LETTER XIV.

"The spider's touch how exquisitely fine!Feels at each thread, and lives along the line."

"The spider's touch how exquisitely fine!Feels at each thread, and lives along the line."

M. Homberg tells us that he has seen a vigorous wasp carried off and destroyed by one of these species.

The spiders, to which I have hitherto adverted, seize their prey by means of webs or nets; but a very large number, though, like the former, they spin silken cocoons for containing their eggs, never employ the same material in constructing similar snares, of which they make no use.

These may be separated into two grand divisions: the first comprising those which conceal themselves and lie in ambuscade for their prey, and sometimes run after it to a short distance; the second, those which are constantly roaming about in every direction in search of it, and seize it by open violence. The former Walckenaer, in his admirable work on spiders, has designated by thename ofVagrants, the latter by that ofHunters; terming those already mentioned which spin webs and nets,Sedentaries: if to these you add theSwimmers, or those species which catch their prey in the water, you will have an idea of the general manners of the whole race of spiders.

The artifices of that tribe which Walckenaer has named vagrants are various and singular.Clubiona holosericeaand many other species conceal themselves in a little cell formed of the rolled-up leaf of a plant, and thence dart upon any insect which chances to pass; whileC. atroxand its affinities select for their place of ambush a hole in a wall, or lurk behind a stone, or in the bark of a tree.Aranea calycina, L. more ingeniously places herself at the bottom of the calyx of a dead flower, and pounces upon the unwary flies that come in search of honey; andA. arundinaceaburies herself in the thick panicle of a reed, and seizes the luckless visitors enticed to rest upon her silvery concealment. Many of this tribe at times quit their habitations, and by various stratagems contrive to come within reach of their prey, as by pretending to be dead, hiding themselves behind any slight projection, &c. A white species I have often observed squatted in the blossom of the hawthorn or on the flowers of umbelliferous plants, and is thus effectually concealed by the similarity of colour.

Foremost amongst the spiders comprehended by Walckenaer under the general name of hunters, which search after and openly seize their prey, must be enumerated the monstrousMygale avicularia, at least two inches long, which takes up its abode in the woods of South America, and has been reputed to seize and devoureven small birds; but this is wholly denied by Langsdorf, who declares that it eats only insects[753]. This species, as well as another tropical one,Thomisus venatorius, the EuropeanCteniza cementaria, and many others, construct in the ground very singular cylindrical cavities, and therein carry and devour their prey. These, being rather the habitations of insects than snares, I shall describe in a subsequent letter.Lycosa saccata, the species whose affection for its young I have before detailed, and not a few others of the same family, common in this country, in like manner seize their prey openly, and when caught carry it to little inartificial cavities under stones.Dolomedes fimbriatushunts along the margins of pools; andLycosa piraticaand its congeners not only chase their prey in the same situation, but, venturing to skate upon the surface of the water itself,

"... bathe unwet their oily forms, and dwellWith feet repulsive on the dimpling well."

"... bathe unwet their oily forms, and dwellWith feet repulsive on the dimpling well."

The Rev. R. Sheppard has often noticed in the fen ditches of Norfolk a very large spider which actually forms araftfor the purpose of obtaining its prey with more facility. Keeping its station upon a ball of weeds about three inches in diameter, probably held together by slight silken cords, it is wafted along the surface of the water upon this floating island, which it quits the moment it sees a drowning insect,—not, as you may conceive, for the sake of applying to it the process of the Humane Society, but of hastening its exit by a more speedy engine of destruction. The booty thus seized it devours at leisure upon its raft, under which it retires when alarmed by any danger.

The last of the tribe of hunters that it is necessary to particularize, are those which, like the tigers amongst the larger animals, seize their victims by leaping upon them. To this division belongs a very pretty small banded species,Salticus scenicus, which in summer may be seen running on every wall.

To Walckenaer'sswimmers, the last of his grand tribes of spiders, includingArgyroneta aquatica, &c., the first line of the above quotation from Dr. Darwin is particularly applicable; for these actually seize their food by diving under the water, their bodies being kept unwet by a coating of air which constantly surrounds them.—Thus one single race of insects exemplify in miniature almost all the modes of obtaining food which prevail amongst predaceous quadrupeds—the audacious attack of the lion; the wily spring of the tiger; the sedentary cunning of the lynx; and the amphibious dexterity of the otter.

This general view of the stratagems by which the spider tribe obtain their food, imperfect as it is, will, I trust, have interested you sufficiently to drive away the associations of disgust with which you, like almost every one else, have probably been accustomed to regard these insects. Instead of considering them as repulsive compounds of cruelty and ferocity, you will henceforward see in their procedures only the ingenious contrivance of patient and industrious hunters, who while obeying the great law of nature in procuring their sustenance, are actively serviceable to the human race in destroying noxious insects. You will allow the poet to stigmatize them as

"... cunning and fierce,Mixture abhorred!"

"... cunning and fierce,Mixture abhorred!"

but you will see that these epithets are in reality asunjustly applied to them (at least with reference to the mode in which they procure their necessary subsistence) as to the patient sportsman who lays snares for the birds that are to serve for the dinner of his family; and when you hear

"... the fluttering wingAnd shriller sound declare extreme distress,"

"... the fluttering wingAnd shriller sound declare extreme distress,"

you will as little think it the part of true mercy to stretch forth "the helping hospitable hand" to the entrapped fly as to the captive birds. The spider requires his meal as well as the Indian: and, however to our weak capacity the great law of creation "eat or be eaten" may seem cruel or unnecessary, knowing as we do that it is the ordinance of a beneficent Being, who does all things well, and that in fact the sum of happiness is greatly augmented by it, no man, who does not let a morbid sensibility get the better of his judgement, will, on account of their subjection to this rule, look upon predaceous animals with abhorrence.

