Schwefelsaurer Baryt, kohlensaurer Baryt und Kieselfluorbaryum.
a. Derschwefelsaure Barytstellt, künstlich erzeugt, ein feines, weisses Pulver dar. In heissem und kaltem Wasser ist er fast absolut unlöslich, Gegenwart von freier Säure vermehrt seine Löslichkeit kaum um ein Minimum. In Königswasser löst er sich merklich. An der Luft, bei 100° und in der Glühhitze ist er völlig unveränderlich. Beim Glühen mit Kohle geht er in Schwefelbaryum über. Diese Reduction erfolgt jedoch nur bei Abschluss der Luft, nicht aber, wenn derselben freier Zutritt gestattet ist. Mit Salmiak geglüht, wird derselbe unvollständig zersetzt.
Zusammensetzung:
b. Derkohlensaure Barytstellt, künstlich erhalten, ein weisses Pulver dar. Er löst sich in 14137 Theilen kalten und 15421 kochenden Wassers (Vers. Nr.16), ungleich leichter in Lösungen von Chlorammonium oder salpetersaurem Ammon. Aus den durch diese Salze vermittelten Lösungen wird er jedoch (aber nicht vollständig) wieder niedergeschlagen durch kaustisches Ammon. Wasser, welches freie Kohlensäure enthält, löst ihn zu doppelt kohlensaurem Salz. In Wasser, welches Ammon und kohlensaures Ammon enthält, ist er fast absolut unlöslich, 1 Theil erfordert etwa (vergl. Vers. Nr.17) 141000 Theile. Seine Lösung reagirt ganz schwach alkalisch. An der Luft und beim Rothglühen ist er unveränderlich. Beim Glühen mit Kohle bildet sich kaustischer Baryt, während Kohlenoxydgas entweicht.
Zusammensetzung:
c. DasKieselfluorbaryumstellt kleine, harte und farblose Krystalle, oder (in der Regel) ein krystallinisches Pulver dar. Es löst sich in3800 Theilen kaltem, leichter in heissem Wasser auf (Vers. Nr.18). Gegenwart von freier Salzsäure vermehrt seine Löslichkeit beträchtlich (Vers. Nr.19). In Weingeist ist es fast ganz unlöslich. An der Luft und bei 100° ist es unveränderlich, beim Glühen zerfällt es in Fluorsiliciumgas, welches entweicht, und in Fluorbaryum, welches zurückbleibt.
Zusammensetzung:
§. 51.
2.Strontian.
Der Strontian wird entweder alsschwefelsaureroder alskohlensaurer Strontianbestimmt.
a. Der künstlich erhalteneschwefelsaure Strontianstellt ein weisses Pulver dar. Er löst sich in 6895 Theilen kalten und 9638 Theilen kochenden Wassers (Vers. Nr.20), in Wasser, welches Schwefelsäure enthält, ist er weniger löslich und bedarf etwa 11000–12000 Theile (Vers. Nr.21). Er löst sich in Kochsalzlösung, wird aber daraus durch Schwefelsäure wieder gefällt. In absolutem Alkohol, wie auch in wässerigem Weingeist ist er fast völlig unlöslich. Pflanzenfarben verändert er nicht. An der Luft und bei Rothglühhitze ist er unveränderlich, in heftigster Glühhitze ohne Zerlegung schmelzbar. Beim Glühen mit Kohle bei abgehaltener Luft geht er in Schwefelstrontium über.
Zusammensetzung:
b. Derkohlensaure Strontianstellt, künstlich erhalten, ein weisses, zartes, lockeres Pulver dar. Er löst sich bei gewöhnlicher Temperatur in 18045 Theilen Wasser (Vers. Nr.22), Gegenwart von Ammon vermindert seine Löslichkeit (Vers. Nr.23). In Lösungen von Salmiak und salpetersaurem Ammon löst er sich ziemlich leicht, er wird aber aus diesen Lösungen durch Ammon wieder gefällt, und zwar vollständiger als der kohlensaure Baryt. Kohlensäurehaltiges Wasser löst ihn zu doppelt-kohlensaurem Salz. Er reagirt sehr schwach alkalisch.
An der Luft und in Rothglühhitze ist er unschmelzbar, in heftigsterHitze schmilzt er und verliert allmälig seine Kohlensäure. Beim Glühen mit Kohle bildet sich kaustischer Strontian, während Kohlenoxydgas entweicht.
§. 52.
3.Kalk.
Der Kalk wird entweder alsschwefelsaureroder alskohlensaurer Kalkgewogen. Um ihn in letztere Form zu bringen, wird er in der Regel als oxalsaurer Kalk gefällt.
a. Der wasserfreieschwefelsaure Kalkerscheint, künstlich erhalten, als lockeres, weisses Pulver. Er löst sich bei gewöhnlicher Temperatur in 430, bei 100° in 460 Theilen Wasser (Poggiale). Salmiak, schwefelsaures Natron und Kochsalz vermehren die Löslichkeit. Die wässerige Lösung des Gypses verändert Pflanzenfarben nicht. In Alkohol wie auch in Weingeist ist er fast absolut unlöslich. An der Luft zieht er langsam Wasser an, bei dunkler Rothglühhitze ist er unveränderlich, bei sehr heftiger Hellrothglühhitze schmilzt er ohne Zerlegung. Mit Kohle bei abgehaltener Luft geglüht geht er in Schwefelcalcium über.
Zusammensetzung:
b. Derkohlensaure Kalkstellt, künstlich erhalten, ein weisses, feines Pulver dar. Er löst sich in 10601 Theilen kaltem (Vers. Nr.24) und in 8834 Theilen kochendem Wasser (Vers. Nr.25). Die Lösung reagirt kaum merklich alkalisch. Wasser, welches Ammon und kohlensaures Ammon enthält, löst ihn viel weniger (26), 1 Theil erfordert etwa 65000 Theile. Diese Lösung wird durch kleesaures Ammon nicht gefällt. Salmiak und salpetersaures Ammon erhöhen seine Löslichkeit. Aus durch diese Salze vermittelten Lösungen wird er durch Ammon gefällt, und zwar vollständiger als der kohlensaure Baryt. — Neutrale Kali- und Natronsalze erhöhen seine Löslichkeit ebenfalls. — In kohlensäurehaltigem Wasser löst er sich zu doppelt-kohlensaurem Salz. — An der Luft, bei 100° und bei gelinder Glühhitze ist er unveränderlich, bei stärkerem Erhitzen verliert er allmälig seine Kohlensäure, bei Luftzutritt leichter als bei abgeschlossener Luft. Es gelingt jedoch nicht, kohlensauren Kalk in einem Platintiegel über der Weingeistlampe mit doppeltem Luftzug vollkommen kaustisch zu brennen (vergl. Vers. Nr.27).Beim Glühen mit Kohle verliert er seine Kohlensäure weit leichter, indem sie als Kohlenoxydgas entweicht.
