I have already mentioned with reference to the attachment which bees have been said to show for one another, that though I have repeatedly seen them lick a bee which had smeared herself in honey, I never observed them show the slightest attention to any of their comrades who had been drowned in water. Far, indeed, from having been able to discover any evidence of affection among them, they appear to be thoroughly callous and utterly indifferent to one another. As already mentioned, it was necessary for me occasionally to kill a bee; but I never found that the others took the slightest notice. Thus on the 11th of October I crushed a bee close to one which was feeding—in fact, so close that their wings touched; yet the survivor took no notice whatever of the death of her sister, but went on feeding with every appearance of composure and enjoyment, just as if nothing had happened. When the pressure was removed, she remained by the side of the corpse without the slightest appearance of apprehension, sorrow, or recognition. It was, of course, impossible for her to understand my reason for killing her companion; yet neither did she feel the slightest emotion at her sister's death, nor did she show any alarm lest the same fate should befall her also. In a second case exactly the same occurred. Again, I have several times, while a bee has been feeding, held a second bee by the leg close to her; the prisoner, of course, struggled to escape, and buzzed as loudly as she could; yet the selfish eater took no notice whatever. Sofar, therefore, from being at all affectionate, I doubt whether bees are in the least fond of one another.
I have already mentioned with reference to the attachment which bees have been said to show for one another, that though I have repeatedly seen them lick a bee which had smeared herself in honey, I never observed them show the slightest attention to any of their comrades who had been drowned in water. Far, indeed, from having been able to discover any evidence of affection among them, they appear to be thoroughly callous and utterly indifferent to one another. As already mentioned, it was necessary for me occasionally to kill a bee; but I never found that the others took the slightest notice. Thus on the 11th of October I crushed a bee close to one which was feeding—in fact, so close that their wings touched; yet the survivor took no notice whatever of the death of her sister, but went on feeding with every appearance of composure and enjoyment, just as if nothing had happened. When the pressure was removed, she remained by the side of the corpse without the slightest appearance of apprehension, sorrow, or recognition. It was, of course, impossible for her to understand my reason for killing her companion; yet neither did she feel the slightest emotion at her sister's death, nor did she show any alarm lest the same fate should befall her also. In a second case exactly the same occurred. Again, I have several times, while a bee has been feeding, held a second bee by the leg close to her; the prisoner, of course, struggled to escape, and buzzed as loudly as she could; yet the selfish eater took no notice whatever. Sofar, therefore, from being at all affectionate, I doubt whether bees are in the least fond of one another.
Réaumur, however ('Insects,' vol. v., p. 265), narrates a case in which a hive-bee was partly drowned and so rendered insensible; the others in the hive carefully licked and otherwise tended her till she recovered. This seems to show that bees, like ants, are more apt to have their sympathies aroused by the sight of ailing or injured companions than by that of healthy companions in distress; but Sir John Lubbock's observations above quoted go to prove that even in this case display of sympathy is certainly not the rule.
Huber says that when one wasp finds a store of honey 'it returns to its nest, and brings off in a short time a hundred other wasps;' and this statement is confirmed by Dujardin, who witnessed a somewhat similar performance in the case of bees—the individual which first found a concealed store informing other individuals of the fact, and so on till numberless individuals had found it.
Although the systematic experiments of Sir John Lubbock have not tended to confirm these observations with regard to bees and wasps, we must not too readily allow his negative results to discredit these positive observations—more especially as we have seen that hislaterexperiments have fully confirmed the opinion of these previous authors with respect to ants. His experiments on bees and wasps consisted in exposing honey in a hidden situation, marking a bee or wasp that came to it, and observing whether it afterwards brought any companions to share the booty. He found that although the same insect would return over and over again, strangers came so rarely that their visits could only be attributed to accidental and independent discovery. Only if the honey were in an exposed situation, where the insects couldseeone another feeding, would one follow the other to the food.
But we have the more reason not to accept unreservedlythe conclusion to which these experiments in themselves might lead, because the very able observer F. Müller states an observation of his own which must be considered as alone sufficient to prove that bees are able to communicate information to one another:—
Once (he says[51]) I assisted at a curious contest, which took place between the queen and the other bees in one of my hives, which throws some light on the intellectual faculties of these animals. A set of forty-seven cells have been filled, eight on a newly completed comb, thirty-five on the following, and four around the first cell of a new comb. When the queen had laid eggs in all the cells of the two older combs she went several times round their circumference (as she always does, in order to ascertain whether she has not forgotten any cell), and then prepared to retreat into the lower part of the breeding-room. But as she had overlooked the four cells of the new comb, the workers ran impatiently from this part to the queen, pushing her, in an odd manner, with their heads, as they did also other workers they met with. In consequence the queen began again to go around on the two older combs; but as she did not find any cell wanting an egg she tried to descend, but everywhere she was pushed back by the workers. This contest lasted for a rather long while, till the queen escaped without having completed her work. Thus the workers knew how to advise the queen that something was as yet to be done, but they knew not how to show herwhereit had to be done.
Once (he says[51]) I assisted at a curious contest, which took place between the queen and the other bees in one of my hives, which throws some light on the intellectual faculties of these animals. A set of forty-seven cells have been filled, eight on a newly completed comb, thirty-five on the following, and four around the first cell of a new comb. When the queen had laid eggs in all the cells of the two older combs she went several times round their circumference (as she always does, in order to ascertain whether she has not forgotten any cell), and then prepared to retreat into the lower part of the breeding-room. But as she had overlooked the four cells of the new comb, the workers ran impatiently from this part to the queen, pushing her, in an odd manner, with their heads, as they did also other workers they met with. In consequence the queen began again to go around on the two older combs; but as she did not find any cell wanting an egg she tried to descend, but everywhere she was pushed back by the workers. This contest lasted for a rather long while, till the queen escaped without having completed her work. Thus the workers knew how to advise the queen that something was as yet to be done, but they knew not how to show herwhereit had to be done.
