribers has his own instrument for transmitting and receiving messages. One of these subscribers rings a bell in his house or his business office which rings another bell at the central station; the attendant inquires "Hello! what number?" and receives a reply, "four, naught, eight, Tremont." The attendant by a simple switch, turned by a touch of the hand, makes the connection and rings the bell of that subscriber whose number is "408 Tremont." Number "408Tremont" steps to the instrument and in a quiet voice says "Hello! who is it?" Thus these two persons are placed in direct communication, and can talk with each other, back and forth, as long as they please.This conversation is carried on between two different sections of the city where these two men live, but the same conversation may with equal ease be carried on between Boston and New York, between Boston and Washington, or between New York and Chicago. Thus time and distance are annihilated and the whole world stands, as it were, face to face.But the marvel does not end here. The above conversation is carried on by means of a continuous wire which runs from one place to the other. If there are parallel wires, strange to say, the vibrations carried on in the one wire are liable to create, by induction, similar vibrations in the parallel wire. Here is an illustration:Nearly twenty years ago, soon after the invention came into use, three gentlemen in Providence, Rhode Island, put up a private line between their three houses, making a circuit. Upon this line they carried on experiments and made a number of important discoveries. The evening was the time when they principally used their private telephone line. On a certain Tuesday evening these three gentlemen, conversing one with another, suddenly found themselves listening to strains of music. All three of them heard the same thing: the sound of a cornet and of one or two other musical instruments; then singing and a soprano voice. They wrote down the names of the pieces that were sung and the tunes that were played upon the instruments. They had no knowledge of the source of these sounds.The next day, and for days following, these gentlemen went about the city inquiring of their friends everywhere ifthey knew of a concert on that Tuesday night where such pieces were sung and such tunes were played. Nobody had any knowledge of the affair. At length one of the gentlemen published an article in the ProvidenceJournal, describing what he had heard through his telephone wire on that Tuesday evening, giving the date, and asking any one who could inform him what the concert was and where it was, to give him the desired information. Then it transpired that this concert was a telephonic experiment.The performers were at Saratoga, New York, and they were connected by a telephone wire with friends in New York City. The experiment had plainly demonstrated that the sounds made in singing and in playing numerous instruments could be clearly understood, by means of the telephone, from Saratoga to New York City. But it proved more than this. The vibrations in that telephone wire between Saratoga and New York induced the same vibrations in the parallel wire of the Western Union Telegraph Company. These vibrations were continued through New York City to Providence and onward. The private telephone line of these gentlemen was parallel to the wire of the Western Union Company which had been thus affected, and these vibrations were picked off from the telegraph wire and conveyed by this parallel telephone wire to the receivers at these three houses.What will be the next wonderful invention? The telegraph transmits your thoughts and delivers them in writing; the telephone transmits your thoughts and delivers them to the ear by sounds. Some day, perhaps, you may step into a cabinet in Boston and have your photograph taken in New York City by aid of an electric wire, the telephote. Just as the telephone transmits the sounds, the telephote may transmit the light and give not only light and shade, but the colors of the solar spectrum.CHAPTER VIII.CONCLUSION.Wehave now considered six groups of topics connected with the growth and development of our country. We have looked into the houses of the Indians and of the settlers in the colonial times, and into the larger and more elaborate homes of to-day. We have considered improved means of heating and better methods of lighting. We have noticed improvements in machinery for planting, cultivating, and harvesting the products of the soil. We have seen the great advance that has been made in the manufacture of our clothing, through improved cotton and woolen machinery and the sewing machine. We have traveled by land and by water, at home and abroad, on foot, on horseback, in stagecoaches, by canals, steamboats, and railroads. Finally we have read and thought and studied about language, the printing press, our postal system, the telegraph and the telephone.We have seen our country when it was wholly east of the Mississippi River, whereas now it is extended even to the great western ocean. A century ago our territory embraced about eight hundred thousand square miles; now it is nearly five times as great, with large areas of recently acquired Spanish islands to be added to that. The population of the United States in 1790 was less than four millions; a hundred years later it was sixty-three millions. It is now probably between seventy and seventy-five millions. Our exports then were about fifty million dollars in value; this year they aremore than one thousand millions. A century since, we imported into this country goods to the value of about seventy million dollars. This was largely in excess of our exports. To-day our exports are of far greater value than our imports.At the beginning of our national government we were almost altogether engaged in the pursuits of agriculture. Now our people are largely massed in cities and large towns, while our mechanical and manufacturing interests are of immense proportions.A hundred years ago the people speaking the seven principal languages of Europe numbered about one hundred and fifty millions. To-day they number about four hundred millions. The present number is therefore almost three times that of a century ago. At that time the English-speaking people ranked fifth among the seven, and numbered but twenty millions. To-day they lead the list, and number one hundred and twenty millions; there are six times as many people to-day using the English language as there were a century ago. The inhabitants of our country outnumber all other English-speaking people in the whole world.Our country occupies, all things considered, the best portion of the world. This includes the Atlantic slope, the great Mississippi basin, and the Pacific slope, and our whole territory, except our new colonial possessions, lies within the north temperate zone. We therefore have a great variety of soil and climate; the soil is the most fertile and the climate the most