Chapter 14

Plate 13OLDEST INITIAL SERIES AT COPAN—STELA 15

OLDEST INITIAL SERIES AT COPAN—STELA 15

Passing over I1 J1, I2 J2, K1 Ll, K2 L2, we reach in M1 the closing glyph of the Supplementary Series, here shown with a coefficient of 10, the head having a fleshless lower jaw. The month sign follows in N1. The coefficient is 3 and by comparing the sign itself with the month glyphs in figure19, it will be apparent that the sign forMuanina'orb'is recorded here. The Initial Series of this monument therefore is 9.17.15.0.05 Ahau 3 Muan.

In closing the presentation of Initial-series texts which show both head-variant numerals and period glyphs, the writer has thought best to figure the Initial Series on Stela 15 at Copan, because it is not only the oldest Initial Series at Copan, but also the oldest one known in which head-variant numerals are used[159](see pl.13). The introducing glyph appears at A1-B2. There follows in A3 a number too much effaced to read, but which, on the basis of all our previous experience, we are justified in calling 9. Similarly B3 must be the head variant of the cycle sign. The numeral 4 is clearly recorded in A4. Note the square irid, protruding fang, and mouth curl. Compare A4 with figure51,j-m. Although the glyph in B4 is too much effaced to read, we are justified in assuming that it is the head variant of the katun sign. The glyph in A5 is the numeral 10. Note the fleshless lower jaw and other characteristics of the death's-head. Again we are justified in assuming that B5 must be the head variant of the tun sign. The glyphs A6, B6 clearly record 0 uinals. Note the clasped hand denoting zero in A6, and the curling mouth fang of the uinal period glyph in B6. This latter glyph is the full-figure form of the uinal sign[160](a frog). Compare B6 with figure33, which shows the uinal sign on Stela D at Copan. The stela is broken off just below the uinal sign and its coefficient; and therefore the kin coefficient and sign, the day coefficient and sign, and the month coefficient and sign, are missing. Assembling the four periods present, we have 9.4.10.0.?. Calling the missing kin coefficient 0, and reducing this number to units of the first order by means of TableXIII, we have:

Deducting from this number all the Calendar Rounds possible, 69(see TableXVI), and applying rules 1, 2, and 3 (pp.139,140, and141, respectively) to the remainder, the terminal date reached will be12 Ahau 8 Mol. This date is reached on the assumption that the missing kin coefficient was zero. This is a fairly safe assumption, since when the tun coefficient is either 0, 5, 10, or 15 (as here) and the uinal coefficient is 0 (as here), the kin coefficient is almost invariably zero. That is, the close of an even hotun in the Long Count is recorded.

While at Copan in May, 1912, the writer was shown a fragment of a stela which he was told was a part of this monument (Stela 15). This showed the top parts of two consecutive glyphs, the first of which very clearly had a coefficient of 12 and the one following of 8. The glyphs to which these coefficients belonged were missing, but the coincidence of the two numbers 12 (?) 8 (?) was so striking when taken into consideration with the fact that these were the day and month coefficients reached by calculation, that the writer was inclined to accept this fragment as the missing part of Stela 15 which showed the terminal date. This whole Initial Series therefore reads: 9.4.10.0.012 Ahau 8 Mol. It is chiefly interesting because it shows the earliest use of head-variant numerals known.

In the foregoing texts plate12,A,B, figure69,A,B, and figure70, the head-variant numerals 0, 1, 3, 4, 5, 6, 8, 9, 10, 13, 14, 15, 17, and 18 have been given, and, excepting the forms for 2, 11, and 12, these include examples of all the head numerals.[161]No more texts specially illustrating this type of numeral will be presented, but when any of the head numerals not figured above (2, 7, 11, 12, 16, and 19) occur in future texts their presence will be noted.

Before taking up the consideration of unusual or irregular Initial Series the writer has thought best to figure one Initial Series the period glyphs and numerals of which are expressed by full-figure forms. As mentioned on page68, such inscriptions are exceedingly rare, and such glyphs, moreover, are essentially the same as head-variant forms, since their determining characteristics are restricted to their head parts, which are exactly like the corresponding head-variant forms. This fact will greatly aid the student in identifying the full-figure glyphs in the following text.