Again, Mr. Josiah Emery, writing to 'Nature,'[52]with reference to Sir John Lubbock's experiments, says that the faculty of communication which bees possess is so well and generally known to the 'bee-hunters' of America, that the recognised method of finding a bees' nest is to act upon the faculty in question:—
Going to a field or wood at a distance from tame bees, with their box of honey they gather up from the flowers and imprison one or more bees, and after they have become sufficiently gorged, let them out to return to their home with their easily gotten load. Waiting patiently a longer or shorter time, according to the distance of the bee-tree, the hunter scarcely ever fails to see the bee or bees return accompanied with other bees, which are in like manner imprisoned till they in turn arefilled, when one or more are let out at places distant from each other, and the direction in each case in which the bee flies noted, and thus, by a kind of triangulation, the position of the bee-tree proximately ascertained.Those who have stored honey in their houses understand very well how important it is to prevent a single bee from discovering its location. Such discovery is sure to be followed by a general onslaught from the hive unless all means of access is prevented. It is possible that our American are more intelligent than European bees, but hardly probable; and I certainly shall not ask an Englishman to admit it. Those in America who are in the habit of playing first, second, and third fiddle to instinct will probably attribute this seeming intelligence to that principle.
Going to a field or wood at a distance from tame bees, with their box of honey they gather up from the flowers and imprison one or more bees, and after they have become sufficiently gorged, let them out to return to their home with their easily gotten load. Waiting patiently a longer or shorter time, according to the distance of the bee-tree, the hunter scarcely ever fails to see the bee or bees return accompanied with other bees, which are in like manner imprisoned till they in turn arefilled, when one or more are let out at places distant from each other, and the direction in each case in which the bee flies noted, and thus, by a kind of triangulation, the position of the bee-tree proximately ascertained.
Those who have stored honey in their houses understand very well how important it is to prevent a single bee from discovering its location. Such discovery is sure to be followed by a general onslaught from the hive unless all means of access is prevented. It is possible that our American are more intelligent than European bees, but hardly probable; and I certainly shall not ask an Englishman to admit it. Those in America who are in the habit of playing first, second, and third fiddle to instinct will probably attribute this seeming intelligence to that principle.
According to De Fravière, bees have a number of different notes or tones which they emit from the stigmata of the thorax and abdomen, and by which they communicate information. He says:—
As soon as a bee arrives with important news, it is at once surrounded, emits two or three shrill notes, and taps a comrade with its long, flexible, and very slender feelers, or antennæ. The friend passes on the news in similar fashion, and the intelligence soon traverses the whole hive. If it is of an agreeable kind—if, for instance, it concerns the discovery of a store of sugar or of honey, or of a flowering meadow—all remains orderly. But, on the other hand, great excitement arises if the news presages some threatened danger, or if strange animals are threatening invasion of the hive. It seems that such intelligence is conveyed first to the queen, as the most important person in the state.
As soon as a bee arrives with important news, it is at once surrounded, emits two or three shrill notes, and taps a comrade with its long, flexible, and very slender feelers, or antennæ. The friend passes on the news in similar fashion, and the intelligence soon traverses the whole hive. If it is of an agreeable kind—if, for instance, it concerns the discovery of a store of sugar or of honey, or of a flowering meadow—all remains orderly. But, on the other hand, great excitement arises if the news presages some threatened danger, or if strange animals are threatening invasion of the hive. It seems that such intelligence is conveyed first to the queen, as the most important person in the state.
This account, which is quoted from Büchner, no doubt bears indications of imaginative colouring; but if the observation as to the emission of sounds is correct—and, as we shall see, this point is well confirmed by other observers—it is most likely concerned in communicating by tone a general idea of good or harm: probably in the former case it acts as a sign, 'follow me;' and in the latter as a signal of danger. Büchner further says that, according to Landois, if a saucer of honey is placed before a hive, a few bees come out, which emit a cry of tut, tut, tut. This note is rather shrill, and resembles the cry ofan attacked bee. Hereupon a large number of bees come out of the hive to collect the offered honey.
Again,—
The best way to observe the power of communication possessed by bees by means of their interchange of touches, is to take away the queen from a hive. In a little time, about an hour afterwards, the sad event will be noticed by a small part of the community, and these will stop working and run hastily about over the comb. But this only concerns part of the hive, and the side of a single comb. The excited bees, however, soon leave the little circle in which they at first revolved, and when they meet their comrades they cross their antennæ and lightly touch the others with them. The bees which have received some impression from this touch now become uneasy in their turn, and convey their uneasiness and distress in the same way to the other parts of the dwelling. The disorder increases rapidly, spreads to the other side of the comb, and at last to all the people. Then arises the general confusion before described.Huber tested this communication by the antennæ by a striking experiment. He divided a hive into two quite separate parts by a partition wall, whereupon great excitement arose in the division in which there was no queen, and this was only quieted when some workers began to build royal cells.He then divided a hive in similar fashion by a trellis, through which the bees could pass their feelers. In this case all remained quiet, and no attempt was made to build royal cells: the queen could also be clearly seen crossing her antennæ with the workers on the other side of the trellis.Apparently the feelers are also connected with the exceedingly fine scent of the bees, which enables them, wonderful as it may seem, to distinguish friend and foe, and to recognise the members of their own hive among the thousands and thousands of bees swarming around, and to drive back from the entrance stranger or robber bees. The bee-masters, therefore, when they want two separate colonies or the members of them to unite in one hive, sprinkle water over the bees, or stupefy them with some fumigating substance, so as to make them to a certain extent insensible to smell, in order to attain their object. It is always possible to unite colonies by making the bees smell of some strong-smelling stuff, such as musk.[53]
The best way to observe the power of communication possessed by bees by means of their interchange of touches, is to take away the queen from a hive. In a little time, about an hour afterwards, the sad event will be noticed by a small part of the community, and these will stop working and run hastily about over the comb. But this only concerns part of the hive, and the side of a single comb. The excited bees, however, soon leave the little circle in which they at first revolved, and when they meet their comrades they cross their antennæ and lightly touch the others with them. The bees which have received some impression from this touch now become uneasy in their turn, and convey their uneasiness and distress in the same way to the other parts of the dwelling. The disorder increases rapidly, spreads to the other side of the comb, and at last to all the people. Then arises the general confusion before described.