salubrious of the whole earth. We have an almost infinite variety of productions and our people are engaged in the entire round of human industries.The United States has made vast strides in industry, in wealth, in intelligence, and in the comforts of life. Civilization has rapidly advanced during the whole of this century.If the great contest of the future is to be between the Anglo-Saxon race and the rest of the world, surely this great republic must have the leading position in that contest.The American people to-day form a nation of readers. In newspapers, magazines, and books of all sorts and upon every subject the American press is prolific. We have a system of public schools well established in every State and every Territory of our Union, and supported by taxation, and very generally the children are obliged by compulsory laws to attend school. We are living in an age of great activity and rapid advancement. The young people of our republic who are attending school to-day are to be congratulated upon their good fortune; and it becomes them to magnify their opportunities, to appreciate their advantages, and to be especially loyal to their country, its government, and its institutions.INDEX.Ætna,213Air brakes,236Allen, Nicholas,48Allston, Washington,272Ancient writing,249Arc light,87Arnold, Edwin,169Atlantic Telegraph Co.,281Automobile,243Axe,25Baltimore and Ohio Railroad,226Baskerville, John,254Bay-Path,192Bell, Alexander Graham,286Bicycle,243Binder,120Blackstone canal,221BoultonandWatt,179Brooklyn bridge,239Brush, Charles Francis,85Burlingame, Anson,288Cable, Atlantic,278Cable cars,242Cables, submarine,284Cabot, John,18Calashes,201Canals,215Candelabra,71Candles,67Canoe,197Carrying fire,52Central Pacific Railroad,228Chappe, Claude,266Chesapeake and Delaware Canal,221Chicago and Alton Railroad,236Chimneys,31Clayton, John,81"Clermont,"212,215"Clinton's big ditch,"221Coal,44anthracite,47bituminous,47sea,45Coffee,139Colonial conditions,143Colonial cooking,29,30Colonial homes,24Conant, Roger,124Cooking, colonial,29,30Corliss, George H.,175,179Corn, Indian,105Cotton,150,153Cotton gin,148-151Darling, Grace,92-94Delaware and Hudson canal,221Dinner, a modern,131Dodge, John Adams,174Drake, E. L.,78Dugout,197Dunster, Rev. Henry,254Dutch ovens,27Dynamo,85Edison, Thomas A.,86Electric cars,242Electric lighting,85Electrotyping,257Eliot's Indian Bible,254Ellsworth, Miss,274Erie canal,221Evans, Oliver,209Fabius,63Fairbanks, Richard,259Faraday, Michael,85Farmer, Moses G.,268Faust, John,253Field, Cyrus W.,280Fire,14Fire, carrying,52Fireplace, Pennsylvania,34Fireplaces,26Fishing, whale,73Fitch, John,209Flail,109,120,123Flax,147Flint,53Foods, uncultivated,99Fork,118Franklin, Benjamin,34,68Franklin press,255Franklin stove,34Freight, cost of transportation,218Fuel,37Fulton, Robert,210,272Furnaces,36Gang plow,114Gas, illuminating,81Gasometer,83Gideon,63Gin, cotton,148-151Gore, Obadiah,48Greene, Nathaniel,148Greenough, J. J.,175Grist mills,145Grover, William O.,175Gutenberg, John,254Hannibal,63Harvesting, implements for,117Heat,11Hennepin, Father,46Hoe,109Hoe perfecting press,253Homes, colonial,24Homes, Indian,17Hood, Thomas,173Horseback,191Howe, Elias,175Hunt, Walter,175Illuminating gas,81Implements for harvesting,117for planting,111Incandescent light,87Indian Bible, Eliot's,254Indian corn,105Indian homes,17Inns,205Iroquois,19Irrigation,127,128Jackson, Andrew,156Jewel, Marshall,170Kerosene,77Kitchen, a New England,10Knight, Sarah,200Lamp, modern,76Lamps, ancient,65Language,247Leather,164Leifer, Thomas,224Letters,247Lewis, Ida,94Light, arc,87Lighthouses,90Lighting, electric,85Linotype,257Livingston, Robert R.,212Log cabin,26Longstreet, William,209Loom,147Lord of Padua,32Mail car,262Matches,51McCormick, Cyrus H.,122Menlo Park,87Message, first, across the Atlantic,282Middlesex canal,221Miles, General, in New Mexico,268Modern land travel,235water travel,229Money orders,261Morey, Samuel,209Morse, Samuel F. B.,270his titles and honors,276Mower,117Murdoch, William,82Myer, Major,266Needles,172Nott, Eliphalet,159Ogle, Henry,122Oil wells,79Ovens, Dutch,27Padua, Lord of,32Peck, General, at Suffolk,267Pepper,132Pine knots,62Planter,115Planting, implements for,111Plow,109,112Plow, sulky,114Postage stamps,261Postal system,258Postmaster-general,260Power of speech,247Printing press, Franklin,255modern,246Prometheus,15Pruning hook,109Pullman sleeper,237Queen of Sheba,249Railroad train, old-style,227Railroads,223Rake,118Raleigh, Walter,106"Rand, Old Ma'am,"271Range,36Reaper,120Rumford, Count,33-35Rumsey, James,209Scholfield, Arthur,160Scholfield, John,160Scots Magazine,269Scribe, ancient,251Scythe,109,117Sea coal,45Sewing machines,175Shoemaker, Colonel,48Signal station, Suffolk,267Signaling,265Singer, Isaac M.,175Slater, John F.,156Slater, Samuel,153Soil,124Solomon,249Sower,114Sower, Christopher,255Special delivery,261Spotswood, Colonel,260Squanto,108Stagecoaches,200Steamboats,207Steam engine,178Stephenson, George,225Stereotyping,257Stevens, John,209Stockton and Darlington Railway,226Stoves,36Subway, Boston,242Sulky plow,114"Sully," packet ship,272Suspension bridge, Niagara,240Taverns,206Telegraph,270Telephone,286Telephone incident,290Thimmonier, Barthélemy,176Thompson, Benjamin,33Thompson, Elihu,86Thresher,121Threshing,123Tinder box,53Torches,61Travel by horseback,191by land,187by water,194Uncultivated foods,99Union Pacific Railroad,228United States post offices,264University press,255Vestal Virgin,14Victoria Jubilee,284Vinegar,135Walter press,252Watt, James,179Wells, oil,79West, Benjamin,272Westinghouse, George, Jr.,236Whale fishing,73Whale oil,72Whitman, Marcus,168Whitney, Eli,149Wilson, Allen B.,175Wool,158
POSTAGE STAMPS.
POSTAGE STAMPS.
About the year 1850, it was noticed that stamps of different colors and design were received in the mails from various parts of the world. Then the idea of collecting stamps came into vogue. After a time children and young people generally began to collect and to study stamps. Every minute variation of paper, with style of printing, gum, water mark, and other differences was considered as making a different issue, and in some cases as many as fifty distinct styles of a single stamp have been collected.
An extra fee of ten cents secures the immediate special delivery by messenger of any letter thus sent. Merchandise parcels can be sent as well as letters and papers. There is a money order system and at the present time a great deal of thought is put upon the question of post-office savings banks,which have already been successfully established in Great Britain and other countries of Europe.
By the Constitution of the United States, Congress has power "to establish post-offices and post-roads." Before roads were common between one State and another, the mail was carried on horseback. Later, mail wagons were used to convey the mails from one office to another. As stagecoaches multiplied they were used as mail wagons, the Government paying the stage company a sum of money for carrying the mail pouches.