In plate14is figured the Initial Series from Stela D at Copan.[162]The introducing glyph is recorded in A1. The variable central element in keeping with the other glyphs of the inscription appears here as a full figure, the lower part of which is concealed by the tun-sign.[163]

BUREAU OF AMERICAN ETHNOLOGYBULLETIN 57 PLATE 14

Plate 14INITIAL SERIES ON STELA D, COPAN, SHOWING FULL-FIGURE NUMERAL GLYPHS AND PERIOD GLYPHS

INITIAL SERIES ON STELA D, COPAN, SHOWING FULL-FIGURE NUMERAL GLYPHS AND PERIOD GLYPHS

The Initial-series number itself appears in B1-B3. The cycle sign is a grotesque bird, designated by Mr. Bowditch a parrot, an identification which the hooked beak and claws strongly suggest. The essential element of the cycle sign, however, the clasped hand, appears only in the head of this bird, where the student will readily find it. Indeed, the head of this full-figure form is nothing more nor less than a head-variant cycle glyph, and as such determines the meaning of the whole figure. Compare this head with figure25,d-f, or with any of the other head-variant cycle forms figured in the preceding texts. This grotesque "cycle bird," perhaps the parrot, is bound to the back of an anthropomorphic figure, which we have every reason to suppose records the cycle coefficient. An examination of this figure will show that it has not only the dots on the lower part of the cheek, but also the beard, both of which are distinctive features of the head for 9. Compare this head with figure52,g-l, or with any other head variants for the numeral 9 already figured. Bearing in mind that the heads only present the determining characteristics of full-figure glyphs, the student will easily identify B1 as recording 9 cycles.

The katun and its coefficient are represented in A2, the former by a grotesque bird, an eagle according to Mr. Bowditch, and the latter by another anthropomorphic figure. The period glyph shows no essential element recognizable as such, and its identification as the katun sign therefore rests on its position, immediately following the cycle sign. The head of the full figure, which represents the katun coefficient, shows the essential element of the head for 5, the tun headdress. It has also the fleshless lower jaw of the head for 10. The combination of these two elements in one head, as we have seen, indicates the numeral 15, and A2 therefore records 15 katuns. Compare the head of this anthropomorphic figure with figure53,b-e.

The tun and its coefficient are represented in B2. The former again appears as a grotesque bird, though in this case of undetermined nature. Its head, however, very clearly shows the essential element of the head-variant tun sign, the fleshless lower jaw. Compare this form with figure29,e-g, and the other head-variant tun signs already illustrated. The head of the anthropomorphic figure, which denotes the tun coefficient, is just like the head of the anthropomorphic figure in the preceding glyph (A2), except that in B2 the head has no fleshless lower jaw.

Since the head in A2 with the fleshless lower jaw and the tun headdress represents the numeral 15, the head in B2 without the former but with the latter represents the numeral 5. Compare the head of the anthropomorphic figure in B2 with figure51,n-s. It is clear, therefore, that 5 tuns are recorded in B2.

The uinal and its coefficient in A3 are equally clear. The period glyph here appears as a frog (Maya,uo), which, as we have seenelsewhere, may have been chosen to represent the 20-day period because of the similarity of its name,uo, to the name of this period,u, or uinal. The head of the anthropomorphic figure which clasps the frog's foreleg is the head variant for 0. Note the clasped hand across the lower part of the face, and compare this form with figure53,s-w. The whole glyph, therefore, stands for 0 uinals.

In B3 are recorded the kin and its coefficient. The period glyph here is represented by an anthropomorphic figure with a grotesque head. Its identity, as representing the kins of this number, is better established from its position in the number than from its appearance, which is somewhat irregular. The kin coefficient is just like the uinal coefficient—an anthropomorphic figure the head of which has the clasped hand as its determining characteristic. Therefore B3 records 0 kins.

The whole number expressed by B1-B3 is 9.15.5.0.0; reducing this by means of TableXIIIto units of the first order, we have:

Deducting from this number all the Calendar Rounds possible, 74 (see TableXVI), and applying rules 1, 2, and 3 (pp.139,140, and141respectively), to the remainder, the terminal date reached will be10 Ahau 8 Chen.

The day part of this terminal date is recorded in A4. The day signAhauis represented as an anthropomorphic figure, crouching within the customary day-sign cartouche. The head of this figure is the familiar profile variant for the day signAhau, seen in figure16,h', i'. This cartouche is clasped by the left arm of another anthropomorphic figure, the day coefficient, the head of which is the skull, denoting the numeral 10. Note the fleshless lower jaw of this head and compare it with the same element in figure52,m-r. This glyph A4 records, therefore, the day reached by the Initial Series,10 Ahau.

