By EDWARD THORNDIKE, Ph. D.
Probably every reader who owns a dog or cat has already answered the question which forms our title, and the chance is ten to one that he has answered, "Yes." In spite of the declarations of the psychologists from Descartes to Lloyd Morgan, the man who likes his dog and the woman who pets a cat persist in the belief that their pets carry on thinking processes similar, at least in kind, to our own. And if one has nothing more to say for the opposite view than the stock arguments of the psychologists, he will make few converts. A series of experiments carried on for two years have, I hope, given me some things more to say—some things which may interest the believer in reason in animals, even if they do not convert him.
In trying to find out what sort of thinking animals were capable of I adopted a novel but very simple method. Dogs and cats were shut up, when hungry, in inclosures from which they could escape by performing some simple act, such as pulling a wire loop, stepping on a platform or lever, clawing down a string stretched across the inclosure, turning a wooden button, etc. In each case the act setin play some simple mechanism which opened the door. A piece of fish or meat outside the inclosure furnished the motive for their attempts to escape. The inclosures for the cats were wooden boxes, in shape and appearance like the one pictured in Fig. 1, and were about 20 × 15 × 12 inches in size. The boxes for the dogs (who were rather small, weighing on the average about thirty pounds) were about 40 × 22 × 22. By means of such experiments we put animals in situations seeming almost sure to call forth any reasoning powers they possess. On the days when the experiments were taking place they were practically utterly hungry, and so had the best reasons for making every effort to escape. As a fact, their conduct when shut up in these boxes showed the utmost eagerness to get out and get at the much-needed food. Moreover, the actions required and the thinking involved are such as the stories told about intelligent animals credit them with, and, on the other hand, are not far removed from the acts and feelings required in the ordinary course of animal life. It would be foolish to deny reason to an animal because he failed to do something (e. g., a mathematical computation) which in the nature of his life he would never be likely to think about, or which his bones and muscles were not fitted to perform, or which, even by those who credit him with reason, he is never supposed to do. So the experiments were arranged with a view of giving reasoning every chance to display itself if it existed.
Fig. 1.Fig. 1.
What, now, would we expect to observe if areasoninganimal, who is surely eager to get out, is put, for example, into a box with a door arranged so as to fall open when a wooden button holding it at the top (on the inside) is turned from its vertical to a horizontal position? We should expect that he would first try to claw the whole box apart or to crawl out between the bars. He would soon realize the futility of this and stop to consider. He might then think of the button as being the vital point, or of having seen doors open when buttons were turned. He might then poke or claw it around. If after he had eaten the bit of fish outside he was immediately put inthe box again he ought to remember what he had done before, and at once attack the button, and so ever after. It might very well be that he would not, when in the box for the first time, be able to reason out the way to escape. But suppose that, in clawing, biting, trying to crawl through holes, etc., he happened to turn the button and so escape. He ought, then, if at once put in again, this time to perform deliberately the act which he had in the first trial hit upon accidentally. This one would expect to see if the animaldidreason. What do we really see?
To save time we may confine ourselves to a description of the twelve cats experimented with, adding now that the dogs presented no difference in behavior which would modify our conclusions. The behavior of all but No. 11 and No. 13 was practically the same. When put into the box the cat would show evident signs of discomfort and of an impulse to escape from confinement. It tries to squeeze through any opening; it claws and bites at the bars; it thrusts its paws out through any opening, and claws at everything it reaches; it continues its efforts when it strikes anything loose and shaky; it may claw at things in the box. The vigor with which it struggles is extraordinary. For eight or ten minutes it will claw and bite and squeeze incessantly. With No. 13, an old cat, and No. 11, an uncommonly sluggish cat, the behavior was different. They did not struggle vigorously or continually. (In the experiments it was found that these two would stay quietly in the box for hours, and I therefore let them out myself a few times, so that they might associate the fact of being outside with the fact of eating, and so desire to escape. When this was done, they tried to get out like the rest.) In all cases the instinctive struggle is likely to succeed in leading the cat accidentally to turn the button and so escape, for the cat claws and bites all over the box. These general clawings, bitings, and squeezings are of course instinctive, not premeditated. The cats will do the same if in a box with absolutely no chance for escape, or in a basket without even an opening—will do them, that is, when they are the foolishest things to do. The cats do these acts for just the same reason that they suck when young, propagate when older, or eat meat when they smell it.