Huber tested this communication by the antennæ by a striking experiment. He divided a hive into two quite separate parts by a partition wall, whereupon great excitement arose in the division in which there was no queen, and this was only quieted when some workers began to build royal cells.
He then divided a hive in similar fashion by a trellis, through which the bees could pass their feelers. In this case all remained quiet, and no attempt was made to build royal cells: the queen could also be clearly seen crossing her antennæ with the workers on the other side of the trellis.
Apparently the feelers are also connected with the exceedingly fine scent of the bees, which enables them, wonderful as it may seem, to distinguish friend and foe, and to recognise the members of their own hive among the thousands and thousands of bees swarming around, and to drive back from the entrance stranger or robber bees. The bee-masters, therefore, when they want two separate colonies or the members of them to unite in one hive, sprinkle water over the bees, or stupefy them with some fumigating substance, so as to make them to a certain extent insensible to smell, in order to attain their object. It is always possible to unite colonies by making the bees smell of some strong-smelling stuff, such as musk.[53]
Lastly, under the present heading I shall quote one other observation, for which I am also indebted toBüchner's very admirable collection of facts relating to the psychology of Hymenoptera:—
Herr L. Brofft relates, in 'der Zoologische Garten' (XVIII. Year, No. 1, p. 67), that a poor and a rich hive stood next each other on his father's bee stand, and the latter suddenly lost its queen. Before the owner had come to a decision thereupon the bees of the two hives came to a mutual understanding as to the condition of their two states. The dwellers in the queenless hive, with their stores of provisions, went over into the less populous or poorer hive, after they had assured themselves, by many influential deputations, as to the state of the interior of the poor hive, and, as appeared, especially as to the presence of an egg-laying queen!
Herr L. Brofft relates, in 'der Zoologische Garten' (XVIII. Year, No. 1, p. 67), that a poor and a rich hive stood next each other on his father's bee stand, and the latter suddenly lost its queen. Before the owner had come to a decision thereupon the bees of the two hives came to a mutual understanding as to the condition of their two states. The dwellers in the queenless hive, with their stores of provisions, went over into the less populous or poorer hive, after they had assured themselves, by many influential deputations, as to the state of the interior of the poor hive, and, as appeared, especially as to the presence of an egg-laying queen!
The active life of bees is divided between collecting food and rearing young. We shall therefore consider these two functions separately.
The food collected consists of two kinds, honey (which, although stored in the 'crop' for the purpose of carriage from the flowers to the cells, appears to be but the condensed nectar of flowers) and so-called 'bee-bread.' This consists of the pollen of flowers, which is worked into a kind of paste by the bees and stored in their cells till it is required to serve as food for their larvæ. It is then partly digested by the nurses with honey, so that a sort of chyle is formed. It is observable that in each flight the 'carrier bees' collect only one kind of pollen, so that it is possible for the 'house bees' (which, by the way, are the younger bees left at home to discharge domestic duties with only a small proportion of older ones, left probably to direct the more inexperienced young) to sort it for storage in different cells. In the result there are several different kinds of bee-bread, some being more stimulating or nutritious than others. The most nutritious has the effect, when given to any female larva, of developing that larva into a queen or fertile female. This fact is well known to the bees, who only feed a small number of larvæ in this manner, and the larvæ which they select so to feed they place in larger or 'royal' cells, with an obvious foreknowledgeof the increased dimensions to which the animal will grow under the influence of this food. Only one queen is required for a single hive; but the bees always raise several, so that if any mishap should occur to one, other larvæ may be ready to fall back upon.
Besides honey and bee-bread two other substances are found in beehives. These are propolis and beeswax. The former is a kind of sticky resin collected for the most part from coniferous trees. This is used as mortar in building, &c. It adheres so strongly to the legs of the bee which has gathered it, that it can only be detached by the help of comrades. For this purpose the loaded bee presents her legs to her fellow-workers, who clean it off with their jaws, and while it is still ductile, apply it round the inside of the hive. According to Huber, who made this observation, the propolis is applied also to the insides of the cells. The workers first planed the surfaces with their mandibles, and one of them then pulled out a thread of propolis from the heap deposited by the carrier bees, severed it by a sudden throwing back of the head, and returned with it to the cell which it had previously been planing. It then laid the thread between the two walls which it had planed; but, proving too long, a portion of the thread was bitten off. The properly measured portion was then forced into the angle of the cell by the fore-feet and mandibles. The thread, now converted into a narrow ribbon, was next found to be too broad. It was therefore gnawed down to the proper width. Other bees then completed the work which this one had begun, till all the walls of the cells were framed with bands of propolis. The object of the propolis here seems to be that of giving strength to the cells.
The wax is a secretion which proceeds from between the segments of the abdomen. Having ingested a large meal of honey, the bees hang in a thick cluster from the top of their hive in order to secrete the wax. When it begins to exude, the bees, assisted by their companions, rub it off into heaps, and when a sufficient quantity of the material has been thus collected, the work begins of building the cells. As the cells are used both for storing food andrearing young, I shall consider them later on. Now we have to pass to the labours incidental to propagation.