ASSORTING MAIL ON THE TRAIN.
ASSORTING MAIL ON THE TRAIN.
The general introduction of railroads modified this system of mail carriage. Almost every railroad has become a postal road, the mail being carried upon its trains. Most of the trains upon the main lines of railroads have each a postal car fitted up with the proper conveniences for receiving and delivering the mail at the various stations and sorting it while the train is moving.
Suppose a mail pouch to be received at New Haven; before reaching Bridgeport its contents are sorted; all that isto go to Bridgeport is put into a separate pouch and dropped off at that place; that which is to go to Greenwich is put into another pouch and left there, and so on. The mail of New York City is put into various pouches according to its destination. The mail matter for the sub-offices, like Station A and Station B, is put into separate pouches and sent from the railroad station on 42d Street directly to these offices, while that for the central office is so sorted that there is no delay in sending it out after its arrival at the office. The letters for lock boxes are placed together by sections, while those for carriers are put up in divisions so as to be delivered at once to the several carriers. Meantime mail matter which is to go beyond New York is put into proper pouches so that one can be dropped off at Trenton, another at Philadelphia, and so on.
It will readily be seen that vast improvements have been made in postal arrangements. The condition of the United States postal system has been greatly improved each year. It seems almost marvelous that the mail service is so reliable and that the transmission of mail matter is so expeditious and satisfactory. If mail matter should happen to be lost, which is very rarely the case, the facilities for finding it are sometimes quite surprising, as the following incident will show.
A young lady in Iowa sent by mail a piece of crocheted edging to her cousin in Dorchester, which is a part of Boston, Massachusetts. The contents slipped out somewhere and the wrapper was delivered to its proper address, but without the edging. A letter had already been received in which the sending of the article was mentioned, so that the receiver knew from whom the wrapper came. She notified the sub-postmaster in charge of the Dorchester office, and he began the system of tracing by means of blanks prepared for that purpose. He wrote out the description of the article and thefacts of the case, and sent these blanks to the postmaster at Boston. The Boston postmaster forwarded them to Chicago; from Chicago the blanks were sent to the several offices west of Chicago until they reached the point of departure, in Iowa. No trace was found to answer the description, and the blanks came back to Chicago. They were then sent eastward. At Cleveland the missing article was found and forwarded to the postmaster at Chicago, whence the blanks had last been sent out. The Chicago postmaster forwarded the same to Boston with the missing article; from Boston the description and the merchandise were sent to Dorchester. Meantime the family had moved to Salem, and the Dorchester postmaster forwarded them to Salem. The receiver secured the missing article and receipted for the same, while the description with its various entries of travel, from Dorchester to Boston, from Boston to Chicago, from Chicago to the various offices in Iowa, then back to Chicago, thence to the different offices as far as Cleveland, and then from Cleveland to Chicago, Boston, Dorchester, and Salem, furnished a document of considerable interest.
In 1790 there were 70 post offices and 1,875 miles of post roads. That year the number of letters and papers delivered did not exceed 2,000,000. In 1890, one hundred years afterward, there were more than 65,000 post offices and more than 30,000 mail routes. During that year more than 10,000,000,000 pieces of mail matter were handled. The receipts and expenditures of the post-office department in the United States amount annually to about $75,000,000.
This résumé of the postal service plainly shows the energy, enterprise, and intelligence of our people, the success attained by our Government, and the tremendous growth and development of our country.
SIGNALING.
Thetransmission of letters from one point to another always requires time. Even when a letter is dropped into the post office it will not go until the next regular mail. It was long ago seen that occasions frequently arose when it was necessary to send messages quickly. This was especially important in times of war, when each army desired to know immediately the movements of the enemy. This necessity led to various devices for transmitting messages instantaneously. Any form of signaling would be satisfactory if the signals were visible to the eye of the distant observer.
The earliest method of signaling was the use of the beacon fire or the sending of messages by light. In the early colonial period in this country, during the anxious times of Indian hostilities, beacon poles were here and there set up and from them large kettles were suspended which held combustible matter. The burning of this material conveyed the intelligence that danger was at hand.
One of the earliest beacon poles was erected on Beacon Hill, in Boston, about 1634. A watchman was constantly at the place to give the signal on the approach of danger. That beacon pole was a tall mast, firmly supported, about seventy feet in height. Tree nails were driven into it to enable the watchman to ascend, and near its top an iron crane projected which supported an iron skeleton frame. In this frame was placed a barrel of tar to be fired when the occasionrequired the signal. This beacon was more than two hundred feet above the sea level, and the light of it, therefore, could be seen for a great distance inland. Many of the early settlements in New England were made upon the tops of hills in order that the people might the more quickly and easily see the approach of Indians and signal the news to other settlements by bonfires.
SIGNALING BY BEACON FIRES.
SIGNALING BY BEACON FIRES.
A second method of signaling was by the use of the semaphore. This was invented by Claude Chappe and was adopted by the French Government in 1794. It consists of an upright post, which supports a horizontal bar or arm, which can be put at various angles. In order to carry out this system of signaling, stations must previously be agreed upon and signal officers constantly on duty. If the intelligence was to be conveyed to a considerable distance intermediate stations must be had. The second station received the signal from the first and transmitted it to the third, and so on. This proved to be a very difficult operation and was never extensively used.
A third and successful form of signaling was by the motion of flags. During our Civil War the army made much use of military signals. The system was devised by Major Myer and was continued through the war, not only in thearmy but on naval vessels. When the stations were less than five miles apart signaling was considered to be at very short range. Messages have been sent ten miles by means of a pocket handkerchief attached to a twelve-foot rod. With the regular flags and staffs used by the signal corps during the war, signals were often read twenty-five miles away, and it is said that single words have been read at a distance of forty miles.
In the early spring of 1863 General Peck was in command of the Union forces at Suffolk, Virginia. He had under him about ten thousand men and had thoroughly fortified the place by a connected system of forts, redoubts, and breast-works. His outmost signal station was placed on an elevated plateau across the Nansemond River. This station was made by sawing off the top of a tall pine tree and placing thereon a small platform surrounded by a railing. The signal officer would tie his horse at the foot of the tree and mount to the platform by a rope ladder.