The position of the month glyph in this text is most unusual. Passing over B4, the first glyph of the Supplementary Series, the month glyph follows it immediately in A5. The month coefficient appears again as an anthropomorphic figure, the head of which has for its determining characteristic the forehead ornament composed of one part, denoting the numeral 8. Compare this head with the heads for 8, in figure52,a-f. The month sign itself appears as a large grotesque head, the details of which present the essential elements of the month here recorded—Chen. Compare with figure19,o, p.

BUREAU OF AMERICAN ETHNOLOGYBULLETIN 57 PLATE 15

Plate 15INITIAL SERIES ON STELA J, COPAN

INITIAL SERIES ON STELA J, COPAN

The superfix of figure16,o, p, has been retained unchanged as the superfix in A5b. The element (*) appears just above the eye of the grotesque head, and the element (**) on the left-hand side about where the ear lobe should be. The whole glyph unmistakably records a head variant of the month glyphChen, and this Initial Series therefore reads 9.15.5.0.010 Ahau 8 Chen.

The student will note that this Initial Series records a date just 5 tuns later than the Initial Series on Stela B at Copan (pl.7,A). According to the writer's opinion, therefore, Stelæ B and D marked two successive hotuns at this city.

We come now to the consideration of Initial Series which are either unusual or irregular in some respect, examples of which it is necessary to give in order to familiarize the student with all kinds of texts.

The Initial Series in plate15,A,[164]is figured because of the very unusual order followed by its glyphs. The sequence in which these succeed each other is given inBof that plate. The scheme followed seems to have been that of a mat pattern. The introducing glyph appears in position 0 (pl.15,B), and the student will readily recognize it in the same position inAof the same plate. The Initial Series number follows in 1, 2, 3, 4, and 5 (pl.15,B). Referring to these corresponding positions inA, we find that 9 cycles are recorded in 1, and 13 katuns in 2. At this point the diagonal glyph- band passes under another band, emerging at 3, where the tun sign with a coefficient of 10 is recorded. Here the band turns again and, crossing backward diagonally, shows 0 uinals in 4. At this point the band passes under three diagonals running in the opposite direction, emerging at position 5, the glyph in which are recorded 0 kins.

This number 9.13.10.0.0 reduces by means of TableXIIIto units of the first order, as follows:

Deducting from this number all the Calendar Rounds possible, 73 (see TableXVI), and applying rules 1, 2, and 3 (pp.139,140, and141, respectively) to the remainder, the terminal date reached will be7 Ahau 3 Cumhu. Referring again to plate15,B, for the sequence of the glyphs in this text, it is clear that the day of this terminal date should be recorded in 6, immediately after the kins of the Initial-series number in 6. It will be seen, however, in plate15,A, thatglyph 6 is effaced, and consequently the day is missing. Passing over 7, 8, 9, 10, and 11, inAandBof the plate named, we reach in the lower half of 12 the closing glyph of the Supplementary Series here shown with a coefficient of 10. Compare this form with figure65. The month glyph, therefore, should follow in the upper half of 13.[165]This glyph is very clearly the form for the monthCumhu(see fig.19,g', h'), and it seems to have attached to it the bar and dot coefficient 8. A comparison of this with the month coefficient 3, determined above by calculation, shows that the two do not agree, and that the month coefficient as recorded exceeds the month coefficient determined by calculation, by 5, or in Maya notation, 1 bar. Since the Initial-series number is very clearly 9.13.10.0.0, and since this number leads to the terminal date7 Ahau 3 Cumhu, it would seem that the ancient scribes had made an error in this text, recording 1 bar and 3 dots instead of 3 dots alone. The writer is inclined to believe, however, that the bar here is only ornamental and has no numerical value whatsoever, having been inserted solely to balance this glyph. If it had been omitted, the month sign would have had to be greatly elongated and its proportions distorted in order to fill completely the space available. According to the writer's interpretation, this Initial Series reads 9.13.10.0.07 Ahau 3 Cumhu.

The opposite face of the above-mentioned monument presents the same interlacing scheme, though in this case the glyph bands cross at right angles to each other instead of diagonally.