Zusammensetzung:
c. Deroxalsaure Kalkstellt ein feines, weisses, in Wasser fast absolut unlösliches Pulver dar. Gegenwart von freier Oxalsäure und Essigsäure vermehrt die Löslichkeit um ein Geringes, Ammonsalze sind ohne Einfluss. Stärkere Säuren (Salzsäure, Salpetersäure) lösen den oxalsauren Kalk leicht, aus den Lösungen wird er durch Alkalien, wie auch (wenn der Ueberschuss der Säure nicht allzu gross ist) durch überschüssig zugesetzte oxalsaure oder essigsaure Alkalien ohne Zersetzung gefällt. An der Luft und bei 100° ist er unveränderlich, bei letzterer Temperatur getrocknet hat er folgende Zusammensetzung (Vers. Nr.28):
Bei 180–200° verliert der oxalsaure Kalk sein Wasser, ohne Zersetzung zu erleiden, bei einer etwas höheren, noch kaum an die dunkle Rothglühhitze reichenden Temperatur zerfällt er ohne eigentliche Kohleabscheidung in Kohlenoxyd und kohlensauren Kalk. Das vorher schneeweisse Pulver nimmt auch im Zustande höchster Reinheit vorübergehend eine graue Farbe an. Bei fortdauerndem Erhitzen verschwindet dieselbe wieder. Hat man den oxalsauren Kalk in zusammenhängenden Stückchen, wie man ihn erhält, wenn er auf einem Filter getrocknet wird, so kann man an dem erwähnten Dunklerwerden den Beginn und Verlauf der Zersetzung deutlich beobachten. Bei vorsichtig geleitetem Erhitzen enthält der Rückstand keine Spur kaustischen Kalk.
§. 53.
4.Magnesia.
Die Magnesia wird entweder alsschwefelsaure, alspyrophosphorsaureoder alsreine Magnesiagewogen. Zur Ueberführung in phosphorsaures Salz fällt man sie als basisch phosphorsaure Ammon-Magnesia.
a. Die wasserfreieschwefelsaure Magnesiastellt eine weisse, undurchsichtige Masse dar. Sie löst sich leicht in Wasser. In absolutem Alkohol ist sie so gut wie unlöslich, von wässerigem wird sie etwas aufgenommen. Pflanzenfarben verändert sie nicht. An der Luft zieht sie rasch Wasser an. Bei mässiger Glühhitze erleidet sie keine, bei sehrheftiger eine partielle Zerlegung. Sie verliert dabei einen Theil ihrer Säure und löst sich alsdann in Wasser nicht mehr vollständig auf (Vers. Nr.29). Mit Salmiak geglüht, zersetzt sich die schwefelsaure Magnesia nicht.
Zusammensetzung:
b. Diebasisch phosphorsaure Ammon-Magnesiastellt ein weisses, krystallinisches Pulver dar. Sie löst sich bei gewöhnlicher Temperatur in 15293 Theilen kaltem Wasser (Vers. Nr.30). In Ammon enthaltendem Wasser ist sie viel unlöslicher, 1 Theil erfordert etwa 45000 Theile (Vers. Nr.31), Salmiak erhöht die Löslichkeit um ein Geringes (Vers. Nr.33und34). Gegenwart von phosphorsauren Alkalien ist ohne Einfluss. In Säuren, selbst Essigsäure löst sie sich leicht. Ihre Zusammensetzung wird durch die Formel PO5, 2 MgO, NH4O + 12 aq. ausgedrückt. Beim Trocknen bei 100° entweichen 10 Aeq. Wasser, beim Glühen entweicht alles Wasser nebst dem Ammon, PO5, 2 MgO bleibt zurück. Der Uebergang der gewöhnlichen Phosphorsäure in Pyrophosphorsäure giebt sich durch ein lebhaftes Erglühen der Masse zu erkennen. — Löst man phosphorsaure Ammon-Magnesia in verdünnter Salzsäure oder Salpetersäure und versetzt die Flüssigkeit mit Ammon, so wird die Verbindung wieder vollständig niedergeschlagen, oder richtiger, so vollständig, als es der Löslichkeit des Salzes in Ammon, beziehungsweise Ammon und Ammonsalz, enthaltendem Wasser entspricht. — DaWeber(Pogg. 73, S. 152) diese meine früher gemachte Angabe nicht bestätigt fand, so stellte ich neue Versuche über diesen Gegenstand an (Nr.32). Dieselben gaben mir genau dasselbe Resultat wie die früheren.
c. Diepyrophosphorsaure Magnesiastellt eine weisse, oft ein wenig ins Graue spielende Masse dar. Sie ist in Wasser kaum, in Salzsäure und Salpetersäure leicht löslich, an der Luft und beim Rothglühen unveränderlich, in sehr heftiger Hitze ohne Zerlegung schmelzbar. Feuchtes Curcumapapier verändert sie nicht, ebensowenig geröthetes Lackmuspapier. — Löst man dieselbe in Salzsäure oder Salpetersäure, setzt Wasser zu, kocht anhaltend und fällt dann mit Ammon im Ueberschuss, so erhält man einen Niederschlag von phosphorsaurer Ammonmagnesia, welcher, geglüht, nicht eben so viel wiegt, als man angewendet hatte; der Verlust beträgt nachWeber1,3 bis 2,3 Proc. — Meine Versuche (Nr.35) bestätigen dies und zeigen, unter welchen Umständen der Verlust am geringsten ist. (Vergleiche auch §.106.) Durch andauerndes Schmelzen mit kohlensaurem Natronkali wird die pyrophosphorsaure Magnesia vollständig zerlegt und die Phosphorsäure in den dreibasischen Zustand zurückgeführt. Behandelt man daher die geschmolzene Massemit Salzsäure, fügt Wasser und Ammon zu, so erhält man beim Glühen des Niederschlages die ganze Menge wieder.
Zusammensetzung:
d. Diereine Magnesiastellt ein weisses, leichtes, lockeres Pulver dar. Sie löst sich in 55368 Theilen kaltem und in der gleichen Menge kochendem Wasser (Vers. Nr.36). Die Lösungen reagiren sehr schwach alkalisch. In Salzsäure und anderen Säuren löst sie sich ohne Gasentwicklung. An der Luft zieht sie langsam Kohlensäure und Wasser an. In starker Rothglühhitze bleibt sie unverändert und nur bei den höchsten Hitzgraden schmilzt sie oberflächlich.
Zusammensetzung:
§. 54.
1.Thonerde.
Die Thonerde wird in der Regel als Hydrat gefällt und stets im reinen Zustande gewogen.
a. DasThonerdehydratstellt, frisch gefällt, einen gallertartigen Niederschlag dar, der immer kleine Antheile der Säure, an welche die Thonerde gebunden war, wie auch des Alkalis, durch welches sie abgeschieden wurde, zurückhält und sich durch Auswaschen nur schwierig davon befreien lässt.