Each of the twelve cats was tried in a number of different boxes, and in no case did I see anything that even looked like thoughtful contemplation of the situation or deliberation over possible ways of winning freedom. Furthermore, in every case any cat who had thus accidentally hit upon the proper act was, after he had eaten the bit of fish outside, immediately put back into the box. Did he then think of how he had got out before, and at once or after a time of thinking repeat the act? By no means. He bursts outinto the same instinctive activities as before, and may even fail this time to get out at all, or until a muchlongerperiod of miscellaneous scrabbling at last happens to include the particular clawing or poking which works the mechanism. If one repeats the process, keeps putting the cat back into the box after each success, the amount of the useless action gradually decreases, the right movement is made sooner and sooner, until finally it is done as soon as the cat is put in.
This sort of a history is not the history of a reasoning animal. It is the history of an animal who meets a certain situation with a lot of instinctive acts. Included without design among these acts is one which brings freedom and food. The pleasurable result of this one gradually stamps it in in connection with the situation "confinement in that box," while their failure to result in any pleasure gradually stamps out all the useless bitings, clawings, and squeezings. Thus, little by little, the one act becomes more and more likely to be done in that situation, while the others slowly vanish. This history represents the wearing smooth of a path in the brain, not the decisions of a rational consciousness.
Fig. 2.Fig. 2.
Fig. 3.Fig. 3.
We can express graphically the difference between the conduct of a reasoning animal and that of these dogs and cats by means of a time-curve. If, for instance, we let perpendiculars to a horizontal line represent each one trial in the box, and let their heights represent in each trial the time it took the animal to escape (each three millimetres equaling ten seconds), the accompanying figure (Fig. 2) will tell the story of a cat which, when first put in, took sixty seconds to get out; in the second trial, eighty; in the third, fifty; in the fourth, sixty; in the fifth, fifty; in the sixth, forty, etc. This figure represents what did actually happen with one cat in learning a very easy act. Suppose the cat had, after the third accidental success, been able to reason. She would then have the next time and in all succeeding times performed the act as soon as put in, and the figure would have been such as we see in Fig. 3. The thing is still clearer if, instead of drawing in theperpendiculars, we draw only a line joining their tops. Fig. 4 shows, then, the curve for the real history, and Fig. 5 shows the abrupt descent, due to a rational comprehension of the situation. I kept an accurate record of the time, in seconds, taken in every trial by every cat in every box, and in them all there appears no evidence for the presence of even the little reasoning that "what let me out of this box three seconds ago will let me out now." Surely, if an animal could reason he would, after ten or eleven accidental successes, think what he had been doing, and at the eleventh or twelfth trial would at once perform the act. But no! The slope of the curves, as one may see in the specimens shown in Fig. 6, is always gradual. So, in saying that the behavior of the animals throughout the experiments gave no sign of the presence of reasoning I am not giving a personal opinion, but the impartial evidence of an unprejudiced watch. The curves given in Fig. 6 are for cats learning to escape from the box already described, whose door was held by a wooden button on the inside.
Fig. 4.Fig. 4.
Fig. 5.Fig. 5.
Fig. 6.Fig. 6.
Some one may object that, true as all this may be, the intelligent acts reported of animals are in many cases such as could not have happened in this way by accident. These anecdotes of apparent comprehension and inference are really the only argument which the believers in reason have presented. Its whole substance vanishes if, as a matter of fact, animals can do these supposed intelligent acts in the course of instinctive struggling. They certainly can and do. I purposely chose, for experiments, two of the most intelligent performances described by Romanes in his Animal Intelligence—namely, the act of opening a door by depressing the thumb-piece of an ordinary thumb-latch and the opening of a window by turning a swivel (see pp. 420-422 and p. 425 of Animal Intelligence, by G. J. Romanes). Here I may quote from the detailed report of my experiments (Monograph Supplement to the Psychological Review, No. 8):
"G was a box 29 × 20-1/2 × 22-1/2, with a door 29 × 12 hingedon the left side of the box (looking from within), and kept closed by an ordinary thumb-latch placed fifteen inches from the floor. The remainder of the front of the box was closed in by wooden bars. The door was a wooden frame covered with screening. It wasnotarranged so as to open as soon as the latch was lifted, but required a force of four hundred grammes, even when applied to the best advantage. The bar of the thumb-latch, moreover, would fall back into place again unless the door were pushed out at least a little. Eight cats (Nos. 1, 2, 3, 4, 5, 6, 7, and 13) were, one at a time, left in this thumb-latch box. All exhibited the customary instinctive clawings and squeezings and bitings. Out of the eight,all succeeded, in the course of their vigorous struggles, in pressing down the thumb-piece, so that if the door had been free to swing open they could have escaped. Six succeeded in pushing both thumb-piece down and door out, so that the bar did not fall back into its place. Of these,five succeeded in also later pushing the door open, so that they escaped and got the fish outside. Of these, three, after about fifty trials, associated the complicated movements required with the sight of the interior of the box so firmly that they attacked the thumb-latch the moment they were put in."