The only other inscription in the whole Maya territory, so far as the writer knows, which at all parallels the curious interlacing pattern of the glyphs on the back of Stela J at Copan, just described, is Stela H at Quirigua, illustrated in figure71.[166]The drawing of this inscription appears in a of this figure and the key to the sequence of the glyphs inb. The introducing glyph occupies position 1 and is followed by the Initial Series in 2-6. The student will have little difficulty in identifying 2, 3, and 4 as 9 cycles, 16 katuns, and 0 tuns, respectively. The uinal and kin glyphs in 5 and 6, respectively, are so far effaced that in order to determine the values of their coefficients we shall have to rely to a large extent on other inscriptions here at Quirigua. For example, every monument at Quirigua which presents an Initial Series marks the close of some particular hotun in the Long Count; consequently, all the Initial Series at Quirigua which record these Katun endings have 0 for their uinal and kin coefficients.[167]Thisabsolute uniformity in regard to the uinal and kin coefficients in all the other Initial Series at Quirigua justifies the assumption that in the text here under discussion 0 uinals and 0 kins were originally recorded in glyphs 5 and 6, respectively. Furthermore, an inspection of the coefficients of these two glyphs in figure71,a, shows that both of them are of the same general size and shape as the tun coefficient in 4, which, as we have seen, is very clearly 0. It is more than probable that the uinal and kin coefficients in this text were originally 0, like the tun coefficient, and that through weathering they have been eroded down to their present shape. In figure72,a, is shown the tun coefficient and beside it inb, the uinal or kin coefficient. The dotted parts inbare the lines which have disappeared through erosion, if this coefficient was originally 0. It seems more than likely from the foregoing that the uinal and kin coefficients in this number were originally 0, and proceeding on this assumption, we have recorded in glyphs 2-6, figure71,a, the number 9.16.0.0.0.

Fig. 71Fig.71. Initial Series on Stela H, Quirigua:a, Mat pattern of glyph sequence;b, key to sequence of glyphs ina.

Fig.71. Initial Series on Stela H, Quirigua:a, Mat pattern of glyph sequence;b, key to sequence of glyphs ina.

Reducing this to units of the first order by means of TableXIII, we have:

Deducting from this number all the Calendar Rounds possible, 74 (see TableXVI), and applying rules 1, 2, and 3 (pp.139,140, and141, respectively) to the remainder, the terminal date2 Ahau 13 Tzecwill be reached.

Fig. 72Fig.72. The tun, uinal, and kin coefficients on Stela H, Quirigua:a, Tun coefficient;b, suggested restoration of the uinal and kin coefficients like the tun coefficient.

Fig.72. The tun, uinal, and kin coefficients on Stela H, Quirigua:a, Tun coefficient;b, suggested restoration of the uinal and kin coefficients like the tun coefficient.

In spite of some weathering, the day part of the terminal date appears in glyph 7 immediately after the kin glyph in 6. The coefficient, though somewhat eroded, appears quite clearly as 2 (2 dots separated by an ornamental crescent). The day sign itself is the profile variant forAhaushown in figure16,h', i'. The agreement ofthe day recorded with the day determined by calculations based on the assumption that the kin and uinal coefficients are both 0, of itself tends to establish the accuracy of these assumptions. Passing over 8, 9, 10, 11, 12, 13, and 14, we reach in 15 the closing glyph of the Supplementary Series, and in 16 probably, the month glyph. This form, although badly eroded, presents no features either in the outline of its coefficient or in the sign itself which would prevent it representing the month part13 Tzec. The coefficient is just wide enough for three vertical divisions (2 bars and 3 dots), and the month glyph itself is divided into two parts, a superfix comprising about one-third of the glyph and the main element the remaining two-thirds. Compare this form with the sign forTzecin figure19,g, h. Although this text is too much weathered to permit absolute certainty with reference to the reading of this Initial Series, the writer nevertheless believes that in all probability it records the date given above, namely, 9.16.0.0.02 Ahau 13 Tzec. If this is so, Stela H is the earliest hotun-marker at Quirigua.[168]

The student will have noticed from the foregoing texts, and it has also been stated several times, that the cycle coefficient is almost invariably 9. Indeed, the only two exceptions to this rule in the inscriptions already figured are the Initial Series from the Temples of the Foliated Cross and the Sun at Palenque (pl.12,AandB, respectively), in which the cycle coefficient in each case was 1. As explained on page179, footnote 1, these two Initial Series refer probably to mythological events, and the dates which they record were not contemporaneous with the erection of the temples on whose walls they are inscribed; and, finally, Cycle 9 was the first historic period of the Maya civilization, the epoch which witnessed the rise and fall of all the southern cities.

