The Columbian and the Eldorado starting from Dawson, July 4, 1899, on a Race to White Horse Rapids.
The Columbian and the Eldorado starting from Dawson, July 4, 1899, on a Race to White Horse Rapids.
No estimate, naturally, can yet be put to the total gold supply of the Klondike region, but to inquiry that is frequently put regarding the future existence of Dawson as an energetic mining camp one can unhesitatingly answer that this existence is assured for many years to come, and there are indications that point to a permanence independent of the simple supply of gold.
Street Scene, Dawson, July, 1899.
Street Scene, Dawson, July, 1899.
The earlier conceptions of the extreme severity of the climate of the Yukon Valley forbade the hope of agricultural possibilities, but a more intimate knowledge of the conditions prevailing in the summer time—a season of four to five months’ duration, with daylightand day heat protracted far into the normal hours of night—and a comparison of these conditions with somewhat similar conditions prevailing elsewhere, have given hope not alone of a possibility, but of a probability, and there are few to-day who doubt that agriculture may not be practiced with at least a legitimate amount of success in many parts of the Yukon basin. This probability has, indeed, been already emphasized by Prof. George Dawson, and the more recent examinations of Alaskan territory, made by Colonels Ray and Abercrombie, confirm with a conviction the reference to American soil. The feeble but more than promising efforts in agriculture and gardening that were made in the region about Dawson in 1898 have borne surprising fruit in 1899, and while the results may not, for various reasons, have proved in all cases remunerative to the “prospector,” they at least clearly demonstrate the possibilities to which the future may lay claim. Cabbages, turnips, peas, radishes, lettuce, and beans are now raised to perfection in favored spots along the Yukon and Klondike, and on scattered hillsides of the Bonanza and Eldorado, and a good promise is also held out for the potato. In the charming spot known as the Acklin Garden, situated on the Klondike about two miles from Dawson, oats and barley, sown on April 26th and May 22d respectively (1899), were grown to beautiful heads, and harvested in the middle of August. No wheat had ripened up to that time, and I suspect that, owing to a light frost which took place on the 19th of the same month, none of this grain came to maturity. Radishes sown on April 24th were collected on May 20th, and string beans, whose seed was scattered on May 26th, were collected on August 1st. Other successful crops were those of beets, onions, and spinach.
The exquisite beauty of the flower garden in this spot rivets the attention of all passers-by, and few there are who do not for a moment lay aside their packs to enjoy the feast of color that is presented to them. Poppies of the size and brilliance of those which adorn the fields about Naples, chrysanthemums, gorgeous dahlias, pansies, the cornflower, mignonette, and centaurea are part of the outside bloom, to which Nature “beyond the fence” has fittingly added the wild rose, anemone, fireweed, and forget-me-not. Such is the aspect of the region which to-day illumines the far North, and carries with itself a hopeful promise to many and the certainty of disappointment to many more.
Therights of personal security, personal liberty, and private property have been called the “rights of the people of England,” and may be said to constitute the richest heirloom in the Anglo-Saxon family. While, in a certain sense, they belong to all civilized people, yet, in their practical application, they are peculiarly the creation of Anglo-Saxon common sense and love of order. The underlying principle of these rights, clothed by the Latins in the seductive garb ofLiberté,Egalité,Fraternité, gave us a Reign of Terror, a Commune, and finally a doubtful republicanism; but the same principle, embodied in the less dazzling formula, “That no man shall be deprived of life, liberty, or property without due process of law,” produced in the hands of the Anglo-Saxons more enduring democracies “of the people, by the people, and for the people.”
With the instinct of a race born for self-government, the Anglo-Saxons have ever sought and almost always found the highest safeguard for their ancient rights in the courts of law. Between a partisan Legislature and a tyrannical Executive an honest judiciary has generally been found ready to annul the excesses of the one and to prevent any infringement by the other; so that it has become a belief, having the force of faith, that in our courts will be found the bulwark of those liberties which we consider essential to the full enjoyment of life.