In the cases of No. 1 and No. 6 the combination of accidents required was enough to make their successes somewhat rare. Consequentlyweariness and failure offset the occasional pleasure of getting food, and after succeeding four and ten times respectively they never again succeeded, though given numerous opportunities. Their cases are almost a perfect proof of the claim that accident, not inference, makes animals open doors. For they hit upon the thing several times, but did not know enough to profit even by these experiences, and so failed to open the door the fifth and eleventh times.
Accident is equally capable of helping a cat escape from an inclosure whose door is held by a swivel.
"Out of six cats who were put in the box whose door opened by a button,not one failed, in the course of its impulsive activity, to push the button around. Sometimes it was clawed one side from below; sometimes vigorous pressure on the top turned it around; sometimes it was pushed up by the nose. No cat who was given repeated trials failed to form a perfect association between the sight of the interior of that box and the proper movements."
If, then, three cats out of eight can escape from a small box by accidentally operating a thumb-latch, one cat in a hundred may easily escape from a room by accident. If one hundred per cent of all cats are sure to sooner or later turn a button around when in a small box, one cat in a thousand may well escape from a room by accidentally turning a swivel around.
So far we have seen that when put in situations calculated to call forth any thinking powers which they possess, the animal's conduct still shows no signs of anything beyond the accidental formation of an association between the sight of the interior of the box and the impulse to a certain act, and the subsequent complete establishment of this association because of the power of pleasure to stamp in any process which leads to it. We have also seen that samples of the acts which have been supposed by advocates of the reason theory to require reasoning for their accomplishment turn out to be readily accomplished by the accidental success of instinctive impulses. The decision that animals do not possess the higher mental processes is re-enforced by several other lines of experiment—for example, by some experiments on imitation.
The details of these experiments I will not take the time to describe. Suffice it to say that cats and dogs were given a chance to see one of their fellows free himself from confinement and gain food by performing some simple act. In each case they were where they could see him do this from fifty to one hundred and fifty times, and did actually watch his actions closely from ten to forty times. After every ten chances to learn from seeing him, they were put into thesame inclosure and observed carefully, in order to see whether they would, from having so often seen the act done, know enough to do it themselves, or at least to try to do it. In this they signally failed. Those who had failed previously to hit upon the thing accidentally never learned it later from seeing it done. Those who were given a chance to imitate acts which accident would sooner or later have taught them learned the acts no more quickly than if they had never seen the other animal do it the score or more of times. The animals, that is, could not master the simple inference that if, in a certain situation, that fellow-cat of mine performs a certain act and gets fish, I, in the same situation, may get fish by performing that act. They did not think enough to profit by the observation of their fellows, no matter how many chances for such observation were given them.
Equally corroborative of our first position are the results of still another set of experiments. Here the dogs and cats were put through the proper movement from twenty-five to one hundred times, being left in the box after every five or ten trials and watched to see if they would not be able at least to realize that the act which they had just been made to do and which had resulted in liberation and food was the proper act to be done. For instance, a dog would be put in a box the door of which would fall open when a loop of string hanging outside the box was clawed down an inch or so. Animals were taken who had, when left to themselves, failed to be led to this particular act by their general instinctive activities. After two minutes I would put in my arm, take the dog's paw, hold it out between the bars, and, inserting it in the loop, pull the loop down. The dog would of course then go out and eat the bit of meat. After repeating this ten times (in some cases five) I would put the dog in and leave him to his own devices. If, as was always the case, he failed in ten or twenty minutes to profit by my teaching I would take him out, but would not feed him. After a half hour or so I would recommence my attempts to show the dog what needed to be done. This would be kept up for two or three days, until he had shown his utter inability to get the notion of doing for himself what he had been made to do a hundred or more times. The mental process required here need not be so high a one as inference or reasoning, but surely any animal possessing those would, after seeing and feeling his paw pull a loop down a hundred times with such good results, have known enough to do it himself. None of my animals did know enough. Those who did not in ten or twelve trials hit upon an act by accident could never be taught that act by being put through it. And, as in the case of imitation, acts of such a sort as would be surely learned by virtue of accidental success were notlearned a whit sooner or more easily when I thus showed them to the animal.