Early one morning in March, this signal officer suddenly observed the head of a column of troops emerging from the woods in the rear. This was the advance guard of two Confederate corps under General Longstreet. Instantly he caught up his signal flag and as quickly as possible signaled to the town the approach of the enemy. Picking up his signal book he hurried down the ladder, mounted his horse and galloped away. Before he could reach his saddle, however, the Confederates were within rifle range and fired at him. They did not succeed in hitting him and he escaped safely to his friends.
The signal had been seen and was quickly repeated to all parts of the fortified town. The drums instantly beat the long roll and, within five minutes from the time his signalwas given, and before General Longstreet could swing out his light battery and open fire, the entire Federal force was under arms and the artillery in the nearest battery had opened a raking fire. The briskness of this fire from the Federal battery soon obliged Longstreet to withdraw his forces to the cover of the woods. Had it not been for the promptness of the signal officer it is possible that the town might have been captured.
A notable use of this system of army signals occurred in the campaign of General Miles against the Apaches in New Mexico and Arizona in 1886. He established a system of thirteen signal stations in that country, over which, during a period of four months, more than eighteen hundred messages were sent. The savages were surprised and confounded by the way intelligence of their movements became known hundreds of miles distant.
As early as 1861 Moses G. Farmer introduced a successful method of signaling which afterward was employed by the officers of the United States Coast Survey on Lake Superior. This system was by means of mirrors which were able to reflect the sunlight between stations ninety miles apart. This method is called the heliographic system. The French have used it among the islands of the Indian Ocean where the stations are on mountain peaks sometimes 135 miles apart. Even this long-range signaling has been surpassed by our own Signal Corps, which has succeeded in sending messages by our method from Mount Uncompahgre in Colorado to Mount Ellen in Utah, a distance of 183 miles. During the siege of Paris, messages by the use of the calcium light, concentrated and directed by lenses, were sent from one point to another.
A very unique form of signaling was employed by NewYork State at the opening of the Erie Canal, in 1825. The cannon, which had been captured by Commodore Perry at the time of his famous victory on Lake Erie, were placed at intervals along the line of the canal. When the first canal boat started from Buffalo, the first cannon was fired. When the sound was heard at the second cannon, that was discharged; and so on, the entire length of the canal. Two hours after the start at Buffalo the news had reached New York.
All these various methods of communication at long range have proved more or less objectionable and unsatisfactory. It was natural, therefore, that as soon as it was known that electricity could be conducted by wires from one place to another, experiments should be begun in the hope of finding some possible means of conveying intelligence by it. Perhaps the earliest suggestion was in a letter published inThe Scots Magazine, of February, 1753. The letter was signed "C. M.", which probably meant Charles Morrison, a young Scotch surgeon. He proposed to use as many insulated conductors as there were letters in the alphabet. Each wire was to represent one letter only, and the message would be sent by charging the several wires in succession so that the operator in receiving it would be obliged to notice the order of movement among the wires. From that simple beginning inventors proceeded to suggest first one thing and then another, but they found so many difficulties that it seemed impossible to overcome them all.
THE TELEGRAPH.
ELECTRIC WIRES.
ELECTRIC WIRES.
Onthe second day of April, 1872, in the city of New York, the life of a benefactor of his race, an aged man who had seen more than fourscore years of mingled trial and triumph, was ended. That man was Prof. Samuel Finley Breese Morse, the inventor of the electric telegraph. His name is as widely known the world over as that of Washington, or Cæsar, or Aristotle. His long life had been extremely checkered. He had passed through troubles, trials, anxieties, disappointments, bereavements; he had been subject to persecutions, losses, poverty, toil, discouragements; he had met with successes, gains, wealth, luxury, honors, fame; and finally the homage of republics, kingdoms, empires had been laid at his feet. He was never cast down, never unduly elated. He bore all his poverty and disappointmentsand wore all his honors and wealth with the "grace of a Christian and the calmness of a philosopher."
Professor Morse was born at the foot of Breed's Hill in Charlestown, Massachusetts, April 27th, 1791. He was the oldest of three brothers. His father was a very distinguished man in his day; for more than thirty years the pastor of a church in Charlestown, a noted preacher, a good historian, the author of many books, and, particularly, the father of the science of geography in the United States. Professor Morse inherited from both his father and his mother those traits of character which enabled him to succeed in his great life work, in spite of discouragements, obstacles, and opposition. His ancestors were all noted for their "intelligence, energy, original thinking, perseverance, and integrity."
How we would like to step into the little schoolroom and see Samuel at his first school. He was four years of age. His teacher was known as "Old Ma'am Rand," an invalid who could not leave her chair. She governed the uneasy little urchins with a long rattan that would reach across the small room where she kept her school. At seven years of age Samuel was sent to Andover to a preparatory school, kept by Mr. Foster; here he fitted for Phillips Academy and, in that famous institution, under the direction of Mark Newman, he prepared for Yale College, where he was graduated in 1810.
While in college he was under the instruction of Jeremiah Day in natural philosophy and paid great attention to the subject of electricity, getting everything that was known about it at that time. Professor Day said: "Morse was often present in my laboratory during my preparatory arrangements and experiments, and thus was made acquainted with them." On leaving college Morse had a burning ambition to be a portrait painter. He put himself under the instructionof Washington Allston, and went with him to England to pursue his favorite study. Is it not a little singular that Morse, who invented the telegraph, was a student under Allston, and that Robert Fulton, who invented the American steamboat, was a student under West, another famous American painter?
One day Mr. Allston introduced young Morse to Benjamin West, whose fame at that time was as wide as the world of art. West was in his studio painting his "Christ Rejected." After a time he began a critical examination of Mr. Morse's hands and at length said: "Let me tie you with this cord, and take that place while I paint the hands of our Saviour." Morse of course complied; West finished his work and, releasing him, said, "You may say now, if you please, you had a hand in this picture."
Morse had many interesting experiences in England during his four years' study under Allston. He returned to America in 1815, and from that time for about fifteen years devoted himself to painting and inventing. He was for some time professor of the fine arts in the University of the City of New York, and during all these years he paid much attention to the study of electricity.
After three years spent in Europe, he returned in 1832 on the packet shipSully. In the early part of the voyage, one day at the dinner table, the conversation turned to the subject of electro-magnetism. Professor Morse remarked: "If the presence of electricity can be made visible in any part of the circuit, I see no reason why intelligence may not be transmitted by electricity."
His mind could think of nothing else; this one idea had taken complete possession of his soul; all that he had learned in former years, his experiments with Professor Day at YaleCollege, and his later studies, were all revived and drawn upon for ways and means to accomplish the thing he had in mind. He withdrew from the table and went upon deck. He was in mid-ocean, the sky everywhere above him, the sea everywhere below him. As the lightning comes out of the east and shines unto the west, so swift and so far was that instrument to work which was taking shape in his mind.
He could not fail, for patience, perseverance, and hope were hereditary traits in his character. He was just at the maturity of manhood, forty-one years of age; from that time this one idea absorbed his mind. All his powers were concentrated upon this one subject, the electric telegraph.
Now began a series of experiences such as probably no other man ever passed through. Scarcely did any one ever suffer so much, endure so much, fail so many times to accomplish his darling object, as did Morse. He completed his invention; he perfected it. He devised his alphabet consisting of long and short marks and dots; he obtained a patent for it; but he had not the money to put the invention in operation. Years of trouble and even abject poverty followed. He was so reduced at one time that he was without food for twenty-four hours. He applied to Congress again and again for a grant to enable him to build and put in operation a trial line between Baltimore and Washington.
On the morning of the 4th of March, 1843, as Professor Morse came down to breakfast, at his hotel in Washington, a young lady met him and said:
"I have come to congratulate you, sir."
"For what, my dear friend?" asked the professor.
"On the passage of your bill."
That bill was for the appropriation by Congress of $30,000 for the purpose of "constructing a line of electric-magnetictelegraph" under the direction of Professor Morse. The bill had passed the House some days before. It had been favorably reported to the Senate, but there were a hundred and forty bills before it upon the calendar which were to be taken up in their regular order. Professor Morse had remained in the Senate chamber till late in the evening. His friends informed him that it was impossible for the bill to be reached, as the Senate was to adjourn at midnight. He had, therefore, retired to his hotel thoroughly discouraged. Imagine then, if you can, his surprise and his joy when Miss Ellsworth the daughter of his friend, Hon. H. L. Ellsworth, of Connecticut, the commissioner of patents, told him that in the closing moments of the session the bill had passed without a division.
MORSE HEARS OF HIS SUCCESS.
MORSE HEARS OF HIS SUCCESS.
He had invented the recording electric telegraph eleven years before on board the packet shipSully, upon his return voyage from Europe. He had spent eleven years in perfecting his plans, and in striving to secure the means for placing this great invention before the American people. During this time he had converted all his property into money and used all that money in pushing the enterprise. His only hope now was the bill before Congress. That bill had passed! With streaming eyes Professor Morse thankedMiss Ellsworth for her joyous announcement, and promised her that she should dictate the first message which should be sent over the wires.
And so it came to pass that on the 24th of May, 1844, these words furnished by Miss Ellsworth were telegraphed by Professor Morse from the Capitol at Washington, to his friend and assistant, Mr. Alfred Vail, at Baltimore, and immediately repeated back again:
"What hath God wrought!"
Well may we believe that the inventor spoke from the heart when he said years later: "No words could have been selected more expressive of the disposition of my own mind at that time, to ascribe all the honor to Him to whom it truly belongs."
A singular circumstance brought this invention to the attention of the people of the whole country as hardly anything else could have done. The National Democratic convention was in session at Baltimore. They had unanimously nominated James K. Polk for the Presidency. They then nominated Silas Wright as their candidate for Vice-President. This information was immediately telegraphed by Mr. Vail to Professor Morse and at once communicated by him to Mr. Wright, then in the Senate chamber. A few minutes later the convention was astonished by receiving a telegram from Mr. Wright, declining the nomination. The members were incredulous and declared that it was a trick of Mr. Wright's enemies. They voted to send a committee to Washington to interview Mr. Wright, and adjourned until the next morning.
On the return of this committee the truth of the message was corroborated, and thus this new telegraph, just completed, with a line just open for public patronage, was advertised through the delegates of this national convention to the peopleof every State in the Union. Astonishment was the sensation of the hour. The work bordered upon the miraculous. Ordinarily the motto is true that "To see is to believe," but this result staggered everybody.
Although the invention was complete and now in practical operation, yet Professor Morse's trials were not over. He received the congratulations of his friends, but he was also brought to the notice of his enemies. Let us pass over these trials and give attention to the more pleasant duty of considering his triumphs. The telegraph rapidly came into general use between the great cities of the country. Nor was its use confined to America; almost immediately it was successfully introduced into the various countries of Europe.
In 1854, the Supreme Court of the United States decided unanimously in favor of Professor Morse on all points involving his right to the claim of having been the original inventor of the electro-magnetic telegraph. In 1846, Yale College conferred upon him the degree of Doctor of Laws (LL.D.). He was made a member of various learned societies in France, Belgium, and the United States. He received a diamond decoration from the Sultan of Turkey, a gold snuff box containing the Prussian gold medal for scientific merit, the great gold medal of Arts and Science from Würtemberg, and the great gold medal of Science and Art from the Emperor of Austria. Other honors were conferred upon him by Denmark, Spain, Portugal, Italy, and Great Britain. At the instance of Napoleon III., Emperor of the French, representatives from various countries met in Paris in 1858 and decided upon a collective testimonial to Professor Morse, and the result of their deliberations was a vote of 400,000 francs.
No invention in ancient or modern times has wrought such a revolution—a revolution in all business, in commerce,trade, manufacturing and the mechanic arts, in politics, government, and in religious affairs. It is not given to mortal man to comprehend the greatness, to duly appreciate the grandeur, or to measure the utility of this remarkable invention. Over the mountains, through the valleys, under the seas flies the electric current, conveying all-important items of news from place to place, from country to country, from continent to continent.
"This electric chain from East to WestMore than mere metal, more than mammon can,Binds us together—kinsmen, in the best;Brethren as one; and looking far beyondThe world in an electric union blest."
"This electric chain from East to WestMore than mere metal, more than mammon can,Binds us together—kinsmen, in the best;Brethren as one; and looking far beyondThe world in an electric union blest."
"This electric chain from East to West
More than mere metal, more than mammon can,
Binds us together—kinsmen, in the best;
Brethren as one; and looking far beyond
The world in an electric union blest."
THE ATLANTIC CABLE.
Thegrowth of the telegraph was very much like that of the railroad. In 1844, the first line was opened, as we have seen, between Baltimore and Washington, a distance of forty miles. Within a few years lines were extended to the principal cities of the United States. In 1847, the Morse telegraph was introduced into Germany and rapidly spread over the entire continent of Europe. For the most part the wires were placed by the side of the railroad tracks,—wherever the railroad penetrated the telegraph went also.
Before many years had passed time was in a sense obliterated. Whatever happened in New York might be immediately known in Chicago. Incidents that took place in New Orleans might be narrated in Boston almost as soon as they occurred. London and Rome, Madrid and St. Petersburg, were united by the lightning rapidity of the telegraphic current. Meanwhile London and New York were as far apart as ever. News could be conveyed between the two hemispheres only by the comparatively slow-moving steamers. The next step in the development of communication must be the connecting of Europe with America by a telegraph wire.
The year before the passage of the act by which Congress provided Professor Morse with the means for completing the first telegraph line, he had stretched a wire under the water from Castle Garden, New York City, to Governor's Island in the harbor. He had thus proved that telegraph messagescould be sent under water. Ten years later a "submarine telegraph" was constructed, connecting England with the continent of Europe. Other short submarine cables were laid and successfully operated. To undertake, however, to lay a cable from Europe to America, thousands of miles long and hundreds of fathoms below the surface of the ocean, was an entirely different matter. A few enthusiastic men, among them Professor Morse, believed that it could be done, but the majority of people viewed it as an impossibility.
Was there any other way to connect the two worlds by an electric wire? Might it not be possible to build a telegraph line from Europe, starting from some point in Russia, across Northern Asia, to the Behring Straits? Might not a comparatively short cable be laid to Russian America (for Alaska had not then been sold to the United States), which could connect with a telegraph line to be erected across the continent to New York City?
Think of the magnitude of this proposition! In place of laying a submarine cable across the Atlantic Ocean it was proposed to traverse the entire circuit of the earth, except the Atlantic, by a telegraph line. It was proposed to construct across the wilds of Siberia, where no railroad had been built, a telegraph line thousands of miles in length; and, besides laying a cable, to build another line of great length from the Aleutian Islands to the Pacific coast of the United States, and thence across the Rockies, where at that time there was no railroad.
The undertaking was a great one, but a company was formed for the purpose of erecting a Russian-American telegraph. Experienced men were selected from English and American telegraphers and sent to Siberia to push the work. The prospects of success for the great enterprise were favorablewhen the news arrived that the long-talked-of Atlantic cable was at last laid and in complete working order. The Russian-American telegraph could not hope to compete with the cable, and the project was abandoned.
To Cyrus W. Field belongs the honor of pushing forward to successful completion the Atlantic cable. At the early age of fifteen Cyrus left the parsonage at Stockbridge, Connecticut, the home of his father, Rev. David Dudley Field, for New York. On arriving in the city he obtained employment as an errand boy in the dry-goods establishment of A. T. Stewart. Three years later, when he decided to give up his place as clerk in the store, the proprietor showed his appreciation of the boy's merits by urging him to remain, making him a liberal offer if he would do so. He decided to make a change, however, and was soon engaged with a brother in Lee, Massachusetts.
When young Field was twenty years of age he went into business for himself, and for the next thirteen years was known as one of New York's successful merchants. He then retired from active business, but found it a difficult task to do nothing. After a long voyage to South America, he returned to New York, where he gladly welcomed the opportunity that then came to busy himself.
The Newfoundland Electric Telegraph Company had been engaged for a year in the work of erecting a line on that island, preparatory to connecting it with the mainland by a cable. The company was compelled to stop work, however, for lack of the necessary means to continue. The leading member of the company, Frederick N. Gisborne, appealed to Mr. Field for material assistance. After several interviews, in the course of which he became deeply interested in the scheme, Mr. Field came to the conclusion not only thatthe plan of connecting Newfoundland with the United States was feasible, but also that Newfoundland was the best starting point for a cable to Ireland.
With characteristic energy Mr. Field went at once to work. He formed a new company and obtained extensive privileges from the governments of Newfoundland, Prince Edwards Island, and the State of Maine. Many months were spent in erecting the land telegraph across Newfoundland, over wild marsh and waste moor, rocks, hills, and forests. A cable, obtained in England, was unsuccessfully laid across the Gulf of St. Lawrence in 1855. The next year a second attempt was successful. The preliminary work was now completed.
More means and more influence were needed. Mr. Field organized in London the Atlantic Telegraph Company, and showed his own faith by personally subscribing for one-quarter of the stock. The governments of Great Britain and the United States liberally aided the new company and furnished ships for laying down the cable.
On the 7th of August, 1857, theNiagaraand theAgamemnonsailed from Ireland, each carrying 1,250 miles of cable. TheNiagarabegan paying out her line and all went well for three days. At nine o'clock on the evening of the tenth, however, the cable ceased working. Three hours later the electric current returned, to the intense relief of all; but before morning came the cry, "Stop her! back her! the cable has parted!"
With flags at half-mast the ships returned to Ireland. Half a million dollars had been lost already. Disheartened, but not discouraged, the company voted to increase its capital and try again the next year. This time the two steamers sailed directly to mid-ocean, spliced the two parts of thecable, and sailed away from each other, theAgamemnonfor Ireland and theNiagarafor Newfoundland. On the 17th of August the extremities of the cable were connected with the instruments and the work was done. In the space of thirty-five minutes there was flashed under the ocean the message:
"Europe and America are united by telegraph. Glory to God in the highest; on earth peace; good will toward men."
LAYING AN OCEAN CABLE.
LAYING AN OCEAN CABLE.
Messages and replies from the Queen to the President of the United States and from the mayor of London to the mayor of New York followed. The American people were wild with enthusiasm; they declared the Atlantic cable to be the greatest achievement of the age, and they heaped boundlesspraise upon the head of the persistent and courageous Field. Eighteen days afterward, the signals became unintelligible and the first Atlantic cable ceased to work.
Was all the time and money so far spent thrown away? No! for this first experiment paved the way for another and successful attempt. It is said also that one message, sent during these few days, saved the commercial world no less a sum than two hundred and fifty thousand dollars. For the time being, however, the project of an Atlantic cable was allowed to remain quiet.
THE GREAT EASTERN.
THE GREAT EASTERN.
Mr. Field was financially ruined. The Civil War in the United States occupied the thoughts of all for several years. But in time the company was ready to try again. A newly prepared cable was made, the twenty-three hundred miles of which weighed more than four thousand tons. The largest vessel in the world, theGreat Eastern, was employed to carry and lay it. On July 23d, 1865, the steamer started from Ireland and continued on its westward course until August 2d; then the cable parted, more than a thousand miles from the starting point. Nine days were spent in attempts to grapple for the cable, but all in vain.
The next year theGreat Easternagain set sail, with a new cable and with sufficient wire to complete the cable ofthe previous year, if possible. In fourteen days the steamer entered the harbor in Newfoundland. Two months later the same steamer again reached Newfoundland, having captured the missing end of the other wire, thereby completing two cables from Europe to America.
July 27th, 1866, was a joyous day in the life of Cyrus W. Field. For thirteen years he had thought of little else but the submarine cable. Failure after failure had not discouraged him; loss of property only stimulated him to further efforts. Now success had come. The new cable was more substantial than the other of eight years before. That had failed, but this would succeed. It did succeed. From that day to this telegraphic communication between Europe and America has been constant.
Submarine cables are now in extensive operation in all parts of the world. More than half a dozen cross the Atlantic, and lines have been constructed from England to India, from India to Australia, and from the United States to Mexico and South America. At the present time there are perhaps two hundred cables belonging to companies, and about five hundred belonging to government systems. These cables, all told, cover a distance of nearly a hundred thousand miles.
A recent incident is told that shows something of the greatness of the telegraph. In June, 1897, a great celebration took place in London, in honor of the sixty years that Queen Victoria had been upon the British throne. The Queen rode in a procession through streets packed with millions of people. Just as she left the palace she pressed an electric button. Instantly this message was sent to her colonies all over the world:
"From my heart I thank my beloved people. May God bless them. Victoria, R. I."
To forty different points in her empire sped the electric message. In sixteen minutes a reply came from Ottawa in Canada; then one by one answers came in from more remote provinces; until, before the Queen reached London Bridge, the Cape of Good Hope, the Gold Coast of Africa, and the great continent of Australia had sent responses to her message.
THE TELEPHONE.
Whenthe telegraph was invented, years ago, it seemed little less than a miracle that a message could be dictated in one city and received almost instantaneously in another city far distant from the sender. Scientists, however, began at once on the invention of something more wonderful. The telegraph lacks in one respect. By it messages must be sent exactly as dictated and cannot be corrected until the reply is received. In a sense, sending and receiving messages by telegraph is a form of conversation, but a conversation at arm's-length. To carry on a real conversation at long distances would be a great advance. An instrument prepared for this purpose would be called a telephone.
In 1875 Alexander Graham Bell invented the first successful electric telephone. This was exhibited at Salem, Massachusetts, and at Philadelphia at the Centennial Exhibition, and a patent for it was obtained. The apparatus of Bell's telephone is very simple, and practically consists of four parts: the battery, the wire which runs from the speaker to the hearer, a diaphragm against which the vibrations of the air produced by the voice of the speaker strike, and another diaphragm at the other end of the wire which reproduces similar vibrations and sends them to the ear of the listener. Elisha Gray of Boston made a similar invention and applied for a patent two hours after Bell's application was filed. The invention of Mr. Bell has proved a decided success.All telephonic operations, since this invention, have been based upon the instrument which he patented in 1876.
Mr. Bell was the son of a distinguished Scotch educator, Alexander Melville Bell. The father is noted for the invention of a new method for improving impediments in speech. This system of instruction is called "Bell's Visible Speech." It is used with great success in teaching deaf-mutes to speak.
A TELEPHONE.
A TELEPHONE.
His son Alexander was born in Edinburgh in 1847 and was educated at the University of Edinburgh. He removed to London when he was twenty years of age and was for a time in the University there. Three years later he went to Canada with his father, and at the age of twenty-five took up his residence in the United States, and became professor of vocal physiology in Boston University. He had been in this country but three years when he made his great invention, and its complete success gave him immense wealth. Later he invented the "photophone," in which a vibratory beam of light is substituted for a wire in conveying speech. This instrument has attracted much attention but has not proved of practical use. Professor Bell is a member of various learned societies and has published many scientific papers. His present home is in Washington.
Within ten years the art of telephoning has rapidly developed. This has stimulated inventions and brought into use a vast number of special contrivances for local and long-distancetransmission. The principal inventors of these new contrivances are Bell, Berliner, Edison, Hughes, Dolbear, Gray, Blake, and Peirce.
Nearly all of the telephone business of our country is carried on under licenses from the American Bell Telephone Company. The telephone lines at present in the United States would aggregate a distance of more than six hundred thousand miles, and there are more than half a million instruments in our country alone. The longest telephone line extends from Portland, Maine, via Boston, New York, and Chicago, to Milwaukee, a distance of more than thirteen hundred miles.
ALEXANDER BELL USING A LONG-DISTANCE TELEPHONE.
ALEXANDER BELL USING A LONG-DISTANCE TELEPHONE.
Let us consider for a moment the wonders of this marvelous invention, as compared with another no less marvelous in its way.
In 1867 Anson Burlingame was appointed by the Chinese Government special envoy to the United States and the great European governments, with power to frame treaties of friendship with those nations. This was an honor never before conferred on a foreigner. Mr. Burlingame accepted the appointment and, at the head of a large mission of distinguished Chinese officials, arrived in this country early in 1868, negotiated with our Government the "Burlingame Treaty," proceeded the same year to England, thence to France, the next year to Denmark, Sweden, Holland, andPrussia, and finally reached Russia early in 1870. He died in St. Petersburg after a few days' illness, on the 23d of February.
Now see what the telegraph did. His death occurred about half-past nine in the morning. As soon as possible the fact was telegraphed to our minister in Paris. He forwarded the news to our minister in London; by him it was cabled across the Atlantic, transmitted from the cable to Washington and delivered to Nathaniel P. Banks, a member of the House of Representatives from Massachusetts. General Banks read the dispatch to the House, and delivered offhand an extended eulogy upon the distinguished son of Massachusetts. That speech of General Banks was written out, sent to the telegraph office, transmitted by the electric current to the various cities of the country, put into type, printed in the evening newspapers, and the writer of this chapter read it at four o'clock in the afternoon of the same day that Mr. Burlingame died. This was done as early as 1870.
But what is that compared to the greater wonders of the telephone? That a man can "talk into" the little instrument, and his voice be heard and recognized, and his words understood, by his friend in a city five hundred or one thousand miles away, is indeed a miracle. Consider for a moment what is done by means of the switchboard in the central telephone office of a great city. Every one of the thousands of subscribers has his own instrument for transmitting and receiving messages. One of these subscribers rings a bell in his house or his business office which rings another bell at the central station; the attendant inquires "Hello! what number?" and receives a reply, "four, naught, eight, Tremont." The attendant by a simple switch, turned by a touch of the hand, makes the connection and rings the bell of that subscriber whose number is "408 Tremont." Number "408Tremont" steps to the instrument and in a quiet voice says "Hello! who is it?" Thus these two persons are placed in direct communication, and can talk with each other, back and forth, as long as they please.
This conversation is carried on between two different sections of the city where these two men live, but the same conversation may with equal ease be carried on between Boston and New York, between Boston and Washington, or between New York and Chicago. Thus time and distance are annihilated and the whole world stands, as it were, face to face.
But the marvel does not end here. The above conversation is carried on by means of a continuous wire which runs from one place to the other. If there are parallel wires, strange to say, the vibrations carried on in the one wire are liable to create, by induction, similar vibrations in the parallel wire. Here is an illustration:
Nearly twenty years ago, soon after the invention came into use, three gentlemen in Providence, Rhode Island, put up a private line between their three houses, making a circuit. Upon this line they carried on experiments and made a number of important discoveries. The evening was the time when they principally used their private telephone line. On a certain Tuesday evening these three gentlemen, conversing one with another, suddenly found themselves listening to strains of music. All three of them heard the same thing: the sound of a cornet and of one or two other musical instruments; then singing and a soprano voice. They wrote down the names of the pieces that were sung and the tunes that were played upon the instruments. They had no knowledge of the source of these sounds.
The next day, and for days following, these gentlemen went about the city inquiring of their friends everywhere ifthey knew of a concert on that Tuesday night where such pieces were sung and such tunes were played. Nobody had any knowledge of the affair. At length one of the gentlemen published an article in the ProvidenceJournal, describing what he had heard through his telephone wire on that Tuesday evening, giving the date, and asking any one who could inform him what the concert was and where it was, to give him the desired information. Then it transpired that this concert was a telephonic experiment.
The performers were at Saratoga, New York, and they were connected by a telephone wire with friends in New York City. The experiment had plainly demonstrated that the sounds made in singing and in playing numerous instruments could be clearly understood, by means of the telephone, from Saratoga to New York City. But it proved more than this. The vibrations in that telephone wire between Saratoga and New York induced the same vibrations in the parallel wire of the Western Union Telegraph Company. These vibrations were continued through New York City to Providence and onward. The private telephone line of these gentlemen was parallel to the wire of the Western Union Company which had been thus affected, and these vibrations were picked off from the telegraph wire and conveyed by this parallel telephone wire to the receivers at these three houses.
What will be the next wonderful invention? The telegraph transmits your thoughts and delivers them in writing; the telephone transmits your thoughts and delivers them to the ear by sounds. Some day, perhaps, you may step into a cabinet in Boston and have your photograph taken in New York City by aid of an electric wire, the telephote. Just as the telephone transmits the sounds, the telephote may transmit the light and give not only light and shade, but the colors of the solar spectrum.
CONCLUSION.
Wehave now considered six groups of topics connected with the growth and development of our country. We have looked into the houses of the Indians and of the settlers in the colonial times, and into the larger and more elaborate homes of to-day. We have considered improved means of heating and better methods of lighting. We have noticed improvements in machinery for planting, cultivating, and harvesting the products of the soil. We have seen the great advance that has been made in the manufacture of our clothing, through improved cotton and woolen machinery and the sewing machine. We have traveled by land and by water, at home and abroad, on foot, on horseback, in stagecoaches, by canals, steamboats, and railroads. Finally we have read and thought and studied about language, the printing press, our postal system, the telegraph and the telephone.
We have seen our country when it was wholly east of the Mississippi River, whereas now it is extended even to the great western ocean. A century ago our territory embraced about eight hundred thousand square miles; now it is nearly five times as great, with large areas of recently acquired Spanish islands to be added to that. The population of the United States in 1790 was less than four millions; a hundred years later it was sixty-three millions. It is now probably between seventy and seventy-five millions. Our exports then were about fifty million dollars in value; this year they aremore than one thousand millions. A century since, we imported into this country goods to the value of about seventy million dollars. This was largely in excess of our exports. To-day our exports are of far greater value than our imports.
At the beginning of our national government we were almost altogether engaged in the pursuits of agriculture. Now our people are largely massed in cities and large towns, while our mechanical and manufacturing interests are of immense proportions.
A hundred years ago the people speaking the seven principal languages of Europe numbered about one hundred and fifty millions. To-day they number about four hundred millions. The present number is therefore almost three times that of a century ago. At that time the English-speaking people ranked fifth among the seven, and numbered but twenty millions. To-day they lead the list, and number one hundred and twenty millions; there are six times as many people to-day using the English language as there were a century ago. The inhabitants of our country outnumber all other English-speaking people in the whole world.
Our country occupies, all things considered, the best portion of the world. This includes the Atlantic slope, the great Mississippi basin, and the Pacific slope, and our whole territory, except our new colonial possessions, lies within the north temperate zone. We therefore have a great variety of soil and climate; the soil is the most fertile and the climate the most salubrious of the whole earth. We have an almost infinite variety of productions and our people are engaged in the entire round of human industries.
The United States has made vast strides in industry, in wealth, in intelligence, and in the comforts of life. Civilization has rapidly advanced during the whole of this century.If the great contest of the future is to be between the Anglo-Saxon race and the rest of the world, surely this great republic must have the leading position in that contest.
The American people to-day form a nation of readers. In newspapers, magazines, and books of all sorts and upon every subject the American press is prolific. We have a system of public schools well established in every State and every Territory of our Union, and supported by taxation, and very generally the children are obliged by compulsory laws to attend school. We are living in an age of great activity and rapid advancement. The young people of our republic who are attending school to-day are to be congratulated upon their good fortune; and it becomes them to magnify their opportunities, to appreciate their advantages, and to be especially loyal to their country, its government, and its institutions.