Laws and courts, however, are after all the creation of men, and, like all such creations, they are necessarily imperfect and fallible; or, more correctly, they are organisms which develop and improve. In other words, justice and law are only relatively immutable and perfect. They do, indeed, represent, in a sense, abstract perfection, and at any given time they must be considered the highest criterion of human conduct. But justice and law are not such divinities that they can withdraw themselves from the operation of those forces which we call progress. Seriousness, dignity, and venerability are not sufficient to sustain the majesty of the law; it needs also adaptation to those higher conditions and broader views which mark the growth of human thought. The more we come to look upon law as the standard and gauge of upright human action, the more do we grow to expect it in consonance with the highest dictates of human knowledge and reason, for what is above us must represent what is best in us, else it will be neither respectednor obeyed. Whenever this consonance is not found, human belief in the dignity of the law and in the efficacy of justice ceases. For, theoretically at least, law is so near ideal perfection that the least defect destroys it entirely; and by this “ideal perfection” is meant thatlaws must reflect the highest and soundest thought of every age. Laws that fail in this cease to be a power for good; they are then looked upon either as ridiculous or as oppressive. If the former, they defeat their ends by becoming dead laws; if the latter, they become a source of disorder and discontent. Hence we see that jurisprudence is essentially evolutionary and progressive, and that the majesty of the law does not lie in its age but in its perennial youth, or, more correctly, in its successive rejuvenescence. It is true that in China the antiquity of a law is its highest prestige, but, as a consequence, Chinese justice is proverbially inefficient and barbarous. It therefore follows that the constant study and improvement of what we have called the safeguards of our fundamental rights should be our highest duty, and the object of the care and solicitude of the State. It is not enough to rest contentedly in the thought that a Magna Charta, a Petition of Rights, and sundry written constitutions protect us. Their very existence is but an argument for our eternal vigilance. Now, the question to be here examined is whether we have exercised that care and vigilance which are essential to the free enjoyment of our rights.
Let me premise the statement that the protection of the rights of life, liberty, and property is peculiarly within the province of the criminal law. What constitutes the right of life, liberty, and property can not be defined or described, except negatively by a definition of what will be deemed its infringements. These we call crimes. To declare what acts come within the definition of such crimes is the function of the criminal courts.
It is upon the criminal law, therefore, that we must rely for the enunciation of what acts shall constitute a breach of the right of life, liberty, and property, and it is to the criminal bench and bar that we must turn for the correct interpretation and application of such enunciations. Hence the more time and attention we devote to the study of criminal legislation and to the enlightenment of the criminal bench and bar, the more will the safety of our rights be increased and strengthened. Likewise, the more we allow criminal legislation to be the product of hasty consideration and the criminal bar to drift into disrepute, the more the safety of our rights will be proportionally weakened.
The first question that presents itself is, “What is done by our law schools for the study of criminal law?” The answer isnot very encouraging. Let us take those law schools which are of most importance, either by reason of their curriculum or of their attendance. Harvard, with a three years’ course, devotes two hours a week for one year to criminal law (including criminal procedure). Allowing nine months of four weeks each to the scholastic year, and a weekly average of eighteen hours, it will be found that the time devoted to the study of criminal law (including procedure) is a little overthree per centof the entire course. By a similar computation we find that Columbia devotes to criminal law (and procedure) a little overfour per centof the entire course, which is about the percentage given by Yale and a little lower than that of the Universities of Michigan, Cornell, and New York respectively.
These computations are based upon figures given in the catalogues of those universities, or kindly furnished by the deans. Nothing more eloquent of the decline of the study of criminal jurisprudence in our country could be cited. But the catalogues of these law schools add further proof. At none of them is there a professor whose instruction is confined solely to criminal law. Nearly all the instructors in criminal law devote but a small part of their time (and probably of their study) to the teaching of this subject. In Columbia the instructor in criminal law is professor of international law anddiplomacy;Iat Harvard the incumbent of the chair of criminal law teaches the law of carriers; that of Michigan teaches the law of bills and notes and of public corporations; that of the New York University the law of sales and wills. It is, moreover, a significant fact that the faculties of the above-named institutions, while recommending to law students the optional study of political economy, constitutional history, taxation, physical science, English literature, and modern languages as conducive to a higher standard of legal culture, utterly fail to advise them to pursue courses in criminal anthropology, criminology, or penology. In other words, it is deemed advisable that the future lawyer should bring to the aid of his civil practice the complementary knowledge of French and history, for instance, but it is of no importance that he should be acquainted with the results of modern criminologic and penologic research. Thus the conclusion is forced upon us that the study of criminal law, whose importance I have endeavored to set forth, has become a subject at sufferance in our universities, a practically optional courseof little consequence to the student, and of no interest to the teacher.
IThis has since been changed; but the change makes the case worse, as the new instructor in criminal law teaches not only two branches of the law (as under last year’s course), but five—viz., Criminal Law, Wills and Administration, Common-Law Practice and Pleading Bankruptcy, and Bailments and Carriers.
IThis has since been changed; but the change makes the case worse, as the new instructor in criminal law teaches not only two branches of the law (as under last year’s course), but five—viz., Criminal Law, Wills and Administration, Common-Law Practice and Pleading Bankruptcy, and Bailments and Carriers.
From the very beginning of his legal career the future lawyer is made to feel that the field of criminal law is not the one in which to exercise his best talents. Both the school curriculum and popular sentiment strengthen this prejudice. To the community at large our criminal courts have come to mean places where criminals are sentenced or rogues saved on technicalities; they have ceased to be centers of justice, where innocent men are saved and guilty men tried according to the law of the land. Hence has arisen the popular belief (despite the rule that the accused shall be considered innocent until his guilt is proved), shared in a measure by the bench and bar, that every man accused of crime is criminal and depraved, and that, therefore, contact with him should be avoided. Thus the criminal lawyer, who necessarily must come in touch with such alleged crime and depravity, is practically ostracized not only from the community but also from the civil forum.
The existence of such prejudice against the criminal bar is most deplorable. Men of ability and position will shun criminal practice, leaving the field clear to unscrupulous shysters. Let it be remembered that to a man charged with the commission of a crime and deprived of his liberty the lawyer appears a savior; that the accused is practically at his lawyer’s mercy, being under most trying duress and very easily influenced. The temptation for unprofessional dealing is here at its highest, because of the manifest advantage of the lawyer who is able, or whom the client believes to be able, to unlock the prison doors. It takes men of more than ordinary fiber to persistently resist such temptation in all its forms. Hence the necessity of upright and learned men at the criminal bar. But how few are our great criminal practitioners! How often have I heard lawyers, too young and clientless to allow themselves preferences, declare most decidedly that they were willing to do anything “except criminal law”! They had been trained to look upon it not merely as inferior but as degrading practice. Yet it is common knowledge that in European countries, where less boast is made of inalienable rights, it is the ambition of all lawyers to get a reputation at the criminal bar. It is there, in fact, that reputations are made.
It is likewise in those countries where many would make us believe that life, liberty, and property are not as sacredly guarded as in our own country, that the criminal laws are a constant object of scholarly study and investigation. The great progress made in the study of crime, the building up of a criminal science anda criminal sociology, is almost exclusively the work of Continental criminologists. Penology has indeed engaged our attention, but criminology has been almost practically ignored by us.
Of criminal law it was long ago said that, “by reason of the numberless unforeseen events which the compass of a day may bring forth,” the knowledge of its provisions “is a matter of universal concern.” Yet, despite this “universal concern,” our criminal law has been and still is inferior to our civil law. I have pointed out at the beginning of this article how the majesty of the law depended essentially upon its ever-recurring rejuvenescence; that law was a living organism, subject to change and the forces of evolution.
The theories on criminal responsibility and on crime in general, in the light of modern medical, anthropologic, and sociologic sciences, have completely supplanted the old doctrines, yet criminal legislation has apparently taken no notice of them. Modern science tells us that our antiquated tests of criminal responsibility result in sending hundreds of men to prison who ought to be sent to asylums, but we do nothing to avoid this scandal. Under our system the courts are obliged to let the conclusions of the learned judges who occupied the bench three hundred years ago have more weight than the positive investigations of the men of science of our day, and so, consciously or unconsciously, numberless crimes are committed in the name ofstare decisis. True it is that in some jurisdictions, and notably in New York, the courts have recognized to some extent the progress of science and its influence upon juridic theories. But even in these cases the concession has been made only incivilcases. Thus Mr. Bishop, in his Criminal Law, is obliged to point out that our courts recognizetwo kinds of insanity—to wit,civil and criminal irresponsibility. Why the test to be applied in the case of the validity of a will should be different from that applied in the case of murder does not seem very clear. The scientific test as to insanity has been oftentimes recognized and applied by our civil tribunals, but the criminal judges still cling with unabashed attachment to the unscientific and unprogressive rule in McNaughten’s case. The Guiteau trial, which followed that celebrated decision, added fresh authority to the English view, and practically made the rule to be applied in criminal trials a legal dogma.
In an able and exhaustive paper by Mr. J. H. Dougherty on this very subject, before the Society of Medical Jurisprudence, the evils of such dogmatism in criminal law are strikingly set forth. “Life,” he said, “should be as sacred as property. While society needs protection from the criminal, it does not require that theprotection should be insured through the application of a fallacious and discredited legal dogma.”
This is but one example of the unprogressiveness of our criminal jurisprudence. Yet, if we really have the ancient principle of the right of life and liberty at heart we ought to recognize that this legal dogma is a greater menace to the practical abrogation of the right than the despotism of an unscrupulous executive. For while the latter is an infringement of a right which the law forbids, the former is a breach of a right which the law sanctions. Again, the theories regarding the object of penal provisions have entirely changed. Punishment has been scientifically shown to be practically useless either as a deterrent or as a correctional remedy. Yet our penal codes are confessedly based on the idea of punishment and retribution. We have indeed made some little headway, such as indeterminate sentences and suspension of judgment, but only in a scattered and tentative way.
The additions to or changes in our criminal codes have been unimportant and unprogressive. What additions are made are slipshod in their make-up, at times partisan in intent, seldom in harmony with the teachings of modern science, and oftentimes in disregard of fundamental principles. Our legislators grant “hearings” before passing a law affecting the business of a few privileged men and give it due weight; but criminal bills, which may affect the public, are generally “rushed through,” probably because of an absolute lack of interest. This is but a repetition of Blackstone’s complaint against criminal legislation in his day. “It is never usual in the House of Commons,” he wrote, “even to read a bill which may affect the property of an individual without first referring it to some of the learned judges and hearing their report thereon. And surely equal precaution is necessary when laws are to be established which may affect the property, liberty, and perhaps the lives of thousands.” And he thus concludes his observations: “The enacting of penalties to which a whole nation should be subject ought not to be left as a matter of indifference to the passions or interests of a few, who upon temporary motives may prefer or support such a bill.”
The lack of public interest and of intelligent consideration by the people and the bar in criminal problems and criminal legislation are clearly shown by the paucity of criminal statistical data furnished by various States.
Penological research is based on an intelligent study of statistics, and civilized nations, recognizing this fact, have provided elaborate systems of records based on the suggestions of statistical science. But with us statistical facilities in the field of crime arenot merely primitive or old-fashioned, but in many cases shamefully absent. In reply to requests addressed to the Secretaries of State of various States for official statistics of crimes committed in their respective jurisdictions, the answers I received were in a number of cases negative. The officials mentioned replied that no statistics were published by the State in Illinois, Georgia, New Jersey, Tennessee, Kentucky, Maryland, Vermont, California, Idaho, Missouri, South Carolina, Connecticut, Texas, Wisconsin, Nebraska, Mississippi, Virginia, Colorado, and Kansas. It is true that in some of these States this lacuna is filled in by special prison reports or reports of commissioners or of the attorneys-general. But even in these cases, as well as in those published officially by the State (Ohio, Indiana, New York, Massachusetts, and Louisiana), the information furnished is a monument of antiquated methods and of very little value to the student of criminology. How, then, can we study the grave questions of crime and criminals without a basis of computation?
It may be true, as some claim, that Continental jurists have refined the criminal law to an unpractical degree and too much on classic and theoretic lines, but it will not be claimed that by adhering to an old-fashioned and obsolete criminal jurisprudence the Anglo-Saxons are safeguarding their fundamental liberties. That there is something essentially wrong, or at least antiquated, with our criminal law is evidenced by the popular discontent against it, which is too widespread and insistent to be the result of ignorance or sentiment. If there is inertia as to changes in the law it is probably because, while feeling that there is something wrong, the people either can not define it or the conservatism of centuries in this field is unconsciously affecting their better intentions. Who will deny (and I address this question to lawyers and judges) that, under our system, guilty men escape and innocent men suffer in larger numbers than it should be, even allowing for the defects inherent in all human systems?—that technicalities and not facts often save scoundrels; that unscrupulous lawyers do not avoid them, and the best of judges are obliged by legal dogmas to respect them? Who will deny (and I address this question to sociologists and penologists) that the penal provisions of our present laws are inappropriate, inelastic, and unscientific; that they neither prevent nor reform; and that the basic principle of our penal codes is still retribution and punishment? Can it be that the right of life, liberty, and property is becoming a pious fraud? Of course, it is not claimed that we have less liberty now than our fathers had three centuries ago; progress never stops, and each day is something gained; but it seems clear that the juridic basis andform of our liberties have not kept up with the progress of those very liberties. Yet, what we call rights must have a counterpart or reflection in our laws. We may, while enjoying those rights, forget that the juridic basis on which they stand is crumbling with age. Unless that basis is rejuvenated the entire edifice must eventually fall. While we are in full possession of our rights we need no laws to guarantee them; but it is when those laws are encroached upon that there arises the necessity of juridic sanction for them.
The right of life, liberty, and property constitutes the essence of the “law of the land.” But the conception of rights, as we have seen, changes and progresses. The law of the land must likewise change and progress.
Laws may be the highest and best creation of man’s intellect, but they are not “hedged in by any divinity.” That is why they are neither infallible nor unchangeable. Yet, as the highest and best creation of man’s intellect, and as the final criterion of human public conduct, they should conform to the best thought and to the highest scientific progress. If they do not approach this standard they are worse than useless, for they become legalized means of oppression. It is then that Justice needs a bandage over her eyes, not to avoid partiality, but to hide her shame.
“An investigation into the history of degenerate forms often teaches us more of the causes of change in organic Nature than can be learned by the study of the progressive ones.”—Weismann.
“An investigation into the history of degenerate forms often teaches us more of the causes of change in organic Nature than can be learned by the study of the progressive ones.”—Weismann.
Thecaves of the United States are inhabited by three cave salamanders, two of them with degenerate eyes; by six cave fishes, all with impaired vision—five of them with rudimentary eyes, one with eyes the most degenerate among vertebrates; and by several mammals. It is thus seen that among the interesting features of the North American fauna the blind vertebrates are not the least. Yet during the past twenty-five years the only additions to our knowledge, aside from diagnoses of new species, have been a few random notes on the habits and a short account of the eye of Troglichthys by Kohl.
Various classes of vertebrates have blind members, but no large vertebrate has become blind or permanently taken up its home in caves. Blatchley reports that a number of cats have establishedthemselves in Wyandotte Cave, where they bring forth and rear their young. They have exterminated the cave rats, and now station themselves in a narrow passage of the cave and capture bats as they fly through.
Among the permanent residents in dark places we have, among mammals, the moles, which habitually live in burrows of their own make. In Mammoth Cave lives a rat—Neotoma pennsylvanica. In Marengo Cave, Indiana, white-footed mice have established themselves. Although with unimpaired eyes, they have acquired ears and whiskers longer than the rest of their kind living outside.
In Florida occurs a blind lizard—Rhineura floridana. It burrows in the ground, and is colorless and blind.
Fig. 1.—The cave salamander of the Mississippi Valley(Spelerpes maculicauda).
Fig. 1.—The cave salamander of the Mississippi Valley(Spelerpes maculicauda).
Fig. 1.—The cave salamander of the Mississippi Valley(Spelerpes maculicauda).
Of salamanders, one blind species lives in European caves. In the large caves of the eastern United States no blind salamanders have been found, although other species, especially Spelerpes maculicauda, abound. In the caves of Missouri a veiled-eyed salamander, Typhlotriton, has been described within recent years by Stejneger. Still another salamander, Typhlomolge, having rudimentary eyes, has been cast up from an artesian well at San Marcos, Texas, and occurs in the cave streams about that place.
The most abundant of the blind vertebrates, both in individuals and in species, are the blind fishes. These, from their geographical distribution, may be separated into three groups: (1) Those inhabiting the depths of the ocean; (2) those inhabiting dark places along the shores of the ocean; (3) those inhabiting the underground fresh waters.
The fishes, blind or partially blind, living in the depths of the ocean bordering the American continents, are as follows: 1. Ipnops Murrayi Günther lives at depths varying from 955 fathoms to 2,158 and has the very wide distribution suggested by the localities from which specimens have been secured—viz., off the coast of Brazil, near Tristan da Cumba, near Celebes, latitude 24° 36′ north, longitude 84° 51′ west, and off Bequia. This is the only vertebrate in which no vestige of an eye has been found. Ipnops stands alone in a family. 2. The Brotulidæ have several members blind or with very much reduced eyes in various parts of the globe.Aphyonus mollis G. and B., 955 fathoms, and Alexeterion parfaiti Vaillant, 5,005 metres, are the only ones found in the neighborhood of America. 3. The Lophiidæ are represented by Mancalias Schufeldtii Gill, from a depth of 372 fathoms. Other blind species are found in foreign waters, while others with small eyes are found in American waters. The majority of deep-sea fishes have well-developed eyes.
The shore fishes have their blind representative in Typhlogobius californiensis St., which lives under rocks between tide water on the coast of southern and Lower California. I have elsewhere described the habits of this form. In the fresh-water caves of Cuba two blind fishes—Stygicola denta Poey and Lucifuga subterraneus Poey—have been found. Their relatives live in the ocean, Brotula barbata in Cuban waters; some of the others are blind and inhabitants of deep water.
The inland fresh-water fishes are represented by Gronias nigrilabris Cope, a catfish from cave streams of eastern Pennsylvania, and by members of the Amblyopsidæ, concerning which a more detailed account is given below.
The Amblyopsidæ.—The Amblyopsidæ are a small family of fishes allied to the Cyprinodontidæ. They are found in the Mississippi drainage basin and in certain southeastern streams. Three of the members of the family, the Chologasters, are provided with well-developed eyes, while four other species are cave fishes in the strictest sense, being blind and colorless. The distribution of the different members of the Amblyopsidæ is as follows:
Fig. 2.—The larva and adult of the Missouri cave salamander (Typhlotriton).
Fig. 2.—The larva and adult of the Missouri cave salamander (Typhlotriton).
Chologaster cornutus is found in lowland swamps of the Southern States from the Dismal Swamp to the Okefinokee Swamp. Chologaster Agassizii is found in subterranean streams in Tennessee and Kentucky. Chologaster papilliferus has so far been found only in southwestern Illinois.
Amblyopsis is abundant in the cave streams of the Ohio Valley south of the east fork of White River.
Typhlichthys subterraneus inhabits the region south of the Ohioand east of the Mississippi. A single specimen of another Typhlichthys has been found north of the Ohio River in a well at Corydon, Indiana. Troglichthys rosæ inhabits the caves west of the Mississippi in Arkansas and Missouri.
Chologaster.—Mr. E. B. Forbes secured a school of Chologaster papilliferus for me, and he wrote: “The little fishes were found under stones at the edges of the spring very close to the bluff, and when disturbed they swam back under the cliff.... None were found at any considerable distance from the face of the cliff.” I found the Chologaster Agassizii to act similarly in the river Styx, in Mammoth Cave. As soon as my net touched the water they darted in under the ledge of rock at the side of the little pool in which I found them.
Fig. 3.—Blind salamander from an artesian well at San Marcos, Texas (Typhlomolge).
Fig. 3.—Blind salamander from an artesian well at San Marcos, Texas (Typhlomolge).
Chologaster papilliferus detects its food entirely by the sense of touch. Two which were kept in an aquarium for over a year were starved for a few days. They became very nervous, continually swimming along the sides of the aquarium. Asellus was introduced. These, even if quite near, produced no effect if moving in front of the Chologaster. The moment one came in close proximity to the fish from any direction, by a flashlike motion it was seized. None of them were swallowed. The fish became very alert after the introduction of the sowbugs, and when swimming forward would strike at a part of a leaf if it came in contact with the head of the fish. It seemed evident that the eye gave no information of the character of the object. As Asellus was not altogether to their taste, Gammarus was introduced. One of these swimming rapidly toward the chin of the Chologaster from behind and below was instantly seized when it came in contact with the fish. The eye could not have located the Gammarus at all. The action is in very strong contrast to the action of a sunfish, which detects its food by the sight. It is undoubtedly this peculiarmethod of locating and securing food which has enabled the Amblyopsidæ to establish themselves in caves.
The Chologaster in general make-up is like Amblyopsis, but is somewhat longer-jointed. It sits with its pectorals extended. When it moves horizontally for some distance the pectorals are usually pressed to the sides, the propelling being done largely by the tail very much after the manner of a salamander, which it resembles. In swimming toward the surface it uses its pectoral fins chiefly, and the fish usually sinks to the bottom as soon as its efforts to raise itself are stopped.
Individuals kept in aquaria with one end darkened either collected in the darkened area floating about, or under leaves or sticks in any part of the aquarium. They are frequently found under a floating board, where they float with the tops of their heads in contact with the board, their bodies slanting downward. They seek the dark, regardless of the direction of the rays of light. These characteristics they have, in great part, in common with the blind members of the family. The adult Amblyopsis frequently floats with its head to the top of the water, the tail sloping downward, and in swimming along ledges of rock the top of the head is applied to the ledge. I have captured many specimens simply by scraping my net along the surface of a ledge.
Typhlichthys, living in total darkness, has retained the habit of staying under floating boards, sticks, and stones. Miss Hoppin noticed that Troglichthys swims with its back to the sides of the aquarium, and I have repeatedly noted the same in the young of Amblyopsis up to fifty millimetres, and the still younger Amblyopsis frequently hides under rocks.
Amblyopsis.—The general impression given by Amblyopsis is that of a skinned catfish swimming on its back. The expressions, “They are catfish”; “They look as though they were skinned”; “They are swimming on their backs,” are heard from those who see these fishes for the first time.
The largest individual secured by me measured 135 millimetres in total length. Individuals as large as this are rare. The usual length of an adult is about 90 millimetres. One individual was mentioned to me at Mammoth Cave having a length of 200 millimetres!