One more instance of the stratagems of insects in procuring their prey shall conclude this letter. Other examples might be adduced, but the enumeration would be tedious. This, from an order of insects widely differing from that which includes the race of spiders, is perhaps more curious and interesting than any of those hitherto recited. The insect to which I allude, an inhabitant of the south of Europe, is the larva of a species of ant-lion (Myrmeleon), so called from its singular manners in this state. It belongs to a genus between the dragon-fly and the Hemerobius. When full grown its length is about half an inch: in shape it has a slightresemblance to a wood-louse, but the outline of the body is more triangular, the anterior part being considerably wider than the posterior: it has six legs, and the mouth is furnished with a forceps consisting of two incurved jaws, which give it a formidable appearance[754]. If we looked only at its external conformation and habits, we should be apt to conclude it one of the most helpless animals in the creation. Its sole food is the juices of other insects, particularly ants, but at the first view it seems impossible that it should ever secure a single meal. Not only is its pace slow, but it can walk in no other direction thanbackwards; you may judge, therefore, what would be such a hunter's chance of seizing an active ant. Nor would a stationary posture be more favourable; for its grim aspect would infallibly impress upon all wanderers the prudence of keeping at a respectful distance. What then is to become of our poor ant-lion? In its appetite it is a perfect epicure, never, however great may be its hunger, deigning to taste of a carcase unless it has previously had the enjoyment of killing it; and then extracting only the finer juices. In what possible way can it contrive to supply such a succession of delicacies, when its ordinary habits seem to unfit it for obtaining even the coarsest provision? You shall hear. It accomplishes by artifice what all its open efforts would have been unequal to. It digs in loose sand a conical pit, in the bottom of which it conceals itself, and there seizes upon the insects which, chancing to stumble over the margin, are precipitated down the sides to the centre. "How wonderful!" you exclaim: but you will be still more surprised whenI have described the whole process by which it excavates its trap, and the ingenious contrivances to which it has recourse.

Its first concern is to find a soil of loose dry sand, in the neighbourhood of which, indeed, its provident mother has previously taken care to place it, and in a sheltered spot near an old wall, or at the foot of a tree. This is necessary on two accounts: the prey most acceptable to it abounds there, and no other soil would suit for the construction of its snare. Its next step is to trace in the sand a circle, which, like the furrow with which Romulus marked out the limits of his new city, is to determine the extent of its future abode. This being done, it proceeds to excavate the cavity by throwing out the sand in a mode not less singular than effective. Placing itself in the inside of the circle which it has traced, it thrusts the hind part of its body under the sand, and with one of its fore-legs, serving as a shovel, it charges its flat and square head with a load, which it immediately throws over the outside of the circle with a jerk strong enough to carry it to the distance of several inches. This little manœuvre is executed with surprising promptitude and address. A gardener does not operate so quickly or so well with his spade and his foot, as the ant-lion with its head and leg.—Walking backwards, and constantly repeating the process, it soon arrives at the part of the circle from which it set out. It then traces a new one, excavates another furrow in a similar manner, and by a repetition of these operations at length arrives at the centre of its cavity. One circumstance deserves remark—that it never loads its head with the sand lying on theoutsideof the circle, though it would be as easy to do this withthe outward leg, as to remove the sand within the circle by the inner leg. But it knows that it is the sand in the interior of the circle only that is to be excavated, and it therefore constantly uses the leg next the centre. It will readily occur, however, that to use one leg as a shovel exclusively throughout the whole of such a toilsome operation, would be extremely wearisome and painful. For this difficulty our ingenious pioneer has a resource. After finishing the excavation of one circular furrow, it traces the next in an opposite direction; and thus alternately exercises each of its legs without tiring either.

In the course of its labours it frequently meets with small stones: these it places upon its head one by one, and jerks over the margin of the pit. But sometimes, when near the bottom, a pebble presents itself of a size so large that this process is impossible, its head not being sufficiently broad and strong to bear so great a weight, and the height being too considerable to admit of projecting so large a body to the top. A more impatient labourer would despair, but not so our insect. A new plan is adopted. By a manœuvre, not easily described, it lifts the stone upon its back, keeps it in a steady position by an alternate motion of the segments which compose that part; and carefully walking up the ascent with the burthen, deposits it on the outside of the margin. When, as occasionally happens, the stone is round, the labour becomes most difficult and painful. A spectator watching the motions of the ant-lion feels an inexpressible interest in its behalf. He sees it with vast exertion elevate the stone, and begin its arduous retrograde ascent: at every moment the burthen totters to one side or the other: the adroit porter lifts up thesegments of its back to balance it, and has already nearly reached the top of the pit, when a stumble or a jolt mocks all its efforts, and the stone tumbles headlong to the bottom. Mortified, but not despairing, the ant-lion returns to the charge; again replaces the stone, on its back; again ascends the side, and artfully avails himself, for a road, of the channel formed by the falling stone, against the sides of which he can support his load. This time possibly he succeeds; or it may be, as is often the case, the stone again rolls down. When thus unfortunate, our little Sisyphus has been seen six times patiently to renew his attempt, and was at last, as such heroic resolution deserved, successful. It is only after a series of trials have demonstrated the impossibility of succeeding that our engineer yields to fate, and, quitting his half-excavated pit, begins the formation of another.

When all obstacles are overcome, and the pit is finished, it presents itself as a conical hole rather more than two inches deep, gradually contracting to a point at the bottom, and about three inches wide at the top[755]. The ant-lion now takes its station at the bottom of the pit, and, that its gruff appearance may not scare the passengers which approach its den, covers itself with sand all except the points of its expanded forceps. It is not long before an ant on its travels, fearing no harm, steps upon the margin of the pit, either accidentally orfor the purpose of exploring the depth below. Alas! its curiosity is dearly gratified. The faithless sand slides from under its feet; its struggles but hasten its descent; and it is precipitated headlong into the jaws of the concealed devourer. Sometimes, however, it chances that the ant is able to stop itself midway, and with all haste scrambles up again. No sooner does the ant-lion perceive this, (for, being furnished with six eyes on each side of his head, he is sufficiently sharp-sighted,) than, shaking off his inactivity, he hastily shovels loads of sand upon his head, and vigorously throws them up in quick succession upon the escaping insect, which, attacked by such a heavy shower from below and treading on so unstable a path, is almost inevitably carried to the bottom. The instant his victim is fairly within reach, the ant-lion seizes him between his jaws, which are admirable instruments, at the same time hooked for holding, and hollow, furnished with a lateral piston, for sucking, and at his leisure extracting all the juices of the body, regales upon formic acid. The dry carcase he subsequently jerks out of his den, that it may not encumber him in his future contests, or betray the "horrid secrets of his prison-house:" and if the sides of the pit have received any damage, he leaves his concealment for awhile to repair it: which having done, he resumes his station.

In this manner in its larva state this insect lives nearly two years, during all which time it receives no food but what has been caught through the artifice above described. Though all living insects, for I have fed it with flies, are equally acceptable to it, as the winged tribe can easily take flight from its pit should they chance tofall into it, its prey consists chiefly of apterous species, of which ants form by far the largest portion, with occasionally an unwary spider or wood-louse. When the full period of its growth is attained it retires under the sand; spins with its anus a silken cocoon; remains a chrysalis a few weeks; and then breaks forth a four-winged insect resembling, as before observed, the dragon-fly both in appearance and manners, and preying in like manner on moths, butterflies, and other insects[756].

