CHAPTER V.

Similarly as, on the savannahs, I had observed a wasp attending the honey-glands of the bull's-horn acacia along with the ants; so at Santo Domingo another wasp, belonging to quite a different genus (Nectarina), attended some of the clusters of frog-hoppers, and for the possession of others a constant skirmishing was going on. The wasp stroked the young hoppers, and sipped up the honey when it was exuded, just like the ants.When an ant came up to a cluster of leaf-hoppers attended by a wasp, the latter would not attempt to grapple with its rival on the leaf, but would fly off and hover over the ant; then when its little foe was well exposed, it would dart at it and strike it to the ground. The action was so quick that I could not determine whether it struck with its fore-feet or its jaws; but I think it was with the feet. I often saw a wasp trying to clear a leaf from ants that were already in full possession of a cluster of leaf-hoppers. It would sometimes have to strike three or four times at an ant before it made it quit its hold and fall. At other times one ant after the other would be struck off with great celerity and ease, and I fancied that some wasps were much cleverer than others. In those cases where it succeeded in clearing the leaf, it was never left long in peace; for fresh relays of ants were continually arriving, and generally tired the wasp out. It would never wait for an ant to get near it, doubtless knowing well that if its little rival once fastened on its leg, it would be a difficult matter to get rid of it again. If a wasp first obtained possession, it was able to keep it; for the first ants that came up were only pioneers, and by knocking these off, it prevented them from returning and scenting the trail to communicate the intelligence to others.

Similarly as, on the savannahs, I had observed a wasp attending the honey-glands of the bull's-horn acacia along with the ants; so at Santo Domingo another wasp, belonging to quite a different genus (Nectarina), attended some of the clusters of frog-hoppers, and for the possession of others a constant skirmishing was going on. The wasp stroked the young hoppers, and sipped up the honey when it was exuded, just like the ants.When an ant came up to a cluster of leaf-hoppers attended by a wasp, the latter would not attempt to grapple with its rival on the leaf, but would fly off and hover over the ant; then when its little foe was well exposed, it would dart at it and strike it to the ground. The action was so quick that I could not determine whether it struck with its fore-feet or its jaws; but I think it was with the feet. I often saw a wasp trying to clear a leaf from ants that were already in full possession of a cluster of leaf-hoppers. It would sometimes have to strike three or four times at an ant before it made it quit its hold and fall. At other times one ant after the other would be struck off with great celerity and ease, and I fancied that some wasps were much cleverer than others. In those cases where it succeeded in clearing the leaf, it was never left long in peace; for fresh relays of ants were continually arriving, and generally tired the wasp out. It would never wait for an ant to get near it, doubtless knowing well that if its little rival once fastened on its leg, it would be a difficult matter to get rid of it again. If a wasp first obtained possession, it was able to keep it; for the first ants that came up were only pioneers, and by knocking these off, it prevented them from returning and scenting the trail to communicate the intelligence to others.

Dr. Erasmus Darwin records an observation ('Zoonomia,' i., p. 183) which, from having since been so widely quoted, deserves to be called classical. He saw a wasp upon the ground endeavouring to remove a large fly which was too heavy for it to carry off. The wasp cut off the head and abdomen, and flew away with the thorax alone. The wind, however, catching the wings of this portion made it still too unwieldy for the wasp to guide. It therefore again alighted, and nipped off first one wing and then the other, when it was able to fly off with its booty without further difficulty.

This observation has since been amply confirmed. I shall quote some of the confirmatory cases.

Mr. R. S. Newall, F.R.S., inNature, vol. xxi., p. 494, says:—

Many years ago I was examining an apple tree, when a wasp alighted on a leaf which formed a caterpillar's nest neatly rolled up. The wasp examined both ends, and finding them closed, it soon clipped a hole in the leaf at one end of the nest about one-eighth of an inch in diameter. It then went to the other endand made a noise which frightened the caterpillar, which came rushing out of the hole. It was immediately seized by the wasp, who finding it too large to carry off at once, cut it in two and went off with his game. I waited a little and saw the wasp come back for the other half, with which it also flew away.

Many years ago I was examining an apple tree, when a wasp alighted on a leaf which formed a caterpillar's nest neatly rolled up. The wasp examined both ends, and finding them closed, it soon clipped a hole in the leaf at one end of the nest about one-eighth of an inch in diameter. It then went to the other endand made a noise which frightened the caterpillar, which came rushing out of the hole. It was immediately seized by the wasp, who finding it too large to carry off at once, cut it in two and went off with his game. I waited a little and saw the wasp come back for the other half, with which it also flew away.

Again, Büchner (loc. cit., p. 297) gives the following account in the words of his informant, Herr H. Löwenfels, who himself witnessed the incident:—

I here found a robber-wasp busied in lifting from the ground a large fly which it had apparently killed. It succeeded indeed in its attempt, but had scarcely raised its prey a few inches above the ground when the wind caught the wings of the dead fly, and they began to act like a sail. The wasp was clearly unable to resist this action, and was blown a little distance in the direction of the wind, whereupon it let itself fall to the ground with its prize. It now made no more attempts to fly, but with eager industry pulled off with its teeth the fly's wings which hindered it in its object. When this was quite done it seized the fly, which was heavier than itself, and flew off with it untroubled on its journey through the air at a height of about five feet.

I here found a robber-wasp busied in lifting from the ground a large fly which it had apparently killed. It succeeded indeed in its attempt, but had scarcely raised its prey a few inches above the ground when the wind caught the wings of the dead fly, and they began to act like a sail. The wasp was clearly unable to resist this action, and was blown a little distance in the direction of the wind, whereupon it let itself fall to the ground with its prize. It now made no more attempts to fly, but with eager industry pulled off with its teeth the fly's wings which hindered it in its object. When this was quite done it seized the fly, which was heavier than itself, and flew off with it untroubled on its journey through the air at a height of about five feet.

Büchner also records the two following remarkable observations, which from being so similar corroborate one another. The first is received from Herr Albert Schlüter, who writing from Texas says that he there saw a cicada pursued by a large hornet, which threw itself upon its prey and seemed to sting it to death:—

The murderer walked over its prey, which was considerably larger than itself, grasped its body with its feet, spread out its wings, and tried to fly away with it. Its strength was not sufficient, and after many efforts it gave up the attempt. Half a minute went by; sitting astride on the corpse and motionless—only the wings occasionally jerking—it seems to reflect, and indeed not in vain. A mulberry tree stood close by, really only a trunk—for the top had been broken off, clearly by the last flood—of about ten or twelve feet high. The hornet saw this trunk, dragged its prey toilsomely to the foot of it, and then up to the top. Arrived thereat, it rested for a moment, grasped its victim firmly, and flew off with it to the prairies. That which it was unable to raise off the ground it could now carry easily once high in the air.