All the eggs are laid by one queen, who requires during this season a large amount of nourishment, so much, indeed, that ten or twelve working bees (i.e.sterile females) are set apart as her feeders. Leaving the 'royal cell,' she walks over the nursery-combs attended by a retinue of workers, and drops a single egg into each open cell. It is a highly remarkable fact that the queen is able to control the sex of the eggs which she lays, and only deposits drone or male eggs in the drone cells, and worker or female eggs in the worker cells—the cells prepared for the reception of drone larvæ being larger than those required for the worker larvæ. Young queens lay more worker eggs than old queens, and when a queen, from increasing age or any other cause, lays too large a proportion of drone eggs, she is expelled from the community or put to death. It is remarkable, also, under these circumstances, that the queen herself seems to know that she has become useless, for she loses her propensity to attack other queens, and so does not run the risk of making the hive virtually queenless. There is now no doubt at all that the determining cause of an egg turning out male or female is that which Dzierzon has shown, namely, the absence or presence of fertilisation—unfertilised eggs always developing into males, and fertilised ones into females. The manner, therefore, in which a queen controls the sex of her eggs must depend on some power that she has of controlling their fertilisation.
The eggs hatch out into larvæ, which require constant attention from the workers, who feed them with the chyle or bee-bread already mentioned. In three weeks from the time that the egg is deposited, the white worm-like larva has passed through its last metamorphosis. When it has emancipated itself its nurses assemble round it to wash and caress it, as well as to supply it with food. They then clean out the cell which it has left.
When so large a number of the larvæ hatch out as to overcrowd the hive, it is the function of the queen to lead forth a swarm. Meanwhile several larval queens have beenin course of development, and matters are so arranged by the foresight of the bees, that one or more young queens are ready to emerge at a time when otherwise the hive would be left queenless. But the young queen or queens, although perfectly formed, must not escape from their royal prison-houses until the swarm has fairly taken place; the worker bees will even strengthen the coverings of these prison-houses if, owing to bad weather or other causes, swarming is delayed. The prisoner queens, which are fed through a small hole in the roof of their cells, now continually give vent to a plaintive cry, called by the bee-keepers 'piping,' and this is answered by the mother queen. The tones of the piping vary. The reason why the young queens are kept such close prisoners till after the departure of the mother queen with her swarm, is simply that the mother queen would destroy all the younger ones, could she get the chance, by stinging them. The workers, therefore, never allow the old queen to approach the prisons of the younger ones. They establish a guard all round these prisons or royal cells, and beat off the old queen whenever she endeavours to approach. But if the swarming season is over, or anything should prevent a further swarm from being sent out, the worker bees offer no further resistance to the jealousy of the mother queen, but allow her in cold blood to sting to death all the young queens in their nursery prisons. As soon as the old queen leaves with a swarm, the young queens are liberated in succession, but at intervals of a few days; for if they were all liberated at once they would fall upon and destroy one another. Each young queen as it is liberated goes off with another swarm, and those which remain unliberated are as carefully guarded from the liberated sister queen as they were previously guarded from the mother queen. When the season is too late for swarming the remaining young queens are liberated simultaneously, and are then allowed to fight to the death, the survivor being received as sovereign.
The bees, far from seeking to prevent these battles, appear to excite the combatants against each other, surrounding andbringing them back to the charge when they are disposed to recede from each other; and when either of the queens shows a disposition to approach her antagonist, all the bees forming the cluster instantly give way to allow her full liberty of attack. The first use which the conquering queen makes of her victory is to secure herself against fresh dangers by destroying all her future rivals in the royal cells; while the other bees, which are spectators of the carnage, share in the spoil, greedily devouring any food which may be found at the bottom of the cells, and even sucking the fluid from the abdomen of the pupæ before they toss out the carcasses.[54]
The bees, far from seeking to prevent these battles, appear to excite the combatants against each other, surrounding andbringing them back to the charge when they are disposed to recede from each other; and when either of the queens shows a disposition to approach her antagonist, all the bees forming the cluster instantly give way to allow her full liberty of attack. The first use which the conquering queen makes of her victory is to secure herself against fresh dangers by destroying all her future rivals in the royal cells; while the other bees, which are spectators of the carnage, share in the spoil, greedily devouring any food which may be found at the bottom of the cells, and even sucking the fluid from the abdomen of the pupæ before they toss out the carcasses.[54]
Similarly, when a strange queen is put into a hive already provided with a queen—
A circle of bees instinctively crowd around the invader, not, however, to attack her—for a worker never assaults a queen—but to respectfully prevent her escape, in order that a combat may take place between her and their reigning monarch. The lawful possessor then advances towards the part of the comb where the invader has established herself, the attendant workers clear a space for the encounter, and, without interfering, wait the result. A fearful encounter then ensues, in which one is stung to death, the survivor mounting the throne. Although the workers of ade factomonarch will not fight for her defence, yet, if they perceive a strange queenattemptingto enter the hive, they will surround her, and hold her until she is starved to death; but such is their respect for royalty that they never attempt to sting her.[55]
A circle of bees instinctively crowd around the invader, not, however, to attack her—for a worker never assaults a queen—but to respectfully prevent her escape, in order that a combat may take place between her and their reigning monarch. The lawful possessor then advances towards the part of the comb where the invader has established herself, the attendant workers clear a space for the encounter, and, without interfering, wait the result. A fearful encounter then ensues, in which one is stung to death, the survivor mounting the throne. Although the workers of ade factomonarch will not fight for her defence, yet, if they perceive a strange queenattemptingto enter the hive, they will surround her, and hold her until she is starved to death; but such is their respect for royalty that they never attempt to sting her.[55]
All these facts display a wonderful amount of apparently sagacious purpose on the part of the workers, although they may not seem to reflect much credit on the intelligence of the queens. But in this connection we must remember the observation of F. Huber, who saw two queens, which were the only ones left in the hive, engaged in mortal combat; and when an opportunity arose for each to sting the other simultaneously, they simultaneously released each other's grasp, as if in horror of a situation that might have ended in leaving the hive queenless. This, then, is the calamity to avert which allthe instincts both of workers and queens are directed. And that these instincts are controlled by intelligence is suggested, if not proved, by the adaptations which they show to special circumstances. Thus, for instance, F. Huber smoked a hive so that the queen and older bees effected their escape, and took up their quarters a short distance away. The bees which remained behind set about constructing three royal cells for the purpose of rearing a new queen. Huber now carried back the old queen and ensconced her in the hive. Immediately the bees set about carrying away all the food from the royal cells, in order to prevent the larvæ contained therein from developing into queens. Again, if a strange queen is presented to a hive already provided with one, the workers do not wait for their own queen to destroy the pretender, but themselves sting or smother her to death. When, on the other hand, a queen is presented to a hive which is without one, the bees adopt her, although it is often necessary for the bee-master to protect her for a day or two in a trellis cage, until her subjects have become acquainted with her. When a hive is queenless, the bees stop all work, become restless, and make a dull complaining noise. This, however, is only the case if there is likewise a total absence of royal pupæ, and of ordinary pupæ under three days of age—i.e.the age during which it is possible to rear an ordinary larva into a queen.