An interesting supplement to these facts is found in the following answers to some questions which I sent to the trainer of one of the most remarkable trick-performing horses now exhibited on the stage. The counting tricks done by this horse had been quoted to me by a friend as impossible of explanation unless the horse could be educated by being put through the right number of movements in connection with the different signals.
Question 1.—If you wished to teach a horse to tap seven times with his hoof when you asked him "How many days are there in a week?" would you teach him by taking his leg and making him go through the motions?
Answer.—"No!"
Question 2.—Do you think youcouldteach him that way, even if naturally you would take some other way?
Answer.—"I do not think I could."
Question 3.—How would you teach him?
Answer.—"You put figure 2 on the blackboard andtouch him, on the legtwice with a cane, and so on."
The counting tricks of trained horses seem to us marvelous because we are not acquainted with the simple but important fact that a horse instinctively raises his hoof when one pricks or taps his leg in a certain place. Just as once given, the cat's instinct to claw, squeeze, etc., you can readily get a cat to open doors by working latches or turning buttons, so, once given this simple reflex of raising the hoof, you can, by ingenuity and patience, get a horse to do almost any number of counting tricks.
Probably any one who still feels confident that animals reason will not be shaken by any further evidence. Still, it will pay any one who cares to make scientific his notions about animal consciousness to notice the results of two sets of experiments not yet mentioned. The first set was concerned with the way animals learn to perform a compound act. Boxes were arranged so that two or three different things had to be done before the door would fall open. For instance, in one case the cat or dog had to step on a platform, reach up between the bars over the top of the box and claw down a string running across them, and finally push its paw out beside the door to claw down a bar which held it.
The animal's instinctive impulses do often lead it to accidentally perform these several acts one after another, and repeated accidental successes do in some of these cases cause the acts to be done at last in fairly quick succession. But we see clearly that the acts are not thought about or done with anything like a rational comprehensionof the situation, for the time taken to learn the thing is much longer than all three elements would take if tackled separately; and even after the animal has reached a minimum time in doing the acts, he does not do the things in the same order, and often repeats one of the acts over and over again, though it has already attained its end.
The second set comprised experiments on the so-called "memory" of animals. I will describe only one out of many which agree with it. A kitten had been trained to the habit of climbing the wire-netting front of its cage whenever I approached. I then trained her to climb up at the words "I must feed those cats." This was done by uttering them and then in ten seconds going up to the cage and holding a bit of fish to her at its top. After this had been done about forty times she reached a point where she would climb up at the signal about fifty per cent of the times. I then introduced a new element by sometimes saying, "I must feed those cats," as before, and feeding her, and at other times saying, "I will not feed them," and remaining still in my chair. At first the kitten felt no difference, and would climb up just as often at the wrong signal as at the right. But gradually (it took about four hundred and fifty trials) the failure to get any pleasure from the act of climbing up at the wrong signal stamped out the impulse to do so, while the pleasure sequent upon the act of climbing up at the other signal made that her invariable response to it. Here, as elsewhere, the absence of reason was shown by the cat's failure at any point in these hundreds of trials to think about the matter, and make the easy inference that one set of sounds meant food, while the other did not. But still better proof appears in what is to follow. After an interval of eighty days I tried her again to see how permanent the association between the signal and act was. It was permanent to the extent that what took three hundred and eighty trials before took only fifty this time, for after fifty trials with the "I will not feed them" signal, mixed up with a lot of the other, the cat once more attained perfect discrimination. But it was not permanent in the sense that the cat at the first or tenth or twentieth trial felt, as a remembering, reasoning consciousness surely ought to feel, "Why, that lot of sounds means that he won't come up with fish." For instead of at first forgetting and for a while climbing up at theI will not feed them, and then remembering its previous experience and at once stopping the performance it had before learned was useless, the cat simply went through the same gradual decreasing of the percentage of wrong responses until finally it always responded rightly.