The murderer walked over its prey, which was considerably larger than itself, grasped its body with its feet, spread out its wings, and tried to fly away with it. Its strength was not sufficient, and after many efforts it gave up the attempt. Half a minute went by; sitting astride on the corpse and motionless—only the wings occasionally jerking—it seems to reflect, and indeed not in vain. A mulberry tree stood close by, really only a trunk—for the top had been broken off, clearly by the last flood—of about ten or twelve feet high. The hornet saw this trunk, dragged its prey toilsomely to the foot of it, and then up to the top. Arrived thereat, it rested for a moment, grasped its victim firmly, and flew off with it to the prairies. That which it was unable to raise off the ground it could now carry easily once high in the air.

The other instance is as follows:—

Th. Meenan ('Proc. of the Acad. of Nat.,' Philadelphia, Jan. 22, 1878) observed a very similar case withVespa maculata. He saw one of these wasps try in vain to raise from the ground a grasshopper it had killed. When all its efforts proved to be in vain, it pulled its prey to a maple tree, about thirty feet off, mounted it with its prize, and flew away from it. 'This,' adds the writer, 'was more than instinct. It was reflection and judgment, and the judgment was proved to be correct.'

Th. Meenan ('Proc. of the Acad. of Nat.,' Philadelphia, Jan. 22, 1878) observed a very similar case withVespa maculata. He saw one of these wasps try in vain to raise from the ground a grasshopper it had killed. When all its efforts proved to be in vain, it pulled its prey to a maple tree, about thirty feet off, mounted it with its prize, and flew away from it. 'This,' adds the writer, 'was more than instinct. It was reflection and judgment, and the judgment was proved to be correct.'

Depriving bees of their antennæ has the effect of producing an even more marked bewilderment than results from this operation in the case of ants. A queen thus mutilated by Huber ran about in confusion, dropping her eggs at random, and appeared unable to take with precision the food that was offered her. She showed no resentment to a similarly mutilated stranger queen that was introduced: the workers also heeded not the mutilated stranger; but when an unmutilated stranger was introduced they fell upon her. When the mutilated queen was allowed to escape, none of the workers followed.

TERMITES.

Thehabits of the Termites, or so-called White Ants, have not been so closely studied as they deserve. Our chief knowledge concerning them is derived from the observations of Jobson, in his 'History of Gambia;' Bastian, in 'The Nations of Eastern Asia;' Forsteal, Lespès, König, Sparman, Hugen, Quatrefages, Fritz Müller, and most of all, Smeathman, in 'Philosophical Transactions,' vol. lxxi. In Africa these insects raise their hills to a height of between ten and twenty feet, and construct them of earth, stones, pieces of wood, &c., glued together by a sticky saliva. The hills are in the form of a cone, and so strong that it is said the buffaloes are in the habit of using them as watch-towers on which to post sentries, and that they will even support the weight of an elephant. The growth of these gigantic mounds is gradual, increasing with the increase of the population. From the mound in all directions there radiate subterranean tunnels, which may be as much as a foot in width, and which serve as roadways. Besides these tunnels there are a number of other subterranean tubes, which serve the purpose of drainage to carry off the floods of water to which the nest is exposed during tropical showers. Büchner calculates that a pyramid built by man on a scale proportional to his size would only equal one of these nests if it attained to the height of 3,000 feet. The following is this author's description of the internal structure:—

These internal arrangements are so various and so complicated that pages of description might be written thereupon. There are myriads of rooms, cells, nurseries, provisionchambers, guard-rooms, passages, corridors, vaults, bridges, subterranean streets and canals, tunnels, arched ways, steps, smooth inclines, domes, &c., &c., all arranged on a definite, coherent, and well-considered plan. In the middle of the building, sheltered as far as possible from outside dangers, lies the stately royal dwelling, resembling an arched oven, in which the royal pair reside, or rather are imprisoned; for the entrances and outlets are so small, that although the workers on service can pass easily in and out, the queen cannot; for during the egg-laying her body swells out to an enormous size, two or three thousand times the size and weight of an ordinary worker. The queen, therefore, never leaves her dwelling, and dies therein. Round the palace, which is at first small, but is later enlarged in proportion as the queen increases in size until it is at least a yard long and half a yard high, lie the nurseries, or cells for the eggs and larvæ; next these the servants' rooms, or cells for the workers which wait on the queen; then special chambers for the soldiers on guard, and, between these, numerous store-rooms, filled with gums, resins, dried plant-juices, meal, seeds, fruits, worked-up wood, &c. According to Bettziech-Beta, there is always in the midst of the nest a large common room, which is used either for popular assemblies or as the meeting and starting point of the countless passages and chambers of the nest. Others are of the opinion that this space serves for purposes of ventilation.Above and below the royal cell are the rooms of the workers and soldiers which are specially charged with the care and defence of the royal pair. They communicate with each other, as well as with the nursery-cells and store-rooms, by means of galleries and passages which, as already said, open into the common room in the middle under the dome. This room is surrounded by high, boldly projected arched ways, which lose themselves further out in the walls of the countless rooms and galleries. Many roofs outside and in protect this room and the surrounding chambers from rain, which, as already said, is drained away by countless subterranean canals, made of clay and of a diameter of ten or twelve centimetres. There are also, under the layer of clay covering the whole building, broad spirally winding passages running from below to the highest points, which communicate with the passages of the interior, and apparently, as they mainly consist of smooth inclines, serve for carrying provisions to the higher parts of the nest.[71]

These internal arrangements are so various and so complicated that pages of description might be written thereupon. There are myriads of rooms, cells, nurseries, provisionchambers, guard-rooms, passages, corridors, vaults, bridges, subterranean streets and canals, tunnels, arched ways, steps, smooth inclines, domes, &c., &c., all arranged on a definite, coherent, and well-considered plan. In the middle of the building, sheltered as far as possible from outside dangers, lies the stately royal dwelling, resembling an arched oven, in which the royal pair reside, or rather are imprisoned; for the entrances and outlets are so small, that although the workers on service can pass easily in and out, the queen cannot; for during the egg-laying her body swells out to an enormous size, two or three thousand times the size and weight of an ordinary worker. The queen, therefore, never leaves her dwelling, and dies therein. Round the palace, which is at first small, but is later enlarged in proportion as the queen increases in size until it is at least a yard long and half a yard high, lie the nurseries, or cells for the eggs and larvæ; next these the servants' rooms, or cells for the workers which wait on the queen; then special chambers for the soldiers on guard, and, between these, numerous store-rooms, filled with gums, resins, dried plant-juices, meal, seeds, fruits, worked-up wood, &c. According to Bettziech-Beta, there is always in the midst of the nest a large common room, which is used either for popular assemblies or as the meeting and starting point of the countless passages and chambers of the nest. Others are of the opinion that this space serves for purposes of ventilation.