Amblyopsis is found in pools in the cave streams it inhabits. I have secured as many as twelve from a pool perhaps ten by fifty feet in size. Very rarely they are to be found in the riffles connecting the pools. I have seen them lying at the bottom, or swimming, or rather gliding, through the water like “white aquatic ghosts.” In the aquarium they lie at the bottom or at various depths in thewater, their axes making various angles with the horizontal, their pectorals folded to their sides. When swimming slowly it is chiefly by the use of the pectorals. The strokes of the pectoral are lazily given, and the fish glides on after a stroke till its impetus is exhausted, when another stroke is delivered. The fishes frequently roll slightly from side to side at the exhaustion of the result of a stroke. When swimming rapidly the pectorals are folded to the sides, and their locomotion is then similar to that of a salamander—by the motion of the tail. They readily adjust themselves to different depths, and are usually perfect philosophers, quiet, dignified, unconcerned, and imperturbed, entirely different from such eyed species as minnows and sunfishes which are sometimes found in caves and which are much more readily disturbed by any motion in the water, making it almost impossible to capture them when found in the caves. The pectorals are also almost exclusively used when quietly rising in the water. At such times the pectorals are extended laterally and then pressed to the sides, beginning with the upper rays. A downward stroke is delivered in this way not quickly, but with apparent lazy deliberation. In swimming the pectorals are brought forward upper edge foremost. The center of gravity seems to be so placed in regard to their various axes that the fish does not lose its balance whatever its position. They float horizontally in the water without any apparent effort to maintain their position, or with the main axis inclined upward, with the snout sometimes touching the surface of the water, apparently lifeless. Once one was seen resting on its tail in a nearly vertical position, and one while quietly swimming was once seen to leisurely turn a somersault and swim on undisturbed. At another time the same individual rolled completely over. When one of them is kept out of the water for a short time it frequently goes in a corkscrew-shaped path through the water, continually spinning around its long axis. In their quiet, floating position it is difficult to determine whether they are alive or not.
Fig. 4.—Ipnops Murrayi, living at a depth of 1,500 to 2,100 fathoms.Fig. 5.—Chlorophthalmus gracilis, from 1,100 fathoms, off New Zealand.
Fig. 4.—Ipnops Murrayi, living at a depth of 1,500 to 2,100 fathoms.Fig. 5.—Chlorophthalmus gracilis, from 1,100 fathoms, off New Zealand.
Fig. 4.—Ipnops Murrayi, living at a depth of 1,500 to 2,100 fathoms.
Fig. 5.—Chlorophthalmus gracilis, from 1,100 fathoms, off New Zealand.
I have not found the slightest difficulty in capturing Amblyopsis with a small dip net, either from a boat or while wading through the subterranean stream, and I have caught one in the hollow of my hand. At such a time all the noise I could make did not affect the fishes found swimming in the water. Frequently they were taken in the dip net without apparently noting the vibrations produced in the water until they were lifted out of it; very rarely a fish became evidently scared. Such a one would dart off a few feet or a few inches, and remain on thequi vive. If not pursued, it soon swam off quietly; if pursued, it not infrequently escaped by rapidly darting this way and that; when jumping out of the water, often an abrupt turn in the opposite direction from which it started would land it in the net, showing that their sense of direction was not very acute. At other times, if disturbed by the waves produced by wading, one or another individual would follow a ledge of rock to the bottom of the stream, where it would hide in a crevice. But very frequently, much more frequently than not, no attention was paid either to the commotion produced by the wading or by the boat and dip net. In general, it may be said that the fishes in their natural habitat are oblivious to disturbances of the water until frightened by some very unusual jar or motion, probably a touch with the net, when they become intensely alert. The fact that they are not easily frightened suggests the absence of many enemies, while their frantic behavior if once scared gives evidence either that occasional enemies are present and that they are very dangerous, or that the transmission of the instinct of fear is as tenacious as the transmission of physical characters.
Fig. 6.—Brodula barbatafrom Havana, Cuba.
Fig. 6.—Brodula barbatafrom Havana, Cuba.
Fig. 7.—Stygicola dentatusfrom the caves of Cuba.
Fig. 7.—Stygicola dentatusfrom the caves of Cuba.
Contrary to Sloan’s observation, that they detect the presence of a solid substance in their path, I have never noticed that those in confinement became aware of the proximity of the walls of the aquarium when swimming toward it. Instead, they constantly use the padded, projecting lower jaw as bumpers. Even an extremely rapid dart through the water seems to be stopped without serious inconvenience by the projecting jaw.
The first observations on the feeding habit of Amblyopsis are those of Cope. He remarks that “the projecting lower jaw and upward direction of the mouth render it easy for the fish to feed at the surface of the water, where it must obtain much of itsfood.... This structure also probably explains the facts of its being the sole representative of the fishes in subterranean waters. No doubt many other forms were carried into the caverns since the waters first found their way there, but most of them were like those of our present rivers—deep-water or bottom feeders. Such fishes would starve in a cave river, where much of the food is carried to them on the surface of the stream.”
Fig. 8.—Aphyonus gelatinosus, 1,400 fathoms, between Australia and New Guinea.Fig. 9.—Aphyonus mollis, 955 fathoms, 24° 36′ north, 84° 5′ west.Fig. 10.—Tauredophidium hextii, 1,310 fathoms, Bay of Bengal.Fig. 11.—Acanthonus armatus, 1,050 fathoms, mid Pacific, off the Philippines.Fig. 12.—Typhlonus nasus, 2,150 to 2,440 fathoms, north of Australia and north of Celebes.Fig. 13.—Hephthacara simum, 902 fathoms, Coromandel coast.Fig. 14.—Alexeterion parfaiti, 5,005 metres, North Atlantic.
Fig. 8.—Aphyonus gelatinosus, 1,400 fathoms, between Australia and New Guinea.Fig. 9.—Aphyonus mollis, 955 fathoms, 24° 36′ north, 84° 5′ west.Fig. 10.—Tauredophidium hextii, 1,310 fathoms, Bay of Bengal.Fig. 11.—Acanthonus armatus, 1,050 fathoms, mid Pacific, off the Philippines.Fig. 12.—Typhlonus nasus, 2,150 to 2,440 fathoms, north of Australia and north of Celebes.Fig. 13.—Hephthacara simum, 902 fathoms, Coromandel coast.Fig. 14.—Alexeterion parfaiti, 5,005 metres, North Atlantic.
Fig. 8.—Aphyonus gelatinosus, 1,400 fathoms, between Australia and New Guinea.
Fig. 9.—Aphyonus mollis, 955 fathoms, 24° 36′ north, 84° 5′ west.
Fig. 10.—Tauredophidium hextii, 1,310 fathoms, Bay of Bengal.
Fig. 11.—Acanthonus armatus, 1,050 fathoms, mid Pacific, off the Philippines.
Fig. 12.—Typhlonus nasus, 2,150 to 2,440 fathoms, north of Australia and north of Celebes.
Fig. 13.—Hephthacara simum, 902 fathoms, Coromandel coast.
Fig. 14.—Alexeterion parfaiti, 5,005 metres, North Atlantic.
The observations of Cope are entirely erroneous, as we shall see, and the speculations based on them naturally fall to the ground.
Dr. Sloan recorded one Amblyopsis which he kept twenty months without food. “Some of them would strike eagerly at any small body thrown in the water near them, rarely missed it, and in a very short time ejected it from their mouths with considerable force. I tried to feed them often with bits of meat and fish-worms, but they retained nothing. On one occasion I missed asmall one, and found his tail projecting from the mouth of a larger one.”
Wyman found a small-eyed fish in the stomach of an Amblyopsis.
Hoppin was struck by the fact that, if not capable of long fasts, Troglichthys must live on very small organisms that the unaided eye can not discern. Garman found, in the stomachs of Troglichthys collected by Hoppin in Missouri, species of Asellus, Cambarus, Ceuthophilus, and Crangonyx.
All the specimens of Amblyopsis so far taken by me contained very large fatty bodies in their abdominal cavity, a condition suggesting abundance of food. The stomachs always contained thedébrisof crustaceans, a closer identification of which was not attempted. One young Amblyopsis disappeared on the way home from the caves, and had evidently been swallowed by one of the larger ones. A few old ones, kept in an aquarium from May to July, were seen voiding excrement toward the last of their captivity, and their actions at various times suggested that they were scraping the minute organisms from the side of the aquarium. The young Amblyopsis reared in the aquarium seemed to feed on the minute forms found in the mud at the bottom of its aquarium. Some Cœcidotæa placed in the aquarium of the young soon disappeared, and the capture of one of these was noted under a reading glass. The fish was quietly swimming along the side of its aquarium; when it came within about an inch of the crustacean it became alert, and with the next move of the Cœcidotæa it was captured with a very quick, well-aimed dart on the part of the young fish. Others were captured while crawling along the floor of the aquarium. From all things noted, it seems very probable that Amblyopsis is a bottom feeder, and that it also picks food from the walls of the caves. It is not at all improbable or impossible that food should be captured at the surface or in open water, but there seems no warrant for Cope’s supposition that Amblyopsis is a top feeder. I have frequently seen larger specimens, which had been in captivity for several weeks, nosing about the bottom of the aquarium, with their bodies inclined upward in the water and quietly taking in the organic fragments at the bottom. An Asellus stirring about at such a time always produced an unusual alertness.
The number of respiratory movements of Amblyopsis averaged nineteen a minute in five observations, reaching a maximum of thirty in a small individual and a minimum of fourteen in a large one. This is in strong contrast to Chologaster, the number of whose respiratory motions reached an average of eighty per minute in five observations, with a minimum of fifty-six and a maximumof one hundred and eight in a small specimen. Dr. Loeb has called my attention to the more rapid absorption of oxygen in the light than in the dark; this extended would probably mean the more rapid absorption of oxygen through the skin of light-colored animals, a matter of doubtful value, however, to species living in the dark.
The gill filaments are small as compared with the gill cavity.
Oxygenation probably takes place through the skin.RitterJhas suggested the same for Typhlogobius.