What has so far been said is true regardless of any prejudice orincompetence on my part, for the proof in all cases rests not on my observation, but on impartial time records or such matters of fact as the escape or nonescape, the climbing or not-climbing of the animals. I may add that in a life among these animals of six months for from four to eight hours a day I never saw any acts which evenseemedto show reasoning powers, and did see numerous acts unmentioned here which pointed clearly to their absence.
All that is left for the fond owner of a supposedly rational animal to say is that though the average animal, the typical dog or cat, is by these experiments shown to be devoid of reasoning power, yethisdog orhercat is far above the average level, and is therefore to be judged by itself. He may claim that just because my average animals failed to infer, we have no right to deny inference to all, particularly to his. Is it not fair to ask such a one to repeat my experiments with his supposedly superior animal? Until he does and systematically tries to find out how its mind works and what it is capable of, has he any right to bear witness? It may also be said that of the number of people who witnessed the performances of my animals after they had fully learned a lot of these acts, but had not seen the method of acquisition, all unanimously wondered at their wonderful intellectual powers. "Howdoyou teach them?" "Where did you get such bright animals?" "I always thought animals could think," and such like were common expressions of my visitors. The fact was that the dogs and cats were picked up in the street at random, and that no one of them had thought out one jot or tittle of the things he had learned to do. The specious appearance of reasoning in a completely formed habit does not involve the presence or assistance of reasoning in the formation of the habit.
Here, at the close of this account, I may signify my willingness to reply, so far as is possible, to any letters from readers of the Popular Science Monthly who may care to ask questions about any feature of animal intelligence.
In a discussion of the question "How Education fails," Dr. J. T. Searcy, of Tuscaloosa, Alabama, speaks of the tendency of too much education as being to make the pupil too machine-cut. "The successful, the progressive, the aggressive men, families, and races are not the manufactured ones, but the self-made ones." In the conditions and complexities of human society, the accumulating data of knowledge change so rapidly that educators can not anticipate the future in the elements and curricula of prescribed education. The advancing man, who is able to keep up in his day and generation, shows his excellence in his ability to readjust to his changing environment. The schools can not give this faculty, but rather have a tendency to weaken it; yet on it, more than anything else, rests the success of the man and the race. "Too much ought not to be demanded of the schools, nor ought they to assume too much to themselves."
In a discussion of the question "How Education fails," Dr. J. T. Searcy, of Tuscaloosa, Alabama, speaks of the tendency of too much education as being to make the pupil too machine-cut. "The successful, the progressive, the aggressive men, families, and races are not the manufactured ones, but the self-made ones." In the conditions and complexities of human society, the accumulating data of knowledge change so rapidly that educators can not anticipate the future in the elements and curricula of prescribed education. The advancing man, who is able to keep up in his day and generation, shows his excellence in his ability to readjust to his changing environment. The schools can not give this faculty, but rather have a tendency to weaken it; yet on it, more than anything else, rests the success of the man and the race. "Too much ought not to be demanded of the schools, nor ought they to assume too much to themselves."
By Hon. CHARLES D. WALCOTT,
DIRECTOR OF THE UNITED STATES GEOLOGICAL SURVEY.
A national museum should be the center of scientific activity in the country in which it is located. In England the British Museum is the Mecca of scientific men. In Paris, Copenhagen, Vienna, Berlin, and other capitals of Europe the national museum stands in similar relations to the scientific work of its own country. Such a relation our National Museum should hold to scientific men and affairs in America. It should receive and take care of all material that has been or may be valuable for investigation or for the illustration of the ethnology, natural history, geology, products, and resources of our own country, or for comparison with the material of other countries. It should furnish material for all kinds of scientific investigations which deal with specimens or types, and give aid to such researches and publish their results. It should present by illustration such of the results of the scientific investigations of its corps of officers as are susceptible of such representation. It should co-operate with all the higher educational institutions of learning in the country, and assist in the promotion and diffusion of knowledge in all lines of investigation carried on by it. It should provide library facilities, and aid all post-graduate students who may wish to take advantage of the provisions made by the Government for scientific research.