The larva ofMyrmeleon Formicaleois not the only insect which avails itself of a trap for obtaining its prey. A plan in most respects similar is adopted by that of a fly (Leptis Vermileo) in form somewhat resembling the common flesh maggot. This also digs a funnel-shaped cavity in loose earth or sand, but deeper in proportion to its width than that ofM. Formicaleo, and excavated not by regular circles, but by throwing out the earth obliquely on all sides. When its trap is finished, it stretches itself near the bottom, remaining stiff and without motion like a piece of wood, and the last segment bent at an angle with the rest, so as to form a strong point of support in the struggles which it often necessarily has with vigorous prey. The moment an insect falls into the pitfall, the larva writhes itself round it like a serpent, transfixes it with its mandibles, and sucks its juices at its ease. If the insect escapes, the larva casts above it jets of sand with surprising rapidity[757].

I am, &c.

In forming an estimate of the civilization and intellectual progress of a newly discovered people, we usually pay attention to their buildings, and other proofs of architectural skill. If we find them, like the wretched inhabitants of Van Diemen's Land, without other abodes than natural caverns or miserable penthouses of bark, we at once regard them as the most ignorant and unhumanized of their race. If, like the natives of the South Sea Isles, they have advanced a step further, and enjoy houses formed of timber, thatched with leaves, and furnished with utensils of different kinds, we are inclined to place them considerably higher in the scale. When, as in the case of ancient Mexico, we discover a nation inhabiting towns containing stone houses, regularly disposed into streets, we do not hesitate without other inquiry to decide that it must have been civilized in no ordinary degree. And if it were to chance that some future Park in Africa should stumble upon the ruins of a large city, where, in addition to these proofs of science, every building was constructed on just geometrical and architectural principles; where the materials were so employed as to unite strength with lightness, and a confined site so artfully occupied as to obtainspacious symmetrical apartments, we should eagerly inquire into the history of the inhabitants, and sigh over the remains of a race whose intellectual advances we should infer with certainty were not inferior to our own.

Were we by the same test to estimate the sagacity of the different classes of animals, we should beyond all doubt assign the highest place to insects, which in the construction of their habitations leave all the rest far behind. The nests of birds, from the rook's rude assemblage of sticks to the pensile dwellings of the tailor-bird, wonderful as they doubtless are, are indisputably eclipsed by the structures formed by many insects; and the regular villages of the beaver, by far the most sagacious architect amongst quadrupeds, must yield the palm to a wasp's nest. You will think me here guilty of exaggeration, and that, blinded by my attachment to a favourite pursuit, I am elevating the little objects, which I wish to recommend to your study, to a rank beyond their just claim. So far, however, am I from being conscious of any such prejudice, that I do not hesitate to go further, and assert that the pyramids of Egypt, as the work of man, are not more wonderful for their size and solidity than are the structures built by some insects.

To describe the most remarkable of these is my present object: and that some method may be observed, I shall in this letter describe the habitations of insects living in a state of solitude, and built each by a single architect; and in a subsequent one, those of insects living in societies, built by the united labours of many. The former class may be conveniently subdivided into habitations built by the parent insect, not for its own use, but for the convenience of its future young; and those which areformed by the insect that inhabits them for its own accommodation. To the first I shall now call your attention.

The solitary insects which construct habitations for their future young without any view to their own accommodation, chiefly belong to the orderHymenoptera, and are principally different species of wild bees. Of these the most simple are built byColletes[758]succincta,fodiens, &c. The situation which the parent bee chooses, is either the dry earth of a bank, or the vacuities of stone walls cemented with earth instead of mortar. Having excavated a cylinder about two inches in depth, running usually in a horizontal direction, the bee occupies it with three or four cells about half an inch long, and one-sixth broad, shaped like a thimble, the end of one fitting into the mouth of another. The substance of which these cells are formed is two or three layers of a silky membrane, composed of a kind of glue secreted by the animal, resembling gold-beater's leaf, but much finer, and so thin and transparent that the colour of an included object may be seen through them. As soon as one cell is completed, the bee deposits an egg within, and nearly fills it with a paste composed of pollen and honey; which having done, she proceeds to form another cell, storing it in like manner until the whole is finished, when she carefully stops up the mouth of the orifice with earth. Our countryman Grew seems to have found a series of these nests in a singular situation—the middle of the pith of an old elder-branch—in which they were placed lengthwise one after another with a thin boundary between each[759].

Cells composed of a similar membranaceous substance, but placed in a different situation, are constructed byAnthidium manicatum[760]. This gay insect does not excavate holes for their reception, but places them in the cavities of old trees, or of any other object that suits its purpose. Sir Thomas Cullum discovered the nest of one in the inside of the lock of a garden-gate, in which I have also since twice found them. It should seem, however, that such situations would be too cold for the grubs without a coating of some non-conducting substance. The parent bee, therefore, after having constructed the cells, laid an egg in each, and filled them with a store of suitable food, plasters them with a covering of vermiform masses, apparently composed of honey and pollen; and having done this, aware, long before Count Rumford's experiments, what materials conduct heat most slowly, she attacks the woolly leaves ofStachys lanata,Agrostemma coronaria, and similar plants, and with her mandibles industriously scrapes off the wool, which with her fore legs she rolls into a little ball and carries to her nest. This wool she sticks upon the plaster that covers her cells, and thus closely envelops them with a warm coating of down impervious to every change of temperature[761].