Das Thonerdehydrat ist in reinem Wasser unlöslich, in Kali, Natron und Säuren leicht löslich, in Aetzammon schwer, in kohlensaurem Ammon nicht löslich. Die Löslichkeit desselben in Aetzammon wird durch gleichzeitig anwesende Ammonsalze sehr gemindert (Vers. Nr.37). Die Richtigkeit meiner Angaben, welche ich auf die bei Ausarbeitung der ersten Auflage angestellten und sub 37 mitgetheilten Versuche stützte, ist inzwischen durch eine umfassendere Arbeit vonMalagutiundDurocher(Ann. de Chim. et de Phys. 3 Ser. 16. 421), sowie durch eine weitere, welche mein Assistent, Herr J.Fuchsausführte, vollkommen bestätigt worden. Die ersteren geben weiter an, dass, wenn man eine Thonerdelösung mit Schwefelammonium fälle, die Flüssigkeit, auch wenn man sie schon nach 5 Minuten abfiltrire, frei von Thonerde sei. —Fuchsfand dies nicht bestätigt (Vers. Nr.38). — Das Thonerdehydrat schwindetbeim Trocknen sehr zusammen, und stellt alsdann entweder eine harte, durchscheinende, gelbliche, oder eine weisse, erdige Masse dar. Beim Glühen verliert es sein Wasser, häufig unter geringer Decrepitation, immer unter starker Volumverminderung.
b. Die nach a. durch Glühen des Hydrats erhalteneThonerdeerscheint nach mässigem Glühen als eine lockere, zart anzufühlende Masse, sehr heftig geglüht stellt sie harte zusammengebackene Stückchen dar. In heftigster Weissglühhitze schmilzt sie zu einem klaren Glas. Die geglühte Thonerde löst sich in Säuren sehr schwierig. Auf feuchtes rothes Lackmuspapier gelegt, bläut sie dasselbe nicht. Beim Glühen mit Salmiak entweicht Chloraluminium.
Zusammensetzung:
§. 55.
2.Chromoxyd.
Das Chromoxyd wird in der Kegel als Hydrat gefällt, stets in reinem Zustande gewogen.
a. DasChromoxydhydratstellt, frisch gefällt, einen grünlichgrauen gelatinösen Niederschlag dar, welcher in Wasser nicht, in Kali und Natronlauge in der Kälte leicht zur dunkelgrünen Flüssigkeit, in Ammon in der Kälte in ziemlich geringer Menge zur hellviolettrothen Flüssigkeit, in Säuren leicht mit dunkelgrüner Farbe, löslich ist. Gegenwart von Salmiak ist auf die Löslichkeit des Hydrats in Ammon ohne Einfluss. Beim Kochen scheidet sich sowohl aus der kalischen, als aus der ammoniakalischen Lösung alles Oxyd ab (Vers. Nr.39). Getrocknet stellt das Hydrat ein grünlichblaues Pulver dar, welches beim gelinden Glühen sein Hydratwasser verliert.
b. DasChromoxyderscheint, durch Erhitzen des Hydrats bis zur dunkeln Rothglühhitze dargestellt, als dunkelgrünes Pulver, welches beim stärkeren Erhitzen ohne Gewichtsverminderung unter lebhaftem Erglühen eine hellere Farbe annimmt. Das schwach geglühte Oxyd ist in Salzsäure schwer löslich, das stark geglühte unlöslich, beim Glühen mit Salmiak erleidet es keine Veränderung.
Zusammensetzung:
§. 56.
1.Zinkoxyd.
Das Zinkoxyd wird immerals solchesgewogen. Man vermittelt die Ueberführung entweder durch Fällung alsbasisch kohlensaures Zinkoxydoder Schwefelzink, oder auch durch Glühen.
a. Das basischkohlensaure Zinkoxydstellt, frisch gefällt, einen weissen, flockigen Niederschlag dar, welcher in Wasser fast unlöslich (ein Thl. erfordert 44600 Thle. Vers. Nr.40), in Kali, Ammon, kohlensaurem Ammon und Säuren leicht löslich ist. Fällt man eine neutrale Zinklösung mit kohlensaurem Natron oder Kali, so entweicht, weil der entstehende Niederschlag nicht ZnO, CO2, sondern ein Gemenge von 2(ZnO, CO2) + 3(ZnO, HO) mit kohlensaurem Zinkoxydkali ist, unter allen Umständen Kohlensäure. Durch ihre Vermittelung sowohl, als auch weil das kohlensaure Zinkoxydkali in Wasser nicht unlöslich ist, bleibt ein Theil des Zinkoxyds in Auflösung, daher die Flüssigkeit, kalt abfiltrirt, mit Schwefelammonium einen Niederschlag giebt. Nimmt man die Fällung jedoch in der Kochhitze vor und erhitzt alsdann noch eine Zeit lang zum Sieden, wobei weder Kohlensäure in der Flüssigkeit bleiben, noch kohlensaures Zinkoxydkali sich bilden kann, so ist die Fällung in der Art vollständig, dass das Filtrat durch Schwefelammonium nicht getrübt wird. Nach vielstündigem Stehen setzen sich jedoch aus der damit vermischten Flüssigkeit fast unwägbare Flocken von Schwefelzink ab. Verfährt man nach der angegebenen Weise, so lässt sich der Niederschlag durch Auswaschen mit heissem Wasser vollständig vom Kaligehalt befreien. — Bei Gegenwart von Ammonsalzen ist die Fällung nicht eher in eben genannter Weise vollständig, bis alles Ammon ausgetrieben ist. — Verdampft man die Lösung eines Zinksalzes mit überschüssigem kohlensaurem Kali bei gelinder Hitze zur Trockne und behandelt den Rückstand mit kaltem Wasser, so kommt ein merkbarer Theil des Zinks als kohlensaures Zinkoxydkali in Auflösung, verdampft man kochend zur Trockne und übergiesst den Rückstand mit heissem Wasser, so ist die Fällung nach oben bezeichneter Art vollständig. — Getrocknet stellt das basisch kohlensaure Zinkoxyd ein blendend weisses, lockeres Pulver dar, welches beim Glühen in Zinkoxyd übergeht.
b. DasZinkoxydstellt, durch Glühen aus dem kohlensauren erhalten, ein weisses leichtes Pulver mit einem Stich ins Gelbliche dar. Beim Erhitzen wird es gelb, beim Erkalten wieder weiss. Beim Glühen mit Kohle entweicht Kohlenoxyd und Zinkdampf. In Wasser ist es unlöslich, auf feuchtes Curcumapapier gelegt, bewirkt es keine Bräunung. Von Säuren wird es leicht und ohne Gasentwicklung gelöst. Mit Salmiakgeglüht liefert es geschmolzenes Chlorzink, das sich beim Ausschluss der Luft sehr schwer, beim Zutritt derselben aber und mit Salmiakdämpfen leicht gänzlich verflüchtigt (H.Rose).