History and Present Organization.—Beginning in a small way in the Patent-Office building early in the century, the "Government" collections of "natural products" were transferred to the custody of the Smithsonian Institution in 1858, where they were installed along with the larger and more valuable collections of the institution. Twenty-three years later, in 1881, the present National Museum building was ready for the great mass of material that had accumulated in the Smithsonian building, and had been transferred from the Centennial Exhibition at Philadelphia. Out of these heterogeneous collections Dr. G. Brown Goode, under the direction of Secretary Baird, of the Smithsonian, organized a museum of broad scope, based on all that had proved best in museum experience to that time. Faithfully he carried forward the work until September, 1896, when his health broke under the strain of too many duties, and one of the best museum administrators the world has yet produced, if not the very best one, passed from us. In January, 1897, I was placed in temporary charge of the administration of the museum as an acting Assistant Secretary of the Smithsonian Institution, and remained in charge until July 1, 1898.
On July 1, 1897, in order to meet changed conditions, a new plan of organization went into effect. The various divisions and sections of anthropology, biology, and geology, which had previously been conducted independently of one another, the curators and custodians reporting directly to the assistant secretary in charge of the museum, were united under three head curators—one of anthropology, another of biology, and a third of geology. This secured direct expert supervision, and correlated the work of each department. Before this such correlation had been impossible, owing to the large number of independent heads of sections and divisions in each department, who planned and executed the work more or less independently of one another.
In the department of anthropology the system of installation inaugurated by Prof. W. H. Holmes is somewhat elaborate. The primary arrangement is founded, first, on the geographical or ethnographical assemblage, and, second, on the developmental or genetic assemblage. Other methods may be classed as special; they are the chronologic, the comparative, the individual, etc. The primary methods are adapted to the presentation of the general truths of anthropology, and the special methods are available for limited portions of the field.
In many ways the department of biology, under the charge of Dr. F. W. True, was, at the date named, in much better condition than either of the other two departments. Many of the zoölogical divisions had been in existence since the reorganization of the museum in 1883, and several of them for a much longer period, and as the biological specimens had been in charge of curators and assistants who followed well-defined and long-established methods, the reorganization of the department was a relatively simple matter, no radical changes in the scientific methods or in the business administration being required.
To the organization and administration of the department of geology, Dr. George P. Merrill brought the results of a recent study of various European museums. He found it necessary to make a systematic examination of the written and printed records of the various Government exploring expeditions and surveys, with a view to ascertaining what geological material had been collected which could properly be considered the property of the Government, and what disposition had been made of the same. The law[8]providesthat collections made for the Government shall, when no longer needed for investigations in progress, be deposited in the National Museum. It was found that this law had not in all cases been strictly enforced, and that several important collections had not been transferred to the museum, although some of the earlier exploring expeditions had passed out of existence, and in several instances the individuals making the collections had likewise passed away. This investigation has resulted in the transfer to the museum of several car loads of specimens no longer needed elsewhere.
The National Museum is unique among permanent museums in having large sections of its collections almost constantly away from it. It made displays at London in 1883, at Louisville in 1884, at Minneapolis in 1887, at Cincinnati and Marietta in 1888, at Madrid in 1892, at Chicago in 1893, at Atlanta in 1895, at Nashville in 1896, and at Omaha in 1898. The injury to the museum resulting from the packing and transportation of specimens and from the interruption of systematic work and development has been keenly felt at times by the scientific staff. The advantages have consisted in showing to the people of many sections of the country what the museum is doing, in securing collections that otherwise would not have been obtained, and in extending the educational sphere of influence.
Relations to the Smithsonian Institution.—The museum is a child that has by its vigorous growth already overshadowed the parent institution in the extent of its buildings, its expenditures, and its direct influence upon the people of the United States. In the larger fields for which the Smithsonian Institution was organized, for the purpose of increasing and diffusing knowledge among men throughout the world, the museum is subordinate to the institution, and if the latter is administered in the future as it has been in the past, it will continue to hold a unique place among all institutions for the increase and diffusion of knowledge.