Above and below the royal cell are the rooms of the workers and soldiers which are specially charged with the care and defence of the royal pair. They communicate with each other, as well as with the nursery-cells and store-rooms, by means of galleries and passages which, as already said, open into the common room in the middle under the dome. This room is surrounded by high, boldly projected arched ways, which lose themselves further out in the walls of the countless rooms and galleries. Many roofs outside and in protect this room and the surrounding chambers from rain, which, as already said, is drained away by countless subterranean canals, made of clay and of a diameter of ten or twelve centimetres. There are also, under the layer of clay covering the whole building, broad spirally winding passages running from below to the highest points, which communicate with the passages of the interior, and apparently, as they mainly consist of smooth inclines, serve for carrying provisions to the higher parts of the nest.[71]

The termites, like many species of true ants, are divided into two distinct castes, the workers and the soldiers. If a breach is made in the walls of the dome the soldiers rush out to meet the enemy, and fight desperately with any enemy that they may find. Here, again, I cannot do better than quote Büchner's epitome of facts:—

If the assailant withdraws beyond their reach and inflicts no further injury, they retire within their dwelling in the course of half an hour, as though they had come to the conclusion that the enemy who had done the mischief had fled. Scarcely have the soldiers disappeared when crowds of workers appear in the breach, each with a quantity of ready-made mortar in its mouth. As soon as they arrive they stick this mortar round the open place, and direct the whole operation with such swiftness and facility that in spite of their great number they never hinder each other, nor are obliged to stop. During this spectacle of apparent restlessness and confusion the observer is agreeably surprised to see arising a regular wall, filling up the gap. During the time that the workers are thus busied the soldiers remain within the nest, with the exception of a few, which walk about apparently idly, never touching the mortar, among the hundreds and thousands of workers. Nevertheless one of them stands on guard close to the wall which is being built. It turns gently each way in turn, lifting its head at intervals of one or two minutes to strike the building with its heavy mandibles, making the before-mentioned crackling noise. This signal is immediately answered by a loud rustling from the interior of the nest and from all the subterranean passages and holes. There is no doubt that this noise arises from the workers, for as often as the sign is given they work with increased energy and speed. A renewal of the attack instantaneously changes the scene. 'At the first stroke,' says Smeathman, 'the workers run into the many tunnels and passages which run through the building, and this happens so quickly that they seem regularly to vanish. In a few seconds they are all gone, and in their stead appear the soldiers once more, as numerous and as pugnacious as before. If they find no enemy, they turn back slowly into the interior of the hill, and immediately the mortar-laden workers again appear, and among them a few soldiers, which behave just as on the first occasion. So one can have the pleasure of seeing them work and fight in turn, as often as one chooses; and it will be foundeach time that one set never fight, and the other never work, however great the need may be.'[72]

If the assailant withdraws beyond their reach and inflicts no further injury, they retire within their dwelling in the course of half an hour, as though they had come to the conclusion that the enemy who had done the mischief had fled. Scarcely have the soldiers disappeared when crowds of workers appear in the breach, each with a quantity of ready-made mortar in its mouth. As soon as they arrive they stick this mortar round the open place, and direct the whole operation with such swiftness and facility that in spite of their great number they never hinder each other, nor are obliged to stop. During this spectacle of apparent restlessness and confusion the observer is agreeably surprised to see arising a regular wall, filling up the gap. During the time that the workers are thus busied the soldiers remain within the nest, with the exception of a few, which walk about apparently idly, never touching the mortar, among the hundreds and thousands of workers. Nevertheless one of them stands on guard close to the wall which is being built. It turns gently each way in turn, lifting its head at intervals of one or two minutes to strike the building with its heavy mandibles, making the before-mentioned crackling noise. This signal is immediately answered by a loud rustling from the interior of the nest and from all the subterranean passages and holes. There is no doubt that this noise arises from the workers, for as often as the sign is given they work with increased energy and speed. A renewal of the attack instantaneously changes the scene. 'At the first stroke,' says Smeathman, 'the workers run into the many tunnels and passages which run through the building, and this happens so quickly that they seem regularly to vanish. In a few seconds they are all gone, and in their stead appear the soldiers once more, as numerous and as pugnacious as before. If they find no enemy, they turn back slowly into the interior of the hill, and immediately the mortar-laden workers again appear, and among them a few soldiers, which behave just as on the first occasion. So one can have the pleasure of seeing them work and fight in turn, as often as one chooses; and it will be foundeach time that one set never fight, and the other never work, however great the need may be.'[72]

Similar facts have been observed by Fritz Müller of the South American species.

The Termites, being like the Ecitons blind, like them make all their expeditions under the protection of covered ways. These are underground tunnels in all cases where circumstances permit, but on arriving at a rock or other impenetrable obstruction, they build a tubular passage upon the surface. According to Büchner,—

They can even carry their viaducts through the air, and that in such bold arches that it is difficult to understand how they were projected. In order to reach a sack of meal which was well protected below, they broke through the roof of the room in which it was, and built a straight tube from the breach they had made down to the sack. As soon as they tried to carry off their booty to a safe place, they became convinced that it was impossible to pull it up the straight road. In order to meet this difficulty, they adopted the principle of the smooth incline, the use of which we have already seen in the interior of their nests, and built close to the first tube a second, which wound spirally within, like the famous clock tower of Venice. It was now an easy task to carry their booty up this road and so away. . . . . Either from the desire to remain undiscovered, or from their liking for darkness, they have the remarkable habit of destroying and gnawing everything from within outwards, and of leaving the outside shell standing, so that from the outside appearance the dangerous state of the inside is not perceptible. If, for instance, they have destroyed a table or other piece of household furniture, in which they always manage from the ground upwards to hit exactly the places on which the feet of the article rest, the table looks perfectly uninjured outside, and people are quite astonished when it breaks down under the slightest pressure. The whole inside is eaten away, and only the thinnest shell is left standing. If fruits are lying on the table, they also are eaten out from the exact spot on which they rest on the surface of the table.In similar fashion things consisting wholly of wood, such as wooden ships, trees, &c., are destroyed by them so that they finally break in without any one having noticed the mischief. Yet it is said that they go so prudently to work in their destructionthat the main beams, the sudden breakage of which would threaten the whole building and themselves therewith, are either spared, or else so fastened together again with a cement made out of clay and earth that their strength is greater than ever!(?) Hagen also states that they never cut right through the corks which stop up stored bottles of wine, but leave a very thin layer, which is sufficient to prevent the outflow of the wine and the consequent destruction of the workers. The same author relates that in order to reach a box of wax lights they made a covered road from the ground up to the second story of a house.[73]

They can even carry their viaducts through the air, and that in such bold arches that it is difficult to understand how they were projected. In order to reach a sack of meal which was well protected below, they broke through the roof of the room in which it was, and built a straight tube from the breach they had made down to the sack. As soon as they tried to carry off their booty to a safe place, they became convinced that it was impossible to pull it up the straight road. In order to meet this difficulty, they adopted the principle of the smooth incline, the use of which we have already seen in the interior of their nests, and built close to the first tube a second, which wound spirally within, like the famous clock tower of Venice. It was now an easy task to carry their booty up this road and so away. . . . . Either from the desire to remain undiscovered, or from their liking for darkness, they have the remarkable habit of destroying and gnawing everything from within outwards, and of leaving the outside shell standing, so that from the outside appearance the dangerous state of the inside is not perceptible. If, for instance, they have destroyed a table or other piece of household furniture, in which they always manage from the ground upwards to hit exactly the places on which the feet of the article rest, the table looks perfectly uninjured outside, and people are quite astonished when it breaks down under the slightest pressure. The whole inside is eaten away, and only the thinnest shell is left standing. If fruits are lying on the table, they also are eaten out from the exact spot on which they rest on the surface of the table.

In similar fashion things consisting wholly of wood, such as wooden ships, trees, &c., are destroyed by them so that they finally break in without any one having noticed the mischief. Yet it is said that they go so prudently to work in their destructionthat the main beams, the sudden breakage of which would threaten the whole building and themselves therewith, are either spared, or else so fastened together again with a cement made out of clay and earth that their strength is greater than ever!(?) Hagen also states that they never cut right through the corks which stop up stored bottles of wine, but leave a very thin layer, which is sufficient to prevent the outflow of the wine and the consequent destruction of the workers. The same author relates that in order to reach a box of wax lights they made a covered road from the ground up to the second story of a house.[73]

It is needless to give a special description of any of the other habits of these insects, such as their swarming, breeding, &c., for they all more or less closely resemble the analogous habits of ants and bees. It is very remarkable that insects of two distinct orders should both manifest such closely similar social habits of such high complexity, and it rather surprises me that more has not been made of this point by writers opposed to the principles of evolution. Of course if the point were raised, the argument in answer would require to be, either that the similar instincts were derived from common and very remote progenitors (in which case the fact would form by far the most remarkable instance of the permanency of instincts among changing species), or more probably, that similar causes operating in the two orders have produced similar effects—complex and otherwise unique though these effects undoubtedly are.

In connection with the theory of evolution I may conclude this chapter with the following quotation from Smeathman, as it shows how natural relation may develop for the benefit of the species instincts which are detrimental to the individual. Speaking of the soldiers he says:—

I was always amused at the pugnacity displayed when, in making a hole in the earthy cemented archway of their covered roads, a host of these little fellows mounted the breach to cover the retreat of the workers. The edges of the rupture bristled with their armed heads as the courageous warriors rangedthemselves in compact line around them. They attacked fiercely any intruding object, and as fast as their front ranks were destroyed, others filled up their places. When the jaws closed in the flesh, they suffered themselves to be torn in pieces rather than loosen their hold. It might be said that this instinct is rather a cause of their ruin than a protection when a colony is attacked by the well-known enemy of termites, the ant-bear; but it is the soldiers only which attach themselves to the long worm-like tongue of this animal, and the workers, on whom the prosperity of the young brood immediately depends, are left for the most part unharmed. I always found, on thrusting my finger into a mixed crowd of termites, that the soldiers only fastened upon it. Thus the fighting caste do in the end serve to protect the species by sacrificing themselves to its good.[74]

I was always amused at the pugnacity displayed when, in making a hole in the earthy cemented archway of their covered roads, a host of these little fellows mounted the breach to cover the retreat of the workers. The edges of the rupture bristled with their armed heads as the courageous warriors rangedthemselves in compact line around them. They attacked fiercely any intruding object, and as fast as their front ranks were destroyed, others filled up their places. When the jaws closed in the flesh, they suffered themselves to be torn in pieces rather than loosen their hold. It might be said that this instinct is rather a cause of their ruin than a protection when a colony is attacked by the well-known enemy of termites, the ant-bear; but it is the soldiers only which attach themselves to the long worm-like tongue of this animal, and the workers, on whom the prosperity of the young brood immediately depends, are left for the most part unharmed. I always found, on thrusting my finger into a mixed crowd of termites, that the soldiers only fastened upon it. Thus the fighting caste do in the end serve to protect the species by sacrificing themselves to its good.[74]

SPIDERS AND SCORPIONS.

Theemotional life of spiders, so far as we can observe it as expressed in their actions, seems to be divided between sexual passion (including maternal affection) and the sterner feelings incidental to their fiercely predatory habits. But the emotions, although apparently few and simple in character, are exceedingly strong in force. In many species the male spider in conducting his courtship has to incur an amount of personal danger at the hands (and jaws) of his terrific spouse, which might well daunt the courage of a Leander. Ridiculously small and weak in build, the males of these species can only conduct the rites of marriage with their enormous and voracious brides by a process of active manœuvring, which if unsuccessful is certain to cost them their lives. Yet their sexual emotions are so strong that, as proved by the continuance of the species, no amount of personal risk is sufficient to deter them from giving these emotions full play. There is no other case in the animal kingdom where courtship is attended with any approach to the gravity of danger that is here observable. Among many animals the males have to meet a certain amount of inconvenience from the coquetry or disinclination of the females; but here the coquetry and disinclination has passed into the hungry determination of a ferocious giantess. The case, therefore, because unique, is of interest from an evolutionary point of view. We can see a direct advantage to species from the danger incurred by males on account of mutual jealousy; for this, giving rise to what Mr. Darwin hascalled 'the law of battle,' must obviously be a constant source of the creation and the maintenance of specific proficiency; the law of battle determines that only the strongest and most courageous males shall breed. But the benefit to species is not so obvious where the danger of courtship arises from the side of the female. Still, that there must be some benefit is obvious, seeing that the whole structure of the male, if we take that of the female as the original type, has been greatly modified with reference to this danger: had the latter been wholly useless, either it would not have been allowed to arise, or the species must have become extinct. The only suggestion I can make to meet this aberrant case is that the courage and determination required of the male, besides being no doubt of use to him in other relations in life, may be of benefit to the species by instilling these qualities into the psychology both of his male and female descendants.

The courage and rapacity of spiders as a class are too well and generally known to require special illustration. One instance, however, may be quoted to show the strength of their maternal emotions. Bonnet threw a spider with her bag of eggs into the pit of an ant-lion. The latter seized the eggs and tore them away from the spider; but although Bonnet forced her out of the pit, she returned, and chose to be dragged in and buried alive rather than leave her charge.

The only other point that occurs to me with reference to the emotions of spiders is the somewhat remarkable one concerning their apparent fondness of music. The testimony is so varied and abundant on this matter that we can scarcely doubt the truth of the facts. These simply are that spiders—or at any rate some species or individuals—approach a sounding musical instrument, 'especially when the music is tender and not too loud.' They usually approach as near as possible, often letting themselves down from the ceiling of the room by a line of web, and remain suspended above the instrument. Should the music become loud, they often again retreat. Professor C. Reclain, during a concert at Leipsic, saw a spider descend in this way from one of the chandeliers while a violin solowas being played; but as soon as the orchestra began to sound it quickly ran back again.[75]Similar observations have been published by Rabigot, Simonius, von Hartmann, and others.

A highly probable explanation of these facts has recently been given by Mr. C. V. Boys, which relieves us of the necessity of imputing to animals so low in the scale any rudiment of æsthetic emotion as aroused by musical tones. As the observation is an interesting one, I shall quote itin extenso:—

Having made some observations on the garden spider which are I believe new, I send a short account of them, in the hope that they may be of interest to the readers ofNature.Last autumn, while watching some spiders spinning their beautiful geometrical webs, it occurred to me to try what effect a tuning-fork would have upon them. On sounding an A fork, and lightly touching with it any leaf or other support of the web, or any portion of the web itself, I found that the spider, if at the centre of the web, rapidly slues round so as to face the direction of the fork, feeling with its fore-feet along which radial thread the vibration travels. Having become satisfied on this point, it next darts along that thread till it reaches either the fork itself or a junction of two or more threads, the right one of which it instantly determines as before. If the fork is not removed when the spider has arrived it seems to have the same charm as any fly; for the spider seizes it, embraces it, and runs about on the legs of the fork as often as it is made to sound, never seeming to learn by experience that other things may buzz besides its natural food.If the spider is not at the centre of the web at the time that the fork is applied, it cannot tell which way to go until it has been to the centre to ascertain which radial thread is vibrating, unless of course it should happen to be on that particular thread, or on a stretched supporting thread in contact with the fork.If, when a spider has been enticed to the edge of the web the fork is withdrawn, and then gradually brought near, the spider is aware of its presence and of its direction, and reaches out as far as possible in the direction of the fork; but if a sounding fork is gradually brought near a spider that has not been disturbed, but which is waiting as usual in the middle ofthe web, then, instead of reaching out towards the fork, the spider instantly drops—at the end of a thread, of course. If under these conditions the fork is made to touch any part of the web, the spider is aware of the fact, and climbs the thread and reaches the fork with marvellous rapidity. The spider never leaves the centre of the web without a thread along which to travel back. If after enticing a spider out we cut this thread with a pair of scissors, the spider seems to be unable to get back without doing considerable damage to the web, generally gumming together the sticky parallel threads in groups of three and four.By means of a tuning-fork a spider may be made to eat what it would otherwise avoid. I took a fly that had been drowned in paraffin and put it into a spider's web, and then attracted the spider by touching the fly with a fork. When the spider had come to the conclusion that it was not suitable food, and was leaving it, I touched the fly again. This had the same effect as before, and as often as the spider began to leave the fly I again touched it, and by this means compelled the spider to eat a large portion of the fly.The few house-spiders that I have found do not seem to appreciate the tuning-fork, but retreat into their hiding-places as when frightened; yet the supposed fondness of spiders for music must surely have some connection with these observations; and when they come out to listen, is it not that they cannot tell which way to proceed?The few observations that I have made are necessarily imperfect, but I send them, as they afford a method which might lead a naturalist to notice habits otherwise difficult to observe, and so to arrive at conclusions which I in my ignorance of natural history must leave to others.[76]

Having made some observations on the garden spider which are I believe new, I send a short account of them, in the hope that they may be of interest to the readers ofNature.

Last autumn, while watching some spiders spinning their beautiful geometrical webs, it occurred to me to try what effect a tuning-fork would have upon them. On sounding an A fork, and lightly touching with it any leaf or other support of the web, or any portion of the web itself, I found that the spider, if at the centre of the web, rapidly slues round so as to face the direction of the fork, feeling with its fore-feet along which radial thread the vibration travels. Having become satisfied on this point, it next darts along that thread till it reaches either the fork itself or a junction of two or more threads, the right one of which it instantly determines as before. If the fork is not removed when the spider has arrived it seems to have the same charm as any fly; for the spider seizes it, embraces it, and runs about on the legs of the fork as often as it is made to sound, never seeming to learn by experience that other things may buzz besides its natural food.

If the spider is not at the centre of the web at the time that the fork is applied, it cannot tell which way to go until it has been to the centre to ascertain which radial thread is vibrating, unless of course it should happen to be on that particular thread, or on a stretched supporting thread in contact with the fork.

If, when a spider has been enticed to the edge of the web the fork is withdrawn, and then gradually brought near, the spider is aware of its presence and of its direction, and reaches out as far as possible in the direction of the fork; but if a sounding fork is gradually brought near a spider that has not been disturbed, but which is waiting as usual in the middle ofthe web, then, instead of reaching out towards the fork, the spider instantly drops—at the end of a thread, of course. If under these conditions the fork is made to touch any part of the web, the spider is aware of the fact, and climbs the thread and reaches the fork with marvellous rapidity. The spider never leaves the centre of the web without a thread along which to travel back. If after enticing a spider out we cut this thread with a pair of scissors, the spider seems to be unable to get back without doing considerable damage to the web, generally gumming together the sticky parallel threads in groups of three and four.

By means of a tuning-fork a spider may be made to eat what it would otherwise avoid. I took a fly that had been drowned in paraffin and put it into a spider's web, and then attracted the spider by touching the fly with a fork. When the spider had come to the conclusion that it was not suitable food, and was leaving it, I touched the fly again. This had the same effect as before, and as often as the spider began to leave the fly I again touched it, and by this means compelled the spider to eat a large portion of the fly.

The few house-spiders that I have found do not seem to appreciate the tuning-fork, but retreat into their hiding-places as when frightened; yet the supposed fondness of spiders for music must surely have some connection with these observations; and when they come out to listen, is it not that they cannot tell which way to proceed?

The few observations that I have made are necessarily imperfect, but I send them, as they afford a method which might lead a naturalist to notice habits otherwise difficult to observe, and so to arrive at conclusions which I in my ignorance of natural history must leave to others.[76]

Coming now to general habits, our attention is claimed by the only general habit that is of interest—namely, that of web-building. The instinct of constructing nets for the capture of prey occurs in no other class of animals, while in spiders it not only attains to an extraordinary degree of perfection (so that, in the opinion of some geometers, the instinct is not less wonderful in this respect than is that displayed by the hive-bee in the constructionof its cells), but also ramifies into a number of diverse directions. Thus we have, in different species, wide open networks spread between the branches of bushes, &c., closely woven textures in the corners of buildings, earth tubes lined with silk, the strong muslin-like snare of the Mygale, which, as first noticed by Madame Merian,[77]and since confirmed by Bates,[78]is able to retain a struggling humming-bird while this most beautiful animal in creation is being devoured by the most repulsive; and many other varieties might be mentioned. It may at first sight appear somewhat remarkable that this instinct of spreading snares should on the one hand occur only in one class of the animal kingdom, while on the other hand, in the class where it does occur, it should attain such extreme perfection, and run into so much variety. But we must here remember that the development of the instinct obviously depends upon the presence of a web-secreting apparatus, which is a comparatively rare anatomical feature. In caterpillars, which are not predaceous, the web is used only for the purposes of protection and locomotion; and it is easy to see that the spreading of snares would here be of no use to the animals. But in spiders, of course, the case is otherwise. Once granting the power of forming a web, and it is evident that there is much potential service to which this power may be put with reference to the voracious habits of the animal; and therefore it is not to be wondered that both the anatomical structures and their correlated instincts should attain to extreme perfection in sundry lines of development. The origin of the web-building structure was probably due to the use of the web for purposes of locomotion or of cocoon-spinning, as we see it still so used in the same way that it is used by caterpillars for descending from heights, and in the case of the gossamer spider for travelling immense distances through the air. As the anatomical structures in question differ very greatly in the case of spiders and in that of caterpillars, we may wonder why analogous if not homologousstructures should never have been developed in the case of any other animal having predaceous habits—especially, perhaps, in that of the imago form of predaceous insects. It is easy to see how, if there were any original tendency to secrete a viscid substance in the neighbourhood of the anus, this might be utilised in descending from low elevations (as certain kinds of slugs use their viscid slime as threads whereby to let themselves down from low branches to the ground); and so we can understand how natural selection might thus have the material supplied out of which to develop such highly specialised organs as the spinnerets of a spider. But if we are inclined to wonder why this should not have happened among other animals, we must remember that any expectation that it should rests on negative grounds; we have no reason to suppose that in any other case the initial tendency to secrete a viscid substance was present. One inference, however, in the case of spiders seems perfectly valid. As this comparatively rare faculty of web-spinning occurs so generally throughout the class, it must have had its earliest origin very far back in the history of that class, though probably not so far back as to include the common progenitors of the spiders and the scorpions, seeing that the latter do not spin webs.

I shall now give a few details on the manner in which spiders' webs are made. Without going into the anatomy of the subject further than to observe that a spider's 'thread' is a composite structure made up of a number of finer threads, which leave their respective spinneret-holes in an almost fluid condition, and immediately harden by exposure to the air, I shall begin at once to describe the method of construction.

The so-called 'geometric spider' constructs her web by first laying down the radiating and unadhesive rays, and then, beginning from the centre, spins a spiral line of unadhesive web, like that of the rays which it intersects. This line, in being woven through the radii in a spiral from centre to circumference, serves as a scaffolding for the spider to walk over, and also keeps the rays properly stretched. She next spins another spiral line, but thistime from the circumference to near the centre, and formed of web, covered with a viscid secretion to retain prey. Lastly, she constructs her lair to bide and watch for prey, at some distance from the web but connected with it by means of a line of communication or telegraph, the vibrations of which inform her of the struggling of an insect in the net.[79]

According to Thompson,—

The web of the garden spider—the most ingenious and perfect contrivance that can be imagined—is usually fixed in a perpendicular or somewhat oblique direction in an opening between the leaves of some plant or shrub; and as it is obvious that round its whole extent lines will be required to which those ends of radii that are farthest from the centre can be attached, the construction of those exterior lines is the spider's first operation. It seems careless about the shape of the area they are to enclose, well aware that it can as readily inscribe a circle in a triangle as a square; and in this respect it is guided by the distance or proximity of the points to which it can attach them. It spares no pains, however, to strengthen and keep them in a proper degree of tension. With the former view it composes each line of five or six or even of more threads glued together; and with the latter it fixes to them from different points a numerous and intricate apparatus of smaller threads; and having thus completed the foundation of its snare, it proceeds to fill up the outline. Attaching a thread to one of the main lines, it walks along it, guiding it with one of its hind legs, that it may not touch in any part and be prematurely glued, and crosses over to the opposite side, where, by applying its spinners, it firmly fixes it. To the middle of this diagonal thread, which is to form the centre of its net, it fixes a second, which in like manner it conveys and fastens to another part of the lines including the area. The work now proceeds rapidly. During the preliminary operations it sometimes rests, as though its plan required meditation; but no sooner are the marginal lines of the net firmly stretched, and two or three radii spun from its centre, than it continues its labour so quickly and unremittingly that the eye can scarcely follow its progress. The radii, to the number of about twenty, giving the net the appearance of a wheel, are speedily finished. It then proceeds to the centre, quickly turns itself round, pulls each thread with its feet to ascertain its strength, breaking any one that seems defective, andreplacing it by another. Next it glues, immediately round the centre, five or six small concentric circles, distant about half a line from each other, and then four or five larger ones, each separated by the space of half an inch or more. These last serve as a sort of temporary scaffolding to walk over, and to keep the radii properly stretched while it glues to them the concentric circles that are to remain, which it now proceeds to construct. Placing itself at the circumference, and fastening its thread to the end of one of the radii, it walks up that one, towards the centre, to such a distance as to draw the thread from its body of a sufficient length to meet the next. Then stepping across and conducting the thread with one of its hind legs, it glues it with its spinners to the point in the adjoining radius to which it is to be fixed. This process it repeats until it has filled up nearly the whole space from the circumference to the centre with concentric circles, distant from each other about two lines. It always, however, leaves a vacant interval around the smallest first spun circles that are nearest to the centre, and bites away the small cotton-like tuft that united all the radii, which being held now together by the circular threads have thus probably their elasticity increased; and in the circular opening, resulting from this procedure, it takes its station and watches for its prey, or occasionally retires to a little apartment formed under some leaf, which it also uses as a slaughter-house.[80]

The web of the garden spider—the most ingenious and perfect contrivance that can be imagined—is usually fixed in a perpendicular or somewhat oblique direction in an opening between the leaves of some plant or shrub; and as it is obvious that round its whole extent lines will be required to which those ends of radii that are farthest from the centre can be attached, the construction of those exterior lines is the spider's first operation. It seems careless about the shape of the area they are to enclose, well aware that it can as readily inscribe a circle in a triangle as a square; and in this respect it is guided by the distance or proximity of the points to which it can attach them. It spares no pains, however, to strengthen and keep them in a proper degree of tension. With the former view it composes each line of five or six or even of more threads glued together; and with the latter it fixes to them from different points a numerous and intricate apparatus of smaller threads; and having thus completed the foundation of its snare, it proceeds to fill up the outline. Attaching a thread to one of the main lines, it walks along it, guiding it with one of its hind legs, that it may not touch in any part and be prematurely glued, and crosses over to the opposite side, where, by applying its spinners, it firmly fixes it. To the middle of this diagonal thread, which is to form the centre of its net, it fixes a second, which in like manner it conveys and fastens to another part of the lines including the area. The work now proceeds rapidly. During the preliminary operations it sometimes rests, as though its plan required meditation; but no sooner are the marginal lines of the net firmly stretched, and two or three radii spun from its centre, than it continues its labour so quickly and unremittingly that the eye can scarcely follow its progress. The radii, to the number of about twenty, giving the net the appearance of a wheel, are speedily finished. It then proceeds to the centre, quickly turns itself round, pulls each thread with its feet to ascertain its strength, breaking any one that seems defective, andreplacing it by another. Next it glues, immediately round the centre, five or six small concentric circles, distant about half a line from each other, and then four or five larger ones, each separated by the space of half an inch or more. These last serve as a sort of temporary scaffolding to walk over, and to keep the radii properly stretched while it glues to them the concentric circles that are to remain, which it now proceeds to construct. Placing itself at the circumference, and fastening its thread to the end of one of the radii, it walks up that one, towards the centre, to such a distance as to draw the thread from its body of a sufficient length to meet the next. Then stepping across and conducting the thread with one of its hind legs, it glues it with its spinners to the point in the adjoining radius to which it is to be fixed. This process it repeats until it has filled up nearly the whole space from the circumference to the centre with concentric circles, distant from each other about two lines. It always, however, leaves a vacant interval around the smallest first spun circles that are nearest to the centre, and bites away the small cotton-like tuft that united all the radii, which being held now together by the circular threads have thus probably their elasticity increased; and in the circular opening, resulting from this procedure, it takes its station and watches for its prey, or occasionally retires to a little apartment formed under some leaf, which it also uses as a slaughter-house.[80]

According to Büchner,—

The long main threads, with the help of which the spider begins and attaches its web, are always the thickest and strongest; while the others, forming the web itself, are considerably weaker. Injuries to the web at any spot the spider very quickly repairs, but without keeping to the original plan, and without taking more trouble than is absolutely necessary. Most spiders' webs, therefore, if closely looked into, are found to be somewhat irregular. When a storm threatens, the spider, which is very economical with its valuable spinning material, spins no web, for it knows that the storm will tear it in pieces and waste its pains, and it also does not mend a web which has been torn. If it is seen spinning or mending, on the other hand, fine weather may be generally reckoned on. . . . . The emerged young at first spin a very irregular web, and only gradually learn to make a larger and finer one, so that here, as everywhere else, practice and experience play a great part. . . . .The position must also offer favourable opposite points for the attachment of the web itself. People have often puzzled their brains, wondering how spiders, without being able to fly, had managed first to stretch their web through the air between two opposite points. But the little creature succeeds in accomplishing this difficult task in the most various and ingenious ways. It either, when the distance is not too great, throws a moist viscid pellet, joined to a thread, which will stick where it touches; or hangs itself by a thread in the air and lets itself be driven by the wind to the spot; or crawls there, letting out a thread as it goes, and then pulls it taut when arrived at the desired place; or floats a number of threads in the air and waits till the wind has thrown them here or there. The main or radial threads which fasten the web possess such a high degree of elasticity, that they tighten themselves between two distant points to which the spider has crawled, without it being necessary for the latter to pull them towards itself. When the little artist has once got a single thread at its disposition, it strengthens this until it is sufficiently strong for it to run backwards and forwards thereupon, and to spin therefrom the web.[81]

The long main threads, with the help of which the spider begins and attaches its web, are always the thickest and strongest; while the others, forming the web itself, are considerably weaker. Injuries to the web at any spot the spider very quickly repairs, but without keeping to the original plan, and without taking more trouble than is absolutely necessary. Most spiders' webs, therefore, if closely looked into, are found to be somewhat irregular. When a storm threatens, the spider, which is very economical with its valuable spinning material, spins no web, for it knows that the storm will tear it in pieces and waste its pains, and it also does not mend a web which has been torn. If it is seen spinning or mending, on the other hand, fine weather may be generally reckoned on. . . . . The emerged young at first spin a very irregular web, and only gradually learn to make a larger and finer one, so that here, as everywhere else, practice and experience play a great part. . . . .The position must also offer favourable opposite points for the attachment of the web itself. People have often puzzled their brains, wondering how spiders, without being able to fly, had managed first to stretch their web through the air between two opposite points. But the little creature succeeds in accomplishing this difficult task in the most various and ingenious ways. It either, when the distance is not too great, throws a moist viscid pellet, joined to a thread, which will stick where it touches; or hangs itself by a thread in the air and lets itself be driven by the wind to the spot; or crawls there, letting out a thread as it goes, and then pulls it taut when arrived at the desired place; or floats a number of threads in the air and waits till the wind has thrown them here or there. The main or radial threads which fasten the web possess such a high degree of elasticity, that they tighten themselves between two distant points to which the spider has crawled, without it being necessary for the latter to pull them towards itself. When the little artist has once got a single thread at its disposition, it strengthens this until it is sufficiently strong for it to run backwards and forwards thereupon, and to spin therefrom the web.[81]

Water-spider.—The water-spider (Argyroneta aquatica), as is well known, displays the curious instinct of building her nest below the surface of water, and constructing it on the principle of a diving-bell. The animal usually selects still waters for this purpose, and makes her nest in the form of an oval hollow, lined with web, and held secure by a number of threads passing in various directions and fastened to the surrounding plants. In this oval bell, which is open below, she watches for prey, and, according to Kirby,[82]passes the winter after having closed the opening. The air needful for respiration the spider carries from the surface of the water. To do this she swims upon her back in order to entangle an air-bubble upon the hairy surface of her abdomen. With this bubble she descends, 'like a globe of quicksilver,' to the opening of her nest, where she liberates it and returns for more.

The Vagrant or Wolf Spider.—This insect catches its prey by stealthily stalking it until within distance near enough to admit of a sudden dart being successful in effecting capture. Some species, before making the final dart (e.g. Salticus scenicus), fix a line of web upon the surface over which they are creeping, so that whether their station is vertical or horizontal with reference to the prey, they can leap fearlessly, the thread in any case preventing their fall. Dr. H. F. Hutchinson says that he has seen this spider crawling over a looking-glass stalking its own reflection.[83]

The following is quoted from Büchner:—

Less idyllic than the water-spider is our native hunting-spider (Dolomedes fimbriata), which belongs to those species which spin no web, but hunt their victims like animals of prey. As theArgyronetais the discoverer of the diving-bell, so may this be regarded as the discoverer or first builder of a floating raft. It is not content with hunting insects on land, but follows them on the water, on the surface of which it runs about with ease. It, however, needs a place to rest on, and makes it by rolling together dry leaves and such like bodies, binding them into a firm whole with its silken threads. On this raft-like vessel it floats at the mercy of wind and waves; and if an unlucky water-insect comes for an instant to the surface of the water to breathe, the spider darts at it with lightning speed, and carries it back to its raft to devour at its ease. Thus everywhere in nature are battle, craft, and ingenuity, all following the merciless law of egoism, in order to maintain their own lives and to destroy those of others!

Less idyllic than the water-spider is our native hunting-spider (Dolomedes fimbriata), which belongs to those species which spin no web, but hunt their victims like animals of prey. As theArgyronetais the discoverer of the diving-bell, so may this be regarded as the discoverer or first builder of a floating raft. It is not content with hunting insects on land, but follows them on the water, on the surface of which it runs about with ease. It, however, needs a place to rest on, and makes it by rolling together dry leaves and such like bodies, binding them into a firm whole with its silken threads. On this raft-like vessel it floats at the mercy of wind and waves; and if an unlucky water-insect comes for an instant to the surface of the water to breathe, the spider darts at it with lightning speed, and carries it back to its raft to devour at its ease. Thus everywhere in nature are battle, craft, and ingenuity, all following the merciless law of egoism, in order to maintain their own lives and to destroy those of others!

Trap-door Spiders.—These display the curious instinct of providing their nests with trap-doors. The nest consists of a tube excavated in the earth to the depth of half a foot or more. In all save one species the tube is unbranched; it is always lined with silk, which is continuous with the lining of the trap-door or doors, of which it forms the hinge. In the species which constructs a branching tube, the branch is always single, more or less straight, takes origin at a point situated a few inches from the orifice of the main tube, is directed upwards at an acuteangle with that tube, and terminates blindly just below the surface of the soil. At its point of junction with or departure from the main tube it is provided with a trap-door resembling that which closes the orifice of the main tube, and of such a size and arrangement that when closed against the opening of the branch tube it just fills that opening; while when turned outwards, so as to uncork this opening, it just fills the diameter of the main tube: the latter, therefore, is in this species provided with two trap-doors, one at the surface of the soil, and the other at the fork of the branched tube.

Each species of trap-door spider is very constant in building a particular kind of trap-door; but among the different species there are four several kinds of trap-doors to be distinguished. 1st. The single-door cork nest, wherein the trap-door is a thick structure, and fits into the tube like a cork into a bottle. 2nd. The single-door wafer nest, wherein the trap-door is as thin as a piece of paper. 3rd. The double-door unbranched nest, wherein there is a second trap-door situated a few inches below the first one. And 4th, the double-door branched nest already described. In all cases the trap-doors open outwards, and when the nest is placed, as it usually is, on a sloping bank, the trap-door opens upwards; hence there is no fear of its gaping, for gravity is on the side of holding it shut.

The object of the trap-door is to conceal the nest, and for this purpose it is always made so closely to resemble the general surface of the ground on which it occurs, that even a practised eye finds it difficult to detect the structure when closed. In order to make the resemblance to the surrounding objects as perfect as possible, the spider either constructs the surface of its door of a portion of leaf, or weaves moss, grass, &c., into the texture. Moggridge says,[84]—

Thus, for example, in one case where I had cut out a little clod of mossy earth, about two inches thick and three square on the surface, containing the top of the tube and the moss-covered cork door ofN. cæmentaria, I found, on revisiting theplace six days later, that a new door had been made, and that the spider had mounted up to fetch moss from the undisturbed bank above, planting it in the earth which formed the crown of the door. Here the moss actually called the eye to the trap, which lay in the little plain of brown earth made by my digging.

Thus, for example, in one case where I had cut out a little clod of mossy earth, about two inches thick and three square on the surface, containing the top of the tube and the moss-covered cork door ofN. cæmentaria, I found, on revisiting theplace six days later, that a new door had been made, and that the spider had mounted up to fetch moss from the undisturbed bank above, planting it in the earth which formed the crown of the door. Here the moss actually called the eye to the trap, which lay in the little plain of brown earth made by my digging.

If an enemy should detect the trap-door and endeavour to open it, the spider frequently seizes hold of its internal surface, and, applying her legs to the walls of the tube, forcibly holds the trap-door shut. In the double trap-door species it is surmised that the second trap-door serves as an inner barrier of defence, behind which the spider retires when obliged to abandon the first one. In the branched tube species (which, so far as at present known, only occurs in the south of Europe) it is surmised that the spider, when it finds that an enemy is about to gain entrance at the first trap-door, runs into the branch tube and draws up behind it the second trap-door. The surface of this trap-door, being overlaid with silk like the walls of the tube, is then invisible; so that the enemy no doubt passes down the main tube to find it empty, without observing the lateral branch in which the spider is concealed behind the closed door.

As showing that these animals are to no small extent able to adapt their dwellings to unusual circumstances, I shall here quote the following from Moggridge (loc. cit., p. 122):—


Back to IndexNext