As explained on page179, footnote 2, however, there are one or two Initial Series which can hardly be considered as referring to mythological events, even though the dates which they record fall in a cycle earlier than Cycle 9. It was stated, further, in the same place that these two Initial Series were not found inscribed on large monuments but on smaller antiquities, one of them being a small nephrite figure which has been designated the Tuxtla Statuette, and the other a nephrite plate, designated the Leyden Plate; and, finally, that the dates recorded on these two antiquities probably designated contemporaneous events in the historic period of the Maya civilization.

Fig. 73Fig.73. The Initial Series on the Tuxtla Statuette, the oldest Initial Series known (in the early part of Cycle 8).

Fig.73. The Initial Series on the Tuxtla Statuette, the oldest Initial Series known (in the early part of Cycle 8).

Fig. 74Fig.74. The introducing glyph (?) of the Initial Series on the Tuxtla Statuette.

Fig.74. The introducing glyph (?) of the Initial Series on the Tuxtla Statuette.

These two minor antiquities have several points in common. Both are made of the same material (nephrite) and both have their glyphs incised instead of carved. More important, however, than these similarities is the fact that the Initial Series recorded on each of them has for its cycle coefficient the numeral 8; in other words, both record dates which fell in the cycle immediately preceding that of the historic period, or Cycle 9. Finally, at least one of these two Initial Series (that on the Leyden Plate), if indeed not both, records a date so near the opening of the historic period, which we may assume occurred about 9.0.0.0.08 Ahau 13 Cehin round numbers, that it may be considered as belonging to the historic period, and hence constitutes the earliest historical inscription from the Maya territory.

The Initial Series on the first of these minor antiquities, the Tuxtla Statuette, is shown in figure73.[169]The student will note at the outset one very important difference between this Initial Series—if indeed it is one, which some have doubted—and those already presented. No period glyphs appear in the present example, and consequently the Initial-series number is expressed by the second method (p.129), that is, numeration by position, as in the codices. See the discussion of Initial Series in the codices in Chapter VI (pp.266-273), and plates 31 and 32. This at once distinguishes the Initial Series on the Tuxtla Statuette from every other Initial Series in the inscriptions now known. The number is preceded by a character which bears some general resemblance to the usual Initial-series introducing glyph. See figure74. The most striking point of similarity is the trinal superfix, which is present in both signs. The student will have little difficulty in reading the number here recorded as 8 cycles, 6 katuns, 2 tuns, 4 uinals, and 17 kins, that is, 8.6.2.4.17; reducing this to units of the first order by means of TableXIII, we have:

Solving this Initial-series number for its terminal date, it will be found to be8 Caban 0 Kankin. Returning once more to our text (see fig.73), we find the day coefficient above reached, 8, is recorded just below the 17 kins and appears to be attached to some character the details of which are, unfortunately, effaced. The month coefficient 0 and the month signKankindo not appear in the accompanying text, at least in recognizable form. This Initial Series would seem to be, therefore, 8.6.2.4.178 Caban 0 Kankin, of which the day sign, month coefficient, and month sign are effaced or unrecognizable. In spite of its unusual form and the absence of the day sign, and the month coefficient and sign the writer is inclined to accept the above date as a contemporaneous Initial Series.[170]

Fig. 75Fig.75. Drawings of the Initial Series:A, On the Leyden Plate. This records a Cycle-8 date and next to the Tuxtla Statuette Initial Series, is the earliest known.B, On a lintel from the Temple of the Initial Series, Chichen Itza. This records a Cycle-10 date, and is one of the latest Initial Series known.

Fig.75. Drawings of the Initial Series:A, On the Leyden Plate. This records a Cycle-8 date and next to the Tuxtla Statuette Initial Series, is the earliest known.B, On a lintel from the Temple of the Initial Series, Chichen Itza. This records a Cycle-10 date, and is one of the latest Initial Series known.

The other Initial Series showing a cycle coefficient 8 is on the Leyden Plate, a drawing of which is reproduced in figure75,A.This Initial Series is far more satisfactory than the one just described, andits authenticity, generally speaking, is unquestioned. The student will easily identify A1-B2 as an Initial-series introducing glyph, even though the pair of comblike appendages flanking the central element and the tun tripod are both wanting. Compare this form with figure24. The Initial-series number, expressed by normal-form numerals and head-variant period glyphs, follows in A3-A7. The former are all very clear, and the number may be read from them in spite of certain irregularities in the corresponding period glyphs. For example, the katun head in A4 has the clasped hand, which is the distinguishing characteristic of the cycle head, and as such should have appeared in the head in A3. Neither the tun head in A5 nor the kin head in A7 shows an essential element heretofore found distinguishing these particular period glyphs. Indeed, the only period glyph of the five showing the usual essential element is the uinal head in A6, where the large mouth curl appears very clearly. However, the number recorded here may be read as 8.14.3.1.12 from the sequence of the coefficients—that is, their position with reference to the introducing glyph—a reading, moreover, which is confirmed by the only known period glyph, the uinal sign, standing in the fourth position after the introducing glyph.

Reducing this number to units of the first order by means of TableXIII, we have:

Deducting from this number all the Calendar Rounds possible, 66 (see TableXVI), and applying rules 1, 2, and 3 (pp.139,140, and141, respectively) to the remainder, the terminal date reached will be1 Eb 0 Yaxkin. The day part of this date is very clearly recorded in A8, the coefficient 1 being expressed by one dot, and the day sign itself having the hook surrounded by dots, and the prominent teeth, both of which are characteristic of the grotesque head which denotes the dayEb. See figure16,s-u.

The month glyph appears in A9a, the lower half of which unmistakably records the monthYaxkin. (See fig.19,k, l.) Note theyaxandkinelements in each. The only difficulty here seems to be the fact that a bar (5) is attached to this glyph. The writer believes, however, that the unexplained element (*) is the month coefficient in this text, and that it is an archaic form for 0. He would explain the bar as being merely ornamental. The whole Initial Series reads: 8.14.3.1.121 Eb 0 Yaxkin.

The fact that there are some few irregularities in this text confirms rather than invalidates the antiquity which has been ascribed to it by the writer. Dating from the period when the Maya were just emerging from savagery to the arts and practices of a semicivilized state, it is not at all surprising that this inscription should reflect the crudities and uncertainties of its time. Indeed, it is quite possible that at the very early period from which it probably dates (8.14.3.1.121 Eb 0 Yaxkin) the period glyphs had not yet become sufficiently conventionalized to show individual peculiarities, and their identity may have been determined solely by their position with reference to the introducing glyph, as seemingly is the case in some of the period glyphs of this text.

The Initial Series on the Leyden Plate precedes the Initial Series on Stela 3 at Tikal, the earliest contemporaneous date from the monuments, by more than 160 years, and with the possible exception of the Tuxtla Statuette above described, probably records the earliest date of Maya history. It should be noted here that Cycle-8 Initial Series are occasionally found in the Dresden Codex, though none are quite so early as the Initial Series from the Tuxtla Statuette.

Passing over the Initial Series whose cycle coefficient is 9, many of which have already been described, we come next to the consideration of Initial Series whose cycle coefficient is 10, a very limited number indeed. As explained in Chapter I, the southern cities did not long survive the opening of Cycle 10, and since Initial-series dating did not prevail extensively in the later cities of the north, Initial Series showing 10 cycles are very unusual.

In figure75,B, is shown the Initial Series from the Temple of the Initial Series at Chichen Itza, the great metropolis of northern Yucatan. This inscription is not found on a stela but on the under side of a lintel over a doorway leading into a small and comparatively insignificant temple. The introducing glyph appears in A1-B2 and is followed by the Initial-series number in A3-A5. The student will have little difficulty in deciphering all of the coefficients except that belonging to the kin in A5, which is a head-variant numeral, and the whole number will be found to read 10.2.9.1.?. The coefficient of the day of the terminal date is very clearly 9 (see B5) and the month part,7 Zac(see A6). We may now read this Initial Series as 10.2.9.1.? 9?7 Zac; in other words, the kin coefficient and the day sign are still indeterminate. First substituting 0 as the missing value of the kin coefficient, the terminal date reached will be 10.2.9.1.013 Ahau 18 Yax. But according to TableXV, position18 Yaxis just 9 days earlier than position7 Zac, the month part recorded in A6. Consequently, in order to reach7 Zacfrom 10.2.9.1.013 Ahau 18 Yax, 9 more days are necessary. Counting these forward from 10.2.9.1.013 Ahau 18 Yax, the date reached will be 10.2.9.1.99 Muluc 7 Zac, which is the date recorded on this lintel. Compare the day sign with figure16,m, n, and the month sign with figure19,s, t.


Back to IndexNext