Zusammensetzung:
c. DasSchwefelzinkstellt, frisch gefällt, einen weissen lockeren Niederschlag (ZnS, HO) dar; derselbe löst sich weder in Wasser, noch in ätzenden oder kohlensauren Alkalien oder alkalischen Schwefelmetallen. Von Salzsäure und Salpetersäure wird er leicht und vollständig, von Essigsäure höchst wenig gelöst. Getrocknet erscheint der Niederschlag als weisses Pulver, welches bei 100° die Hälfte, beim Glühen seinen ganzen Gehalt an Wasser verliert. Bei letzterer Operation entweicht etwas Schwefelwasserstoff und das zurückbleibende Schwefelzink enthält Zinkoxyd.
§. 57.
2.Manganoxydul.
Das Mangan wird entweder alsManganoxyduloxyd[(MnO + Mn2O3) = Mn3O4] oder alsschwefelsaures Manganoxydulgewogen. — Ausser diesen Verbindungen haben wir noch diejenigen kennen zu lernen, in welchen es, behufs seiner Bestimmung in ersterer Form, gefällt wird, nämlichkohlensaures Manganoxydul,ManganoxydulhydratundSchwefelmangan.
a. Daskohlensaure Manganoxydulstellt, frisch gefällt, einen weissen, flockigen Niederschlag dar, welcher in reinem Wasser so gut wie nicht, in kohlensäurehaltigem etwas leichter, löslich ist. Kohlensaures Natron oder Kali vermehren seine Löslichkeit nicht. Salmiaklösung nimmt ihn im frisch gefällten Zustande ziemlich leicht auf, daher die Fällung einer Manganlösung durch kohlensaures Kali oder Natron bei Gegenwart von Salmiak (oder der eines anderen Ammonsalzes) nicht eher vollständig geschieht, bis derselbe völlig zerlegt ist. — Im feuchten Zustande der Luft ausgesetzt oder mit lufthaltigem Wasser ausgewaschen, nimmt der Niederschlag langsam eine schmutzig bräunlichweisse Farbe an, indem sich ein Theil in Manganoxydhydrat verwandelt. — Bei Abschluss der Luft getrocknet, stellt er ein zartes, weisses, luftbeständiges Pulver [2(MnO, CO2) + aq.], bei Zutritt der Luft getrocknet, ein mehr oder weniger schmutzig weisses bis bräunliches dar. — Beim Glühen an der Luft wird dasselbe zuerst schwarz, dann geht es in braunes Manganoxyduloxyd über.
b. DasManganoxydulhydratstellt, frisch gefällt, einen weissen, flockigen, in Wasser und Alkalien unlöslichen, in Salmiak löslichenNiederschlag dar, welcher an der Luft schnell braun wird, indem sich Oxydhydrat bildet. Beim Trocknen an der Luft erhält man ein braunes, abfärbendes Pulver (Manganoxydhydrat), welches beim heftigen Glühen an der Luft in Manganoxyduloxyd übergeht.
c. DasSchwefelmanganerscheint, auf nassem Wege dargestellt, als ein fleischrother, in Wasser und Alkalien unlöslicher Niederschlag. Farbloses Schwefelwasserstoff-Schwefelammonium löst Spuren desselben auf, nicht aber das Fünffach-Schwefelammonium enthaltende gelbe. Gegenwart von Salmiak vermehrt seine Löslichkeit nicht. In wässerigen Säuren (Salzsäure, Schwefelsäure etc.) löst er sich unter Entwicklung von Schwefelwasserstoff. In feuchtem Zustande der Luft ausgesetzt, oder beim Auswaschen mit lufthaltigem Wasser wird er braun, es bildet sich Manganoxydhydrat und gleichzeitig etwas schwefelsaures Manganoxydul. Um dieses zu verhüten, muss man dem Waschwasser etwas Schwefelammonium (gelbes) zusetzen.
d. DasManganoxyduloxyd, in welches alle Oxydationsstufen des Mangans beim Glühen an der Luft zuletzt übergehen, stellt, künstlich erhalten, ein rothbraunes Pulver dar. Beim jedesmaligen Erhitzen nimmt es eine schwarze Farbe an, ändert aber sein Gewicht nicht. Es ist in Wasser unlöslich, verändert Pflanzenfarben nicht, geht, mit Salmiak geglüht, in Chlorür über.
Zusammensetzung:
e. Dasschwefelsaure Manganoxydulstellt im wasserfreien Zustande, wie man es durch Erhitzen des krystallisirten erhält, eine weisse, zerreibliche, in Wasser leicht lösliche Masse dar. — Es hält andauernde schwache Rothglühhitze ohne Zersetzung aus; bei heftigerem Glühen wird es mehr oder weniger vollständig zerlegt, indem Sauerstoff, schweflige Säure und wasserfreie Schwefelsäure, entweichen, und Manganoxyduloxyd zurückbleibt.
Zusammensetzung:
§. 58.
3.Nickeloxydul.
Das Nickel wird stets als Oxydul gewogen. Ausser dieser Verbindung haben wir noch das Nickeloxydulhydrat und das Schwefelnickel als die Formen kennen zu lernen, in welchen das Nickel gefällt wird.
a. DasNickeloxydulhydratstellt einen apfelgrünen, in Wasser fast ganz unlöslichen, in Ammon und kohlensaurem Ammon löslichen Niederschlag dar. Aus diesen Lösungen wird es durch überschüssig zugesetztes Kali vollständig gefällt, namentlich beim Erhitzen. An der Luft ist es unveränderlich, beim Glühen geht es in Nickeloxydul über.
b. DasNickeloxydulstellt ein schmutzig graugrünes Pulver dar. Es verändert sein Gewicht beim Glühen an der Luft nicht, in Wasser ist es unlöslich, in Salzsäure leicht löslich, Pflanzenfarben verändert es nicht, mit Salmiak geglüht, geht es in metallisches Nickel über (H.Rose).
Zusammensetzung:
c. Das auf nassem Wege dargestellte wasserhaltigeSchwefelnickelstellt einen schwarzen, in Wasser unlöslichen Niederschlag dar. Er löst sich nicht in einem Ueberschuss von mit Schwefelwasserstoff vollkommen gesättigtem Schwefelammonium, ein wenig in Ammon, noch mehr in mit Schwefelwasserstoff nicht ganz gesättigtem Ammon. Aus diesen Lösungen, welche eine mehr oder minder braune Farbe haben, schlägt sich, wenn sie der Luft ausgesetzt werden, allmälig das Schwefelnickel nieder (siehe Versuche Nr.41). — In feuchtem Zustande der Luft ausgesetzt, oxydirt sich das Schwefelnickel langsam zu schwefelsaurem Nickeloxydul. In Essigsäure löst es sich sehr wenig, etwas mehr in Salzsäure, leichter wird es von Salpetersäure, am besten von Königswasser gelöst. — Beim Glühen geht es in wasserfreies Schwefelnickel über, beim Glühen an der Luft in eine basische Verbindung von Nickeloxyd mit Schwefelsäure.
§. 59.
4.Kobaltoxydul.