The bee last described may be said to exercise the trade of a clothier. Another numerous family would bemore properly compared to carpenters, boring with incredible labour out of the solid wood long cylindrical tubes, and dividing them into various cells. Amongst these, one of the most remarkable isXylocopa[762]violacea, a large species, a native of Southern Europe, distinguished by beautiful wings of a deep violet colour, and found commonly in gardens, in the upright putrescent espaliers or vine-props of which, and occasionally in the garden seats, doors and window-shutters, she makes her nest. In the beginning of spring, after repeated and careful surveys, she fixes upon a piece of wood suitable for her purpose, and with her strong mandibles begins the process of boring. First proceeding obliquely downwards, she soon points her course in a direction parallel with the sides of the wood, and at length with unwearied exertion forms a cylindrical hole or tunnel not less than twelve or fifteen inches long and half an inch broad. Sometimes, where the diameter will admit of it, three or four of these pipes, nearly parallel with each other, are bored in the same piece. Herculean as this task, which is the labour of several days, appears, it is but a small part of what our industrious bee cheerfully undertakes. As yet she has completed but the shell of the destined habitation of her offspring; each of which, to the number of ten or twelve, will require a separate and distinct apartment. How, you will ask, is she to form these? With what materials can she construct the floors and ceilings? Why trulyGod"doth instruct her to discretion and doth teach her." In excavating her tunnel she has detached a large quantity of fibres, which lie on the ground like a heap of saw-dust. This material suppliesall her wants. Having deposited an egg at the bottom of the cylinder along with the requisite store of pollen and honey, she next, at the height of about three quarters of an inch, (which is the depth of each cell,) constructs of particles of the saw-dust glued together, and also to the sides of the tunnel, what may be called an annular stage or scaffolding. When this is sufficiently hardened, its interior edge affords support for a second ring of the same materials, and thus the ceiling is gradually formed of these concentric circles, till there remains only a small orifice in its centre, which is also closed with a circular mass of agglutinated particles of saw-dust. When this partition, which serves as the ceiling of the first cell and the flooring of the second, is finished, it is about the thickness of a crown-piece, and exhibits the appearance of as many concentric circles as the animal has made pauses in her labour. One cell being finished, she proceeds to another, which she furnishes and completes in the same manner, and so on until she has divided her whole tunnel into ten or twelve apartments.

Here, if you have followed me in this detail with the interest which I wish it to inspire, a query will suggest itself. It will strike you that such a laborious undertaking as the constructing and furnishing these cells, cannot be the work of one or even of two days. Considering that every cell requires a store of honey and pollen, not to be collected but with long toil, and that a considerable interval must be spent in agglutinating the floors of each, it will be very obvious to you that the last egg in the last cell must be laid many days after the first. We are certain, therefore, that the first egg will become a grub, and consequently a perfect bee, many days before the last.What then becomes of it? you will ask. It is impossible that it should make its escape through eleven superincumbent cells without destroying the immature tenants; and it seems equally impossible that it should remain patiently in confinement below them until they are all disclosed. This dilemma our heaven-taught architect has provided against. With forethought never enough to be admired she has not constructed her tunnel with one opening only, but at the further end has piercedanotherorifice, a kind of back-door, through which the insects produced by the first-laid eggs successively emerge into day. In fact, all the young bees, even the uppermost, go out by this road; for, by an exquisite instinct, each grub, when about to become a pupa, places itself in its cell with its head downwards, and thus is necessitated, when arrived at its last state, to pierce its cell in this direction[763].

Ceratina albilabrisof Spinola, who has given an interesting account of its manners, forms its cell upon the general plan of the bee just described, but, more economical of labour, chooses a branch of briar or bramble, in the pith of which she excavates a canal about a foot long and one line, or sometimes more, in diameter, with from eight to twelve cells separated from each other by partitions of particles of pith glued together[764].

Such are the curious habitations of the carpenter bees. Next I shall introduce you to the not less interesting structures of another family which carry on the trade of masons, (Megachile muraria,) building their solid houses solely of artificial stone. The first step of the mother bee is to fix upon a proper situation for the future mansion ofher offspring. For this she usually selects an angle, sheltered by any projection, on the south side of a stone wall. Her next care is to provide materials for the structure. The chief of these is sand, which she carefully selects grain by grain from such as contains some mixture of earth. These grains she glues together with her viscid saliva into masses the size of small shot, and transports by means of her jaws to the site of her castle[765]. With a number of these masses, which are the artificial stone of which her building is to be composed, united by a cement preferable to ours, she first forms the basis or foundation of the whole. Next she raises the walls of a cell, which is about an inch in length and half an inch broad, and before its orifice is closed in form resembles a thimble. This, after depositing an egg and a supply of honey and pollen, she covers in, and then proceeds to the erection of a second, which she finishes in the same manner, until the whole number, which varies from four to eight, is completed. The vacuities between the cells, which are not placed in any regular order, some being parallel to the wall, others perpendicular to it, and others inclined to it at different angles, this laborious architect fills up with the same material of which the cells are composed, and then bestows upon the whole group a common covering of coarser grains of sand. The form of the whole nest, which when finished is a solid mass of stone so hard as not to be easily penetrated with the blade of a knife, is an irregular oblong of the same colouras the sand, and to a casual observer more resembling a splash of mud than an artificial structure. These bees sometimes are more economical of their labour, and repair old nests, for the possession of which they have very desperate combats. One would have supposed that the inhabitants of a castle so fortified might defy the attacks of every insect marauder. Yet an Ichneumon and a beetle (Clerus apiarius) both contrive to introduce their eggs into the cells, and the larvæ proceeding from them devour their inhabitants[766].

Other bees of the same family with that last described, use different materials in the construction of their nests. Some employ fine earth made into a kind of mortar with gluten. Another (Osmia[767]cærulescens), as we learn from De Geer, forms its nest of argillaceous earth mixed with chalk, upon stone walls, and sometimes probably nidificates in chalk-pits.O. bicornisselects the hollows of large stones for the site of its dwelling; while others prefer the holes in wood.

The works thus far described require in general less genius than labour and patience: but it is far otherwise with the nests of the last tribe of artificers amongst wild bees, to which I shall advert—the hangers of tapestry, or upholsterers—those which line the holes excavated in the earth for the reception of their young, with an elegant coating of flowers or of leaves. Amongst the most interesting of these isMegachile[768]Papaveris, a species whose manners have been admirably described by Reaumur. This little bee, as though fascinated with the colour most attractive to our eyes, invariably choosesfor the hangings of her apartments the most brilliant scarlet, selecting for its material the petals of the wild poppy, which she dexterously cuts into the proper form. Her first process is to excavate in some pathway a burrow, cylindrical at the entrance but swelled out below, to the depth of about three inches. Having polished the walls of this little apartment, she next flies to a neighbouring field, cuts out oval portions of the flowers of poppies, seizes them between her legs and returns with them to her cell; and though separated from the wrinkled petal of a half-expanded flower, she knows how to straighten their folds, and, if too large, to fit them for her purpose by cutting off the superfluous parts. Beginning at the bottom, she overlays the walls of her mansion with this brilliant tapestry, extending it also on the surface of the ground round the margin of the orifice. The bottom is rendered warm by three or four coats, and the sides have never less than two. The little upholsterer, having completed the hangings of her apartment, next fills it with pollen and honey to the height of about half an inch; then, after committing an egg to it, she wraps over the poppy lining so that even the roof may be of this material; and lastly closes its mouth with a small hillock of earth[769]. The great depth of the cell compared with the space which the single egg and the accompanying food deposited in it occupy, deserves particular notice. This is not more than half an inch at the bottom, the remaining two inches and a half being subsequently filled with earth.—When you next favour me with a visit, I can show you the cells of this interesting insect as yet unknown to British entomologists, for whichI am indebted to the kindness of M. Latreille, who first scientifically described the species[770].

Megachile centuncularis,M. Willughbiella, and other species of the same family, like the preceding, cover the walls of their cells with a coating of leaves, but are content with a more sober colour, generally selecting for their hangings the leaves of trees, especially of the rose, whence they have been known by the name of theleaf-cutterbees. They differ also fromM. Papaverisin excavating longer burrows, and filling them with several thimble-shaped cells composed of portions of leaves so curiously convoluted, that, if we were ignorant in what school they have been taught to construct them, we should never credit their being the work of an insect. Their entertaining history, so long ago as 1670, attracted the attention of our countrymen Ray, Lister, Willughby, and Sir Edward King; but we are indebted for the most complete account of their procedures to Reaumur.

The mother bee first excavates a cylindrical hole eight or ten inches long, in a horizontal direction, either in the ground or in the trunk of a rotten willow-tree, or occasionally in other decaying wood. This cavity she fills with six or seven cells wholly composed of portions of leaf, of the shape of a thimble, the convex end of one closely fitting into the open end of another. Her first process is to form the exterior coating, which is composed of three or four pieces of larger dimensions than the rest, and of an oval form. The second coating is formed of portions of equal size, narrow at one end but gradually widening towards the other, where the width equals half the length. One side of these pieces is theserrate margin of the leaf from which it was taken, which, as the pieces are made to lap one over the other, is kept on the outside, and that which has been cut within. The little animal now forms a third coating of similar materials, the middle of which, as the most skilful workman would do in similar circumstances, she places over the margins of those that form the first tube, thus covering and strengthening the junctures. Repeating the same process, she gives a fourth and sometimes a fifth coating to her nest, taking care, at the closed end or narrow extremity of the cell, to bend the leaves so as to form a convex termination. Having thus finished a cell, her next business is to fill it to within half a line of the orifice, with a rose-coloured conserve composed of honey and pollen, usually collected from the flowers of thistles; and then having deposited her egg, she closes the orifice with three pieces of leaf so exactly circular, that a pair of compasses could not define their margin with more truth; and coinciding so precisely with the walls of the cell, as to be retained in their situation merely by the nicety of their adaptation. After this covering is fitted in, there remains still a concavity which receives the convex end of the succeeding cell; and in this manner the indefatigable little animal proceeds until she has completed the six or seven cells which compose her cylinder.

The process which one of these bees employs in cutting the pieces of leaf that compose her nest is worthy of attention. Nothing can be more expeditious: she is not longer about it than we should be with a pair of scissors. After hovering for some moments over a rose-bush, as if to reconnoitre the ground, the bee alights upon the leaf which she has selected, usually taking her stationupon its edge so that the margin passes between her legs. With her strong mandibles she cuts without intermission in a curve line so as to detach a triangular portion. When this hangs by the last fibre, lest its weight should carry her to the ground, she balances her little wings for flight, and the very moment it parts from the leaf flies off with it in triumph; the detached portion remaining bent between her legs in a direction perpendicular to her body. Thus without rule or compasses do these diminutive creatures mete out the materials of their work into portions of an ellipse, into ovals or circles, accurately accommodating the dimensions of the several pieces of each figure to each other. What other architect could carry impressed upon the tablet of his memory the entire idea of the edifice which he has to erect, and, destitute of square or plumb-line, cut out his materials in their exact dimensions without making a single mistake? Yet this is what our little bee invariably does. So far are human art and reason excelled by the teaching of the Almighty[771].

Other insects besides bees construct habitations of different kinds for their young, as various species of burrowing wasps (Fossores),Geotrupes, &c., which deposit their eggs in cylindrical excavations that become the abode of the future larvæ. In the procedures of most of these, nothing worth particularizing occurs; but one species called by Reaumur the mason-wasp, (Odynerus muraria,) referred to in a former letter, works upon so singular a plan, that it would be improper to pass it over in silence, especially as these nests may be found in this country in most sandy banks exposed to the sun. Thisinsect bores a cylindrical cavity from two to three inches deep, in hard sand which its mandibles alone would be scarcely capable of penetrating, were it not provided with a slightly glutinous liquor which it pours out of its mouth, that, like the vinegar with which Hannibal softened the Alps, acts upon the cement of the sand, and renders the separation of the grains easy to the double pickaxe with which our little pioneer is furnished. But the most remarkable circumstance is the mode in which it disposes of the excavated materials. Instead of throwing them at random on a heap, it carefully forms them into little oblong pellets, and arranges them round the entrance of the hole so as to form a tunnel, which, when the excavation is completed, is often not less than two or three inches in length. For the greater part of its height this tunnel is upright, but towards the top it bends into a curve, always however retaining its cylindrical form. The little masses are so attached to each other in this cylinder, as to leave numerous vacuities between them, which give it the appearance of filagree-work. You will readily divine that the excavated hole is intended for the reception of an egg, but for what purpose the external tunnel is meant is not so apparent. One use, and perhaps the most important, would seem to be to prevent the incursions of the artful Ichneumons,Chrysidæ, &c. which are ever on the watch to insinuate their parasitic young into the nests of other insects: it may render their access to the nest more difficult; they may dread to enter into so long and dark a defile. I have seen, however, more than once aChrysiscome out of these tunnels. That its use is only temporary, is plain from the circumstance that the insect employs the whole fabric, when its egg is laid and store of food procured, in filling up the remainingvacuity of the hole; taking down the pellets, which are very conveniently at hand, and placing them in it until the entrance is filled[772].—Latreille informs us, that a nearly similar tunnel, but composed of grains of earth, is built at the entrance of its cell by a bee of his family ofpioneers[773].

Under this head, too, may be most conveniently arranged the very singular habitations of the larvæ of the Linnæan genusCynips, the gall-fly, though they can with no propriety be said to beconstructedby the mother, who, provided with an instrument as potent as an enchanter's wand, has but to pierce the site of the foundation, and commodious apartments, as if by magic, spring up and surround the germe of her future descendants. I allude to those vegetable excrescencies termedgalls, some of which resembling beautiful berries and others apples, you must have frequently observed on the leaves of the oak, and of which one species, the Aleppo gall, as I have before noticed, is of such importance in the ingenious art "de peindre la parole et de parler aux yeux[774]." All these tumours owe their origin to the deposition of an egg in the substance out of which they grow. This egg, too small almost for perception, the parent insect, a little four-winged fly, introduces into a puncture made by her curious spiral sting, and in a few hours it becomes surrounded with a fleshy chamber, which not only serves its young for shelter and defence, but also for food; the future little hermit feeding upon its interior and there undergoing its metamorphosis. Nothing can be more varied than these habitations. Some are of a globular form, a bright red colour, andsmooth fleshy consistence, resembling beautiful fruits, for which indeed, as you have before been told, they are eaten in the Levant: others, beset with spines or clothed with hair, are so much like seed-vessels, that an eminent modern chemist has contended respecting the Aleppo gall, that it is actually a capsule[775]. Some are exactly round; others like little mushrooms; others resemble artichokes; while others again might be taken for flowers: in short, they are of a hundred different forms, and of all sizes from that of a pin's head to that of a walnut. Nor is their situation on the plant less diversified. Some are found upon the leaf itself; others upon the footstalks only; others upon the roots; and others upon the buds[776]. Some of them cause the branches upon which they grow to shoot out into such singular forms, that the plants producing them were esteemed by the old botanists distinct species. Of this kind is theRose-willow, which old Gerard figures and describes as "not only making a gallant shew, but also yeelding a most cooling aire in the heat of summer, being set up in houses for the decking of the same." This willow is nothing more than one of the common species, whose twigs, in consequence of the deposition of the egg of a Cynips in their summits, there shoot out into numerous leaves totally different in shape from the other leaves of the tree, and arranged not much unlike those composing the flower of a rose, adhering to the stem even after the others fall off. Sir James Smith mentions a similarlususon the Provence willows, whichat first he took for a tufted lichen[777]. From the same cause the twigs of the common wild rose often shoot out into a beautiful tuft of numerous reddish moss-like fibres wholly dissimilar from the leaves of the plant, deemed by the old naturalists a very valuable medical substance, to which they erroneously gave the name of Bedeguar. None of these variations is accidental or common to several of the tribe, but each peculiar to the galls formed by a single and distinct species ofCynips.

How the mere insertion of an egg into the substance of a leaf or twig, even if accompanied, as some imagine, by a peculiar fluid, should cause the growth of such singular protuberances around it, philosophers are as little able to explain, as why the insertion of a particle of variolous matter into a child's arm should cover it with pustules of small pox. In both cases the effects seem to proceed from some action of the foreign substance upon the secreting vessels of the animal or vegetable: but of the nature of this action we know nothing. Thus much is ascertained by the observations of Reaumur and Malpighi—that the production of the gall, which however large attains its full size in a day or two[778], is caused by the egg or some accompanying fluid: not by the larva, which does not appear until the gall is fully formed[779]; that the galls which spring from leaves almost constantly take their origin from nerves[780]; and that the egg, at the same time that it causes the growth of the gall, itself derives nourishment from the substance that surrounds it, becoming considerably larger before it is hatched than it was when first deposited[781].—When chemically analysed,galls are found to contain only the same principles as the plant from which they spring, but in a more concentrated state.

No productions of nature seem to have puzzled the ancient philosophers more than galls. The commentator on Dioscorides, Mathiolus, who agreeably to the doctrine of those days ascribed their origin to spontaneous generation, gravely informs us that weighty prognostications as to the events of the ensuing year may be deduced from ascertaining whether they contain spiders, worms, or flies. Other philosophers, who knew that except by rare accident no other animals are to be found in galls, besides grubs of different kinds which they rationally conceived to spring from eggs, were chiefly at a loss to account for the conveyance of these eggs into the middle of a substance in which they could find no external orifice. They therefore inferred that they were the eggs of insects deposited in the earth, which had been drawn up by the roots of trees along with the sap, and after passing through different vessels had stopped, some in the leaves, others in the twigs, and had there hatched and produced galls! Redi's solution of the difficulty was even more extraordinary. This philosopher, who had so triumphantly combated the absurdities of spontaneous generation, fell himself into greater. Not having been able to witness the deposition of eggs by the parent flies in the plants that produce galls, he took it for granted that the grubs which he found within them could not spring from eggs: and he was equally unwilling to admit their origin from spontaneous generation,—an admission which would have been fatal to his own most brilliant discoveries. He therefore cut the knot,by supposing that to the samevegetative soulby which fruits and plants are produced, is committed the charge of creating the larvæ found in galls[782]! An instance truly humiliating, how little we can infer from a man's just ideas on one point, that he will not be guilty of the most pitiable absurdity on another!

Though by far the greater part of the vegetable excrescencies termed galls, are caused by insects of the genusCynips, they do not always originate from this tribe. Some are produced by weevils belonging to Schüppel's genusCeutorhynchus; as those on the roots of kedlock (Sinapis arvensis), which I have ascertained to be inhabited by the larvæ ofCurculio contractusMarsh.,Rhynchænus assimilis, F. From the knob-like galls on turnips called in some places theanbury, I have bred another of these weevils, (Curculio pleurostigma, Marsh.,Rhynchænus sulcicollis, Gyll.) and I have little doubt that the same insects, or species allied to them, cause the clubbing of the roots of cabbages. It seems to be a beetle of the same family that is figured by Reaumur[783], as causing the galls on the leaves of the lime-tree. Others owe their origin to moths, as those resembling a nutmeg which Reaumur received from Cyprus[784]; and others again to two-winged flies, as the woody galls of the thistle caused byTrypeta Cardui[785], and the cottony galls found on ground ivy, wild thyme, &c. as well as a very singular one on the juniper resembling a flower, described by De Geer[786], all which are the work of minute gall-gnats (Cecidomyiæ, Latr.). Some of these last convert even the flowers of plants into a kind of galls, asT. Lotiof De Geer[787], which inhabits the blossoms ofLotus corniculatus; and one which I have myself observed to render the flowers ofErysimum Barbarealike a hop blossom. A similar monstrous appearance is communicated to the flowers ofTeucrium supinumby a little field-bug,Tingis Teucriiof Host[788], and to another plant of the same genus by one of the same tribe described by Reaumur[789]. In these two last instances, however, the habitations do not seem strictly entitled to the appellation of galls, as they originate not from the egg, but from the larva, which, in the operation of extracting the sap, in some way imparts a morbid action to the juices, causing the flower to expand unnaturally: and the same remark is applicable to the gall-like swellings formed by many Aphides, asA. Pistaciæ, which causes the leaves of different species ofPistaciato expand into red finger-like cavities;A. Abietis, which converts the buds or young shoots of the fir into a very beautiful gall, somewhat resembling a fir-cone, or a pine-apple in miniature; andA. Bursariæ, which with its brood inhabits angular utriculi on the leafstalk of the black poplar, numbers of which I have observed on those trees by the road-side from Hull to Cottingham.—The majority of galls are what entomologists have denominated monothalamous, or consisting of only one chamber or cell; but some are polythalamous, or consisting of several.

Having thus described the most remarkable of the habitations constructed by the parent insects for the accommodation of their future young, I proceed to thesecond kind mentioned, namely, those which are formed by the insect itself for its own use. These may be again subdivided into such as are the work of the insects in their larva state; and such as are formed by perfect insects.

Many larvæ of all orders need no other habitations than the holes which they form in seeking for, or eating, the substances upon which they feed. Of this description are the majority of subterranean larvæ, and those which feed on wood, as theBostrichior labyrinth beetles; theAnobiawhich excavate the little circular holes frequently met with in ancient furniture and the wood work of old houses; and many larvæ of other orders, particularlyLepidoptera. One of these last, the larva ofCossus ligniperdadiffers from its congeners in fabricating for its residence during winter a habitation of pieces of wood lined with fine silk[790]. Under this division, too, come the singular habitations of the subcutaneous larvæ, so called from the circumstance of their feeding upon the parenchyma included between the upper and under cuticles of the leaves of plants, between which, though the whole leaf is often not thicker than a sheet of writing-paper, they find at once food and lodging. You must have been at some time struck by certain white zigzag or labyrinth-like lines on the leaves of the dandelion, bramble, and numerous other plants: the next-time you meet with one of them, if you hold it up to the light you will perceive that the colour of these lines is owing to the pulpy substance of the leaf having there been removed; and at the further end you will probably remark a dark-coloured speck, which, whencarefully extricated from its covering, you will find to be the little miner of the tortuous galleries which you are admiring. Some of these minute larvæ, to which the parenchyma of a leaf is a vast country, requiring several weeks to be traversed by the slow process of mining which they adopt—that of eating the excavated materials as they proceed—are transformed into beetles (Cionus Thapsi, &c.); others into flies; and a still greater number into very minute moths, asGracillaria? Wilkella,Clerkella, &c. Many of these last are little miracles of nature, which has lavished on them the most splendid tints tastefully combined with gold, silver and pearl: so that, were they but formed upon a larger scale, they would far eclipse all other animals in richness of decoration.

Another tribe of larvæ, not very numerous, content themselves for their habitations with simple holes, into which they retire occasionally. Many of these are merely cylindrical burrows in the ground, as those formed by the larvæ of field-crickets, Cicindelæ and Ephemeræ. But the larvæ of the very remarkable lepidopterous genus (Nycterobiusof Mr. MacLeay) before alluded to[791], excavate for themselves dwellings of a more artificial construction; forming cylindrical holes in the trees of New Holland, particularly the different species ofBanksia, to which they are very destructive, and defending the entrance against the attacks of the Mantes and other carnivorous insects by a sort of trap-door composed of silk interwoven with leaves and pieces of excrement, securely fastened at the upper end, but left loose at the lower for the free passage of the occupant. This abode they regularly quit at sun-set, for the purpose of layingin a store of the leaves on which they feed. These they drag by one at a time into their cell until the approach of light, when they retreat precipitately into it, and there remain closely secluded the whole day, enjoying the booty which their nocturnal range has provided. One species lifts up the loose end of its door by its tail, and enters backward, dragging after it a leaf ofBanksia serrata, which it holds by the footstalk[792].

A third description of larvæ, chiefly of the two lepidopterous tribesTortricidæandTineidæ, form into convenient habitations the leaves of the plants on which they feed. Some of these merely connect together with a few silken threads several leaves so as to form an irregular packet, in the centre of which the little hermit lives. Others confine themselves to a single leaf, of which they simply fold one part over the other. A third description form and inhabit a sort of roll, by some species made cylindrical, by others conical, resembling the papers into which grocers put their sugar, and as accurately constructed, only there is an opening left at the smaller extremity for the egress of the insect in case of need. If you were to see one of these rolls, you would immediately ask by what mechanism it could possibly be made—how an insect without fingers could contrive to bend a leaf into a roll, and to keep it in that form until fastened with the silk which holds it together? The following is the operation. The little caterpillar first fixes a series of silken cables from one side of the leaf to the other. She next pulls at these cables with her feet; and when she has forced the sides to approach, shefastensthem together with shorter threads of silk. If the insect finds thatone of the larger nerves of the leaf is so strong as to resist her efforts, she weakens it by gnawing it here and there half through. What engineer could act more sagaciously?—To form one of the conical or horn-shaped rolls, which are not composed of a whole leaf, but of a long triangular portion cut out of the edge, some other manœuvres are requisite. Placing herself upon the leaf, the caterpillar cuts out with her jaws the piece which is to compose her roll. She does not however entirely detach it: it would then want a base. She detaches that part only which is to form the contour of the horn. This portion is a triangular strap, which she rolls as she cuts. When the body of the horn is finished, as it is intended to be fixed upon the leaf in nearly an upright position, it is necessary to elevate it. To effect this, she proceeds as we should with an inclined obelisk. She attaches threads or little cables towards the point of the pyramid, and raises it by the weight of her body[793].

A still greater degree of dexterity is manifested in fabricating the habitations of the larvæ of some other moths which feed on the leaves of the rose-tree, apple, elm, and oak, on the under-side of which they may in summer be often found. These form an oblong cavity in the interior of a leaf by eating the parenchyma between the two membranes composing its upper and under side, which, after having detached them from the surrounding portion, it joins with silk so artfully that the seams are scarcely discoverable even with a lens, so as to compose a case or horn, cylindrical in the middle, its anterior orifice circular, its posterior triangular. Were this dwelling cylindrical in every part, the form of thetwo pieces that compose it would be very simple; but the different shape of the two ends renders it necessary that each side should have peculiar and dissimilar curvatures; and Reaumur assures us, that these are as complex and difficult to imitate as the contours of the pieces of cloth that compose the back of a coat. Some of this tribe, whose proceedings I had the pleasure of witnessing a short time since upon the alders in the Hull Botanic Garden, more ingenious than their brethren, and willing to save the labour of sewing up two seams in their dwelling, insinuate themselves near the edge of a leaf instead of in its middle. Here they form their excavation, mining into the very crenatures between the two surfaces of the leaf, which, being joined together at the edge, there form one seam of the case, and from their dentated figure give it a very singular appearance, not unlike that of some fishes which have fins upon their backs. The opposite side they are necessarily forced to cut and sew up, but even in this operation they show an ingenuity and contrivance worthy of admiration. The moths, which cut out their suit from the middle of the leaf, wholly detach the two surfaces that compose it before they proceed to join them together, the serrated incisions made by their teeth, which, if they do not cut as fast, in this respect are more effective than any scissors, interlacing each other so as to support the separated portions until they are properly joined. But it is obvious that this process cannot be followed by those moths which cut out their house from the edge of a leaf. If these were to detach the inner side before they had joined the two pieces together, the builder as well as his dwelling would inevitably fall. They therefore, beforemaking any incision, prudentlyrun(as a sempstress would call it) loosely together in distant points the two membranes on that side. Then putting out their heads they cut the intermediate portions, carefully avoiding the larger nerves of the leaf; afterwards they sew up the detached sides more closely, and only intersect the nerves when their labour is completed[794].—The habitation made by a moth, which lives upon a species ofAstragalus, is in like manner formed of the epidermis of the leaves, but in this several corrugated pieces project over each other, so as to resemble the furbelows once in fashion[795].

Other larvæ construct their habitations wholly of silk. Of this description is that of a moth, whose abode, except as to the materials which compose it, is formed on the same general plan as that just described, and the larva in like manner feeds only on the parenchyma of the leaf. In the beginning of spring, if you examine the leaves of your pear-trees, you will scarcely fail to meet with some beset on the under surface with several perpendicular downy russet-coloured projections, about a quarter of an inch high, and not much thicker than a pin, of a cylindrical shape, with a protuberance at the base, and altogether resembling at first sight so many spines growing out of the leaf. You would never suspect that these could be the habitations of insects; yet that they are is certain. Detach one of them, and give it a gentle squeeze, and you will see emerge from the lower end a minute caterpillar with a yellowish body and black head. Examine the place from which you have removed it, and you will perceive a round excavation in the cuticle and parenchyma of the leaf, the sizeof the end of the tube by which it was concealed. This excavation is the work of the above-mentioned caterpillar, which obtains its food by moving its little tent from one part of the leaf to the other, and eating away the space immediately under it. It touches no other part; and when these insects abound, as they often do to the great injury of pear-trees[796], you will perceive every leaf bristled with them, and covered with little withered specks, the vestiges of their former meals. The case in which the caterpillar resides, and which is quite essential to its existence, is composed of silk spun from its mouth almost as soon as it is excluded from the egg. As it increases in size, it enlarges its habitation by slitting it in two, and introducing a strip of new materials. But the most curious circumstance in the history of this little Arab is the mode by which it retains its tent in a perpendicular posture. This it effects partly by attaching silken threads from the protuberance at the base to the surrounding surface of the leaf. But being not merely a mechanician, but a profound natural philosopher well acquainted with the properties of air, it has another resource when any extraordinary violence threatens to overturn its slender turret. It forms avacuumin the protuberance at the base, and thus as effectually fastens it to the leaf as if an air-pump had been employed! This vacuum is caused by the insect's retreating on the least alarm up its narrow case, which its body completely fills, and thus leaving the space below free of air. In detaching one of these cases you may easily convince yourself of the fact. If you seize it suddenly while the insect is at the bottom, you will find that it is readilypulled off, the silken cords giving way to a very slight force; but if, proceeding gently, you give the insect time to retreat, the case will be held so closely to the leaf as to require a much stronger effort to loosen it. As if aware that, should the air get admission from below, and thus render a vacuum impracticable, the strongest bulwark of its fortress would be destroyed, our little philosopher carefully avoids gnawing a hole in the leaf, contenting itself with the pasturage afforded by the parenchyma above the lower epidermis; and when the produce of this area is consumed, it gnaws asunder the cords of its tent, and pitches it at a short distance as before. Having attained its full growth, it assumes the pupa state, and after a while issues out of its confinement a small brown moth, with long hind legs, thePhalæna Tinea serratellaof Linné[797].

Some larvæ, which form their covering of pure silk, are not content with a single coating, but actually envelop themselves in another, open on one side and very much resembling a cloak; whence Reaumur called them "Teignes à fourreau à manteau." What is very striking in the construction of this cloak, is, that the silk, instead of being woven into one uniform close texture, is formed into numerous transparent scales over-wrapping each other, and altogether very much resembling the scales of a fish[798]. These mantle-covered cases, one of which I once had the pleasure of discovering, are inhabited by the larva of a little moth apparently first described by Dr. Zincken genannt Sommer, who calls itTinea palliatella[799].

Various substances besides silk are fabricated into habitations by other larvæ, though usually joined together either with silk or an analogous gummy material. ThusDiurnea? Lichenumforms of pieces of lichen a dwelling resembling one of the turretedHelices, many of which I observed in June 1812 on an oak in Barham. The larvæ of another moth, which also feeds upon lichens, instead of employing these vegetables in forming its habitation, composes it of grains of stone eroded from the walls of buildings upon which its food is found, and connected by a silken cement. These insects were the subject of a paper in the Memoirs of the French Academy[800], by M. de la Voye, who, from the circumstance of their being found in great abundance on mouldering walls, attributed to them the power of eating stone, and regarded them as the authors of injuries proceeding solely from the hand of time: for the insects themselves are so minute, and the coating of grains of stone composing their cases is so trifling, that Reaumur observes they could scarcely make any perceptible impression on a wall from which they had procured materials for ages[801].—Another lepidopterous larva, but of a much larger size and different genus, the case of which is preserved in the cabinet of the President of the Linnean Society, who pointed it out to me, employs the spines apparently of some species ofMimosa, which are ranged side by side so as to form a very elegant fluted cylinder. A similar arrangement of pieces of small twigs is observable in the habitation of the females[802]of the larvæ of a moth referred byVon Scheven toBombyx vestita, F.; which Ochsenheimer regards as synonymous withPsyche graminella, whileP. Viciellaof theWiener Verzeichnisscovers itself with short portions of the stems of grasses placed transversely, and united by means of silk into a five- or six-sided case. The habitation of a third larva of the same family, described and figured by Reaumur (P. graminella, Ochsenh. just named), is composed of squarish pieces of theleavesof grass fastened only at one end, and overwrapping each other like the tiles of a house; and that of another noticed by the same author, of portions of the smallest twigs of broom arranged on the same plan[803]. Indeed the larvæ of the whole of this tribe of moths, now separated into a distinct genus (Psyche, Schrank, Ochsenh.,Fumea, Haworth), but which according to Germar needs further subdivision, reside in cases or sacks (whence they are called by the GermansSackträger) composed of silk, and fragments of grass, bark, &c.


Back to IndexNext