Chapter V

Fig. 6Fig. 6

In Fig. 6,Frepresents the tangential force that tends to cause skidding.Wrepresents the weight of the vehicle in pounds,θ= the angle of superelevated surfacec-d, with the horizontalc-a.Rrepresents the radius of the curve upon which the vehicle is moving.wis the component of the weight parallel to the surfacec-d,v= velocityof the vehicle in feet per second.m= mass of vehicle =W⁄gθ

w = Wtanθ

F=mv2=wv2RgR

IfF = wthere will be no tendency to skid; hence the rate of superelevation necessary in any case is as follows:

Wtanθ=Wv2gRtanθ=v2gR

The amount of superelevation required, therefore, varies as the square of the velocity and inversely as the radius of the curve.

Theoretically, the amount of the superelevation should increase with a decrease in the radius of the curve and should also increase as the square of the speed of the vehicle. On account of the variation in speeds of the vehicles, the superelevation for curves on a highway can only be designed to suit the average speed. At turns approaching ninety degrees, the curve is likely to be of such short radius that it is impossible to maintain the ordinary road speed around the curve, even with the maximum superelevation permissible. It is good practice to provide the theoretical superelevation on all curves having radii greater than 300 feet for vehicle speeds of the maximum allowed by law, which is generally about 25 miles per hour. Where the radii are less than 300 feet, the theoretical superelevation for the maximum vehicle speeds gives a superelevation too great for motor trucks and horse drawn vehicles and generally no charge is made in superelevation for radii less than 300 feet, but all such curves are constructed with the same superelevation as the curve with 300 foot radius.

The diagram in Fig. 7 shows the theoretical superelevation for various curve radii.

Fig. 7. Curves showing Theoretical Superelevation for Various Degrees of Curve for Various Speeds of VehicleFig. 7. Curves showing Theoretical Superelevation for Various Degrees of Curve for Various Speeds of Vehicle

At the intersection of important highways, the problem is complicated by the necessity for providing for through traffic in both directions and for traffic which may turn in either direction and the engineer must provide safe roadways for each class of traffic.

Tractive Resistance.—The adoption of a policy regarding the grades on a road involves an understanding of the effect of variation in the character of the surface and in rate of grade upon the energy required to transport a loadover the highway. The forces that oppose the movement of a horse drawn vehicle are fairly well understood and their magnitude has been measured by several observers, but comparatively little is known about the forces opposing translation of rubber tired self-propelled vehicles.

The resistance to translation of a vehicle is made up of three elements: resistance of the road surface to the rolling wheel, resistance of the air to the movement of the vehicle and internal friction in the vehicle itself.

Rolling Resistance.—When the wheel of a vehicle rolls over a road surface, both the wheel and the surface are distorted. If the wheel has steel tires and the road surface is plastic, there will be considerable distortion of the road surface and very little of the wheel. A soft rubber tire will be distorted considerably by a brick road surface. Between these extremes there are innumerable combinations of tire and road surface encountered, but there is always a certain amount of distortion of either road surface or wheel, or of both, which has the same effect upon the force necessary for translation as a slight upward grade. When both the tire and the road surface strongly resist distortion (as steel tires on vitrified brick paving), the resistance to translation is low but the factor of impact is likely to be introduced. Where impact is present, energy is used up in the pounding and grinding of the wheels on the surface, and this factor increases as the speed of translation, and may be a considerable item. Impact is especially significant on rough roads with motor vehicles, particularly trucks, traveling at high speed. These two factors (impact and rolling resistance) combined constitute the major part of the resistance to translation for horse drawn vehicles.

Internal Resistance.—For horse drawn vehicles, the internal resistance consists of axle friction, which is small in amount. For self-propelled vehicles, the internal resistance consists of axle friction and friction in the drivingmechanism, of which gear friction and the churning of oil in the gear boxes is a large item. Internal friction is of significance in all self-propelled vehicles and especially so at high speeds.

Air Resistance.—At slow speeds, the resistance of still air to translation is small, but as the speed increases, the air resistance increases rapidly and at the usual speed of the passenger automobile on the road becomes a very considerable part of the total resistance to translation. This factor has no significance in connection with horse drawn vehicles, but is to be taken into account when dealing with self-propelled vehicles at speeds in excess of five miles per hour.

Many determinations of tractive resistance with horse drawn vehicles have been made from time to time and these show values that are fairly consistent when the inevitable variations in surfaces of the same type are taken into account. Table 4 is a composite made up of values selected from various reliable sources and Table 5 is from experiments by Professor J. B. Davidson on California highways.

SurfaceTractive force per tonEarth packed and dry100Earth dusty106Earth muddy190Sand loose320Gravel good51Gravel loose147Cinders well-packed92Oiled road—dry61Oiled road—wet108Macadam—very good38Macadam—average46Sheet asphalt38Asphaltic concrete40Vitrified brick—new56Wood block—good33Wood block—poor42Cobblestone54Granite tramway27Asphalt block52Granite block47

Test No.Kind of RoadCondition of RoadTractiveTotal lb.Resistanceper ton lb.29-30-31Concrete (unsurfaced)Good, excellent83.027.6[2]11-12Concrete (unsurfaced)Good, excellent90.030.026-27-28Concrete 3/8-in. surface asphaltic oil and screeningsGood, excellent147.649.213-14Concrete 3/8-in. surface asphaltic oil and screeningsGood, excellent155.051.69-10Macadam, water-boundGood, excellent193.064.322-23Topeka on concreteGood, excellent205.568.58GravelCompact, good condition225.075.0[3]45-48Oil macadamGood, new234.578.2[4]46-47Oil macadamGood, new244.081.338GravelPacked, in good condition247.082.318-19-20Topeka on plankGood condition, soft, wagon left marks265.088.334Earth roadFirm, 1½-in. fine loose dust276.092.024-25Topeka on plankGood condition, but soft278.092.61-2-5Earth roadDust ¾ to 2 in.298.099.33-3EarthMud, stiff, firm underneath654.0218.06-7GravelLoose, not packed789.0263.0

[1]Prof. J. B. Davidson inEngineering News-Record, August 17, 1918.

[1]Prof. J. B. Davidson inEngineering News-Record, August 17, 1918.

[2]Graphic record indicates that the load was being accelerated when test was started.

[2]Graphic record indicates that the load was being accelerated when test was started.

[3]Drawn with motor truck at 2½ miles per hour.

[3]Drawn with motor truck at 2½ miles per hour.

[4]Drawn with motor truck at 5 miles per hour.

[4]Drawn with motor truck at 5 miles per hour.

Comparatively few data are available showing the tractive resistance of motor vehicles, but the following tables are based on sufficient data to serve to illustrate the general trend.

These data on the tractive resistances of an electric truck with solid rubber tires on asphalt and bitulithic, wood, brick and granite block, water-bonded and tar macadam, cinder and gravel road surfaces were obtained by A. E. Kennelly and O. R. Schurig in the research division of the electrical engineering department of the Massachusetts Institute of Technology, and are published in Bulletin No. 10 of the division.

An electric truck was run over measured sections, ranging from 400 to 2600 feet in length, surfaced with these various materials, at certain speeds per hour, ranging from about 8 to about 15.5 miles per hour. The result of the observations of speeds, tractive resistances, conditions of surfaces, etc., were collected and studied in various combinations.

Type of SurfaceCondition of SurfaceTractiveResistancein lbs.per ton10 milesper hr.TractiveResistancein lbs.per ton12.4 milesper hr.AsphaltGood20.4AsphaltPoor22.625.5Wood blockGood24.225.3Brick blockGood24.626.6Granite blockGood40.345.75Brick blockSlightly worn25.128.0Granite block with cement jointsGood25.530.2Macadam, water bondedDry and hard23.325.8Macadam, water bondedFair, heavily oiled35.938.7Macadam, water bondedPoor, damp, some holes36.341.6Tar macadamGood25.728.0Tar macadamVery soft36.838.7Tar macadamMany holes, soft, extremely poor52.460.6CinderFair, hard27.530.6GravelFair, dusty30.433.0

Fig. 8Fig. 8

Effect of Grades.—Grades increase or decrease the resistance to translation due to the fact that there is a component of the weight of the vehicles parallel to the road surface and opposite in direction to the motion when the load is ascending the hill and in the same direction when the vehicle is descending. In Fig. 8Wrepresents the weight of the vehicle, acting vertically downward,wis the component of the weight perpendicular to the road surface andW2is the component parallel to the road surface.

W2=Wtanθ.tanθ=0.01 × per cent of grade.W2=0.01W× per cent grade.W2=0.01 × 2000 × per cent of grade, for each ton of weight of vehicle.HenceW2=20 lbs. per ton of load for each one per cent of grade.

The gravity force acting upon a vehicle parallel to the surface on a grade is therefore 20 lbs. per ton for each one per cent of grade and this force tends either to retard or to accelerate the movement of the vehicle.

LetF= the sum of all forces opposing the translation of a vehicle.

F = fr+ fi+ fp+ fa+ fg(1)

where

fr= rolling resistance of road surface.fi= resistance due to internal friction in the vehicle.fp= resistance due to impact of the road surface.fa= resistance due to air.fg= resistance due to grade, which is positive when ascending and negative when descending.

All of the above in pounds per ton of 2000 lbs.

LetT= the tractive effort applied to the vehicle by any means.

T>= must be greater thanFin order to move the vehicle.

By an inspection of (1), it will be seen that for a given vehicle and any type of road surface, all terms are constant exceptfaandfg.favaries as the speed of the vehicle and the driver can materially decreasefaby reducing speed.fgvaries with the rate of grade. For any vehicle loaded for satisfactory operation on a level road with the power available, the limiting condition is the factorfg. If the load is such as barely to permit motion on a level road, any hill will stall the vehicle. Therefore, in practice the load is always so adjusted that there is an excess of power on a level road. If draft animals are employed the load is usually about one fourth of that which the animals could actually move by their maximum effort for a short period. With motor vehicles, the excess power is provided for by gearing.

If it be assured a load of convenient size is being moved on a level road by draft animals, there is a limit to the rate of grade up which the load can be drawn by the maximum effort of the animals.

Tests indicate that the horse can pull at a speed of 2½miles per hour, an amount equal to 1/8 to 1/10 of its weight, and for short intervals can pull ¾ of its weight. The maximum effort possible is therefore six times the average pull, but this is possible for only short intervals. A very short steep hill would afford a condition where such effort would be utilized. But for hills of any length, that is, one hundred feet or more but not to exceed five hundred feet, it is safe to count on the draft animal pulling three times his normal pulling power for sustained effort.

The limiting grade for the horse drawn vehicle is therefore one requiring, to overcome the effect of grade, orfg, a pull in excess of three times that exerted on the level.

A team of draft animals weighing 1800 lbs. each could exert a continuous pull of about 1/10 of their weight or 360 lbs. If it be assumed that the character of the vehicle and the road surface is such thatfr+fi+fp+fa= 100 lbs. per gross ton on a level section of road, then the gross load for the team would be 3.6 tons. The same team could for a short time exert an additional pull of three times 360 lbs. or 1080 lbs. For each 1 per cent of grade a pull of 20 lbs. per ton would be required orfgfor the 3.6 tons load would be 72 lbs. for each per cent of grade. At that rate, the limiting grade for the team would be fifteen per cent.

If, however, the character of the vehicle and the road surface were such thatfr+fi+fp+fa= 60 lbs. per gross ton on a level section of road, the gross load for the team on the level would be 6 tons, and the limiting grade 9 per cent.

The above discussion serves to illustrate the desirability of adopting a low ruling or limiting grade for roads to be surfaced with a material having low tractive resistance and the poor economy of adopting a low ruling grade for earth roads or roads to be surfaced with material of high tractive resistance.

It may be questioned whether horse drawn traffic should be the limiting consideration for main trunk line highways,but it is certain that for a number of years horse drawn traffic will be a factor on secondary roads.

In the case of motor vehicles, excess power is provided by means of gears and no difficulty is encountered in moving vehicles over grades up to 12 or 15 per cent, so that any grade that would ordinarily be tolerated on a main highway will present no obstacle to motor vehicles, but the economy of such design is yet to be investigated.

Energy Loss on Account of Grades.—Whether a vehicle is horse drawn or motor driven, energy has been expended in moving it up a hill. A part of this energy has been required to overcome the various resistances other than grade, and that has been dissipated, but the energy required to translate the vehicle against the resistance due to grade has been transformed into potential energy and can be partially or wholly recovered when the vehicle descends a grade, provided the physical conditions permit its utilization. If the grade is so steep as to cause the vehicle to accelerate rapidly, the brakes must be applied and loss of energy results. The coasting grade is dependent upon the character of the surface and the nature of the vehicle. In the cases discussed in the preceding paragraph, the coasting grades would be five per cent and three per cent respectively. For horse drawn vehicles then the economical grades would be three and five per cent, which again emphasizes the necessity of lower grades on roads that are surfaced than on roads with no wearing surface other than the natural soil.

The theory of grades is somewhat different when motor vehicles are considered, since it is allowable to permit considerably higher speed than with horse drawn vehicles before applying the brakes and the effect of grade can be utilized not only in translating the vehicle down the grade, but also in overcoming resistances due to mechanical friction and the air. On long grades, a speed might be attained that would require the use of the brake or the samecondition might apply on very steep short grades. There is at present insufficient data on the tractive resistance and air resistance with motor vehicles to permit the establishing of rules relative to grade, but experience indicates a few general principles that may be accepted.

If a hill is of such rate of grade and of such length that it is not necessary to use the brake it may be assumed that no energy loss results so far as motor vehicles are concerned. Where there is no turn at the bottom of the hill and the physical condition of the road permits speeds up to thirty-five or forty miles per hour grades of five per cent are permissible if the length does not exceed five hundred feet and grades of three per cent one thousand feet long are allowable. It is a rather settled conviction among highway engineers that on trunk line highways the maximum grade should be six per cent, unless a very large amount of grading is necessary to reach that grade.

Undulating Roads.—Many hills exist upon highways, the grade of which is much below the maximum permissible. If there are grades ranging from 0 to 4 per cent, with a few hills upon which it is impracticable to reach a grade of less than six per cent, it is questionable economy to reduce the grades that are already lower than the allowable maximum. It is especially unjustifiable to incur expense in reducing a grade from two per cent to one and one-half per cent on a road upon which there are also grades in excess of that amount. The undulating road is not uneconomical unless the grades are above the allowable maximum or are exceptionally long or the alignment follows short radius curves.

Safety Considerations.—On hills it is especially desirable to provide for safety and curves on hills are always more dangerous than on level sections of road. Therefore, it is desirable to provide as flat grades as possible at the curves and to cut away the berm at the side of the road so as to give a view ahead for about three hundred feet.Whether a road be level or on a hill, safety should always be considered and the most important safety precaution is to provide a clear view ahead for a sufficient distance to enable motor vehicle drivers to avoid accidents.

Fig. 9.—Types of Guard RailsFig. 9.—Types of Guard Rails

Guard Railing.—When a section of road is on an embankment, guard rails are provided at the top of the side slope to serve as warnings of danger, and to prevent vehicles from actually going over the embankment in case of skidding, or if for any reason the driver loses control. These are usually strongly built, but would hardly restrain a vehicle which struck at high speed. But they are adequate for the protection of a driver who uses reasonable care. A typical guard rail is shown in Fig. 9, but many other designs of similar nature are employed. At very dangerous turns a solid plank wall six or eight feet high is sometimes built of such substantial construction as to withstand the severest shock without being displaced.

Trees, shrubs and the berms at the side of the road in cuts are particularly likely to obstruct the view and should be cleared or cut back so far as is necessary to provide the proper sight distance.

Width of Roadway.—For roads carrying mixed traffic, 9 feet of width is needed for a single line of vehicles and 18 feet for 2 lines of vehicles. In accordance with the above, secondary roads, carrying perhaps 25 to 50 vehiclesper day, may have an available traveled way 18 feet wide. Those more heavily traveled may require room for three vehicles to pass at any place and therefore have an available traveled way 30 feet wide. Greater width is seldom required on rural highways, and 20 feet is the prevailing width for main highways.

Cross Section.—The cross section of the road is designed to give the required width of traveled way, and, in addition, provide the drainage channels that may be needed. In regions of small rainfall the side ditches will be of small capacity or may be entirely omitted, but usually some ditch is provided. The transition from the traveled way to ditch should be a gradual slope so as to avoid the danger incident to abrupt change in the shape of the cross section. The depth of ditch may be varied without changing to width or slope of the traveled part of the road as shown in Fig. 10.

Fig. 10Fig. 10

Control of Erosion.—The construction of a highway may be utilized to control general erosion to some extent, particularly when public highways exist every mile or two and are laid out on a gridiron system, as is the case in many of the prairie states. The streams cross the highways at frequent intervals and the culverts can be placed so as effectually to prevent an increase in depth of the stream. This will to some extent limit the erosion above the culvert and if such culverts are built every mile or two along the stream, considerable effect is produced.

Where small streams have their origin a short distance from a culvert under which they pass, it is sometimes advisable to provide tile for carrying the water under the road, instead of the culvert, and, by continuing the tile into the drainage area of the culvert, eliminate the flow of surface water and reclaim considerable areas of land.

Erosion in the ditches along a highway can be prevented by constructing weirs across the ditch at frequent intervals, thus effectually preventing an increase in the depth of the ditch.

Wherever water flows at a velocity sufficient to produce erosion or where the drainage channel changes abruptly from a higher to a lower level, paved gutters, tile or pipe channels should be employed to prevent erosion.

Private Entrances.—Entrance to private property along the highway is by means of driveways leading off the main road. These should always be provided for in the design so as to insure easy and convenient access to the property. The driveways will usually cross the side ditch along the road and culverts will be required to carry the water under the driveway. Driveways that cross a gutter by means of a pavement in the gutter are usually unsatisfactory, and to cross the gutter without providing a pavement is to insure stoppage of the flow at the crossing. The culvert at a driveway entrance must be large enough to take the ditch water readily or it will divert the water to the roadwayitself. Generally end walls on such culverts are not required as in the case of culverts across a highway.

Aesthetics.—Much of the traffic on the public highways is for pleasure and relaxation and anything that tends to increase the attractiveness of the highways is to be encouraged. Usually the roadside is a mass of bloom in the fall, goldenrod, asters and other hardy annuals being especially beautiful. In some states wild roses and other low bushes are planted to serve the two-fold purpose of assisting to prevent erosion and to beautify the roadside. In humid areas trees of any considerable size shade the road surface and are a distinct disadvantage to roads surfaced with the less durable materials such as sand-clay or gravel. It is doubtful if the same is true of paved surfaces, but the trees should be far enough back from the traveled way to afford a clear view ahead. Shrubs are not objectionable from any view-point and are to be encouraged for their beauty, so long as they do not obstruct the view at turns.

Highways constructed without the addition of surfacing material to the natural soil of the right-of-way are usually called earth roads. But if the natural soil exhibits peculiar characteristics or is of a distinct type, the road may be referred to by some distinctive name indicating that fact. Hence, roads are referred to as clay, gumbo, sandy or caliche roads as local custom may elect. In each case, however, the wearing surface consists of the natural soil, which may have been shaped and smoothed for traffic or may be in its natural state except for a trackway formed by the vehicles that have used it.

Variations in Soils.—The nature of the existing soil will obviously determine the serviceability and physical characteristics of the road surface it affords. That is to say that even under the most favorable conditions some earth roads will be much more serviceable than others, due to the better stability of the natural soil. Some soils are dense and somewhat tough when dry and therefore resist to a degree the tendency of vehicles to grind away the particles and dissipate them in the form of dust. Such soils retain a reasonably smooth trackway in dry weather even when subjected to considerable traffic. Other soils do not possess the inherent tenacity and stability to enable them to resist the action of wheels and consequently grind away rapidly. Roads on such soils become very dusty. These are the extremes and between them are many types of soils or mixtures of soils possessing varying degrees of stability, and, in consequence, differing rates of wear.Similarly the various soils exhibit different degrees of stability when wet.

It is to be expected that soils will differ with the geographical location, for it is well known that there is a great variation in soils in the various parts of the world. But wide differences are also encountered in the soil on roads very near each other and even on successive stretches of the same road. It is for this reason that earth roads often exhibit great differences in serviceability even in a restricted area.

Variation in Rainfall.—The stability of a soil and its ability to support the weight of vehicles varies greatly with the amount of water in the soil. A certain small amount of moisture in the soil is beneficial in that practically every soil compacts more readily when moist than when dry because the moisture aids in binding together the particles. But most soils also become unstable when the amount of water present is in excess of that small amount referred to above and the stability decreases very rapidly as the amount of water in the soil increases.

The serviceability of an earth road will change continually as the moisture content of the soil changes and consequently the general utility of the earth road system in any locality is dependent to a considerable extent upon the amount and seasonal distribution of precipitation. The methods of maintaining earth roads appropriate to any locality must of necessity be adapted to the climatic conditions, and the amount of work required to give the highest possible degree of serviceability will be exceedingly variable from season to season and from place to place. In regions of great humidity, earth roads may be expected to have a low average of serviceability, while in arid regions they may possess sufficient durability for a considerable volume of traffic. The design adopted for earth roads and the methods of maintenance followed should therefore be carefully evolved to meet the soil and climate conditionswhere the roads are located. These will differ greatly throughout a state or even a county.

Cross Sections.—The general principles of road design were set forth in Chapter IV. In Fig. 11 are shown typical cross sections for earth roads adapted to various conditions as indicated. It is not apparent that one form of ditch is particularly preferable to the other and since some engineers prefer the V section and others the trapezoidal section both are shown. It would appear that the V shaped ditch is somewhat the easier to construct with the blade grader while the trapezoidal is readily excavated with the slip or fresno scraper. The ditch capacity required and consequently the dimensions will depend upon the drainage requirements, as was pointed out in Chapter III.

Fig. 11. Cross Section for Earth RoadsFig. 11. Cross Section for Earth Roads

In the zones where the annual precipitation exceeds 30 inches distributed over several months, earth roads will be unserviceable for a considerable period each year unless they are constructed so as to minimize the effect of water. This is done by providing for the best possible drainageand by adopting a method of maintenance that will restore the surface to a smooth condition as quickly as possible after a period of rainy weather or after the "frost comes out" in the spring.

Before the construction of the desired cross section is undertaken, all of the grade reduction should be completed, except for minor cuts which can be handled with the elevating grader in the manner that will be described presently.

Where any considerable change in grade is to be effected, the earth can be moved in several ways and of these the most economical cannot be readily determined. Ordinarily a contractor or a county will use the equipment that happens to be at hand even though some other might be more advantageous.

Elevating Grader.—Where the topography is such as to permit its use, the elevating grader is employed in grade reduction to load the earth into dump wagons in which it is hauled to the fill or waste bank. The elevating grader consists essentially of a heavy shear plow or disc plow which loosens the earth and deposits it on a moving canvas apron. The apron carries the material up an incline and deposits it into a wagon which is driven along under the end of the apron. When the wagon is loaded, the grader is stopped while the loaded wagon is hauled out and an empty one drawn into position. The motive power for the elevating grader is either a tractor or five or six teams of mules. For many kinds of work, particularly where frequent turning is necessary or where the ground is yielding, mules are preferable to a tractor. The apron is operated by gearing from the rear wheels of the grader. Generally four mules are hitched to a pusher in the rear of the grader and six or eight in the lead. This method of grade reduction is particularly advantageous when the material must be hauled a distance of 500 yards or more, because wagon hauling in such cases is the most economical method to employ. A tractor may be used to draw the elevatinggrader and one having a commercial rating of 30 to 45 horsepower is required.

Maney Grader.—If the haul is long and the nature of the cut will not permit the use of the elevating grader because of excessive grades or lack of room for turning, a grader of the Maney type may be used. This consists of a scoop of about one cubic yard capacity, suspended from a four-wheel wagon gear. When loading, the scoop is let down and filled in the same manner as a two-wheeled scraper or "wheeler." The pull required to fill a Maney grader is so great that a tractor is ordinarily employed in place of a "snap" team. The tractor is hitched at the end of the tongue, without interfering with the team drawing the grader. One team readily handles the grader after it is loaded. For this service a tractor having a commercial rationing of 25 to 30 horsepower is required.

Wheel Scraper.—For moving earth for distances between 150 and 500 yards, the wheel scraper of a capacity of about 1½ yards is quite generally employed. The soil must be loosened with a plow before it can conveniently be loaded into the wheeler and a heavy plow is ordinarily employed for that purpose. Two furrows with the plow will loosen a strip of earth about as wide as the scoop of the scraper and if more is loosened it will be packed down by the scrapers wheeling in place to load. A helper or "snap" team is employed to assist in loading, after which the wheel scraper is handled by one team.

Slip Scraper.—The slip scraper differs from the wheel scraper in that the scoop is not suspended from wheels but is dragged along the ground. It is drawn by one team and the capacity is two to five cubic feet, but the material spills out to some extent as the scraper is dragged along and the method is not suitable for long hauls, 100 feet being about the economical limit.

Fresno Scraper.—The Fresno scraper is one form of slip scraper requiring four horses or mules for efficientwork. It differs somewhat from the ordinary slip scraper in shape and is of larger capacity, but is a drag type of scraper much favored in the western states.

If a road has been graded so that the profile is satisfactory or if the existing profile of the location is satisfactory, and the surface is to be shaped to a prescribed cross section, either the elevating grader or the blade grader may be employed.

Elevating Grader Work.—If the elevating grader is used in shaping the earth road, the apron will be lowered and the material will be excavated at the sides of the road and deposited on the middle portion. If slight changes in grade are desired, wagons will accompany the grader and catch under the apron at the high places and haul the material to the low places. After the earth has been deposited it must be worked over to secure the correct cross section and be made passable for vehicles. This requires that clods be broken, weeds and grass that are mixed with the earth be removed by harrowing and forking and that the surface be carefully smoothed with a blade grader. This latter operation will have to be repeated several times before a satisfactory surface is secured. But this miscellaneous work is highly important and under no circumstances ought to be neglected. Nothing so detracts from an otherwise creditable piece of work as failure to provide a smooth surface for the use of vehicles. It is especially uncomfortable for the users of a highway if sods and weeds in quantity are left in the road after it has been graded. The humus that will be left in the soil as the vegetable matter decays increases the porosity of the road surface making it more absorbent than soil without humus. This increases the susceptibility to softening from storm water or ground water.

The tractor can advantageously be used to draw the elevating grader on this class of work, but will be greatly handicapped if there are wet sections along the road, through which the tractor must be driven. In many cases its use is prohibited by such conditions and for all-round service of this character, mules are preferred for motive power.

Fig. 12.—Tractor-grader OutfitFig. 12.—Tractor-grader Outfit

Use of Blade Grader.—Heavy blade graders designed to be drawn by a tractor are suitable for shaping the earth road. Some of these have blades 12 feet long and excellent control for regulating the depth of cutting. Often two such graders are operated tandem. These machines have a device which permits the operator to steer the grader independently of the tractor. Thus the grader can be steered off to the side to cut out the ditches, while the tractor continues to travel on the firm part of the road. Earth moved with the blade grader is usually fairly free from large lumps and can readily be smoothed to a satisfactory surface for the use of traffic. The sods and weeds will be drawn into the road along with the earth just as they are when the elevating grader is employed. Precaution must therefore be taken to eliminate them before the vegetablematter decays, and to smooth the surface for the use of traffic.

Costs.—The cost of shaping an earth road in the manner described above will vary through rather wide limits because the nature and amount of work to be done varies so greatly. Some roads can be graded satisfactorily for $300.00 per mile, while others will cost $700.00. But $425.00 per mile may be taken as an average for blade or elevating grader work plus a moderate amount of grade reduction in the way of removing slight knolls. For the amount of grade reduction necessary in rolling country, followed by grader shaping, $1000.00 to $1800.00 per mile will be required. The method is not adapted to rolling country where the roads are undulating and require some grade reduction on every hill. For hilly roads one of the methods described for grade reduction will be required and the cost will obviously depend upon the amount of earth moved. Averages of cost figures mean nothing in such cases as the cost may reach $10,000.00 per mile, or may be as low as $2000.00 per mile.

Maintenance.—Regardless of the care with which an earth road has been graded, it will be yielding and will readily absorb water for a long time after the completion of the work. The condition of the surface will naturally deteriorate rapidly during the first season it is used unless the road receives the constant maintenance that is a prerequisite to satisfactory serviceability. The road drag is generally recommended for this purpose, and if a drag is properly used it will serve to restore the shape of the surface as fast as it is destroyed by traffic.

Good results with the drag depend upon choosing the proper time to drag and upon doing the work in the right way when using the drag. The best time to drag is as soon after a rain as the road has dried out enough to pack under traffic. If the work is done while the road is too wet, the first vehicles traveling the road after it has been draggedwill make ruts and to a considerable extent offset the good done by the drag. If the road is too dry, the drag will not smooth the irregularities. A little observation will be required to determine the proper time for dragging on any particular soil, but usually after a rain or thaw there is a period lasting a day or two when conditions are about right.


Back to IndexNext