As soon as the queen has been fertilised, and the services of the drones therefore no longer required, the worker bees fall upon their unfortunate and defenceless brothers to kill them, either by direct stinging or by throwing them out of the hive to perish in the cold. The drones' cells are then torn down, and any remaining drone eggs or pupæ destroyed. Generally all the drones—which may number more than a thousand—are slaughtered in the course of a single day. Evidently the object of this massacre is that of getting rid of useless mouths; but there is a more difficult question as to why these useless mouths ever came into existence. It has been suggested that the enormous disproportion between the present number of males and the single fertile female refers toa time before the social instincts became so complex or consolidated, and when, therefore, bees lived in lesser communities. Probably this is the explanation, although I think we might still have expected that before this period in their evolution had arrived bees might have developed a compensating instinct, either not to allow the queen to lay so many drone eggs, or else to massacre the drones while still in the larval state. But here we must remember that among the wasps the males do work (chiefly domestic work, for which they are fed by their foraging sisters); so it is possible that in the hive-bee the drones were originally useful members of the community, and that they have lost their primitively useful instincts. But whatever the explanation, it is very curious that here, among the animals which are justly regarded as exhibiting the highest perfection of instinct, we meet with perhaps the most flagrant instance in the animal kingdom of instinct unperfected. It is the more remarkable that the drone-killing instinct should not have been better developed in the direction of killing the drones at the most profitable time—namely, in their larval or oval state—from the fact that in many respects it seems to have been advanced to a high degree of discriminative refinement. Thus, to quote Büchner,—
That the massacre of the drones is not performed entirely from an instinctive impulse, but in full consciousness of the object to be gained, is proved by the circumstance that it is carried out the more completely and mercilessly the more fertile the queen shows herself to be. But in cases where this fertility is subject to serious doubt, or when the queen has been fertilised too late or not at all, and therefore only lays drones' eggs, or when the queen is barren, and new queens, to be fertilised later, have to be brought up from working-bee larvæ, then all or some of the drones are left alive, in the clear prevision that their services will be required later. . . . . This wise calculation of consequences is further exemplified in that sometimes the massacre of the drones takes place before the time for swarming, as, for instance, when long-continued unfavourable weather succeeds a favourable beginning of spring, and makes the bees anxious for their own welfare. If, however, the weather breaks, and work again becomes possible, so that thebees take courage anew, they then bring up new drones, and prepare them in time for the swarming. This killing of drones is distinguished from the regular drone massacre by the fact that the bees then only kill the developed drones, and leave the drone larvæ, save when absolute hunger compels their destruction. Not less can it be regarded as a prudent calculation of circumstances when the bees of a hive, brought from our temperate climate to a more southern country, where the time of collecting lasts longer, do not kill the drones in August, as usual, but at a later period, suitable to the new conditions.
That the massacre of the drones is not performed entirely from an instinctive impulse, but in full consciousness of the object to be gained, is proved by the circumstance that it is carried out the more completely and mercilessly the more fertile the queen shows herself to be. But in cases where this fertility is subject to serious doubt, or when the queen has been fertilised too late or not at all, and therefore only lays drones' eggs, or when the queen is barren, and new queens, to be fertilised later, have to be brought up from working-bee larvæ, then all or some of the drones are left alive, in the clear prevision that their services will be required later. . . . . This wise calculation of consequences is further exemplified in that sometimes the massacre of the drones takes place before the time for swarming, as, for instance, when long-continued unfavourable weather succeeds a favourable beginning of spring, and makes the bees anxious for their own welfare. If, however, the weather breaks, and work again becomes possible, so that thebees take courage anew, they then bring up new drones, and prepare them in time for the swarming. This killing of drones is distinguished from the regular drone massacre by the fact that the bees then only kill the developed drones, and leave the drone larvæ, save when absolute hunger compels their destruction. Not less can it be regarded as a prudent calculation of circumstances when the bees of a hive, brought from our temperate climate to a more southern country, where the time of collecting lasts longer, do not kill the drones in August, as usual, but at a later period, suitable to the new conditions.
But the philosophy of drone-killing is, I think, even more difficult in the case of the wasps than in that of the bees. For, unlike the bees, whose communities live from year to year, the wasps all perish at the end of autumn, with the exception of a very few fertilised females. As this season of universal calamity approaches, the workers destroy all the larval grubs—a proceeding which, in the opinion of some writers, strikingly exemplifies the beneficence of the Deity! Now, it does not appear to me easy to understand how the presence of such an instinct in this case is to be explained. For, on the one hand, the individual females which are destined to live through the winter cannot be conspicuously benefited by this slaughter of grubs; and, on the other hand, the rest of the community is so soon about to perish, that one fails to see of what advantage it can be to it to get rid of the grubs. If the whole human race, with the exception of a few women, were to perish periodically once in a thousand years, the race would profit nothing by destroying, a few months before the end of each millennium, all sick persons, lunatics, and other 'useless mouths.' I have not seen this difficulty with regard to the massacring instinct in wasps mentioned before, and I only mention it now in order to draw attention to the fact that there seems to be a more puzzling problem presented here than in the case of the analogous instinct as exhibited by bees. The only solution which has suggested itself to my mind is the possibility that in earlier times, or in other climates, wasps may have resembled bees in living through the winter, and that the grub-slaying instinct is in them a survival of one whichwas then, as in the case of the bees now, a clearly beneficial instinct.
For some days before swarming begins, there is a great excitement and buzzing in the hive, the temperature of which rises from 92° to 104°. Scouts having been previously sent out to explore for suitable quarters wherein to plant the new colony, these now act as guides. The swarm leaves the hive with their queen. The bees which remain behind busy themselves in rearing out the pupæ, which soon arriving at maturity, also quit the hive in successive swarms. According to Büchner, 'secondary swarms with young queens send out no scouts, but fly at random through the air. They clearly lack the experience and prudence of the older bees.' And, regarding the behaviour of the scouts sent out by primary swarms, this author says:—
M. de Fravière had the opportunity of observing the manner in which such an examination is carried on, and with what prudence and accuracy. He placed an empty beehive, made in a new style, in front of his house, so that he could exactly watch from his own window what went on inside and out without disturbance to himself or to the bees. A single bee came and examined the building, flying all round it and touching it. It then let itself down on the board, and walked carefully and thoroughly over the interior, touching it continually with its antennæ so as to subject it on all sides to a thorough investigation. The result of its examination must have been satisfactory, for after it had gone away it returned accompanied by a crowd of some fifty friends, which now together went through the same process as their guide. This new trial must also have had a good result, for soon a whole swarm came, evidently from a distant spot, and took possession. Still more remarkable is the behaviour of the scouts when they take possession of a satisfactory hive or box for an imminent or approaching swarm. Although it is not yet inhabited they regard it as their property, watch it and guard it against stranger bees or other assailants, and busy themselves earnestly in the most careful cleansing of it, so far as this cleansing is impossible to the setter up of the hive. Such a taking possession sometimes occurs eight days before the entrance of the swarm.
M. de Fravière had the opportunity of observing the manner in which such an examination is carried on, and with what prudence and accuracy. He placed an empty beehive, made in a new style, in front of his house, so that he could exactly watch from his own window what went on inside and out without disturbance to himself or to the bees. A single bee came and examined the building, flying all round it and touching it. It then let itself down on the board, and walked carefully and thoroughly over the interior, touching it continually with its antennæ so as to subject it on all sides to a thorough investigation. The result of its examination must have been satisfactory, for after it had gone away it returned accompanied by a crowd of some fifty friends, which now together went through the same process as their guide. This new trial must also have had a good result, for soon a whole swarm came, evidently from a distant spot, and took possession. Still more remarkable is the behaviour of the scouts when they take possession of a satisfactory hive or box for an imminent or approaching swarm. Although it is not yet inhabited they regard it as their property, watch it and guard it against stranger bees or other assailants, and busy themselves earnestly in the most careful cleansing of it, so far as this cleansing is impossible to the setter up of the hive. Such a taking possession sometimes occurs eight days before the entrance of the swarm.
Wars.—As with ants, so with bees, the great cause ofwar is plunder; and facts now well substantiated by numberless observers concerning 'robber-bees' indicate a large measure of intelligence. These aim at lessening their labour in collecting honey by plundering the store of other hives. The robberies may be conducted singly or in concert. When the thieving propensity is developed only in individual cases, the thieves cannot rely on force in plundering a foreign state, and so resort to cautious stealth. 'They show by their whole behaviour—creeping into the hive with careful vigilance—that they are perfectly conscious of their bad conduct; whereas the workers belonging to the hive fly in quickly and openly, and in full consciousness of their right.' If such solitary burglars are successful in obtaining plunder, their bad example leads other members of their own community to imitate them; thus it is that the whole bee-nation may develop marauding habits, and when they do this they act in concert to rob by force. In this case an army of bees precipitates itself upon the foreign hive, a battle ensues, and if successful in overcoming resistance, the invaders first of all search out the queen-bee and put her to death, whereby they disorganise their enemies and plunder the hive with ease. It is observed that when this policy is once successful, the spirit of aggrandisement is encouraged, so that the robber-bees 'find more pleasure in robbery than in their own work, and become at last formidable robber-states.' When an invaded hive is fairly overcome by the invaders killing the queen, the owners of the hive, finding that all is lost, not only abandon further resistance, but very often reverse their policy and join the ranks of their conquerors. They assist in the tearing down of their cells, and in the conveyance of the honey to the hive of their invaders. 'When the assailed hive is emptied, the next ones are attacked, and if no effective resistance is offered, are robbed in similar fashion, so that in this way a whole bee-stand may be gradually destroyed.' Siebold observed the same facts in the case of wasps (Polistes gallica). If, however, the battle turns in favour of the defenders, they pursue the flying legions of their enemies to a distance from their home. It sometimeshappens that the plundered hive offers no resistance at all, owing to the robbers having visited the same flowers as the robbed, and so probably (having much the same smell) not being recognised as belonging to a different community. The thieves, when they find such to be the case, may become so bold as to stop the bees that are returning to the hive with their loads, of which they deprive them at the entrance of the hive. This is done by a process which one observer, Weygandt,[56]calls 'milking,' and it seems that the milking bee attains the double advantage of securing the honey from the milked one and disarming suspicion of the other bees by contracting its smell and entering the hive loaded, into which it is admitted without opposition to continue its plunder.
Sometimes robber-bees attack their victims in the fields at a distance from the hives. This sort of highway robbery is generally conducted by a gang of four or five robber-bees which set upon a single honest bee, 'hold him by the legs, and pinch him until he unfolds his tongue, which is sucked in succession by his assailants, who then suffer him to depart in peace.'
It is strange that hive-bees of dishonest temperaments seem able to coax or wheedle humble-bees into the voluntary yielding of honey. 'Humble-bees have been known to permit hive-bees to take the whole honey that they have collected, and to go on gathering more, and handing it over, for three weeks, although they refuse to part with it, or seek refuge in flight, when wasps make similar overtures.'[57]
Besides theft and plunder, there are other causes of warfare among bees, which, however, are only apparent in their effects. Thus, for some undiscernible reason, duels are not infrequent, which generally end in the death of one or both combatants. At other times, equally without apparent reason, civil war breaks out in a hive, which is sometimes attended with much slaughter.
Architecture.—Coming now to the construction of the cells and combs, there is no doubt that here we meet withthe most astonishing products of instinct that are presented in the animal kingdom. A great deal has been written on the practical exhibition of high mathematical principles which bees display in constructing their combs in the form that secures the utmost capacity for storage of honey with the smallest expenditure of building material. The shortest and clearest statement of the subject that I have met with is the following, which has been given by Dr. Reid:—
There are only three possible figures of the cells which can make them all equal and similar, without any useless interstices. These are the equilateral triangle, the square, and the regular hexagon. Mathematicians know that there is not a fourth way possible in which a plane may be cut into little spaces that shall be equal, similar, and regular, without useless spaces. Of the three figures, the hexagon is the most proper for convenience and strength. Bees, as if they knew this, make their cells regular hexagons.Again, it has been demonstrated that, by making the bottoms of the cells to consist of three planes meeting in a point, there is a saving of material and labour in no way inconsiderable. The bees, as if acquainted with these principles of solid geometry, follow them most accurately. It is a curious mathematical problem, at what precise angle the three planes which compose the bottom of a cell ought to meet, in order to make the greatest possible saving, or the least expense of material and labour. This is one of the problems which belong to the higher parts of mathematics. It has accordingly been resolved by some mathematicians, particularly by the ingenious Maclaurin, by a fluctionary calculation, which is to be found in the Transactions of the Royal Society of London. He has determined precisely the angle required, and he found, by the most exact mensuration the subject would admit, that it is the very angle in which the three planes in the bottom of the cell of a honeycomb do actually meet.[58]
There are only three possible figures of the cells which can make them all equal and similar, without any useless interstices. These are the equilateral triangle, the square, and the regular hexagon. Mathematicians know that there is not a fourth way possible in which a plane may be cut into little spaces that shall be equal, similar, and regular, without useless spaces. Of the three figures, the hexagon is the most proper for convenience and strength. Bees, as if they knew this, make their cells regular hexagons.
Again, it has been demonstrated that, by making the bottoms of the cells to consist of three planes meeting in a point, there is a saving of material and labour in no way inconsiderable. The bees, as if acquainted with these principles of solid geometry, follow them most accurately. It is a curious mathematical problem, at what precise angle the three planes which compose the bottom of a cell ought to meet, in order to make the greatest possible saving, or the least expense of material and labour. This is one of the problems which belong to the higher parts of mathematics. It has accordingly been resolved by some mathematicians, particularly by the ingenious Maclaurin, by a fluctionary calculation, which is to be found in the Transactions of the Royal Society of London. He has determined precisely the angle required, and he found, by the most exact mensuration the subject would admit, that it is the very angle in which the three planes in the bottom of the cell of a honeycomb do actually meet.[58]
Marvellous as these facts undoubtedly are, they may now be regarded as having been satisfactorily explained. Long ago Buffon sought to account for the hexagonal form of the cells by an hypothesis of mutual pressure. Supposing the bees to have a tendency to build tubularcells, if a greater number of bees were to build in a given space than could admit of all the parallel tubes being completed, tubes with flat sides and sharp angles might result, and if the mutual pressure were exactly equal in all directions, these sides and angles would assume the form of hexagons. This hypothesis of Buffon was sustained by such physical analogies as the blowing of a crowd of soap-bubbles in a cup, the swelling of moistened peas in a confined space, &c. The hypothesis, however, as thus presented was clearly inadequate; for no reason is assigned why the mutual pressure, even if conceded to exist, should always be so exactly equal in all directions as to convert all the cylinders into perfect hexagons—even the analogy of the soap-bubbles and the moistened peas failing, as pointed out by Brougham and others, to sustain it, seeing that as a matter of fact bubbles and peas under circumstances of mutual pressure do not assume the form of hexagons, but, on the contrary, forms which are conspicuously irregular. Moreover, the hypothesis fails to account for the particular prismatic shape presented by the cell base. Therefore it is not surprising that this hypothesis should have gained but small acceptance. Kirby and Spence dispose of it thus:—'He (Buffon) gravely tells us that the boasted hexagonal cells of the bee are produced by the reciprocal pressure of the cylindrical bodies of these insects against each other!!'[59]The double note of admiration here may be taken to express the feelings with which this hypothesis of Buffon was regarded by all the more sober-minded naturalists. Yet it turns out to have been not very wide of the mark. As is often the case with the gropings of a great mind, the idea contains the true principle of the explanation, although it fails as an explanation from not being in a position to take sufficient cognizance of all the facts. Safer it is for lesser minds to restrain their notes of exclamation while considering the theories of a greater; however crude or absurd the latter may appear, the place of their birth renders it not impossible that some day they may prove to have been prophetic of truth revealed by fuller knowledge.Usually in such cases the final explanation is eventually reached by the working of a yet greater mind, and in this case the undivided credit of solving the problem is to be assigned to the genius of Darwin.
Mr. Waterhouse pointed out 'that the form of the cell stands in close relation to the presence of adjoining cells.' Starting from this fact, Mr. Darwin says,—
Let us look to the great principle of gradation, and see whether Nature does not reveal to us her method of work. At one end of a short series we have humble-bees, which use their old cocoons to hold honey, sometimes adding to them short tubes of wax, and likewise making separate and very irregular rounded cells of wax. At the other end of the series we have the cells of the hive-bee, placed in a double layer. . . . . In the series between the extreme perfection of the cells of the hive-bee and the simplicity of those of the humble-bee we have the cells of the MexicanMelipona domestica, carefully described and figured by Pierre Huber. . . . . It forms a nearly regular waxen comb of cylindrical cells, in which the young are hatched, and, in addition, some large cells of wax for holding honey. These latter cells are nearly spherical and of nearly equal sizes, and are aggregated into an irregular mass. But the important thing to notice is, that these cells are always made at that degree of nearness to each other that they would have intersected or broken into each other if the spheres had been completed; but this is never permitted, the bees building perfectly flat cells of wax between the spheres which thus tend to intersect. Hence each cell consists of an outer spherical portion; and of two, three, or more flat surfaces, according as the cell adjoins two, three, or more other cells. When one cell rests on three other cells, which, from the spheres being nearly of the same size, is very frequently and necessarily the case, the three flat surfaces are united into a pyramid; and this pyramid, as Huber has remarked, is manifestly a gross imitation of the three-sided pyramidal base of the cell of the hive-bee. . . . .Reflecting on this case, it occurred to me that if the Melipona had made its spheres at some given distance from each other, and had made them of equal sizes, and had arranged them symmetrically in a double layer, the resulting structure would have been as perfect as the comb of the hive-bee. Accordingly I wrote to Prof. Miller of Cambridge, and this geometer has kindly read over the following statement, drawn up from his information, and tells me that it is strictly correct.
Let us look to the great principle of gradation, and see whether Nature does not reveal to us her method of work. At one end of a short series we have humble-bees, which use their old cocoons to hold honey, sometimes adding to them short tubes of wax, and likewise making separate and very irregular rounded cells of wax. At the other end of the series we have the cells of the hive-bee, placed in a double layer. . . . . In the series between the extreme perfection of the cells of the hive-bee and the simplicity of those of the humble-bee we have the cells of the MexicanMelipona domestica, carefully described and figured by Pierre Huber. . . . . It forms a nearly regular waxen comb of cylindrical cells, in which the young are hatched, and, in addition, some large cells of wax for holding honey. These latter cells are nearly spherical and of nearly equal sizes, and are aggregated into an irregular mass. But the important thing to notice is, that these cells are always made at that degree of nearness to each other that they would have intersected or broken into each other if the spheres had been completed; but this is never permitted, the bees building perfectly flat cells of wax between the spheres which thus tend to intersect. Hence each cell consists of an outer spherical portion; and of two, three, or more flat surfaces, according as the cell adjoins two, three, or more other cells. When one cell rests on three other cells, which, from the spheres being nearly of the same size, is very frequently and necessarily the case, the three flat surfaces are united into a pyramid; and this pyramid, as Huber has remarked, is manifestly a gross imitation of the three-sided pyramidal base of the cell of the hive-bee. . . . .
Reflecting on this case, it occurred to me that if the Melipona had made its spheres at some given distance from each other, and had made them of equal sizes, and had arranged them symmetrically in a double layer, the resulting structure would have been as perfect as the comb of the hive-bee. Accordingly I wrote to Prof. Miller of Cambridge, and this geometer has kindly read over the following statement, drawn up from his information, and tells me that it is strictly correct.
This statement having fully borne out his theory, Mr. Darwin continues:—
Hence we may safely conclude that, if we could slightly modify the instincts already possessed by the Melipona, and in themselves not very wonderful, this bee would make a structure as wonderfully perfect as that of the hive-bee. We must suppose the Melipona to have the power of forming her cells truly spherical, and of equal sizes; and this would not be very surprising, seeing that she already does so to a certain extent, and seeing what perfectly cylindrical burrows many insects make in wood, apparently by turning round on a fixed point. We must suppose the Melipona to arrange her cells in level layers, as she already does her cylindrical cells; and we must further suppose—and this is the greatest difficulty—that she can somehow judge accurately at what distance to stand from her fellow-labourers when several are making their spheres; but she is already so far able to judge of distance that she always describes her spheres so as to intersect to a certain extent; and then she unites the points of intersection by perfectly flat surfaces. By such modifications of instinct, which in themselves are not very wonderful—hardly more wonderful than those which guide a bird to make its nest,—I believe that the hive-bee has acquired through natural selection her inimitable architectural powers.[60]
Hence we may safely conclude that, if we could slightly modify the instincts already possessed by the Melipona, and in themselves not very wonderful, this bee would make a structure as wonderfully perfect as that of the hive-bee. We must suppose the Melipona to have the power of forming her cells truly spherical, and of equal sizes; and this would not be very surprising, seeing that she already does so to a certain extent, and seeing what perfectly cylindrical burrows many insects make in wood, apparently by turning round on a fixed point. We must suppose the Melipona to arrange her cells in level layers, as she already does her cylindrical cells; and we must further suppose—and this is the greatest difficulty—that she can somehow judge accurately at what distance to stand from her fellow-labourers when several are making their spheres; but she is already so far able to judge of distance that she always describes her spheres so as to intersect to a certain extent; and then she unites the points of intersection by perfectly flat surfaces. By such modifications of instinct, which in themselves are not very wonderful—hardly more wonderful than those which guide a bird to make its nest,—I believe that the hive-bee has acquired through natural selection her inimitable architectural powers.[60]
Mr. Darwin next tested this theory by the experiment of introducing into beehives plates of wax, and observing that the bees worked upon these plates just as the theory required. That is to say, they made their cells by excavating a number of little circular pits at equal distances from one another, so that by the time the pits had acquired the width of an ordinary cell, the sides of the pits intersected. As soon as this occurred the bees ceased to excavate, and instead began to build up flat walls of wax on the lines of intersection. Other experiments with very thin plates of vermilion-coloured wax showed that the bees all worked at about the same rate, and on opposite sides of the plates, so that the common bottoms of any two opposite pits were flat. These flat bottoms 'were situated, as far as the eye could judge, exactly along the planes of imaginary intersection between the basins on the opposite sides of the ridge of wax;' so that if theplate of wax had been thick enough to admit of the opposite basins being deepened (and widened) into cells, the mutual intersection ofadjacentas well asoppositebottoms would have given rise, as in the first experiment with the thick plate of wax, to the pyramidal bottoms. Experiments with the vermilion wax also showed, as Huber had previously stated, that a number of individual bees work by turns at the same cell; for by covering parts of growing cells with vermilion wax, Mr. Darwin—