In 1877 Prof. Asa Gray, as chairman of a special committee of the Regents of the Smithsonian, submitted a report which recommended that a distinction between the institution itself and the museum under its charge should be made as prominent as possible. The fear was expressed that if the museum was developed to its full extent and importance within the Smithsonian Institution it would absorb the working energies of the institution, and it was thought that such a differentiation would pave the way to entire separation of administration or to some other adjustment, as the Board of Regents might think best or be able to accomplish. Professor Baird, in 1878, in his report to the regents, called attention to the frequent mention in the reports of his predecessor of the relations existingbetween the Smithsonian Institution and the National Museum, and remarked that "it is only necessary to mention briefly that the museum constitutes no organic part of the institution, and that, whenever Congress so directs, it may be transferred to any designated supervision without affecting the general plans and operations connected with the 'increase and diffusion of knowledge among men.'"
During the administration of the museum by Dr. Goode, under the direction of Professor Baird, and later Professor Langley, no movement was made toward the separation of the museum from the Smithsonian. On the contrary, Dr. Goode was strongly opposed to any such action, and in this he was heartily supported by Secretary Langley. He felt that the result of placing the museum under the control of one of the great departments of the Government, or leaving it to be buffeted about in the sea of politics as an independent organization, would be the destruction of its scientific character.
I have been intimately acquainted with the administration of the museum since 1886, and less so with the administration of other scientific bureaus of the Government, one of which, the Fish Commission, is independent of departmental control. After a careful reconsideration of the subject of the relations of the National Museum to the Smithsonian Institution, I have come to the conclusion that the present welfare and the future development of the museum will be best served by administrative connection with the Smithsonian Institution. Under the present organization there is no necessity for large demand upon the time and energies of the secretary by the affairs of the museum. If in the future it should become otherwise, relief could readily be secured by action of the Board of Regents, requiring the officer in charge of the museum to report to them through the secretary, much as the various bureaus of the departments report through their respective secretaries to Congress. It is not probable, however, that this will become necessary, for at any time an assistant secretary could be appointed to take sole charge of the museum, thus relieving the secretary of all but the most general administrative supervision.
Relations to a National University.—A national museum should radiate an educational influence to the remotest portions of the country. It should set the standard for all other museums, whether in public school, academy, college, university, or the larger museums under municipal and State control. Its influence should be exercised largely through its publications and through those who come to study its collections and the methods of work of the investigators connected directly or indirectly with its scientific staff.In its library system the student should have access to the literature bearing upon the subjects with which the museum is concerned. In its exhibition halls each object should be labeled and arranged with the view of presenting, by graphic illustration and concise description, all that it is capable of teaching, either as a discrete object or as one of a series of objects telling the story of the evolution of the group to which it belongs. Such a museum is not a place where the uninformed student may obtain the elements of a university training; it is an institution where the post-graduate student can secure access to material for study and research in connection with men who are carrying forward scientific work of the highest type. Dr. D. C. Gilman would go further than this. He says:[9]
"Any person of either sex, from any place, of whatever age, without any question as to his previous academic degree, should be admissible; provided, however, that he demonstrate his fitness to the satisfaction of the leader in the subject of his predilection."
Dr. Gilman thinks that such an organization "may be developed more readily around the Smithsonian Institution, with less friction, less expense, less peril, and with the prospect of more permanent and widespread advantages to the country, than by a dozen denominational seminaries or one colossal university of the United States.
"To the special opportunities that the Smithsonian and its affiliations could offer, every university, at a distance or near by, might be glad to send its most promising students for a residence of weeks, months, or years, never losing control of them. Many other persons, disconnected with universities, but proficient to a considerable degree in one study or another, would also resort with pleasure and gratitude, and with prospect of great advantages, to the rare opportunities which Washington affords for study and investigation in history, political science, literature, ethnology, anthropology, medicine, agriculture, meteorology, geology, geodesy, and astronomy."
I fully agree with him, but would make the National Museum the center of activity, rather than the Smithsonian Institution. It would then be under the control of the Board of Regents, through the secretary or the assistant secretary, who could have direct charge. It seems to me that the function of the Smithsonian Institution is to aid at the beginning of such a movement, and then place the administration in charge of one of its bureaus or transfer it to some other suitable organization.
With the National Museum as a center or base, the student in Washington may avail himself of the Library of Congress and ofthe facilities offered for study and investigation by the various scientific bureaus of the Government, such as the Fish Commission, the Zoölogical Park, the Geological and Coast and Geodetic Surveys, the Naval Observatory, and the Weather, Botanical, Biological, and Entomological Bureaus of the Department of Agriculture, and systematic courses of lectures will place before him the most advanced ideas and conclusions of the largest body of scientific investigators in the world.