Die Formen, in welche das Kobalt zum Behufe seiner Bestimmung am besten übergeführt wird, sind folgende: reines metallisches Kobalt, Kobaltoxyduloxyd, schwefelsaures Kobaltoxydul. Ausser den Eigenschaften dieser Verbindungen haben wir noch die desKobaltoxydulhydratsund desSchwefelkobalts, als der Formen, welche die Bestimmung vermitteln, kennen zu lernen.
a.Kobaltoxydulhydrat.Fällt man eine Kobaltoxydullösung mit Kali, so erhält man zuerst einen blauen Niederschlag (basisches Salz), welcher beim Kochen mit Kaliüberschuss bei Abschluss der Luft in hellrothes Hydrat übergeht, bei Zutritt der Luft hingegen missfarbig wird, indem sich ein Theil des Oxydulhydrats in Oxydhydrat verwandelt. Das so dargestellte Hydrat enthält jedoch stets noch eine gewisse Quantität derSäure und selbst nach dem vollständigsten Auswaschen mit heissem Wasser noch eine beträchtliche Menge des zur Fällung angewendeten Alkalis (Fremy, J. pr. Chem. 57. 81). Ich fand diese Angabe vollkommen bestätigt (Vers. Nr.42). Glüht man daher den Niederschlag in Wasserstoffgas und bringt das erhaltene metallische Kobalt mit feuchtem Curcumapapier in Berührung, so bemerkt man eine starke alkalische Reaction. Dieses nicht zu vermeidenden Alkaligehaltes halber eignet sich das so erhaltene Oxyd oder Metall nicht zur Bestimmung des Kobalts. — Das Kobaltoxydulhydrat ist in Wasser wie auch in Kali unlöslich, in Ammonsalzen löslich, an der Luft getrocknet wird es unter Sauerstoffaufnahme bräunlich.
b. Glüht man reines Chlorkobalt oder salpetersaures Kobaltoxydul in einem Strome von Wasserstoffgas, so erhält manreines metallisches Kobalt, in Gestalt eines grauschwarzen Metallpulvers. Dasselbe schmilzt schwerer als Gold, wird vom Magneten angezogen. — Fand die Reduction bei schwacher Hitze statt, so verbrennt das fein zertheilte Metall an der Luft zu Oxyduloxyd. Dies findet nicht statt, wenn man beim Reduciren stark glüht. Das Kobalt wirkt bei gewöhnlicher Temperatur oder auch beim Sieden nicht zersetzend auf Wasser, bei Gegenwart von Schwefelsäure zersetzt es dasselbe. Mit Schwefelsäurehydrat erhitzt, liefert es unter Entbindung von schwefliger Säure schwefelsaures Kobaltoxydul; in Salpetersäure löst es sich leicht zu salpetersaurem Oxydul.
c. Glüht man salpetersaures Kobaltoxydul, so erhält man einen schwarzen Rückstand von constanter Zusammensetzung. Derselbe ist das dem Eisenoxyduloxyd entsprechende Kobaltoxyduloxyd und hat somit die Formel CoO + Co2O3oder Co3O4(Rammelsberg,Fremy). Er löst sich nicht in Wasser, in warmer Salzsäure unter Chlorentwickelung zu Chlorür; beim Glühen mit Salmiak bleibt metallisches Kobalt.
Zusammensetzung:
d. Das auf nassem Wege dargestellteSchwefelkobaltstellt einen schwarzen, in Wasser, Alkalien und alkalischen Schwefelmetallen unlöslichen Niederschlag dar. Es löst sich in Essigsäure und verdünnten Mineralsäuren wenig, leichter in concentrirten, am leichtesten in erwärmtem Königswasser. Im feuchten Zustande der Luft dargeboten, oxydirt es sich langsam zu schwefelsaurem Kobaltoxydul.
e. Dasschwefelsaure Kobaltoxydulkrystallisirt in Verbindung mit 7 aq. schwierig in schön rothen, schiefen, rhombischen Säulen. Die Krystalle verlieren bei mässigem Erhitzen sämmtliches Wasser und gehen in rosenrothes wasserfreies Salz über. Dieses erträgt gelinde Glühhitze, ohne Säure zu verlieren. Es löst sich etwas schwierig in kaltem, leichterin heissem Wasser. — In Wasserstoffgas geglüht, wird es nicht reducirt.
Zusammensetzung:
§. 60.
5.Eisenoxydulund 6.Eisenoxyd.
Das Eisen wird immer als Oxyd gewogen. Ausser dieser Verbindung haben wir dasEisenoxydhydrat, dasSchwefeleisenund dasbernsteinsaure Eisenoxydals die Formen, welche seine Bestimmung vermitteln, kennen zu lernen.
a. DasEisenoxydhydratstellt, frisch gefällt, einen rothbraunen, in Wasser, Alkalien und Ammonsalzen unlöslichen, in Säuren leichtlöslichen, beim Trocknen ausserordentlich stark schwindenden Niederschlag dar. Getrocknet erscheint derselbe als eine braune, harte Masse von glänzendem muschligem Bruch. Der Niederschlag reisst immer etwas von dem zum Fällen angewendeten Alkali mit nieder, daher man bei Analysen nur mit Ammon fällen darf.
b. Beim Glühen geht das Oxydhydrat inEisenoxydüber. War das Oxydhydrat nicht sehr sorgfältig getrocknet, so werden, durch die Gewalt des in den festen, aussen getrockneten Stückchen erzeugten Dampfes, leicht Theilchen des Oxyds umhergeworfen. Reines Eisenoxyd auf feuchtes geröthetes Lackmuspapier gelegt, färbt dieses nicht blau. In verdünnter Salzsäure löst es sich langsam, schneller in concentrirter. Bei gelindem Erwärmen schneller als beim Kochen. An der Luft geglüht, verändert es sein Gewicht nicht, — mit Salmiak geglüht, entweicht Eisenchlorid, — mit Kohle bei Abschluss der Luft geglüht, wird es mehr oder weniger reducirt.
Zusammensetzung:
c. DasSchwefeleisenstellt, auf nassem Wege erhalten, einen schwarzen, in lufthaltigem Wasser ein wenig (unter Zersetzung) löslichen, — in Wasser, welches alkalische Schwefelmetalle enthält, unlöslichen, in Mineralsäuren (auch verdünnten) leicht löslichen Niederschlag dar. In sehr verdünnten Lösungen sich ausscheidend, bleibt er sehr lange suspendirt und giebt der Flüssigkeit das Ansehen einer schwärzlichgrünen Lösung. Nach einiger Zeit setzt er sich jedoch stets vollständig ab. —Im feuchten Zustande der Luft dargeboten, nimmt er Sauerstoff auf und wird braun, es entsteht Eisenoxydhydrat und schwefelsaures Eisenoxydul.
d. Vermischt man eine neutrale Eisenoxydlösung mit einer neutralen Lösung von bernsteinsaurem Alkali, so erhält man einen heller oder dunkler zimmtbraunen Niederschlag vonbernsteinsaurem Eisenoxyd(Fe2O3, S2). Aus der Natur dieses Niederschlages ergiebt sich, dass mit dem Entstehen desselben 1 Aeq. Säure (und zwar bei Ueberschuss von bernsteinsaurem Ammon, Bernsteinsäure) frei werden muss, z. B. Fe2O3, 3SO3+ 3NH4O, S = Fe2O3, S2+ 3NH4O, SO3+ S. — Die freie Bernsteinsäure in sehr verdünnter kalter Lösung löst den Niederschlag so gut wie nicht, eine warme Lösung nimmt ihn reichlicher auf. Auf diesem Umstande beruht es, dass man die präcipitirte Flüssigkeit nicht heiss filtriren darf, wenn der Niederschlag ungelöst bleiben soll. Früher wurde irriger Weise angenommen, der Niederschlag sei neutrales, durch heisses Wasser in eine basische unlösliche und eine saure lösliche Verbindung zerlegbares Salz. — In kaltem Wasser ist das bernsteinsaure Eisenoxyd unlöslich, in heissem ein wenig löslich, leicht löslich in Mineralsäuren. Ammon entzieht ihm seine Säure grossentheils, warmes vollständiger als kaltes, es bleiben dem Eisenoxydhydrat ähnliche Verbindungen, welche auf 1S 9–15 Aeq. Fe2O3enthalten (Döpping).
§. 61.
1.Silberoxyd.
Das Silber kann alsmetallisches Silber, alsChlorsilber,SchwefelsilberundCyansilbergewogen werden.
a. Dasmetallische Silberstellt, aus Silbersalzen mit organischen Säuren etc. durch Glühen erhalten, eine leichte, hellweisse, blinkende, metallisch glänzende Masse dar; aus Chlorsilber etc. durch Zink auf nassem Wege reducirt, erscheint es als graues mattes Pulver. Es lässt sich über einerBerzelius'schen Lampe nicht schmelzen, verändert beim Glühen sein Gewicht nicht. — In verdünnter Salpetersäure löst es sich leicht und ohne Rückstand.
b. DasChlorsilberstellt, frisch gefällt, einen weissen, käsigen, beim Trocknen pulverig werdenden Niederschlag dar. Es ist in Wasser und Salpetersäure ganz unlöslich, in concentrirter Salzsäure löst es sich ein wenig, beim Verdünnen fällt es fast vollständig daraus nieder. Die Lösungen von Salmiak (nicht von anderen Ammonsalzen), Chlornatrium und Chlorkalium nehmen (namentlich im concentrirten Zustande) ebenfalls ein wenig desselben auf. — Aetzammon löst es leicht. — Am Licht wird es bald violett, endlich schwarz, indem es Chlor verliert. Die Umwandlungist jedoch so oberflächlich, dass man den Chlorverlust, selbst auf sehr feinen Wagen nicht nachweisen kann. — Beim Erhitzen färbt sich das Chlorsilber gelb, bei 260° schmilzt es zu einer durchsichtigen, gelben Flüssigkeit; in sehr starker Glühhitze verflüchtigt es sich unzersetzt. Erkaltet stellt das geschmolzene Chlorsilber eine farblose oder schwach gelbliche Masse dar. In Chlorgas geschmolzen absorbirt es ein wenig von demselben, beim Erkalten entweicht dasselbe vollständig. — Mit Kohle geglüht wird dasselbe nicht, in einem Strome von Kohlenoxydgas aber leicht zu Silber reducirt.
Zusammensetzung:
c. DasSchwefelsilberstellt, auf nassem Wege erhalten, einen schwarzen, in Wasser, verdünnten Säuren, Alkalien und alkalischen Schwefelmetallen unlöslichen, an der Luft unveränderlichen Niederschlag dar, welcher sich ohne Zersetzung bei 100° trocknen lässt. Concentrirte Salpetersäure löst ihn unter Abscheidung von Schwefel.
Zusammensetzung:
d. DasCyansilberstellt, frisch gefällt, einen weissen, käsigen, in Wasser und verdünnter Salpetersäure unlöslichen, in Cyankalium wie auch in Ammon löslichen Niederschlag dar, welcher sich am Lichte nicht im mindesten schwärzt und, ohne Zersetzung zu erleiden, bei 100° getrocknet werden kann. — Beim Glühen zerfällt er in Silber, welches gemengt mit etwas Paracyansilber zurückbleibt, und in Cyangas.
Zusammensetzung:
§. 62.
2.Bleioxyd.
Die Formen, in denen das Blei gewogen wird, sind:Bleioxyd,schwefelsaures Bleioxyd,chromsaures Bleioxyd,Chlorblei,Schwefelblei. Ausser diesen Verbindungen müssen wir noch daskohlensaure, wie auch dasoxalsaure Bleioxydnäher betrachten.
a. Dasneutrale kohlensaure Bleioxydstellt einen schweren, weissen, pulverigen Niederschlag dar. Es ist in reinem (ausgekochtem) Wassersehr wenig löslich (1 Theil erfordert 50550 Theile, Vers. Nr.43.), ein wenig leichter in solchem, welches Ammon und Ammonsalze enthält (vergl. Vers. Nr.43.), auch in kohlensäurehaltigem Wasser löst es sich etwas mehr als in reinem. Beim Glühen verliert es seine Kohlensäure.
b. Daskleesaure Bleioxydist ein weisses, in Wasser sehr wenig lösliches Pulver. Seine Löslichkeit wird ein wenig erhöht durch die Gegenwart von Ammonsalzen (Vers. Nr.44). In verschlossenen Gefässen erhitzt, hinterlässt es Bleisuboxyd, bei Luftzutritt geglüht, gelbes Oxyd.
c. DasBleioxyd(durch Glühen des kohlensauren oder oxalsauren Salzes erhalten) stellt ein citronengelbes, zuweilen mehr röthlich- oder auch blassgelbes Pulver dar. Beim jedesmaligen Erhitzen nimmt es eine braunrothe Farbe an, ohne sein Gewicht zu verändern. In heftiger Rothglühhitze schmilzt es, beim Glühen mit Kohle wird es reducirt, erst in der Weissglühhitze verdampft es. Auf feuchtes, geröthetes Lackmuspapier gelegt, bläut es dasselbe. An der Luft zieht es langsam Kohlensäure an. Mit Salmiak geglüht verwandelt es sich in Chlorblei.
Zusammensetzung:
d. Dasschwefelsaure Bleioxydstellt ein schweres, weisses Pulver dar. Es löst sich bei gewöhnlicher Temperatur in 22800 Theilen reinem Wasser (Vers. Nr.45), weniger in schwefelsäurehaltigem (1 Theil erfordert etwa 36500 Theile, Vers. Nr.46), weit mehr in solchem, welches Ammonsalze enthält, daraus durch überschüssige Schwefelsäure wieder so gut wie völlig fällbar (Vers. Nr.47), — nicht oder fast nicht in Alkohol und Weingeist. — In concentrirter Salzsäure löst es sich beim Erhitzen; in Salpetersäure um so mehr, je concentrirter und wärmer sie ist. Wasser fällt es nicht aus der salpetersauren Lösung, wohl aber verdünnte Schwefelsäure, wenn sie in reichlicher Menge zugesetzt wird. Je mehr Salpetersäure vorhanden ist, um so mehr Schwefelsäure wird erfordert. — Von concentrirter Schwefelsäure wird es in geringer Menge aufgenommen, beim Verdünnen mit Wasser (vollständiger bei Zusatz von Alkohol) fällt das gelöste nieder. In heisser Kali- oder Natronlauge löst sich das schwefelsaure Bleioxyd leicht, an der Luft und bei gelindem Glühen ist es unveränderlich, in stärkerer Hitze schmilzt es ohne Zerlegung (Vers. Nr.48). Beim Glühen mit Kohle bildet sich anfangs Schwefelblei, dessen Schwefel die Schwefelsäure eines noch nicht zersetzten Antheils zu schwefliger Säure reducirt, wodurch auf beiden Seiten metallisches Blei abgeschieden wird.
Zusammensetzung:
e. DasChlorbleistellt entweder kleine, glänzende Krystallnadeln, oder ein weisses Pulver dar. Es löst sich bei gewöhnlicher Temperatur in 135 Theilen Wasser, weit leichter in heissem, weniger leicht in salpetersäurehaltigem [1 Thl. bedarf 1636 Thle. (Bischof)], reichlich in concentrirter Salzsäure, daraus durch Wasser fällbar, kaum in Weingeist von 70–80 Proc., nicht in absolutem Alkohol. — An der Luft ist es unveränderlich, noch unter der Glühhitze schmilzt es ohne Gewichtsverlust. Bei Luftzutritt stärker erhitzt, verflüchtigt es sich langsam, zum Theil wird es dabei zersetzt, es entweicht Chlor, Bleioxyd-Chlorblei bleibt zurück.
Zusammensetzung:
f. DasSchwefelbleistellt, auf nassem Wege erhalten, einen schwarzen, in Wasser, verdünnten Säuren, Alkalien und alkalischen Schwefelmetallen unlöslichen Niederschlag dar. An der Luft ist derselbe unveränderlich, bei 100° lässt er sich ohne Zersetzung trocknen. In concentrirter heisser Salzsäure löst sich das Schwefelblei unter Entwicklung von Schwefelwasserstoff, in mässig concentrirter Salpetersäure beim Erhitzen unter Abscheidung von Schwefel (wenn die Säure ziemlich concentrirt ist, bildet sich auch etwas schwefelsaures Bleioxyd). Rauchende Salpetersäure verwandelt dasselbe ohne Abscheidung von Schwefel unter heftiger Einwirkung in schwefelsaures Bleioxyd. — Vergl. hierzu Versuch Nr.49.
Zusammensetzung:
Eigenschaften und Zusammensetzung deschromsauren Bleioxydssiehe bei Chromsäure §.72.
§. 63.
3.Quecksilberoxydulund 4.Quecksilberoxyd.
Das Quecksilber wird imregulinischen Zustande, alsQuecksilberchlorüroder alsQuecksilbersulfid, zuweilen auch alsOxydgewogen.
a. Dasregulinische Quecksilberstellt, wie bekannt, ein bei gewöhnlicher Temperatur flüssiges, zinnweisses Metall dar. Im reinen Zustande zeigt es vollkommen blanke Oberfläche, an der Luft ist es bei gewöhnlicher Temperatur völlig unveränderlich. Es siedet bei 360°, verdampftauch schon bei mittlerer Sommertemperatur, jedoch höchst langsam. Kocht man es mit Wasser anhaltend, so verwandelt sich ebenfalls ein wenig in Dampf, von welchem Spuren mit den Wasserdämpfen entweichen, während eine höchst geringe Menge im Wasser vertheilt (nicht gelöst) bleibt (vergl. Vers. Nr.50). Aus dieser Flüssigkeit schlägt sich bei sehr langem Stehen allmälig die Spur darin suspendirten Quecksilbers vollständig nieder. Wird Quecksilber aus einer Flüssigkeit in fein zertheilter Form niedergeschlagen, so vereinigen sich die kleinen Kügelchen leicht zu einer grösseren, wenn das Quecksilber vollkommen rein ist; hängen demselben aber fremde Materien, wenn auch in geringster Menge, an, z. B. Spuren von Fett, so wird das Zusammenfliessen des Quecksilbers dadurch verhindert. — Das Quecksilber löst sich in Salzsäure, selbst in concentrirter, nicht auf, in verdünnter kalter Schwefelsäure kaum, von Salpetersäure oder kochender concentrirter Schwefelsäure hingegen wird es leicht gelöst.
b. DasQuecksilberchlorürstellt, auf nassem Wege erhalten, ein schweres, weisses Pulver dar. In kaltem Wasser ist es fast absolut unlöslich, von kochendem wird es allmälig zersetzt, die Lösung enthält Chlor und Quecksilber, der Rückstand wird bei andauerndem Kochen grau. — Sehr verdünnte Salzsäure löst das Quecksilberchlorür bei gewöhnlicher Temperatur nicht, bei erhöhter langsam, in der Siedehitze, unter Mitwirkung der Luft, allmälig vollständig; die Lösung enthält Quecksilberchlorid (Hg2Cl + ClH + O = 2HgCl + HO). Kochende concentrirte Salzsäure zersetzt das Quecksilberchlorür ziemlich schnell in zurückbleibendes Quecksilber und sich lösendes Chlorid. — Kochende Salpetersäure löst es zu Chlorid und salpetersaurem Oxyd, Chlorwasser und Königswasser lösen es schon in der Kälte zu Chlorid. — Lösungen von Salmiak, Chlornatrium und Chlorammonium zersetzen es, wenig in der Kälte, mehr in der Hitze, in Metall und sich lösendes Chlorid. — Das Quecksilberchlorür verändert Pflanzenfarben nicht, an der Luft ist es unveränderlich, bei 100° kann es ohne Gewichtsverlust getrocknet werden, bei stärkerem Erhitzen (noch unter der Glühhitze) verdampft es vollständig, ohne vorher zu schmelzen.
Zusammensetzung:
c. DasQuecksilbersulfidstellt, auf nassem Wege erhalten, ein schwarzes, in Wasser unlösliches Pulver dar. Salzsäure und Salpetersäure lösen es im verdünnten Zustande nicht, heisse concentrirte Salpetersäure greift es kaum, kochende Salzsäure nicht an. Von Königswasser wird es leicht gelöst. Kalilauge, selbst kochende, nimmt es nicht auf, Schwefelkalium löst es leicht (Vers. Nr.51), Schwefelammonium sowie Cyankalium nicht. An der Luft ist es (auch im feuchten Zustande) unveränderlich, bei 100°erleidet es keine Veränderung. In höherer Temperatur verdampft es vollständig ohne Zersetzung.
Zusammensetzung:
d. DasQuecksilberoxydstellt ein krystallinisches, ziegelrothes Pulver dar, welches bei jedesmaligem Erhitzen zinnoberroth, dann violettschwarz wird. Es erträgt ziemlich starke Hitze, ohne zersetzt zu werden; bei anfangender Glühhitze aber zerfällt es in Quecksilber und Sauerstoff. War es rein, so bleibt zuletzt kein fixer Rückstand.
Zusammensetzung:
§. 64.
5.Kupferoxyd.
Das Kupfer wird in der Regel alsOxydgewogen. In diese Verbindung führt man es entweder geradezu über, oder man fällt es zuerst alsSchwefelkupfer. Ausser diesen Formen müssen wir noch das metallische Kupfer und das Kupferoxydul genauer ins Auge lassen.
a.Kupferoxyd.Versetzt man eine verdünnte, kalte wässerige Lösung eines Kupfersalzes mit überschüssigem Kali oder Natron, so entsteht ein hellblauer, schwer auszuwaschender Niederschlag von Kupferoxydhydrat, welcher mit der Flüssigkeit, aus der er gefällt wurde, in Berührung, schon bei Sommerwärme allmälig braunschwarz wird, indem er sein Hydratwasser fast vollständig verliert. Dass diese Veränderung sogleich vor sich geht, wenn man die Flüssigkeit bis fast zum Sieden erhitzt, ist bekannt. — Die von dem schwarzen Niederschlage abfiltrirte Flüssigkeit ist frei von Kupfer. — Mischt man die oben genannten Lösungen im concentrirten Zustande, so erhält man ausser einem blauen Niederschlage eine blaue Flüssigkeit, welche ihre Farbe sehr fein suspendirtem Hydrat, verdankt. Aus einer solchen lässt sich auch durch anhaltendes Kochen nicht alles Kupfer fällen, wohl aber nach vorhergegangener Verdünnung mit Wasser. — Enthält eine Kupferlösung nichtflüchtige organische Substanzen, so wird durch überschüssiges Alkali auch beim Kochen niemals alles Kupfer als Oxyd gefällt. — Das durch Fällung mit Kali oder Natron aus heisser verdünnter Lösung erhaltene Oxyd hält einen Antheil Alkali mit Hartnäckigkeit zurück. Durch Auswaschen mit kochendem Wasser kann es jedoch vollständig davon befreit werden. — Nach dem Glühen stellt das durch Fällung erhaltene Oxyd wie auch das durch Zersetzung von kohlensauremoder salpetersaurem Salz in der Hitze dargestellte, ein braunschwarzes bis schwarzes Pulver dar, welches selbst bei heftigem Glühen über der Weingeistlampe an Gewicht weder ab- noch zunimmt (Vers. Nr.52). Bei einer dem Schmelzpunkte des Kupfers nahe liegenden Temperatur jedoch schmilzt es, verliert Sauerstoff und geht in Cu5O3über (FavreundMaumené). — Mit Kohle geglüht, wird es überaus leicht reducirt. An der Luft erhitzt, verbrennt das entstandene metallische Kupfer wieder zu Oxyd. — In Berührung mit der Atmosphäre zieht das Kupferoxyd Wasser an, und zwar schwach geglühtes schneller als heftig geglühtes (Vers. Nr.53). — In Wasser ist das Kupferoxyd so gut wie unlöslich, von Salzsäure, Salpetersäure etc. wird es leicht aufgenommen, weniger leicht von Ammon. — Gegen Pflanzenfarben ist das Kupferoxyd indifferent.
Zusammensetzung:
b. Das auf nassem Wege dargestellteSchwefelkupferstellt einen braunschwarzen bis schwarzen, in Wasser so gut wie völlig unlöslichen Niederschlag dar. Im feuchten Zustande der Luft ausgesetzt, wird er grünlich und lackmusröthend, allmälig verwandelt er sich völlig in schwefelsaures Kupferoxyd. Das Schwefelkupfer löst sich unter Abscheidung von Schwefel leicht in kochender Salpetersäure, von Salzsäure wird es schwierig gelöst. Von Kali- und Schwefelkaliumlösung, namentlich kochender, wird es nicht, von Schwefelammonium merklich, von Cyankalium leicht aufgenommen.
c. Dasmetallische Kupferstellt, wie bekannt, in reinem Zustande ein eigenthümlich gefärbtes Metall dar, welches erst in der Weissglühhitze schmilzt. An trockner oder feuchter kohlensäurefreier Luft verändert sich das Kupfer nicht, an feuchter kohlensäurehaltiger Luft läuft es allmälig, zuerst schwarzgrau, dann blaugrün an. — An der Luft geglüht, überzieht es sich mit einer schwarzen Oxydschicht. — In Salzsäure löst es sich, bei Luftabschluss, weder in der Kälte noch beim Kochen, bei Gegenwart von Luft langsam. Von Salpetersäure wird es leicht aufgenommen, von Ammon bei Luftabschluss nicht, bei Gegenwart von Luft langsam. — Bei Abschluss der Luft mit einer Lösung von Kupferchlorid in Salzsäure oder mit einer ammoniakalischen Kupferoxydlösung in Berührung, verwandelt es das Chlorid in Chlorür, das Oxyd in Oxydul, indem für je 1 Aeq. Chlorid oder Oxyd 1 Aeq. Metall gelöst wird.
d. Versetzt man die blaue Lösung, welche man erhält, wenn man zu Kupferoxydlösung Weinsäure, dann Natronlauge im Ueberschuss bringt, mit Trauben- oder Milchzuckerlösung und erwärmt, so entsteht ein pomeranzengelber Niederschlag von Kupferoxydulhydrat, welcher alles in der Lösung vorhanden gewesene Kupfer enthält und bald, namentlich bei stärkerem Erhitzen, roth wird, indem das Hydrat in Oxydul (Cu2O)übergeht. Der in Wasser unlösliche Niederschlag hält hartnäckig Alkali zurück. Mit verdünnter Schwefelsäure behandelt, liefert er sich lösendes schwefelsaures Kupferoxyd und sich ausscheidendes Metall.
§. 65.
6.Wismuthoxyd.
Das Wismuth wird bei Analysen immer alsOxydgewogen. Ausser dieser Verbindung haben wir noch dasbasisch kohlensaure Wismuthoxydund dasSchwefelwismuthkennen zu lernen, da diese Formen die Ueberführung des Wismuths in Oxyd in der Regel vermitteln.
a. DasWismuthoxydstellt, durch Glühen des kohlensauren oder salpetersauren Salzes erhalten, ein blasscitronengelbes, in der Hitze vorübergehend dunkler gelb bis rothbraun erscheinendes Pulver dar. In starker Rothglühhitze schmilzt es, ohne an Gewicht ab- oder zuzunehmen. Mit Kohle oder in Kohlenoxyd geglüht, wird es zu Metall reducirt. In Wasser ist es unlöslich, gegen Pflanzenfarben indifferent. In den Säuren, welche damit lösliche Salze bilden, löst es sich leicht. Beim Glühen mit Salmiak liefert es, unter Verpuffung, metallisches Wismuth.
Zusammensetzung: