Helmholtz.

66.Helmholtz, like Riemann, was important both in the mathematics and in the philosophy of Geometry. From the mathematical point of view, his work has been already considered in ChapterI.; the consideration of his philosophy, which must occupy us here, will be a more serious task. Like Riemann, he endeavoured to prove that all the axioms are empirical, and like Riemann, he based his proof chiefly on Metageometry. He had an additional resource, however, in the physiology of the senses, which first led him to reject the Transcendental Aesthetic, and enabled him to attack Kant from the psychological as well as the mathematical side[83].

The principal topics, for a criticism of Helmholtz, are three: First, his criterion of theà priori; second, his discussion with Land as to the "imaginability" of non-Euclidean spaces; third—and this is by far the most important of the three—histheory of the dependence of Geometry on Mechanics. Let us discuss these three points successively.

67.Helmholtz's criterion of apriority is difficult to discover, as he never, to my knowledge, gives a precise statement of it. From his discussion of physical and transcendental Geometry[84], however, it would appear that he regards as empirical whatever applies to empirical matter. For he there maintains, that even if space were anà prioriform, yet any Geometry, which aimed at an application to Physics, would, since the actual places of bodies are not knownà priori, be necessarily empirical[85]. It seems the more probable that he regards this as a possible criterion, as it is adopted, in several passages, by his disciple Erdmann[86], and so strange a test could hardly be accepted by a philosopher, unless he had found it in his master. I have called this a strange test, because it seems to me completely to ignore the work of the Critical Philosophy. For if there is one thing which, one might have hoped, had been made sufficiently clear by Kant's Critique, it is this, that knowledge which isà priori, being itself the condition of possible experience, applies—and in Kant's view, applies only—to empirical matter. Helmholtz and Erdmann, therefore, in setting up this test without discussion, simply ignore the existence of Kant and the possibility of a transcendental argument. Helmholtz assumes always that empirical knowledge must be wholly empirical, that there can be noà prioriconditions of the experience in question, that experience will always be possible, and may give any kind of result. Thus in discussing "physical" Geometry, he assumes that the possibility of empirical measurement involves noà prioriaxioms, and that noà priorielement can be contained in the process. This assumption, as we shall see in ChapterIII., is quite unwarrantable: certain properties ofspace, in fact, are involved in the possibility of measuringmatter. In spite of the fact, therefore, that we apply measurement to empirical matter, and that our results are therefore empirical, theremay well be anà priorielement in measurement, which is presupposed in its possibility. Such a criterion, therefore, must pronounce everything empirical, but must itself be pronounced worthless.

Another and a better criterion, it is true, is also to be found in Helmholtz, and has also been adopted by Erdmann. Whatever might, by a different experience, have been rendered different—so this criterion contends—must itself be dependent on experience, and so empirical. This criterion seems perfectly sound, but Helmholtz's use of it is usually vitiated by his neglecting to prove the possibility of the different experience in question. He says, for example, that if our experience showed us only bodies which changed their shapes in motion, we should not arrive at the axiom of Congruence, which he pronounces accordingly to be empirical. But I shall endeavour to prove, in ChapterIII., that without the axiom of Congruence, experience of spatial magnitude would be impossible. If my proof be correct, it follows that no experience can ever reveal spatial magnitudes which contradict this axiom—a possibility which Helmholtz nowhere discusses, in setting up his hypothetical experience. Thus this second criterion, though perfectly sound, requires always an accompanying transcendental argument, as to the conditions of possible experience. But this accompaniment is seldom to be found in Helmholtz.

68.One of the few cases, in which Helmholtz has attempted such an accompaniment, occurs in connection with our second point, the imaginability of non-Euclidean spaces. The argument on this point was elicited by Helmholtz's Kantian opponents, who maintained that the merely logical possibility of these spaces was irrelevant, since the basis of Geometry was not logic, but intuition. The axioms, they said, are synthetic propositions, and their contraries are, therefore, not self-contradictory; they are nevertheless apodeictic propositions, since no otherintuitionthan the Euclidean is possible to us[87]. I have already criticized this line of argument in the beginning of the present chapter. Helmholtz's criticism, however, was different: admitting the internal consistency of the argument, he denied one of its premisses. Wecanimagine non-Euclidean spaces,he said, though their unfamiliarity makes this difficult. From this view it followed, of course, that Kant's argument, even if it were formally valid, could not prove the apriority of Euclidean space in particular, but only of that general space which included Euclid and non-Euclid alike[88].

Although I agree with Helmholtz in thinking the distinction between Euclidean and non-Euclidean spaces empirical, I cannot think his argument on the "imaginability" of the latter a very happy one. The validity of any proof must turn, obviously, on the definition of imaginability. The definition which Helmholtz gives in his answer to Land is as follows: Imaginability requires"die vollständige Vorstellbarkeit derjenigen Sinneseindrücke, welche das betreffende Object in uns nach den bekannten Gesetzen unserer Sinnesorgane unter allen denkbaren Bedingungen der Beobachtung erregen, und wodurch es sich von anderen ähnlichen Objecten unterscheiden würde"(Wiss. Abh.II.p. 644). This definition is not very clear, owing to the ambiguity of the word "Vorstellbarkeit." The following definition seems less ambiguous:"Wenn die Reihe der Sinneseindrücke vollständig und eindeutig angegeben werden kann, muss man m. E. die Sache füranschaulich vorstellbarerklären" (Vorträge und Reden,II.p. 234). This makes clear, what also appears from his manner of proof, that he regards things as imaginable which can bedescribedin conceptual terms. Such, as Land remarks (Mind, Vol.II.p. 45), "is not the sense required for argumentation in this case." That Land's criticism is just, is shown by Helmholtz's proof for non-Euclidean spaces, for it consists only in an analogy to the volume inside a sphere, which is mathematically obtained thus: We take the symbols representing magnitudes in "pseudo-spherical" (hyperbolic) space, and give them a new Euclidean meaning; thus all our symbolic propositions become capable of two interpretations, one for pseudo-spherical space, and one for the volume inside a sphere. It is, however, sufficiently obvious that this procedure, though it enables us todescribeour new space, does not enable us toimagineit, in the sense of calling up images of the way things would look in it. We really derive, from this analogy, no more knowledge than a man born blind may derive, as to light, froman analogy with heat. The dictum"Nihil est in intellectu quod non fuerit ante in sensu,"would unquestionably be true, if forintellectwe were to substituteimagination; it is vain, therefore,ifour actual space be Euclidean, to hope for a power ofimagininga non-Euclidean space. What Helmholtz might, I believe with perfect truth, have urged against Land, is that the image we actually have of space is not sufficiently accurate to exclude, in the actual space we know, all possibility of a slight departure from the Euclidean type. But in maintaining that we cannot imagine, though we can conceive and describe, a space different from that we actually have, Land is, in my opinion, unquestionably in the right. For a pure Kantian, who maintains, with Land, that none of the axioms can be proved, this question is of great importance. But if, as I have maintained, some of the axioms are susceptible of a transcendental proof, while the others can be verified empirically, the question is freed from psychological implications, and the imaginability or non-imaginability of metageometrical spaces becomes unimportant.

69.We come now to the third and most important question, the relation of Geometry to Mechanics. There are three senses in which Helmholtz's appeal to rigid bodies may be taken: the first, I think, is the sense in which he originally intended it; the second seems to be the sense which he adopted in his defence against Land; while the third is admitted by Land, and will be admitted in the following argument. These three senses are as follows:

(1) It may be asserted that the actual meaning of the axiom of Free Mobility lies in the assertion of empirical rigid bodies, and that the two propositions are equivalent to one another. This is certainly false.

(2) The axiom of Free Mobility, it may be said, is logically distinguishable from the assertion of rigid bodies, and may even be not empirical; but it is barren, even for pure Geometry, without the aid of measures, which must themselves be empirical rigid bodies. This sense is more plausible than the first, but I believe we can show that, in this sense also, the proposition is false.

(3) For pure Geometry and the abstract study of space,it may be said, Free Mobility, as applied to an abstract geometrical matter, gives a sufficient possibility of quantitative comparison; but the moment we extend our results to mixed mathematics, and apply them to empirically given matter, we require also, as measures, empirically given rigid bodies, or bodies, at least, whose departures from rigidity are empirically known. In this sense, I admit, the proposition is correct[89].

In discussing these three meanings, I shall not confine myself strictly to the text of Helmholtz or Land: if I endeavoured to do so, I should be met by the difficulty that neither of them defines theà priori, and that each is too much inclined, in my opinion, to test it by psychological criteria. I shall, therefore, take the three meanings in turn, without laying stress on their historical adequacy to the views of Land or Helmholtz.

70.(1) Congruence may be taken to mean—as Helmholtz would certainly seem to desire—that we find actual bodies, in our mechanical experience, to preserve their shapes with approximate constancy, and that we infer, from this experience, the homogeneity of space. This view, in my opinion, radically misconceives the nature of measurement, and of the axioms involved in it. For what is meant by the non-rigidity of a body? We mean, simply, that it has changed its shape. But this involves the possibility of comparison with its former shape, in other words, of measurement. In order, therefore, that there may be any question of rigidity or non-rigidity, the measurement of spatial magnitudes must be already possible. It follows that measurement cannot, without a vicious circle, be itself derived from experience of rigid bodies. Geometrical measurement, in fact, is the comparison of spatial magnitudes, and such comparison involves, as will be proved at length in ChapterIII., the homogeneity of space. This is, therefore, the logical prerequisite of all experience of rigid bodies, and cannot be the result of such experience. Without the homogeneity of space, the very notion of rigidity or non-rigidity could not exist, since these mean, respectively, the constancy or inconstancy of spatial magnitude in pieces ofmatter, and both alike, therefore, presuppose the possibility of spatial measurement. From the homogeneity of space, we learn that a body, when it moves, will not change its shape without some physical cause; that it actually does not change its shape, is never asserted, and is indeed known to be false. As soon as measurement is possible, actual changes of shape can be estimated, and their empirical causes can be sought. But if space were not homogeneous, measurement would be impossible, constant shape would be a meaningless phrase, and rigidity could never be experienced. Congruence asserts, in short, that a body can, so far as mere space is concerned, move without change of shape; rigidity asserts that it actually does so move—a very different proposition, involving obviously, as its logical prius, the former geometrical proposition.

This argument may be summed up by the following disjunction: If bodies change their shapes in motion—and to some extent, since no body is perfectly rigid, they must all do so—then one of two cases must occur.Eitherthe changes of shape, as bodies move from place to place, follow no geometrical law, are not, for instance, functions of the amount or direction of motion; in which case the law of causation requires that they should not be effects of the change of place, but of some simultaneous non-geometrical change, such as temperature.Orthe changes are regular, and the shapeSbecomes, in a new positionp,Sf(p). In this case, the law of concomitant variations leads us to attribute the change of shape to the mere motion, and shape thus becomes a function of absolute position. But this is absurd, for positionmeansmerely a relation or set of relations; it is impossible, therefore, that mere position should be able to effect changes in a body. Position is one term in a relation, not a thingper se; it cannot, therefore, act on a thing, nor exist by itself, apart from the other terms of the relation. Thus Helmholtz's view, that Congruence depends on the existence of rigid bodies, must, since it involves absolute position, be condemned as a logical fallacy. Congruence, in fact, as I shall prove more fully in ChapterIII., is anà priorideduction from the relativity of position.

71.(2) The above argument seems to me to answer satisfactorily Helmholtz's contention in the precise form whichhe first gave it. The axiom of Congruence, we must agree, is logically distinguishable from the existence of rigid bodies. Nevertheless some reference to matter is logically involved in Geometry[90], but whether this reference makes Geometry empirical, or does not, rather, show anà priorielement in dynamics, is a further question.

The reference to matter is necessitated by the homogeneity of empty space. For so long as we leave matter out of account, one position is perfectly indistinguishable from another, and a science of the relations of positions is impossible. Indeed, before spatial relations can arise at all, the homogeneity of empty space must be destroyed, and this destruction must be effected by matter. The blank page is useless to the geometer until he defaces its homogeneity by lines in ink or pencil. No spatial figures, in short, are conceivable, without a reference to a not purely spatial matter. Again, if Congruence is ever to be used, there must be motion: but a purely geometrical point, being defined solely by its spatial attributes, cannot be supposed to move without a contradiction in terms. What moves, therefore, must be matter. Hence, in order that motion may afford a test of equality, we must have somematterwhich is known to be unaffected throughout the motion, that is, we must have some rigid bodies. And the difficulty is, that these bodies must not only undergo no change due solely to the nature of space, but must, further, be unchanged by their changing relation to other bodies. And here we have a requisite which can no longer be fulfilledà priori: which, indeed, we know to be, in strictness, untrue. For the forces acting on a body depend upon its spatial relations to other bodies, and changing forces are liable to produce changing configuration. Hence, it would seem, actual measurement must be purely empirical, and must depend on the degree of rigidity to be obtained, during the process of measurement, in the bodies with which we are conversant.

This conclusion, I believe, is valid of all actual measurement. But the possibility of such empirical and approximate rigidity, I must insist, depends on theà priorilaw thatmeremotion, apart from the action of other matter, cannot effect a changeof shape. For without this law, the effect of other matter would not be discoverable; the laws of motion would be absurd, and Physics would be impossible. Consider the second law, for example: How could we measure the change of motion, if motion itself produced a change in our measures? Or consider the law of gravitation: How could we establish the inverse square, unless we were able, independently of Dynamics, to measure distances? The whole science of Dynamics, in short, is fundamentally dependent on Geometry, and but for the independent possibility of measuring spatial magnitudes, none of the magnitudes of Dynamics could be measured. Time, force, and mass are alike measured by spatial correlates: these correlates are given, for time, by the first law, for force and mass, by the second and third. It is true, then, that an empirical element appears unavoidably in all actual measurement, inasmuch as we can only know empirically that a given piece of matter preserves its shape throughout the necessary change of dynamical relations to other matter involved in motion; but it is further true that, for Geometry—which regards matter simply as supplying the necessary breach in the homogeneity of space, and the necessary term for spatial relations, not as the bearer of forces which change the configuration of other material systems—for Geometry, which deals with this abstract and merely kinematical matter, rigidity isà priori, in so far as the only changes with which it is cognizant—changes of mere position, namely—are incapable of affecting the shapes of the imaginary and abstract bodies with which it deals. To use a scholastic distinction, we may say that matter is thecausa essendiof space, but Geometry is thecausa cognoscendiof Physics. Without a Geometry independent of Physics, Physics itself, which necessarily assumes the results of Geometry, could never arise; but when Geometry is used in Physics, it loses some of itsà prioricertainty, and acquires the empirical and approximate character which belongs to all accounts of actual phenomena.

72.(3) This argument leads us to Land's distinction of physical and geometrical rigidity. The distinction may be expressed—and I think it is better expressed—by distinguishing between the conceptions of matter proper to Dynamics and to Geometry respectively. In Dynamics, we are concerned withmatter as subject to and as causing motion, as affected by and as exertingforce. We are therefore concerned with the changes of spatial configuration to which material systems are liable: the description and explanation of these changes is the proper subject-matter of all Dynamics. But in order that such a science may exist, it is obviously necessary that spatial configuration should be already measurable. If this were not the case, motion, acceleration and force would remain perfectly indeterminate. Geometry, therefore, must already exist before Dynamics becomes possible: to make Geometry dependent for its possibility on the laws of motion or any of their consequences, is a grossὕστερον πρότερον. Nevertheless, as we have seen, some sort of matter is essential to Geometry. But this geometrical matter is a more abstract and wholly different matter from that of Dynamics. In order to study space by itself, we reduce the properties of matter to a bare minimum: we avoid entirely the category of causation, so essential to Dynamics, and retain nothing, in our matter, but its spatial adjectives[91]. The kind of rigidity affirmed of this abstract matter—a kind which suffices for the theory of our science, though not for its application to the objects of daily life—is purely geometrical, and asserts no more than this: That since our matter is devoid,ex hypothesi, of causal properties, there remains nothing, in mere empty space, which is capable of changing the configuration of any geometrical system. A change of absolute position, it asserts, is nothing; therefore the only real change involved in motion is a change of relation to other matter; but such other matter, for the purposes of our science, is regarded as destitute of causal powers; hence no change can occur, in the configuration of our system, by the mere effect of motion through empty space. The necessity of such a principle may be shown by a simplereductio ad absurdum, as follows. A motion of translation of the universe as a whole, with constant direction and velocity, is dynamically negligeable; indeed it is, philosophically, no motion at all, for it involves no change in the condition or mutual relations of the things in the universe. But if our geometrical rigidity were denied, the change in the parameter of space might cause all bodies tochange their shapes owing to the mere change of absolute position, which is obviously absurd.

To make quite plain the function of rigid bodies in Geometry, let us suppose a liquid geometer in a liquid world. We cannot suppose the liquid perfectly homogeneous and undifferentiated, in the first place because such a liquid would be indistinguishable from empty space, in the second place because our geometer's body—unless he be a disembodied spirit—will itself constitute a differentiation for him. We may therefore assume

"dim beams,Which amid the streamsWeave a network of coloured light,"

"dim beams,Which amid the streamsWeave a network of coloured light,"

"dim beams,

Which amid the streams

Weave a network of coloured light,"

and we may suppose this network to form the occasion for our geometer's reflections. Then he will be able to imagine a network in which the lines are straight, or circular, or parabolic, or any other shape, and he will be able to infer that such a network, if it can be woven in one part of the fluid, can be woven in another. This will form sufficient basis for his deductions. The superposition he is concerned with—since not actual equality, but only the formal conditions of equality, are the subject-matter of Geometry—is purely ideal, and is unaffected by the impossibility of congealing any actual network. But in order to apply his Geometry to the exigencies of life, he would need some standard of comparison between actual networks, and here, it is true, he would need either a rigid body, or a knowledge of the conditions under which similar networks arose. Moreover these conditions, being necessarily empirical, could hardly be known apart from previous measurement. Hence for applied, though not for pure Geometry, one rigid body at least seems essential.

73.The utility, for Dynamics, of our abstract geometrical matter, is sufficiently evident. For having, by its means, a power of determining the configurations of material systems in whatever part of space, and knowing that changes of configuration are not due to mere change of place, we are able to attribute these changes to the action of other matter, and thus to establish the notion of force, which would be impossible if change of shape might be due to empty space.

Thus, to conclude: Geometry requires, if it is to bepracticallypossible, some body or bodies which are either rigid (in the dynamical sense), or known to undergo some definite changes of shape according to some definite law. (These changes, we may suppose, are known by the laws of Physics, which have been experimentally established, and which throughout assume the truth of Geometry.) One or more such bodies are necessary to applied Geometry—but only in the sense in which rulers and compasses are necessary. They are necessary as, in making the Ordnance Survey, an elaborate apparatus was necessary for measuring the base line on Salisbury Plain. But for thetheoryof Geometry, geometrical rigidity suffices, and geometrical rigidity means only that a shape, which is possible in one part of space, is possible in any other. The empirical element in practice, arising from the purely empirical nature of physical rigidity, is comparable to the empirical inaccuracies arising from the failure to find straight lines or circles in the world—which no one but Mill has regarded as rendering Geometry itself empirical or inaccurate. But to make Geometry await the perfection of Physics, is to make Physics, which depends throughout on Geometry, forever impossible. As well might we leave the formation of numbers until we had counted the houses in Piccadilly.


Back to IndexNext