A single well-trained man, with a few assistants, could render invaluable aid to hundreds of post-graduate and special students, whose only need is direction as to the best means of pursuing studies and investigations. Such an organization could be located in the administrative building that it has been proposed to erect as a nucleus of the National University. From this beginning a national university of the broadest type could be developed with as much rapidity as the educational interests of the country might demand.
The National Museum can not at present give facilities to more than a score of students, but with the erection of a modern museum building, well equipped with laboratory space and a suitable staff to conduct the necessary work of installation and investigation, the scientific side of the National University would be established. It should be remembered that many of the officers of the scientific bureaus of the Government are directly connected with the museum staff as honorary curators and custodians, and that a number of them have laboratories within the museum building.
Need of a New Building.—The growth of the United States National Museum was rapid under the successful administration of Dr. Goode. When the character of the building and the funds available for the maintenance of the museum are considered, it compares favorably with any modern museum. It has received large collections from the scientific departments of the Government, by private contribution, by purchase, and by exchange, which have been accommodated as well as possible in the inadequate laboratories, storerooms, and exhibition spaces. During the fiscal year 1897-'98, accessions to the number of 1,441 were received, containing upward of 450,000 specimens—the largest number for any one year since the museum was opened. The total number of specimens recorded to July 1, 1898, exceeds four million. The galleries just completed have added sixteen thousand square feet of floor space, which is available for the spreading out and proper exhibition of material that has previously been crowded in the exhibition halls and courts on the floor; but, as an illustration of the present congested conditions, it may be stated that the anthropologicalcollections now in the possession of the Government, illustrating the development and progress of man and his works, if properly placed on exhibition, would occupy the entire space in the present museum building. The great collections in biology, botany, economic geology, general geology, and paleontology should be placed in a building properly constructed for their study and exhibition. A considerable portion of the collections are still in the Smithsonian building, where the crowding is scarcely less than in the museum building.
Moreover, in the present building there is great deficiency in laboratory facilities. Curators and assistants are hampered for want of room in which to lay out, arrange, classify, mount, and label specimens. There should also be rooms in which students could bring together and compare various series of objects, and have at hand books and scientific apparatus. The present museum building contains a few rooms suitable for the purposes mentioned, but the majority have to be used as storerooms, laboratories, and offices, and are therefore too much crowded to serve in any one of these capacities. Owing to the pressure for space, courts, halls, and galleries intended for exhibition purposes, both in the Smithsonian building and in the museum building, are unavoidably occupied to a considerable extent as laboratories and storerooms. There is also need of storage room, an increase of the scientific staff, and a purchasing and collecting fund. The American Museum of Natural History expends annually $60,000 for the increase of its collections; the National Museum has from $3,000 to $4,000 for the purpose.
The immediate and greatest need, however, is a suitable museum building. The present building is 375 feet square. The space on the ground floor is 140,625 square feet, and that in the galleries 16,000 square feet; exhibition space, 96,000 square feet. The entire cost is $315,400.
For comparison with the above figures, the following statistics relating to the American Museum of Natural History in New York are given: Total floor space, 294,000 square feet, divided as follows: Exhibition space, 196,000 square feet; laboratories, library, etc., 42,500 square feet; workrooms, storage, etc., 42,000 square feet; lecture hall, 13,500 square feet. These figures include the portions of the building now being completed. The total cost of the museum to date, including the completion of the new wings, is $3,559,470.15. The buildings, and the care of them, are provided for by the city of New York. The expenses of the scientific staff, increase of collections, etc. (the income for which for the present year is approximately $185,000), are defrayed from endowments,membership fees, and contributions. In the capitals of Europe, museum buildings are generously provided for.
The National Museum building was erected with the view of covering the largest amount of space with the least outlay of money. In this respect it may be considered a success. It is, in fact, scarcely more than the shadow of such a massive, dignified, and well-finished building as should be the home of the great national collections. There is needed at once a spacious, absolutely fireproof building of several stories, constructed of durable materials, well lighted, modern in equipment, and on such a plan that it can be added to as occasion arises in the future. The site for such a building is already owned by the Government; only the building needs to be provided for. What the Capitol building is to the nation, the library building to the National Library, the Smithsonian building to the Smithsonian Institution, the new museum building should be to the National Museum. There should be available: