TYPICAL CRIMINALS.

TYPICAL CRIMINALS.By SAMUEL G. SMITH, LL. D.If the question of a criminal type, defined by certain marks of a physical nature and emphasized by accompanying mental and moral characteristics, were confined to the technical speculations of a special craft of scientists, the public would have little interest in the spread of the doctrines of Cesare Lombroso and hisconfrèresin this country. When it is believed, however, that certain men and women are committed to prison or condemned to death not on account of crimes in any ethical sense, but because of spontaneous actions from vicious impulses beyond their control, the subject affects the administration of law, the theory of punishment, and the safety of society.Lombroso and the Italian school say that they have discovered a type of man who is born a criminal, and who may be recognized by a Mongolian face, abnormal features, ill-shaped ears, unsymmetrical skull, and various psychical peculiarities, which are the result of bad organization. This doctrine is illustrated by descriptions of criminals who have the abnormalities, and in the hands of skillful writers the case is made very plausible. The theory is in harmony with so much popular modern thought, which loosely interprets the doctrine of evolution by a crass materialism, that it has infected American prison literature, while it has never misled those men to whom practical experience has given the most right to have an opinion on the subject. The sense of personal responsibility is still the foundation of social order, and if in truth there is no such thing, the world is awake at last from its dream of morality;righteousness is resolved into heredity, structure, and habit; living is a mere puppet show, and the wreck of things impends. If Lombroso is right, modern scientific methods are sure to prove him so, and we shall have at last sound theories; but we shall have no world in which they can be used, for the dissolution predicted by Herbert Spencer will have come.Group 1, No. 1.Group 1, No. 2.Group 1, No. 3.Exceptional opportunities for the study of the abnormal classes in the institutions of this country and Europe have given me a personal interest in the question of the criminal type. I have discovered that the criminal anthropologists do not choose for comparison with the prison population their normal men from the ranks where the criminal classes are recruited. Blackwell's Island has no more peculiar inmates than abound in sections of New York near the East River; the residents of the Whitechapel district of London may be compared with the inmates of Pentonville, to the distinct credit of the latter; and the man in Roquette is no worse offin body than scores whom I have seen in certain localities south of the Seine. The fact is, no human body exists which is not in some respects abnormal. The number of abnormalities and their extent depend upon a variety of circumstances, among which are food, climate, occupation, and the incidents of birth itself, as well as the various forms of infantile disease. I will undertake to find enough physical peculiarities, in any locality, or among the members of any profession, to establish any physical theory which may be propounded.Group 2, No. 1 (forger).Group 2, No. 2.Group 2, No. 3.It occurred to me to try an experiment in a manner entirely different from the usual criminal researches. Having been very familiar with a certain prison for many years, I requested the warden, who is a very able man in his profession, to send me the photographs of ten or a dozen men whom he regarded as the most representative criminals in his population of some five hundred persons. The warden was not informed of the use I intended to makeof the material, and supposed it was for illustration in university class work. Later, he gave me the Bertillon measurements of the men, with an epitome of their history. A number of these men I have known for years. So far from this selection supporting the modern theory of a criminal type, it confutes it in a conspicuous manner. The abnormalities are slight, and there is as great a diversity among the men as could be asked. It must be remembered that these cases were selected by a shrewd and competent official, solely upon their criminal record, and not in the interests of any theory whatever.Of course, the men do not look well, but neither would any ordinary company of citizens if their heads were shaved and they were put in prison dress. I am always shocked by the changed appearance of the men after the prison transformation. Young embezzlers of elegant figure, who have moved in good society without a question, easily look the rascal behind prison walls.The first group are murderers. No. 1 murdered his daughter because she insisted upon going to a party against his wishes. He has the head of a philosopher. It was his first crime. It may be noted that tattooing is supposed to be common among criminals. This man is tattooed, but committed no crime until fifty years of age, and was a deputy sheriff for some years. No. 2 did not kill his victim, but the assault was murderous, and the escape from death was accidental. It is difficult to discuss the negro in crime without entering into racial and social questions beyond the present limits. No. 3 has a very good head, an excellent ear, and, barring the expression, a pleasing face. He has a life sentence for murder. He is the worst man in the prison. I have for years believed him to be insane. His family is criminal. His father murdered his mother in a brutal manner before the child's eyes, when No. 3 was only eight years old. He himself has committed several desperate assaults, growing out of his persistent mania of persecution. No. 3 is not morally responsible, and there are usually two or three such prisoners out of a thousand subjects.The second group are very diverse in structure and temperament, but have committed the same kind of crime. No. 1 is a confidence man and a forger. He is a crafty and an habitual criminal, has served terms in various prisons, is keen of intellect, well educated, has traveled in many countries, and is a citizen of the world.No. 2 is a confirmed forger, and has served several terms in prison for the same offense. He is a skillful bookkeeper, has an attractive manner, and as soon as he is out in the world secures employment and plans his next crime.No. 3 is a counterfeiter. His head is small, but of excellent shape, and he has rather a refined physical organization. His criminal record is bad, and he has served at least one term before for the same offense. His imagination, temperament, and vices would select him as a person who would be guilty of a very different and more fleshly kind of crime. The group is formed by the correlation of crime; they have nothing in common in physical organization.Group 3, No. 1.Group 3, No. 2.Group 3, No. 3.The third group are thieves. No. 1 is a confirmed criminal, and has served several terms in prison. He is the tallest man in the list. His head is "long" and well formed, and his features are regular. His expression indicates power of sustained thought, and his peculiar appearance is not due to his kind of crime, but to his habit of mind. He is a pessimist of the first rank, and hates the world, his fellow-men, and perhaps himself most of all. He will not work when at liberty, thinks that societyis totally depraved, and that war upon it is the only proper mission in life. He is pre-eminently the antisocial man.No. 2 is really a pleasing fellow. He is tender, sympathetic, and pious. Under proper circumstances he might have made an admirable Sunday-school superintendent. He is plausible, insinuating, and winning. In temperament, feeling, and social habit he is the complete antithesis to No. 1. He is a most dangerous criminal, and has a black and varied record.No. 3 is a man of lower grade of organization and habit, but he is a criminal by profession. He is an idle and worthless vagabond, but he is an accomplished thief. He makes an excellent prisoner, obedient to the rules, industrious, and seemingly anxious to improve. In fact, the prison furnishes his best environment, for it is only there that he is at peace with himself and his world.Contrasts, No. 1.Contrasts, No. 2.The last two men presented are contrasts. No. 1 is an accidental criminal. His previous history and character give strong grounds for the belief that, under pressure of want for the necessaries of life, he was led astray by a man older and stronger than himself. It is not likely that he would repeat his fault. No. 2, on the other hand, is a sexual pervert of the worst kind, whose case seems so hopeless that perpetual imprisonment is indicated as the only relief for him, and the only safety for society. Apart from the expression of his eyes, caused by an irregular focus, there is nothing marked about the face. The head is of a pronounced"broad" type, but, on the other hand, he comes from a province of Germany where that type is dominant.To complete the experiment, I submitted these portraits to a number of gentlemen, and to no two of them at the same time, for their opinions of the cases. The informal committee represented the different professions which might be expected to fit men for observation, for there was a lawyer, a physician, a railway president, a criminal judge, and a college professor. Each of them is eminent in his special field. The committee was manifestly handicapped by the shorn head, the prison dress, and the lack of the accessories of masculine ornamentation, such as collars and cravats. The committee was asked to name the crimes, and to group the men according to their criminal record. Each opinion differed from the other, and all were wide of the mark. The shrewd lawyer thought the accidental criminal "might be guilty of anything." It was only the college professor, the last man of the company from whom anything might properly be expected, who was able to select the worst two cases with the remark, "These men are degenerates." But while the committee was at work on the photographs the writer was at work on the committee, and actually discovered more anomalies of organization in these distinguished citizens than are apparent in the criminals. After this remark it is necessary to withhold their names, though some of them are men of national reputation.It is time to reassert with increasing emphasis the personal responsibility of the individual, and to insist upon the enthronement and guidance of conscience. There are certainly social and economic reasons for crime, some of which the writer has pointed out elsewhere, but the chief fact in human life is the power of self-determination. The chief causes of crime, outside of personal and moral degradation, are psychical and not physical. The reader of history can not fail to have noted that relation of prevalent ideas to conduct which is so conspicuous in human affairs. The scenes of blood and desolation characteristic of the French Revolution are directly traceable to the doctrines which prepared the way for anarchy, but not for rational freedom.We have had our attention directed to the contagion of suicide which has marked the last half decade. But Lecky tells us that suicide was made practically unknown in the civilized world by the spread of Christianity and its beliefs in the dignity and sanctity of man. The present contagion will disappear not as the result of food, or raiment, or houses, or any other material good, but by a revival of practical faith in the human soul and its capacity, in human righteousness and its obligation.A CENTURY OF GEOLOGY.By Prof. JOSEPH LE CONTE.[Concluded.]THE AGE OF THE EARTH.Until almost the beginning of the present century the general belief in all Christian countries was that not only the earth and man, but the whole cosmos, began to exist about six thousand to seven thousand years ago; furthermore, that all was made at once without natural process, and have remained substantially unchanged ever since. This is the old doctrine of the supernatural origin and substantial permanency of the earth and its features. Among intelligent and especially scientific men this doctrine, even in the eighteenth century, began to be questioned, although not publicly; for in 1751 Buffon was compelled by the Sorbonne to retract certain views concerning the age of the earth, published in his Natural History in 1749.[1]Remnants of the old belief lingered even into the early part of the present century, and may even yet be found hiding away in some of the remote corners of civilized countries. But with the birth of geology, and especially through the work of Hutton in Scotland, Cuvier in France, and William Smith in England, the much greater—the inconceivably great—antiquity of the earth and the origin of its present forms, by gradual changes which are still going on, was generally acknowledged. Indeed, as already said, this is the fundamental idea of geology, without which it could not exist as a science.Geology has its own measures of time—in eras, periods, epochs, ages, etc.—but it is natural and right that we should desire more accurate estimates by familiar standards. How old, then, is the earth, especially the inhabited earth, in years? Geologists have attempted to answer this question by estimates based on the rates of sedimentation and erosion, or else on the rate of changes of organic forms by struggle for life and survival of the fittest. Physicists have attempted to answer the same question by calculations based on known laws of dissipation of energy in a cooling body, such as the sun or the earth. The results of the two methods differ widely. The estimates of the geologists are enormous, and growing ever greater as the conditions of the problem are better understood. Nothing less than several hundred million years will serve his purpose. The estimates of the physicists are much more moderate, and apparently growing less with each revision. The latest results of King and Kelvin give only twenty to thirty millions.[2]This the geologist declares is absurdly inadequate. He can not work freely in so narrow a space—he has not elbow room.The subject is still discussed very earnestly, but with little hope of definite conclusion. One thing, however, must be remarked. Both parties assume—the geologist tacitly, the physicist avowedly—the nebular hypothesis of the origin of the solar system, and therefore the early incandescentfluidcondition of the earth as the basis of all his reasonings. Now, while this is probably the most reasonable view, it is not so certain that it can be made the basis of complex mathematical calculation. There is a possible alternative theory—viz., the meteoric theory—which is coming more and more into favor. According to this view, the planets may have been formed by aggregation of meteoric swarms, and the heat of the earth produced by the collision of the meteors in the act of aggregation. According to the one view (the nebular), the heat is all primal, and the earth has been only losing heat all the time. According to the other, the aggregation and the heating are both gradual, and may have continued even since the earth was inhabited. According to the one, the spendthrift earth wasted nearly all its energy before it became habitable or even a crust was formed, and therefore the habitable period must be comparatively short. According to the other, the cooling and the heating, the expenditure and the income, were going on at the same time, and therefore the process may have lasted much longer.The subject is much too complex to be discussed here. Suffice it to say that on this latter view not only the age of the earth, but many other fundamental problems of dynamical geology, would have to be recalculated. The solution of these great questions must also be left to the next century. In the meantime we simply draw attention to two very recent papers on the subject—viz., that of Lord Kelvin,[3]and criticism of the same by Chamberlin.[4]ANTIQUITY AND ORIGIN OF MAN.Even after the great antiquity of the earth and its origin and development by a natural process were generally accepted, still man was believed, even by the most competent geologists, to have appeared only a few thousand years ago. The change from this old view took place in the last half of the present century—viz., about 1859—and, coming almost simultaneously with the publication of Darwin's Origin of Species, prepared the scientific mindfor entertaining, at least, the idea of man's origin by a natural process of evolution.Evidences of the work of man—flint implements, associated with the bones of extinct animals and therefore showing much greater age than usually accepted—had been reported from time to time, notably those found in the river Somme by Boucher de Perthes. But the prejudice against such antiquity was so strong that geologists with one accord, and without examination, pooh-poohed all such evidence as incredible. It was Sir Joseph Prestwich who, in 1859, first examined them carefully, and published the proofs that convinced the geological world that early man was indeed contemporaneous with the extinct animals of the Quaternary period, and that the time must have been many times greater than usually allowed.[5]Since that time confirmatory evidence has accumulated, and the earliest appearance of man has been pushed back first to the late glacial, then to the middle glacial, and finally, in Mr. Prestwich's Plateau Gravels, to the early glacial or possibly preglacial times.Still, however, in every case earliest man was unmistakably man. No links connecting him with other anthropoids had been found. Very recently, however, have been found, by Du Bois, in Java, the skull, teeth, and thigh bone of what seems to be a veritablemissinglink, named by the discovererPithecanthropus erectus. The only question that seems to remain is whether it should be regarded as an ape more manlike than any known ape, or a man more apelike than any yet discovered. The age of this creature was either latest Pliocene or earliest Quaternary.BREAKS IN THE GEOLOGICAL RECORD AND THEIR SIGNIFICANCE.From the earliest times of geologic study there have been observed unconformities of the strata and corresponding changes in the fossil contents. Some of these unconformities are local and the changes of organic forms inconsiderable, but sometimes they are of wider extent and the changes of life system greater. In some cases the unconformity is universal or nearly so, and in such cases we find a complete and apparently sudden change in the fossil contents. It was these universal breaks that gave rise to the belief in the occurrence of violent catastrophes and corresponding wholesale exterminations and re-creations of faunas and floras.It is evident, however, on a little reflection, that every such unconformity indicates a land period at the place observed, and therefore a time unrecorded in strata and fossils at that place—i. e.,a lost interval—certain leaves missing from the book of time. And if the unconformity be widespread, the lost interval is correspondingly great. It is therefore probable that change of species went on slowly and uniformly all the time, although not recorded at that place. Intermediate strata may be and often are found elsewhere, and the supposed lost interval filled. The record was continuous and the changes uniform, but the record is not all found in one place. The leaves of the book of Time are scattered here and there, and it is the duty of the geologist to gather and arrange them in proper order, so that the record may read continuously.This is the uniformitarian view, and is undoubtedly far truer than the catastrophic. But the objection to it is that in the case of very widespread unconformities, such as occurred several times in the history of the earth, the changes of organisms are so great that if the rate of change was uniform the lost interval must have been equal to all the rest of the history put together. Therefore we are compelled to admit that in the history of the earth there have been periods of comparative quiet (not fixedness) during which evolutionary changes were slow and regular, and periods of revolution during which the changes were much more rapid, but not catastrophic. This is exactly what we ought to expect on the idea of gradual evolution of earth forms by secular cooling, for in the gradual contraction of the earth there must come times of general readjustment of the crust to the shrinking nucleus. These readjustments would cause great changes in physical geography and climate, and corresponding rapid changes in organic forms. In addition to this, the changes in physical geography and climate would cause extensive migrations of species, and therefore minglings of faunas and floras, severer struggles of competing forms, and more rapid advance in the steps of evolution. Among these changes of organic forms there would arise and have arisennew dominant types, and these, in their turn, would compel new adjustment of relations and still further hasten the steps of evolution. Such changes, whether geographic, or climatic, or organic, wouldnotbe simultaneous all over the earth, but propagated from place to place, until quiet was re-established and a new period of comparative stability and prosperity commenced.This view is a complete reconciliation of catastrophism and uniformitarianism, and is far more rational than either extreme.Critical Periods in the History of the Earth.—Such periods of rapid change may well be calledcritical periods or revolutions. They are marked by several characteristics: (1) By widespread oscillations of the earth's crust, and therefore by almost universal unconformities. (2) By widespread changes of physical geography,and therefore by great changes in climate. (3) By great and widespread changes in organic forms, produced partly by the physical changes and partly by the extensive migrations. (4) By the evolution of new dominant types, which are also the cause of extensive changes in species. (5) Among the physical changes occurring at these times is the formation of great mountain ranges. The names of these critical periods or revolutions are often taken from the mountain range which form their most conspicuous features.There have been at least four of these critical periods, or periods of greatest change: (1) The pre-Cambrian or Laurentide revolution; (2) the post-Paleozoic or Appalachian; (3) the post-Cretaceous or Rocky Mountain; (4) the post-Tertiary or glacial revolution.Now, as these critical periods separate the primary divisions of time—the eras—it follows that thePresent—the Age of Man—is an era. It may be called thePsychozoic Era. These views have been mainly advocated by the writer of this sketch, but I believe that, with perhaps some modification in statement, they would be accepted by most geologists as a permanent acquisition of science.[6]GEOLOGICAL CLIMATES.Attention was first drawn to this subject by the apparently unique phenomena of the Glacial epoch.For nearly a century past Alpine glaciers, their structure, their mysterious motion, and their characteristic erosive effects, have excited the keenest interest of scientific men. But until about 1840 the interest was purely physical. It was Louis Agassiz who first recognized ice as a greatgeological agent. He had long been familiar with the characteristic marks of glacial action, and with the fact that Alpine glaciers were far more extensive formerly than now, and had, moreover, conceived the idea of a Glacial epoch—an ice age in the history of the earth. With this idea in his mind, in 1840 he visited England, and found the marks of glaciers all over the higher regions of England and Scotland. He boldly announced that the whole of northern Europe was once covered with a universal ice sheet. A few years later he came to the United States, and found the tracks of glaciers everywhere, and again astonished the world by asserting that the whole northern part of the North American continent was modeled by a moving ice sheet. This idea has been confirmed by all subsequent investigation, especially here in America.But it would be strange, indeed, if the cold of the Glacial epoch should be absolutely unique. Attention was soon called to similar marks in rocks of other geological periods, especially in the Permian of the southern hemisphere. This opened up the general question ofgeological climates and their causes.Perhaps no subject connected with the physics of the earth is more obscure and difficult than this. The facts, as far as we know them, are briefly as follows: (1) All the evidence we have point to a high, even an ultra-tropical, climate in early geological times; (2) all the evidence points to a uniform distribution of this early high temperature, so that the zonal arrangement of temperatures, such as characterizes present climates, did not then exist; (3) temperature zones were apparently first introduced in the late Mesozoic (Cretaceous) or early Tertiary times, and during the Tertiary the colder zones were successively added, until at the end there was formed a polar ice-cap as now.Thus far all might be explained by progressive cooling of the earth and progressive clearing of the atmosphere of its excess CO2and aqueous vapor. But (4) from time to time (i. e., at critical periods) there occurred great oscillations of temperature, the last and probably the greatest of these being the Glacial period. The cause of these great oscillations of temperature, and especially the cause of the glacial climate, is one of the most interesting and yet one of the obscurest and therefore one of most hotly disputed points in geology. Indeed, the subject has entered into the region of almost profitless discussion. We must wait for further light and for another century. Only one remark seems called for here. It is in accordance with a true scientific method that we should exhaust terrestrial causes before we resort to cosmical. The most usual terrestrial cause invoked is the oscillation of the earth's crust. But recently Chamberlin, in a most suggestive paper,[7]has invoked oscillations in the composition of the atmosphere, especially in its proportion of CO2, as theimmediatecause, although this in turn is due to oscillations of the earth's crust.THE NEW GEOLOGY.Heretofore the geological history of the earth has been studied only in the record of stratified rocks and their contained fossils. But in every place there have been land-periods in which, of course, erosion took the place of sedimentation. This kind of record is very imperfect, because there are no fossils. Until recently no account was taken of these erosion-periods except as breaks of indefinite length in the record—as lost intervals. But now, and mainly through the work of American geologists, interpretation of these erosion-periods has fairly commenced, and so important has this new departure in the study of geology seemed to some that it has been hailed as a new era in geology, connecting it more closely with geography. Heretoforeformerland periods were recognized by unconformities and the amount of time by the degree of change in the fossils, but now the amount of time is estimated inexistingland surfaces by topographicformsalone. This idea was introduced into geology by Major J. W. Powell, and has been applied with success by William Morris Davis, W. J. McGee, and others.The principle is this: Land surface subject to erosion and standing still is finally cut down to gently sweeping curves, with low, rounded divides and broad, shallow troughs. Such a surface is called by Davis a Peneplain. Such a peneplain is characteristic of old topography. If such a surface be again lifted to higher level, the rivers again dissect it by ravines, which are deep and narrow in proportion to the amount and rate of the uplift. If the land again remains steady, the sharply dissected surface is again slowly smoothed out to the gentle curves of a peneplain. If, on the contrary, the surface be depressed, the rivers fill up the channels with sediment which, on re-elevation, is again dissected. Thus the wholeontogenyof land surfaces have been studied out, so that their age may be recognized at sight.Thus, while heretofore the more recent movements of the crust were supposed to be readable only on coast lines and by means of the old sea strands, now we read with equal ease the movements of the interior by means of the physiognomy of the topography, and especially the structure of the river channels. Moreover, while heretofore the history of the earth was supposed to be recorded only in stratified rock and their contained fossils, now we find that recent history is recorded and may be read also in the general topography of the land surfaces. Geography is studied no longer as mere description of earth forms, but also as to the causes of these forms, no longer as to present forms, but also as to the history of their becoming. Thus geography, by its alliance with geology, has become a truly scientific study, and as such is now introduced into the colleges and universities. It is this alliance with geology which has caused the dry bones of geographic facts to live. It is this which has created a soul under the dry "ribs of this death." This mode of study of the history of the earth has just commenced. How much will come of it is yet to be shown in the next century.In this connection it is interesting to trace the effect of environment on geological reasonings in different countries. Heretofore, especially in England, what we have called peneplains were usually attributed to marine denudation—i. e., to cutting back of a coast line by constant action of the waves, leaving behind a level submarine plateau, which is afterward raised above sea level and dissected by rivers. American geologists, on the contrary, are apt to regard such level surfaces as the final result of aërial degradation or a base level of rain and river erosion. The same difference is seen in the interpretation of glacial phenomena. Until recently, English geologists were inclined to attribute more to iceberg, Americans more to land ice. Again, in England coast scenery is apt to be attributed mainly to the ravages of the sea, while in America we attribute more to land erosion combined with subsidence of the coast line. In a word, in the tight little sea-girt island of Great Britain, where the ravages of the sea are yearly making such serious inroads upon the area of the land, it is natural that the power of the sea should strongly affect the imagination and impress itself on geological theories, and tend perhaps to exaggeration of sea agencies, while the broad features of the American continent and the evidences of prodigious erosion in comparatively recent geological time tend to the exaggeration of erosive agency of rain and rivers. These two must be duly weighed and each given its right proportion in the work of earth sculpture.PALEONTOLOGY.Paleontology at first attracted attention mainly by the new and strange life forms which it revealed. It is the interest of a zoölogical garden. This interest is of course perennial, but can hardly be called scientific. Geology at first was a kind of wonder book.Next fossils, especially marine shells, were studied as characteristic forms denoting strata of a particular age. They were coins by which we identify certain periods of history. They were "medals of creation." It was in this way chiefly that William Smith, the founder of English stratigraphic geology, used them. It was in this way that Lyell and all the older geologists, until the advent of evolution, were chiefly interested in them.It was Cuvier, the great zoölogist and comparative anatomist, who, in the beginning of the present century, first studied fossils, especially mammalian fossils, from thezoölogicalpoint of view—i. e., as to their affinities with existing animals. Cuvier's studies of the vertebrates of the Paris basin may be said to have laid the foundation of scientific paleontology from this point of view.Thenceforward two views of paleontology and two modes of study gradually differentiated from one another, the one zoölogical, the other geological. In the one case we study fossils intaxonomicgroups—i. e., as species, genera, families, orders, etc.—and trace the gradual evolution of each of these from generalized forms to their specialized outcomes, completing as far as possible the genetic chain through all time. In the other we study fossils infaunal groups, as successive geological faunas, and the geographic diversity in each geological period—i. e., the evolution of geologic faunas and the causes of geographic diversity in each. In a word, we study the laws of distribution of faunas in time geologically and in space geographically, and the causes of these laws in each case. The first is strictly a branch of zoölogy and botany, and we leave it to these specialists. The second alone belongs properly to geology. In this purely geologic paleontology, as seen from its scope given above, there are many questions of widest philosophical interest which are only now attracting the attention they deserve. I only touch lightly two which have been brought forward in these very last years of the century.I.General Laws of Faunal Evolution.—The evolution of the organic kingdom from this strictly geological point of view may be briefly formulated as follows:1. Throughout all geological time there has been a general movement upward and onward, as it were abreast, everywhere. If this were all, there would be only geological progress, but no geographical diversity. Geological history would be the same everywhere. A time horizon would be easily determined by identity of fossil species. This we know is not true. Therefore there are other elements besides this.2. In different countries, isolated from one another and under different conditions, evolution takes differentdirectionsand differentrates, producing geographical diversity in each geological period. This diversity increases with time as long as the isolation continues. If this were all, the geographical diversity by continued divergence would have become so great that it would be impossible even approximately to determine any geological horizon. The history of each country must be studied for itself. A general history of the earth would be impossible. But this also is not true. There is therefore still another element.3. From time to time, at long intervals—i. e.,critical periods—there are widespread readjustments of the crust to internal strain, determining changes of physical geography and of climate, and therefore wide migrations of species with mingling and conflict of faunas. This would produce more rapid movement of evolution,but at the same time more or less complete obliteration of geographical diversity.4. After these periods of migrations and minglings there would be re-isolations in new localities, and the process of diversification would recommence and increase as long as the isolation continues.The last of these critical periods of migrations and minglings and struggles for life among competing species was theGlacial epochor ice age. Therefore the present geographical distribution of species was largely determined by the extensive migrations of that time.II.Cosmopolitan and Provincial Faunas.—There are apparently in the history of the earth periods of widespread or cosmopolitan faunas, alternating with localized or provincial faunas. The cosmopolitan periods are usually times of prevalence of limestones or organic sediments, and the fossils are very abundant. The provincial periods are usually characterized by sandstones and shales or mechanical sediments, and are comparatively poor in fossils. Moreover, it is believed that the cosmopolitan limestone periods are oceanic periods—i. e., periods of wide oceans and lower and smaller continents and little erosive activity, while the sandstone periods, characterized by provincial faunas, are periods of higher and larger continents, and therefore of great erosion and abundant mechanical sedimentation.Now, according to Chamberlin, these remarkable alternations are due to oscillations of the crust, in which the continents are alternately lifted and depressed. It must be remembered that abyssal faunas are almost unknown among fossils. This is the necessary result of substantial permanency of oceanic basins. The whole geological record is in shallow-water faunas. These shallow waters are along continental shore lines and in interior continental seas. According to Chamberlin again, during a period of continental depression all the flat continental margins are submerged, forming broad submarine platforms, and the lower interior portions of the continents are also submerged, forming wide and shallow interior seas. Under these conditions continental waste, and therefore sand and clay sediments, are reduced to a minimum. Life, animal and vegetal, abounds, and therefore much limestone is formed. The oceans are widely connected with one another, and therefore the faunas are widespread or cosmopolitan. During the period of elevation, on the contrary, the continents are extended to the margin of the deep oceanic basins, the broad, shallow submarine platforms are abolished, the interior seas are also abolished, the shallow-water areas are reduced to isolated bays, and their faunas are peculiar or provincial. Also, elevated and enlarged continentsgive rise to maximum erosion, and therefore abundant sediments of sandstone and clay, and comparative poverty of life and therefore of limestone. Chamberlin also gives reasons why the oceanic periods should be warm, humid, equable in temperature, and the atmosphere highly charged with CO2, and therefore highly favorable to abundant life, both vegetal and animal, while land periods would be drier and cooler, the atmosphere deficient in CO2, and therefore cold from that cause and in many ways unfavorable to abundant life.These extremely interesting views, however, must be regarded as still on trial, as a provisional hypothesis to be sifted, confirmed, or rejected, or in any case modified, in the next century.Lastly, it is interesting to note the ever-increasing part taken by American geologists in the advance of this science. There has been through the century a gradual movement of what might be called the center of gravity of geological research westward, until now, at its end, the most productive activity is here in America. This is not due to any superiority of American geologists, but to the superiority of their opportunities. Dana has well said thatAmerica is the type continent of the world. All geological problems are expressed here with a clearness and a simplicity not found elsewhere. We must add to this the comparative recency of geological study in this rich field. In Europe the simpler and broader problems are already worked out, and all that remain are difficult problems requiring much time. In America, on the contrary, not only are all problems expressed in simpler terms, but many great and broad problems are still awaiting solution. For these reasons the greatest activity in research, and the most rapid advance during the next century, will probably be here in America."SALAMANDERS" AND "SALAMANDER" CATS.By NORMAN ROBINSON.In many places in the extreme Southern States, especially in what is locally known as the "piney woods," one of the most notable features is the constantly recurring mounds of yellow sand which everywhere dot and, it must be confessed, disfigure the monotonous landscape. These piles of earth are usually nearly circular in form, fairly symmetrical in contour, from six inches to two feet in diameter, and, save where they have been beaten down by rain or winds or the trampling of cattle, about half as high as they are broad. Often these sand heaps are pretty evenly distributed, sometimes so thickly as to cover at least one fourth of thesoil surface. If you ask a native the cause of this singular phenomenon, which you will perhaps at first be disposed to consider a kind of arenaceous eruption which has somehow broken out on the face of Nature, your informant will sententiously reply, "Salamanders!"All this disfigurement is indeed the work of a curious little rodent popularly so named and about the size and color of an ordinary rat. He is never seen above ground if he can possibly help it. He digs innumerable branching underground tunnels at depths varying from one to six feet, and these mounds of sand are simply the "dump heaps" which, in his engineering operations, he finds it necessary to make."Snap-shot" View of a Live "Salamander."After carrying the excavated earth to the surface this cautious little miner takes the greatest pains to cover up his tracks. No opening into his burrow is left. How he manages to so carefully smooth over his little sand mound and then literally "pull the hole in after him" is as yet unexplained. The work is mostly done at night, when observation is especially difficult. Sometimes, when he is a little belated and the early morning twilight admonishes him that it is "quitting time," he gets in a hurry and slights his work. Then a little depression at the top of the mound tells where he has made a hasty exit. Ordinarily the rounding out of the sand pile is as deftly done as though it had all been managed from above. Indeed, the feat actually accomplished by this little underground builder appears more puzzling the more it is considered. The most skilled human engineer would confess his inability tothus pile up a mound of loose sand, go down through it, leave the top perfectly smoothed over, and, with no supports save the sand itself, to so fill up the passageway above him as he went down that not the slightest mark should be left to indicate his pathway of retreat.Even if you dig into and under one of these sand mounds you will find very little to betray the builder's whereabouts. It is seemingly all solid earth, and unless you know exactly when and where and how to dig you will probably give up the search in disgust, with your labor and your backache but no "salamander" hole for your pains. Indeed, the cunning of this little rodent in hiding his burrow is quite as conspicuous as his skill in digging it. "Strategy" is his strong point. If by any chance you come upon his burrow it is probably an old abandoned one that is closed up and leads nowhere. The chances are ten to one that his real burrow is rods if not furlongs away.Provided you can find the last mound he has built and not more than four or five hours have elapsed since its completion, by digging diagonally to the right or left, at the distance of a foot or so, you will have a fair chance of encountering his burrow. He is probably near by, resting from the severe labors of the previous night. If you give him time to get his nap out and finish his job, your wiser plan will be to stop hunting and digging a little before you begin.Why this little underground dweller should be called "salamander" is one of those mysteries of popular nomenclature which is seemingly inexplicable. There is certainly nothing in the habits or appearance of the animal to suggest the fabled fireproof batrachian. Like some other lovers of darkness, he has quite a number ofaliasesby which in various portions of the South and West he is known. "Gopher," "pouched rat," "hamster," and "muelos" are some of the titles by which he is locally known. "Salamander" appears to be the most generally accepted one.This enterprising little rodent belongs to an ancient if not honorable family. By naturalists he is generally known as "pocket gopher," and is classed among theGeomyidæ. Some fifteen known species have been recognized, with possibly more to hear from, and with a habitat extending quite across the continent. The Florida species is probablyGeomys tuza(Ord.), and though not as large as one or two others, is quite the peer of any of his cousins in enterprise and ability to look out for himself.The illustration given is from what is probably the only photograph of a living "salamander" ever taken. Mr. Geomys is not a model "sitter." No unwilling candidate for the "rogues' gallery"has more decided views on the subject of having his picture taken. In a general way, it may be said that he doesn't pose for anybody. Precisely how this prejudice was finally overcome it is needless to state. Perseverance and "snap shots" were too much for our recalcitrant rodent. In the matter of "looking pleasant" it must be conceded that Mr. Geomys was a little intractable."Dump Heaps" of the "Salamander."The fore legs and feet of the "salamander" are worth studying. They remind one somewhat of those of the mole, but are more stoutly built, with much longer claws, and are evidently designed for harder tasks. They are controlled by powerful brachial and pectoral muscles, and, as we shall see, are not only special tools adapted to special and difficult work, but work which requires an enormous expenditure of physical force.The engineering problems which this little troglodyte has to solve are far and away ahead of any that the New York Rapid-Transit Commission has to deal with. It is very much as though a single miner were placed over in Hoboken, a hundred feet below the surface, with instructions to tunnel under the Hudson Riverwith no tools except his hands, without a chance of seeing daylight until he reached it on the New York side, and with the added conditions that all the excavated earth should be carried out at the eastern opening of the tunnel, and finally that he should obliterate all marks of his work and, as he retreated into his tunnel, pack the exit shaft above him so tightly and so deftly that it is impossible to trace its course!How our little fur-coated engineer solves all these problems is as yet a mystery. We only know that he does it. He has a steam engine in his shoulders and shovels for hands, but his exact methods of using them is as yet largely a matter of conjecture. Only two plans of operation would seem to be possible. One would be for the "salamander" to first carry the excavated earth all to the rear into some portion of his already finished tunnel, and finally, when the outward exit is completed, to carry it back again and deposit it on the surface. This, of course, involves a double transfer of all the earth removed. It is more likely that the "salamander" first forces a narrow passageway along the line of his future tunnel in a way similar to that pursued by the mole. The latter animal has the advantage of working near the surface, and the earth always yields along the line of least resistance, which of course is upward. Four or five feet down there is no such line, and the amount of force required to push the ground aside must be something enormous. When the "salamander" comes to the upper air the work of excavation and enlargement begins. He then piles upon the surface all the earth that he can not use in obliterating his upward passageway. As the writer has frequently observed fresh sand mounds hundreds of feet from any others, he is inclined to believe that this is the real method pursued.The exceeding care which the "salamander" takes to leave no opening into his subterranean home arises, no doubt, from his horror of snakes. In this respect no woman can surpass him. His antipathies to reptiles are probably the accumulated embodiment of hundreds of centuries of ancestral experience. He is aware that these hereditary enemies of his race are of a very investigating turn of mind, and put in a good deal of spare time when awake in crawling into and exploring any tempting hole they may discover. And so Mr. Geomys, like the sensible fellow that he is, not only takes good care to shut and lock his front gate every time he is compelled to go through it, but he blocks up the whole passageway and does his best to convince trespassers that it is all a mistake to suppose that there ever has been any roadway leading to his underground home.Indeed, it is by taking advantage of this morbid antipathy to intruders and daylight that our little underground dweller is usually caught. If by skillful digging a recently formed burrow is reached, one may be reasonably certain that in from five to ten minutes Mr. "Salamander" will be on hand to see what has happened and to repair damages. A shotgun kept steadily aimed at the opening, and with a quick pull on the trigger the instant the slightest movement in the sand is seen, "fetches" him every time. Another very successful method is to place a strong trap right at the opening into his burrow. In making repairs our "salamander" is in too big a hurry to look very carefully where he steps, and so is quite likely to blunder into the trap. He is always caught, however, by one of his legs, and if left any length of time is quite apt to gnaw off the captive limb and thus make his escape. Spartan bravery or love of freedom surpassing this would be hard to find.The food ofGeomys bursariusappears to be exclusively vegetable. Native roots and root stocks, cones and bulbs, together with the root bark of various trees, are eaten by him, and sometimes in a very annoying way. Orange trees are peculiarly liable to his attacks. He gnaws through and around the tap root as near to the surface as he can without disturbing it or in any way calling attention to his work, and not infrequently he continues his depredations until every root of any size is eaten off. This, of course, means the death of the tree.From the "salamander" point of view, however, the greatest food "bonanza" of all is a sweet-potato patch. "A 'possum up a 'simmon tree" or a "pig in clover" is not more alive to the delights and advantages of the situation. He not only eats all he can stuff, but invites his relatives and friends. Nor is this all. He has learned that in autumn sweet potatoes are liable to suddenly disappear, so he "takes time"—and the potatoes—"by the forelock," and packs them away in liberal measure in his burrow for winter use. So well understood are the ways and weaknesses of this underground marauder that any suspicious mound of earth in a sweet-potato field is the signal for an active campaign of extermination, which ends only in the intruder's flight or death.The "side pockets" of the "salamander" have already been referred to. They are undoubtedly a great convenience to their owner in carrying food and possibly other things. The capacity of these cheek pouches is about sufficient to give room for a pigeon's egg. They are, however, quite extensile, and can readily be made to hold three or four times this amount. Indeed, the skin and underlying connective tissue are so elastic that these pockets canreadily be turned inside out. It is claimed that the "salamander" employs his handlike fore feet to fill and empty these receptacles, using the right foot for the left pouch, andvice versa. A gentleman in Florida recently assured me that by a lucky thrust of a spade he once killed one of these mischievous rodents as he was in the very act of cutting off the roots of an orange tree. The cheek pouches of the culprit were filled with fragments of bark which he had gnawed off, doubtless to be stowed away in his burrow.Why, in a climate where there is almost no winter, where there is very little interruption to vegetable growth and the food supply is practically unlimited, provisions should thus be stored away is somewhat difficult to explain. It is not impossible that it is simply the survival of an ancestral habit acquired during the Glacial period. Or it may be that, like the dog, the "salamander" finds the flavor of old and well-seasoned food more to his taste. All that can be positively affirmed is that this wise little rodent does, occasionally at least, thuscachéhis food supplies.One of the most curious results of the existence and habits of this elusive little burrowing rodent is the development of a new and peculiar breed ofFelis domestica, called "salamander" cats. Ordinary tabbys do not understand or admire the ways ofGeomys bursarius, or, for some other good and sufficient feline reason, do not include him in their game list. The variety of cats in question, which, so far as the author knows, is confined to Florida, appears to have been developed spontaneously and with very little if any human agency, and is noted for its special skill in catching "salamanders," as well as a decided liking for the sport. Any Mrs. Tabby of this breed, especially if she has a family to provide for, is up betimes in the morning. The particular object of her pursuit is a remarkably early riser, and finishes his day's work before most people have begun theirs. So if there is a convenient fence around the grounds she proposes to hunt she mounts it with the first peep of day, and, with a sharp eye to landward, starts on her tour of observation. Any fresh pile of sand is closely scrutinized. The slightest movement there brings her to the mound with a spring, and she is at once crouching behind it; so when Mr. Geomys comes up in a big hurry with his next load of sand he finds somebody to meet him that is in a bigger hurry still, and so the unsuspecting victim is borne off in triumph.An estimable lady of the writer's acquaintance who owned one of these "salamander" cats, with a single juvenile pussy to provide for, kept an accurate account of the number of these rodents which she saw this industrious mother cat bring to her offspring in a single month. The number was thirty, and as the month happenedto be February this gave, of course, two more than a "salamander" a day.One other curious observed feature of this new variety of cats is their want of fecundity. The mother tabby seldom has more than one kitten at a birth. The writer once owned a fine female of this breed that scrupulously adhered to the traditional habits of her race.This particular pussy, like the rest of us, had her family troubles. Her one kitten—probably from its mixed parentage—was always inclined to rebel at the "salamander" diet. There was something amusing to a degree and suggestively human in the old cat's methods of discipline. When she had succeeded in catching a salamander she would always first bring it and lay it down before her mistress, to make sure of the praise and the petting. Then, with a motherly "meow," she would call her kitten. That frisky little youngster was always quite ready for his breakfast, but showed a decided preference for the "maternal font." Then the old cat would give him a "cuff" that would send him spinning. Then she would take up the "salamander" and put it down before her hopeful offspring with an air that said as plainly as words could do: "There, now! Eat that or go hungry!" Then her mother love would get the better of her and she would go to licking and petting her disobedient baby, and it would usually end in the kitten's having its own way and satisfying its hunger with milk from the "original package." By persistence and the force of example the old cat finally succeeded in accustoming her offspring to what she evidently thought the orthodox diet of her race.The writer is quite well aware of the intrinsic difficulties involved in the spontaneous development of any new variety of cats. Still, such branching of types has occurred in the past, and of course is possible now. When his attention was first called to the matter he was inclined to consider it merely an instance of animal education. A fact that came under his personal observation seems, however, hard to reconcile with this or any theory that does not concede the hereditary transmission of acquired habits and tastes.A kitten of the breed of cats in question was taken when very young and reared nearly a mile away from its mother. When grown it developed the same skill in hunting "salamanders," and the same love for the sport as that for which its mother was celebrated.Dogs, of course, have long been noted for the readiness with which acquired knowledge, habits, and tastes manifest and perpetuate themselves in hereditary forms. The setter, pointer, collie,St. Bernard, and other well-known breeds will occur to everyone as illustrating this psychic plasticity. Doubtless the cat brain is somewhat less impressible, but there would seem to be good reasons for including it among the educably variable types.

TYPICAL CRIMINALS.By SAMUEL G. SMITH, LL. D.If the question of a criminal type, defined by certain marks of a physical nature and emphasized by accompanying mental and moral characteristics, were confined to the technical speculations of a special craft of scientists, the public would have little interest in the spread of the doctrines of Cesare Lombroso and hisconfrèresin this country. When it is believed, however, that certain men and women are committed to prison or condemned to death not on account of crimes in any ethical sense, but because of spontaneous actions from vicious impulses beyond their control, the subject affects the administration of law, the theory of punishment, and the safety of society.Lombroso and the Italian school say that they have discovered a type of man who is born a criminal, and who may be recognized by a Mongolian face, abnormal features, ill-shaped ears, unsymmetrical skull, and various psychical peculiarities, which are the result of bad organization. This doctrine is illustrated by descriptions of criminals who have the abnormalities, and in the hands of skillful writers the case is made very plausible. The theory is in harmony with so much popular modern thought, which loosely interprets the doctrine of evolution by a crass materialism, that it has infected American prison literature, while it has never misled those men to whom practical experience has given the most right to have an opinion on the subject. The sense of personal responsibility is still the foundation of social order, and if in truth there is no such thing, the world is awake at last from its dream of morality;righteousness is resolved into heredity, structure, and habit; living is a mere puppet show, and the wreck of things impends. If Lombroso is right, modern scientific methods are sure to prove him so, and we shall have at last sound theories; but we shall have no world in which they can be used, for the dissolution predicted by Herbert Spencer will have come.Group 1, No. 1.Group 1, No. 2.Group 1, No. 3.Exceptional opportunities for the study of the abnormal classes in the institutions of this country and Europe have given me a personal interest in the question of the criminal type. I have discovered that the criminal anthropologists do not choose for comparison with the prison population their normal men from the ranks where the criminal classes are recruited. Blackwell's Island has no more peculiar inmates than abound in sections of New York near the East River; the residents of the Whitechapel district of London may be compared with the inmates of Pentonville, to the distinct credit of the latter; and the man in Roquette is no worse offin body than scores whom I have seen in certain localities south of the Seine. The fact is, no human body exists which is not in some respects abnormal. The number of abnormalities and their extent depend upon a variety of circumstances, among which are food, climate, occupation, and the incidents of birth itself, as well as the various forms of infantile disease. I will undertake to find enough physical peculiarities, in any locality, or among the members of any profession, to establish any physical theory which may be propounded.Group 2, No. 1 (forger).Group 2, No. 2.Group 2, No. 3.It occurred to me to try an experiment in a manner entirely different from the usual criminal researches. Having been very familiar with a certain prison for many years, I requested the warden, who is a very able man in his profession, to send me the photographs of ten or a dozen men whom he regarded as the most representative criminals in his population of some five hundred persons. The warden was not informed of the use I intended to makeof the material, and supposed it was for illustration in university class work. Later, he gave me the Bertillon measurements of the men, with an epitome of their history. A number of these men I have known for years. So far from this selection supporting the modern theory of a criminal type, it confutes it in a conspicuous manner. The abnormalities are slight, and there is as great a diversity among the men as could be asked. It must be remembered that these cases were selected by a shrewd and competent official, solely upon their criminal record, and not in the interests of any theory whatever.Of course, the men do not look well, but neither would any ordinary company of citizens if their heads were shaved and they were put in prison dress. I am always shocked by the changed appearance of the men after the prison transformation. Young embezzlers of elegant figure, who have moved in good society without a question, easily look the rascal behind prison walls.The first group are murderers. No. 1 murdered his daughter because she insisted upon going to a party against his wishes. He has the head of a philosopher. It was his first crime. It may be noted that tattooing is supposed to be common among criminals. This man is tattooed, but committed no crime until fifty years of age, and was a deputy sheriff for some years. No. 2 did not kill his victim, but the assault was murderous, and the escape from death was accidental. It is difficult to discuss the negro in crime without entering into racial and social questions beyond the present limits. No. 3 has a very good head, an excellent ear, and, barring the expression, a pleasing face. He has a life sentence for murder. He is the worst man in the prison. I have for years believed him to be insane. His family is criminal. His father murdered his mother in a brutal manner before the child's eyes, when No. 3 was only eight years old. He himself has committed several desperate assaults, growing out of his persistent mania of persecution. No. 3 is not morally responsible, and there are usually two or three such prisoners out of a thousand subjects.The second group are very diverse in structure and temperament, but have committed the same kind of crime. No. 1 is a confidence man and a forger. He is a crafty and an habitual criminal, has served terms in various prisons, is keen of intellect, well educated, has traveled in many countries, and is a citizen of the world.No. 2 is a confirmed forger, and has served several terms in prison for the same offense. He is a skillful bookkeeper, has an attractive manner, and as soon as he is out in the world secures employment and plans his next crime.No. 3 is a counterfeiter. His head is small, but of excellent shape, and he has rather a refined physical organization. His criminal record is bad, and he has served at least one term before for the same offense. His imagination, temperament, and vices would select him as a person who would be guilty of a very different and more fleshly kind of crime. The group is formed by the correlation of crime; they have nothing in common in physical organization.Group 3, No. 1.Group 3, No. 2.Group 3, No. 3.The third group are thieves. No. 1 is a confirmed criminal, and has served several terms in prison. He is the tallest man in the list. His head is "long" and well formed, and his features are regular. His expression indicates power of sustained thought, and his peculiar appearance is not due to his kind of crime, but to his habit of mind. He is a pessimist of the first rank, and hates the world, his fellow-men, and perhaps himself most of all. He will not work when at liberty, thinks that societyis totally depraved, and that war upon it is the only proper mission in life. He is pre-eminently the antisocial man.No. 2 is really a pleasing fellow. He is tender, sympathetic, and pious. Under proper circumstances he might have made an admirable Sunday-school superintendent. He is plausible, insinuating, and winning. In temperament, feeling, and social habit he is the complete antithesis to No. 1. He is a most dangerous criminal, and has a black and varied record.No. 3 is a man of lower grade of organization and habit, but he is a criminal by profession. He is an idle and worthless vagabond, but he is an accomplished thief. He makes an excellent prisoner, obedient to the rules, industrious, and seemingly anxious to improve. In fact, the prison furnishes his best environment, for it is only there that he is at peace with himself and his world.Contrasts, No. 1.Contrasts, No. 2.The last two men presented are contrasts. No. 1 is an accidental criminal. His previous history and character give strong grounds for the belief that, under pressure of want for the necessaries of life, he was led astray by a man older and stronger than himself. It is not likely that he would repeat his fault. No. 2, on the other hand, is a sexual pervert of the worst kind, whose case seems so hopeless that perpetual imprisonment is indicated as the only relief for him, and the only safety for society. Apart from the expression of his eyes, caused by an irregular focus, there is nothing marked about the face. The head is of a pronounced"broad" type, but, on the other hand, he comes from a province of Germany where that type is dominant.To complete the experiment, I submitted these portraits to a number of gentlemen, and to no two of them at the same time, for their opinions of the cases. The informal committee represented the different professions which might be expected to fit men for observation, for there was a lawyer, a physician, a railway president, a criminal judge, and a college professor. Each of them is eminent in his special field. The committee was manifestly handicapped by the shorn head, the prison dress, and the lack of the accessories of masculine ornamentation, such as collars and cravats. The committee was asked to name the crimes, and to group the men according to their criminal record. Each opinion differed from the other, and all were wide of the mark. The shrewd lawyer thought the accidental criminal "might be guilty of anything." It was only the college professor, the last man of the company from whom anything might properly be expected, who was able to select the worst two cases with the remark, "These men are degenerates." But while the committee was at work on the photographs the writer was at work on the committee, and actually discovered more anomalies of organization in these distinguished citizens than are apparent in the criminals. After this remark it is necessary to withhold their names, though some of them are men of national reputation.It is time to reassert with increasing emphasis the personal responsibility of the individual, and to insist upon the enthronement and guidance of conscience. There are certainly social and economic reasons for crime, some of which the writer has pointed out elsewhere, but the chief fact in human life is the power of self-determination. The chief causes of crime, outside of personal and moral degradation, are psychical and not physical. The reader of history can not fail to have noted that relation of prevalent ideas to conduct which is so conspicuous in human affairs. The scenes of blood and desolation characteristic of the French Revolution are directly traceable to the doctrines which prepared the way for anarchy, but not for rational freedom.We have had our attention directed to the contagion of suicide which has marked the last half decade. But Lecky tells us that suicide was made practically unknown in the civilized world by the spread of Christianity and its beliefs in the dignity and sanctity of man. The present contagion will disappear not as the result of food, or raiment, or houses, or any other material good, but by a revival of practical faith in the human soul and its capacity, in human righteousness and its obligation.

By SAMUEL G. SMITH, LL. D.

If the question of a criminal type, defined by certain marks of a physical nature and emphasized by accompanying mental and moral characteristics, were confined to the technical speculations of a special craft of scientists, the public would have little interest in the spread of the doctrines of Cesare Lombroso and hisconfrèresin this country. When it is believed, however, that certain men and women are committed to prison or condemned to death not on account of crimes in any ethical sense, but because of spontaneous actions from vicious impulses beyond their control, the subject affects the administration of law, the theory of punishment, and the safety of society.

Lombroso and the Italian school say that they have discovered a type of man who is born a criminal, and who may be recognized by a Mongolian face, abnormal features, ill-shaped ears, unsymmetrical skull, and various psychical peculiarities, which are the result of bad organization. This doctrine is illustrated by descriptions of criminals who have the abnormalities, and in the hands of skillful writers the case is made very plausible. The theory is in harmony with so much popular modern thought, which loosely interprets the doctrine of evolution by a crass materialism, that it has infected American prison literature, while it has never misled those men to whom practical experience has given the most right to have an opinion on the subject. The sense of personal responsibility is still the foundation of social order, and if in truth there is no such thing, the world is awake at last from its dream of morality;righteousness is resolved into heredity, structure, and habit; living is a mere puppet show, and the wreck of things impends. If Lombroso is right, modern scientific methods are sure to prove him so, and we shall have at last sound theories; but we shall have no world in which they can be used, for the dissolution predicted by Herbert Spencer will have come.

Group 1, No. 1.

Group 1, No. 1.

Group 1, No. 1.

Group 1, No. 2.

Group 1, No. 2.

Group 1, No. 2.

Group 1, No. 3.

Group 1, No. 3.

Group 1, No. 3.

Exceptional opportunities for the study of the abnormal classes in the institutions of this country and Europe have given me a personal interest in the question of the criminal type. I have discovered that the criminal anthropologists do not choose for comparison with the prison population their normal men from the ranks where the criminal classes are recruited. Blackwell's Island has no more peculiar inmates than abound in sections of New York near the East River; the residents of the Whitechapel district of London may be compared with the inmates of Pentonville, to the distinct credit of the latter; and the man in Roquette is no worse offin body than scores whom I have seen in certain localities south of the Seine. The fact is, no human body exists which is not in some respects abnormal. The number of abnormalities and their extent depend upon a variety of circumstances, among which are food, climate, occupation, and the incidents of birth itself, as well as the various forms of infantile disease. I will undertake to find enough physical peculiarities, in any locality, or among the members of any profession, to establish any physical theory which may be propounded.

Group 2, No. 1 (forger).

Group 2, No. 1 (forger).

Group 2, No. 1 (forger).

Group 2, No. 2.

Group 2, No. 2.

Group 2, No. 2.

Group 2, No. 3.

Group 2, No. 3.

Group 2, No. 3.

It occurred to me to try an experiment in a manner entirely different from the usual criminal researches. Having been very familiar with a certain prison for many years, I requested the warden, who is a very able man in his profession, to send me the photographs of ten or a dozen men whom he regarded as the most representative criminals in his population of some five hundred persons. The warden was not informed of the use I intended to makeof the material, and supposed it was for illustration in university class work. Later, he gave me the Bertillon measurements of the men, with an epitome of their history. A number of these men I have known for years. So far from this selection supporting the modern theory of a criminal type, it confutes it in a conspicuous manner. The abnormalities are slight, and there is as great a diversity among the men as could be asked. It must be remembered that these cases were selected by a shrewd and competent official, solely upon their criminal record, and not in the interests of any theory whatever.

Of course, the men do not look well, but neither would any ordinary company of citizens if their heads were shaved and they were put in prison dress. I am always shocked by the changed appearance of the men after the prison transformation. Young embezzlers of elegant figure, who have moved in good society without a question, easily look the rascal behind prison walls.

The first group are murderers. No. 1 murdered his daughter because she insisted upon going to a party against his wishes. He has the head of a philosopher. It was his first crime. It may be noted that tattooing is supposed to be common among criminals. This man is tattooed, but committed no crime until fifty years of age, and was a deputy sheriff for some years. No. 2 did not kill his victim, but the assault was murderous, and the escape from death was accidental. It is difficult to discuss the negro in crime without entering into racial and social questions beyond the present limits. No. 3 has a very good head, an excellent ear, and, barring the expression, a pleasing face. He has a life sentence for murder. He is the worst man in the prison. I have for years believed him to be insane. His family is criminal. His father murdered his mother in a brutal manner before the child's eyes, when No. 3 was only eight years old. He himself has committed several desperate assaults, growing out of his persistent mania of persecution. No. 3 is not morally responsible, and there are usually two or three such prisoners out of a thousand subjects.

The second group are very diverse in structure and temperament, but have committed the same kind of crime. No. 1 is a confidence man and a forger. He is a crafty and an habitual criminal, has served terms in various prisons, is keen of intellect, well educated, has traveled in many countries, and is a citizen of the world.

No. 2 is a confirmed forger, and has served several terms in prison for the same offense. He is a skillful bookkeeper, has an attractive manner, and as soon as he is out in the world secures employment and plans his next crime.

No. 3 is a counterfeiter. His head is small, but of excellent shape, and he has rather a refined physical organization. His criminal record is bad, and he has served at least one term before for the same offense. His imagination, temperament, and vices would select him as a person who would be guilty of a very different and more fleshly kind of crime. The group is formed by the correlation of crime; they have nothing in common in physical organization.

Group 3, No. 1.

Group 3, No. 1.

Group 3, No. 1.

Group 3, No. 2.

Group 3, No. 2.

Group 3, No. 2.

Group 3, No. 3.

Group 3, No. 3.

Group 3, No. 3.

The third group are thieves. No. 1 is a confirmed criminal, and has served several terms in prison. He is the tallest man in the list. His head is "long" and well formed, and his features are regular. His expression indicates power of sustained thought, and his peculiar appearance is not due to his kind of crime, but to his habit of mind. He is a pessimist of the first rank, and hates the world, his fellow-men, and perhaps himself most of all. He will not work when at liberty, thinks that societyis totally depraved, and that war upon it is the only proper mission in life. He is pre-eminently the antisocial man.

No. 2 is really a pleasing fellow. He is tender, sympathetic, and pious. Under proper circumstances he might have made an admirable Sunday-school superintendent. He is plausible, insinuating, and winning. In temperament, feeling, and social habit he is the complete antithesis to No. 1. He is a most dangerous criminal, and has a black and varied record.

No. 3 is a man of lower grade of organization and habit, but he is a criminal by profession. He is an idle and worthless vagabond, but he is an accomplished thief. He makes an excellent prisoner, obedient to the rules, industrious, and seemingly anxious to improve. In fact, the prison furnishes his best environment, for it is only there that he is at peace with himself and his world.

Contrasts, No. 1.

Contrasts, No. 1.

Contrasts, No. 1.

Contrasts, No. 2.

Contrasts, No. 2.

Contrasts, No. 2.

The last two men presented are contrasts. No. 1 is an accidental criminal. His previous history and character give strong grounds for the belief that, under pressure of want for the necessaries of life, he was led astray by a man older and stronger than himself. It is not likely that he would repeat his fault. No. 2, on the other hand, is a sexual pervert of the worst kind, whose case seems so hopeless that perpetual imprisonment is indicated as the only relief for him, and the only safety for society. Apart from the expression of his eyes, caused by an irregular focus, there is nothing marked about the face. The head is of a pronounced"broad" type, but, on the other hand, he comes from a province of Germany where that type is dominant.

To complete the experiment, I submitted these portraits to a number of gentlemen, and to no two of them at the same time, for their opinions of the cases. The informal committee represented the different professions which might be expected to fit men for observation, for there was a lawyer, a physician, a railway president, a criminal judge, and a college professor. Each of them is eminent in his special field. The committee was manifestly handicapped by the shorn head, the prison dress, and the lack of the accessories of masculine ornamentation, such as collars and cravats. The committee was asked to name the crimes, and to group the men according to their criminal record. Each opinion differed from the other, and all were wide of the mark. The shrewd lawyer thought the accidental criminal "might be guilty of anything." It was only the college professor, the last man of the company from whom anything might properly be expected, who was able to select the worst two cases with the remark, "These men are degenerates." But while the committee was at work on the photographs the writer was at work on the committee, and actually discovered more anomalies of organization in these distinguished citizens than are apparent in the criminals. After this remark it is necessary to withhold their names, though some of them are men of national reputation.

It is time to reassert with increasing emphasis the personal responsibility of the individual, and to insist upon the enthronement and guidance of conscience. There are certainly social and economic reasons for crime, some of which the writer has pointed out elsewhere, but the chief fact in human life is the power of self-determination. The chief causes of crime, outside of personal and moral degradation, are psychical and not physical. The reader of history can not fail to have noted that relation of prevalent ideas to conduct which is so conspicuous in human affairs. The scenes of blood and desolation characteristic of the French Revolution are directly traceable to the doctrines which prepared the way for anarchy, but not for rational freedom.

We have had our attention directed to the contagion of suicide which has marked the last half decade. But Lecky tells us that suicide was made practically unknown in the civilized world by the spread of Christianity and its beliefs in the dignity and sanctity of man. The present contagion will disappear not as the result of food, or raiment, or houses, or any other material good, but by a revival of practical faith in the human soul and its capacity, in human righteousness and its obligation.

A CENTURY OF GEOLOGY.By Prof. JOSEPH LE CONTE.[Concluded.]THE AGE OF THE EARTH.Until almost the beginning of the present century the general belief in all Christian countries was that not only the earth and man, but the whole cosmos, began to exist about six thousand to seven thousand years ago; furthermore, that all was made at once without natural process, and have remained substantially unchanged ever since. This is the old doctrine of the supernatural origin and substantial permanency of the earth and its features. Among intelligent and especially scientific men this doctrine, even in the eighteenth century, began to be questioned, although not publicly; for in 1751 Buffon was compelled by the Sorbonne to retract certain views concerning the age of the earth, published in his Natural History in 1749.[1]Remnants of the old belief lingered even into the early part of the present century, and may even yet be found hiding away in some of the remote corners of civilized countries. But with the birth of geology, and especially through the work of Hutton in Scotland, Cuvier in France, and William Smith in England, the much greater—the inconceivably great—antiquity of the earth and the origin of its present forms, by gradual changes which are still going on, was generally acknowledged. Indeed, as already said, this is the fundamental idea of geology, without which it could not exist as a science.Geology has its own measures of time—in eras, periods, epochs, ages, etc.—but it is natural and right that we should desire more accurate estimates by familiar standards. How old, then, is the earth, especially the inhabited earth, in years? Geologists have attempted to answer this question by estimates based on the rates of sedimentation and erosion, or else on the rate of changes of organic forms by struggle for life and survival of the fittest. Physicists have attempted to answer the same question by calculations based on known laws of dissipation of energy in a cooling body, such as the sun or the earth. The results of the two methods differ widely. The estimates of the geologists are enormous, and growing ever greater as the conditions of the problem are better understood. Nothing less than several hundred million years will serve his purpose. The estimates of the physicists are much more moderate, and apparently growing less with each revision. The latest results of King and Kelvin give only twenty to thirty millions.[2]This the geologist declares is absurdly inadequate. He can not work freely in so narrow a space—he has not elbow room.The subject is still discussed very earnestly, but with little hope of definite conclusion. One thing, however, must be remarked. Both parties assume—the geologist tacitly, the physicist avowedly—the nebular hypothesis of the origin of the solar system, and therefore the early incandescentfluidcondition of the earth as the basis of all his reasonings. Now, while this is probably the most reasonable view, it is not so certain that it can be made the basis of complex mathematical calculation. There is a possible alternative theory—viz., the meteoric theory—which is coming more and more into favor. According to this view, the planets may have been formed by aggregation of meteoric swarms, and the heat of the earth produced by the collision of the meteors in the act of aggregation. According to the one view (the nebular), the heat is all primal, and the earth has been only losing heat all the time. According to the other, the aggregation and the heating are both gradual, and may have continued even since the earth was inhabited. According to the one, the spendthrift earth wasted nearly all its energy before it became habitable or even a crust was formed, and therefore the habitable period must be comparatively short. According to the other, the cooling and the heating, the expenditure and the income, were going on at the same time, and therefore the process may have lasted much longer.The subject is much too complex to be discussed here. Suffice it to say that on this latter view not only the age of the earth, but many other fundamental problems of dynamical geology, would have to be recalculated. The solution of these great questions must also be left to the next century. In the meantime we simply draw attention to two very recent papers on the subject—viz., that of Lord Kelvin,[3]and criticism of the same by Chamberlin.[4]ANTIQUITY AND ORIGIN OF MAN.Even after the great antiquity of the earth and its origin and development by a natural process were generally accepted, still man was believed, even by the most competent geologists, to have appeared only a few thousand years ago. The change from this old view took place in the last half of the present century—viz., about 1859—and, coming almost simultaneously with the publication of Darwin's Origin of Species, prepared the scientific mindfor entertaining, at least, the idea of man's origin by a natural process of evolution.Evidences of the work of man—flint implements, associated with the bones of extinct animals and therefore showing much greater age than usually accepted—had been reported from time to time, notably those found in the river Somme by Boucher de Perthes. But the prejudice against such antiquity was so strong that geologists with one accord, and without examination, pooh-poohed all such evidence as incredible. It was Sir Joseph Prestwich who, in 1859, first examined them carefully, and published the proofs that convinced the geological world that early man was indeed contemporaneous with the extinct animals of the Quaternary period, and that the time must have been many times greater than usually allowed.[5]Since that time confirmatory evidence has accumulated, and the earliest appearance of man has been pushed back first to the late glacial, then to the middle glacial, and finally, in Mr. Prestwich's Plateau Gravels, to the early glacial or possibly preglacial times.Still, however, in every case earliest man was unmistakably man. No links connecting him with other anthropoids had been found. Very recently, however, have been found, by Du Bois, in Java, the skull, teeth, and thigh bone of what seems to be a veritablemissinglink, named by the discovererPithecanthropus erectus. The only question that seems to remain is whether it should be regarded as an ape more manlike than any known ape, or a man more apelike than any yet discovered. The age of this creature was either latest Pliocene or earliest Quaternary.BREAKS IN THE GEOLOGICAL RECORD AND THEIR SIGNIFICANCE.From the earliest times of geologic study there have been observed unconformities of the strata and corresponding changes in the fossil contents. Some of these unconformities are local and the changes of organic forms inconsiderable, but sometimes they are of wider extent and the changes of life system greater. In some cases the unconformity is universal or nearly so, and in such cases we find a complete and apparently sudden change in the fossil contents. It was these universal breaks that gave rise to the belief in the occurrence of violent catastrophes and corresponding wholesale exterminations and re-creations of faunas and floras.It is evident, however, on a little reflection, that every such unconformity indicates a land period at the place observed, and therefore a time unrecorded in strata and fossils at that place—i. e.,a lost interval—certain leaves missing from the book of time. And if the unconformity be widespread, the lost interval is correspondingly great. It is therefore probable that change of species went on slowly and uniformly all the time, although not recorded at that place. Intermediate strata may be and often are found elsewhere, and the supposed lost interval filled. The record was continuous and the changes uniform, but the record is not all found in one place. The leaves of the book of Time are scattered here and there, and it is the duty of the geologist to gather and arrange them in proper order, so that the record may read continuously.This is the uniformitarian view, and is undoubtedly far truer than the catastrophic. But the objection to it is that in the case of very widespread unconformities, such as occurred several times in the history of the earth, the changes of organisms are so great that if the rate of change was uniform the lost interval must have been equal to all the rest of the history put together. Therefore we are compelled to admit that in the history of the earth there have been periods of comparative quiet (not fixedness) during which evolutionary changes were slow and regular, and periods of revolution during which the changes were much more rapid, but not catastrophic. This is exactly what we ought to expect on the idea of gradual evolution of earth forms by secular cooling, for in the gradual contraction of the earth there must come times of general readjustment of the crust to the shrinking nucleus. These readjustments would cause great changes in physical geography and climate, and corresponding rapid changes in organic forms. In addition to this, the changes in physical geography and climate would cause extensive migrations of species, and therefore minglings of faunas and floras, severer struggles of competing forms, and more rapid advance in the steps of evolution. Among these changes of organic forms there would arise and have arisennew dominant types, and these, in their turn, would compel new adjustment of relations and still further hasten the steps of evolution. Such changes, whether geographic, or climatic, or organic, wouldnotbe simultaneous all over the earth, but propagated from place to place, until quiet was re-established and a new period of comparative stability and prosperity commenced.This view is a complete reconciliation of catastrophism and uniformitarianism, and is far more rational than either extreme.Critical Periods in the History of the Earth.—Such periods of rapid change may well be calledcritical periods or revolutions. They are marked by several characteristics: (1) By widespread oscillations of the earth's crust, and therefore by almost universal unconformities. (2) By widespread changes of physical geography,and therefore by great changes in climate. (3) By great and widespread changes in organic forms, produced partly by the physical changes and partly by the extensive migrations. (4) By the evolution of new dominant types, which are also the cause of extensive changes in species. (5) Among the physical changes occurring at these times is the formation of great mountain ranges. The names of these critical periods or revolutions are often taken from the mountain range which form their most conspicuous features.There have been at least four of these critical periods, or periods of greatest change: (1) The pre-Cambrian or Laurentide revolution; (2) the post-Paleozoic or Appalachian; (3) the post-Cretaceous or Rocky Mountain; (4) the post-Tertiary or glacial revolution.Now, as these critical periods separate the primary divisions of time—the eras—it follows that thePresent—the Age of Man—is an era. It may be called thePsychozoic Era. These views have been mainly advocated by the writer of this sketch, but I believe that, with perhaps some modification in statement, they would be accepted by most geologists as a permanent acquisition of science.[6]GEOLOGICAL CLIMATES.Attention was first drawn to this subject by the apparently unique phenomena of the Glacial epoch.For nearly a century past Alpine glaciers, their structure, their mysterious motion, and their characteristic erosive effects, have excited the keenest interest of scientific men. But until about 1840 the interest was purely physical. It was Louis Agassiz who first recognized ice as a greatgeological agent. He had long been familiar with the characteristic marks of glacial action, and with the fact that Alpine glaciers were far more extensive formerly than now, and had, moreover, conceived the idea of a Glacial epoch—an ice age in the history of the earth. With this idea in his mind, in 1840 he visited England, and found the marks of glaciers all over the higher regions of England and Scotland. He boldly announced that the whole of northern Europe was once covered with a universal ice sheet. A few years later he came to the United States, and found the tracks of glaciers everywhere, and again astonished the world by asserting that the whole northern part of the North American continent was modeled by a moving ice sheet. This idea has been confirmed by all subsequent investigation, especially here in America.But it would be strange, indeed, if the cold of the Glacial epoch should be absolutely unique. Attention was soon called to similar marks in rocks of other geological periods, especially in the Permian of the southern hemisphere. This opened up the general question ofgeological climates and their causes.Perhaps no subject connected with the physics of the earth is more obscure and difficult than this. The facts, as far as we know them, are briefly as follows: (1) All the evidence we have point to a high, even an ultra-tropical, climate in early geological times; (2) all the evidence points to a uniform distribution of this early high temperature, so that the zonal arrangement of temperatures, such as characterizes present climates, did not then exist; (3) temperature zones were apparently first introduced in the late Mesozoic (Cretaceous) or early Tertiary times, and during the Tertiary the colder zones were successively added, until at the end there was formed a polar ice-cap as now.Thus far all might be explained by progressive cooling of the earth and progressive clearing of the atmosphere of its excess CO2and aqueous vapor. But (4) from time to time (i. e., at critical periods) there occurred great oscillations of temperature, the last and probably the greatest of these being the Glacial period. The cause of these great oscillations of temperature, and especially the cause of the glacial climate, is one of the most interesting and yet one of the obscurest and therefore one of most hotly disputed points in geology. Indeed, the subject has entered into the region of almost profitless discussion. We must wait for further light and for another century. Only one remark seems called for here. It is in accordance with a true scientific method that we should exhaust terrestrial causes before we resort to cosmical. The most usual terrestrial cause invoked is the oscillation of the earth's crust. But recently Chamberlin, in a most suggestive paper,[7]has invoked oscillations in the composition of the atmosphere, especially in its proportion of CO2, as theimmediatecause, although this in turn is due to oscillations of the earth's crust.THE NEW GEOLOGY.Heretofore the geological history of the earth has been studied only in the record of stratified rocks and their contained fossils. But in every place there have been land-periods in which, of course, erosion took the place of sedimentation. This kind of record is very imperfect, because there are no fossils. Until recently no account was taken of these erosion-periods except as breaks of indefinite length in the record—as lost intervals. But now, and mainly through the work of American geologists, interpretation of these erosion-periods has fairly commenced, and so important has this new departure in the study of geology seemed to some that it has been hailed as a new era in geology, connecting it more closely with geography. Heretoforeformerland periods were recognized by unconformities and the amount of time by the degree of change in the fossils, but now the amount of time is estimated inexistingland surfaces by topographicformsalone. This idea was introduced into geology by Major J. W. Powell, and has been applied with success by William Morris Davis, W. J. McGee, and others.The principle is this: Land surface subject to erosion and standing still is finally cut down to gently sweeping curves, with low, rounded divides and broad, shallow troughs. Such a surface is called by Davis a Peneplain. Such a peneplain is characteristic of old topography. If such a surface be again lifted to higher level, the rivers again dissect it by ravines, which are deep and narrow in proportion to the amount and rate of the uplift. If the land again remains steady, the sharply dissected surface is again slowly smoothed out to the gentle curves of a peneplain. If, on the contrary, the surface be depressed, the rivers fill up the channels with sediment which, on re-elevation, is again dissected. Thus the wholeontogenyof land surfaces have been studied out, so that their age may be recognized at sight.Thus, while heretofore the more recent movements of the crust were supposed to be readable only on coast lines and by means of the old sea strands, now we read with equal ease the movements of the interior by means of the physiognomy of the topography, and especially the structure of the river channels. Moreover, while heretofore the history of the earth was supposed to be recorded only in stratified rock and their contained fossils, now we find that recent history is recorded and may be read also in the general topography of the land surfaces. Geography is studied no longer as mere description of earth forms, but also as to the causes of these forms, no longer as to present forms, but also as to the history of their becoming. Thus geography, by its alliance with geology, has become a truly scientific study, and as such is now introduced into the colleges and universities. It is this alliance with geology which has caused the dry bones of geographic facts to live. It is this which has created a soul under the dry "ribs of this death." This mode of study of the history of the earth has just commenced. How much will come of it is yet to be shown in the next century.In this connection it is interesting to trace the effect of environment on geological reasonings in different countries. Heretofore, especially in England, what we have called peneplains were usually attributed to marine denudation—i. e., to cutting back of a coast line by constant action of the waves, leaving behind a level submarine plateau, which is afterward raised above sea level and dissected by rivers. American geologists, on the contrary, are apt to regard such level surfaces as the final result of aërial degradation or a base level of rain and river erosion. The same difference is seen in the interpretation of glacial phenomena. Until recently, English geologists were inclined to attribute more to iceberg, Americans more to land ice. Again, in England coast scenery is apt to be attributed mainly to the ravages of the sea, while in America we attribute more to land erosion combined with subsidence of the coast line. In a word, in the tight little sea-girt island of Great Britain, where the ravages of the sea are yearly making such serious inroads upon the area of the land, it is natural that the power of the sea should strongly affect the imagination and impress itself on geological theories, and tend perhaps to exaggeration of sea agencies, while the broad features of the American continent and the evidences of prodigious erosion in comparatively recent geological time tend to the exaggeration of erosive agency of rain and rivers. These two must be duly weighed and each given its right proportion in the work of earth sculpture.PALEONTOLOGY.Paleontology at first attracted attention mainly by the new and strange life forms which it revealed. It is the interest of a zoölogical garden. This interest is of course perennial, but can hardly be called scientific. Geology at first was a kind of wonder book.Next fossils, especially marine shells, were studied as characteristic forms denoting strata of a particular age. They were coins by which we identify certain periods of history. They were "medals of creation." It was in this way chiefly that William Smith, the founder of English stratigraphic geology, used them. It was in this way that Lyell and all the older geologists, until the advent of evolution, were chiefly interested in them.It was Cuvier, the great zoölogist and comparative anatomist, who, in the beginning of the present century, first studied fossils, especially mammalian fossils, from thezoölogicalpoint of view—i. e., as to their affinities with existing animals. Cuvier's studies of the vertebrates of the Paris basin may be said to have laid the foundation of scientific paleontology from this point of view.Thenceforward two views of paleontology and two modes of study gradually differentiated from one another, the one zoölogical, the other geological. In the one case we study fossils intaxonomicgroups—i. e., as species, genera, families, orders, etc.—and trace the gradual evolution of each of these from generalized forms to their specialized outcomes, completing as far as possible the genetic chain through all time. In the other we study fossils infaunal groups, as successive geological faunas, and the geographic diversity in each geological period—i. e., the evolution of geologic faunas and the causes of geographic diversity in each. In a word, we study the laws of distribution of faunas in time geologically and in space geographically, and the causes of these laws in each case. The first is strictly a branch of zoölogy and botany, and we leave it to these specialists. The second alone belongs properly to geology. In this purely geologic paleontology, as seen from its scope given above, there are many questions of widest philosophical interest which are only now attracting the attention they deserve. I only touch lightly two which have been brought forward in these very last years of the century.I.General Laws of Faunal Evolution.—The evolution of the organic kingdom from this strictly geological point of view may be briefly formulated as follows:1. Throughout all geological time there has been a general movement upward and onward, as it were abreast, everywhere. If this were all, there would be only geological progress, but no geographical diversity. Geological history would be the same everywhere. A time horizon would be easily determined by identity of fossil species. This we know is not true. Therefore there are other elements besides this.2. In different countries, isolated from one another and under different conditions, evolution takes differentdirectionsand differentrates, producing geographical diversity in each geological period. This diversity increases with time as long as the isolation continues. If this were all, the geographical diversity by continued divergence would have become so great that it would be impossible even approximately to determine any geological horizon. The history of each country must be studied for itself. A general history of the earth would be impossible. But this also is not true. There is therefore still another element.3. From time to time, at long intervals—i. e.,critical periods—there are widespread readjustments of the crust to internal strain, determining changes of physical geography and of climate, and therefore wide migrations of species with mingling and conflict of faunas. This would produce more rapid movement of evolution,but at the same time more or less complete obliteration of geographical diversity.4. After these periods of migrations and minglings there would be re-isolations in new localities, and the process of diversification would recommence and increase as long as the isolation continues.The last of these critical periods of migrations and minglings and struggles for life among competing species was theGlacial epochor ice age. Therefore the present geographical distribution of species was largely determined by the extensive migrations of that time.II.Cosmopolitan and Provincial Faunas.—There are apparently in the history of the earth periods of widespread or cosmopolitan faunas, alternating with localized or provincial faunas. The cosmopolitan periods are usually times of prevalence of limestones or organic sediments, and the fossils are very abundant. The provincial periods are usually characterized by sandstones and shales or mechanical sediments, and are comparatively poor in fossils. Moreover, it is believed that the cosmopolitan limestone periods are oceanic periods—i. e., periods of wide oceans and lower and smaller continents and little erosive activity, while the sandstone periods, characterized by provincial faunas, are periods of higher and larger continents, and therefore of great erosion and abundant mechanical sedimentation.Now, according to Chamberlin, these remarkable alternations are due to oscillations of the crust, in which the continents are alternately lifted and depressed. It must be remembered that abyssal faunas are almost unknown among fossils. This is the necessary result of substantial permanency of oceanic basins. The whole geological record is in shallow-water faunas. These shallow waters are along continental shore lines and in interior continental seas. According to Chamberlin again, during a period of continental depression all the flat continental margins are submerged, forming broad submarine platforms, and the lower interior portions of the continents are also submerged, forming wide and shallow interior seas. Under these conditions continental waste, and therefore sand and clay sediments, are reduced to a minimum. Life, animal and vegetal, abounds, and therefore much limestone is formed. The oceans are widely connected with one another, and therefore the faunas are widespread or cosmopolitan. During the period of elevation, on the contrary, the continents are extended to the margin of the deep oceanic basins, the broad, shallow submarine platforms are abolished, the interior seas are also abolished, the shallow-water areas are reduced to isolated bays, and their faunas are peculiar or provincial. Also, elevated and enlarged continentsgive rise to maximum erosion, and therefore abundant sediments of sandstone and clay, and comparative poverty of life and therefore of limestone. Chamberlin also gives reasons why the oceanic periods should be warm, humid, equable in temperature, and the atmosphere highly charged with CO2, and therefore highly favorable to abundant life, both vegetal and animal, while land periods would be drier and cooler, the atmosphere deficient in CO2, and therefore cold from that cause and in many ways unfavorable to abundant life.These extremely interesting views, however, must be regarded as still on trial, as a provisional hypothesis to be sifted, confirmed, or rejected, or in any case modified, in the next century.Lastly, it is interesting to note the ever-increasing part taken by American geologists in the advance of this science. There has been through the century a gradual movement of what might be called the center of gravity of geological research westward, until now, at its end, the most productive activity is here in America. This is not due to any superiority of American geologists, but to the superiority of their opportunities. Dana has well said thatAmerica is the type continent of the world. All geological problems are expressed here with a clearness and a simplicity not found elsewhere. We must add to this the comparative recency of geological study in this rich field. In Europe the simpler and broader problems are already worked out, and all that remain are difficult problems requiring much time. In America, on the contrary, not only are all problems expressed in simpler terms, but many great and broad problems are still awaiting solution. For these reasons the greatest activity in research, and the most rapid advance during the next century, will probably be here in America.

By Prof. JOSEPH LE CONTE.

[Concluded.]

THE AGE OF THE EARTH.

Until almost the beginning of the present century the general belief in all Christian countries was that not only the earth and man, but the whole cosmos, began to exist about six thousand to seven thousand years ago; furthermore, that all was made at once without natural process, and have remained substantially unchanged ever since. This is the old doctrine of the supernatural origin and substantial permanency of the earth and its features. Among intelligent and especially scientific men this doctrine, even in the eighteenth century, began to be questioned, although not publicly; for in 1751 Buffon was compelled by the Sorbonne to retract certain views concerning the age of the earth, published in his Natural History in 1749.[1]Remnants of the old belief lingered even into the early part of the present century, and may even yet be found hiding away in some of the remote corners of civilized countries. But with the birth of geology, and especially through the work of Hutton in Scotland, Cuvier in France, and William Smith in England, the much greater—the inconceivably great—antiquity of the earth and the origin of its present forms, by gradual changes which are still going on, was generally acknowledged. Indeed, as already said, this is the fundamental idea of geology, without which it could not exist as a science.

Geology has its own measures of time—in eras, periods, epochs, ages, etc.—but it is natural and right that we should desire more accurate estimates by familiar standards. How old, then, is the earth, especially the inhabited earth, in years? Geologists have attempted to answer this question by estimates based on the rates of sedimentation and erosion, or else on the rate of changes of organic forms by struggle for life and survival of the fittest. Physicists have attempted to answer the same question by calculations based on known laws of dissipation of energy in a cooling body, such as the sun or the earth. The results of the two methods differ widely. The estimates of the geologists are enormous, and growing ever greater as the conditions of the problem are better understood. Nothing less than several hundred million years will serve his purpose. The estimates of the physicists are much more moderate, and apparently growing less with each revision. The latest results of King and Kelvin give only twenty to thirty millions.[2]This the geologist declares is absurdly inadequate. He can not work freely in so narrow a space—he has not elbow room.

The subject is still discussed very earnestly, but with little hope of definite conclusion. One thing, however, must be remarked. Both parties assume—the geologist tacitly, the physicist avowedly—the nebular hypothesis of the origin of the solar system, and therefore the early incandescentfluidcondition of the earth as the basis of all his reasonings. Now, while this is probably the most reasonable view, it is not so certain that it can be made the basis of complex mathematical calculation. There is a possible alternative theory—viz., the meteoric theory—which is coming more and more into favor. According to this view, the planets may have been formed by aggregation of meteoric swarms, and the heat of the earth produced by the collision of the meteors in the act of aggregation. According to the one view (the nebular), the heat is all primal, and the earth has been only losing heat all the time. According to the other, the aggregation and the heating are both gradual, and may have continued even since the earth was inhabited. According to the one, the spendthrift earth wasted nearly all its energy before it became habitable or even a crust was formed, and therefore the habitable period must be comparatively short. According to the other, the cooling and the heating, the expenditure and the income, were going on at the same time, and therefore the process may have lasted much longer.

The subject is much too complex to be discussed here. Suffice it to say that on this latter view not only the age of the earth, but many other fundamental problems of dynamical geology, would have to be recalculated. The solution of these great questions must also be left to the next century. In the meantime we simply draw attention to two very recent papers on the subject—viz., that of Lord Kelvin,[3]and criticism of the same by Chamberlin.[4]

Even after the great antiquity of the earth and its origin and development by a natural process were generally accepted, still man was believed, even by the most competent geologists, to have appeared only a few thousand years ago. The change from this old view took place in the last half of the present century—viz., about 1859—and, coming almost simultaneously with the publication of Darwin's Origin of Species, prepared the scientific mindfor entertaining, at least, the idea of man's origin by a natural process of evolution.

Evidences of the work of man—flint implements, associated with the bones of extinct animals and therefore showing much greater age than usually accepted—had been reported from time to time, notably those found in the river Somme by Boucher de Perthes. But the prejudice against such antiquity was so strong that geologists with one accord, and without examination, pooh-poohed all such evidence as incredible. It was Sir Joseph Prestwich who, in 1859, first examined them carefully, and published the proofs that convinced the geological world that early man was indeed contemporaneous with the extinct animals of the Quaternary period, and that the time must have been many times greater than usually allowed.[5]

Since that time confirmatory evidence has accumulated, and the earliest appearance of man has been pushed back first to the late glacial, then to the middle glacial, and finally, in Mr. Prestwich's Plateau Gravels, to the early glacial or possibly preglacial times.

Still, however, in every case earliest man was unmistakably man. No links connecting him with other anthropoids had been found. Very recently, however, have been found, by Du Bois, in Java, the skull, teeth, and thigh bone of what seems to be a veritablemissinglink, named by the discovererPithecanthropus erectus. The only question that seems to remain is whether it should be regarded as an ape more manlike than any known ape, or a man more apelike than any yet discovered. The age of this creature was either latest Pliocene or earliest Quaternary.

From the earliest times of geologic study there have been observed unconformities of the strata and corresponding changes in the fossil contents. Some of these unconformities are local and the changes of organic forms inconsiderable, but sometimes they are of wider extent and the changes of life system greater. In some cases the unconformity is universal or nearly so, and in such cases we find a complete and apparently sudden change in the fossil contents. It was these universal breaks that gave rise to the belief in the occurrence of violent catastrophes and corresponding wholesale exterminations and re-creations of faunas and floras.

It is evident, however, on a little reflection, that every such unconformity indicates a land period at the place observed, and therefore a time unrecorded in strata and fossils at that place—i. e.,a lost interval—certain leaves missing from the book of time. And if the unconformity be widespread, the lost interval is correspondingly great. It is therefore probable that change of species went on slowly and uniformly all the time, although not recorded at that place. Intermediate strata may be and often are found elsewhere, and the supposed lost interval filled. The record was continuous and the changes uniform, but the record is not all found in one place. The leaves of the book of Time are scattered here and there, and it is the duty of the geologist to gather and arrange them in proper order, so that the record may read continuously.

This is the uniformitarian view, and is undoubtedly far truer than the catastrophic. But the objection to it is that in the case of very widespread unconformities, such as occurred several times in the history of the earth, the changes of organisms are so great that if the rate of change was uniform the lost interval must have been equal to all the rest of the history put together. Therefore we are compelled to admit that in the history of the earth there have been periods of comparative quiet (not fixedness) during which evolutionary changes were slow and regular, and periods of revolution during which the changes were much more rapid, but not catastrophic. This is exactly what we ought to expect on the idea of gradual evolution of earth forms by secular cooling, for in the gradual contraction of the earth there must come times of general readjustment of the crust to the shrinking nucleus. These readjustments would cause great changes in physical geography and climate, and corresponding rapid changes in organic forms. In addition to this, the changes in physical geography and climate would cause extensive migrations of species, and therefore minglings of faunas and floras, severer struggles of competing forms, and more rapid advance in the steps of evolution. Among these changes of organic forms there would arise and have arisennew dominant types, and these, in their turn, would compel new adjustment of relations and still further hasten the steps of evolution. Such changes, whether geographic, or climatic, or organic, wouldnotbe simultaneous all over the earth, but propagated from place to place, until quiet was re-established and a new period of comparative stability and prosperity commenced.

This view is a complete reconciliation of catastrophism and uniformitarianism, and is far more rational than either extreme.

Critical Periods in the History of the Earth.—Such periods of rapid change may well be calledcritical periods or revolutions. They are marked by several characteristics: (1) By widespread oscillations of the earth's crust, and therefore by almost universal unconformities. (2) By widespread changes of physical geography,and therefore by great changes in climate. (3) By great and widespread changes in organic forms, produced partly by the physical changes and partly by the extensive migrations. (4) By the evolution of new dominant types, which are also the cause of extensive changes in species. (5) Among the physical changes occurring at these times is the formation of great mountain ranges. The names of these critical periods or revolutions are often taken from the mountain range which form their most conspicuous features.

There have been at least four of these critical periods, or periods of greatest change: (1) The pre-Cambrian or Laurentide revolution; (2) the post-Paleozoic or Appalachian; (3) the post-Cretaceous or Rocky Mountain; (4) the post-Tertiary or glacial revolution.

Now, as these critical periods separate the primary divisions of time—the eras—it follows that thePresent—the Age of Man—is an era. It may be called thePsychozoic Era. These views have been mainly advocated by the writer of this sketch, but I believe that, with perhaps some modification in statement, they would be accepted by most geologists as a permanent acquisition of science.[6]

Attention was first drawn to this subject by the apparently unique phenomena of the Glacial epoch.

For nearly a century past Alpine glaciers, their structure, their mysterious motion, and their characteristic erosive effects, have excited the keenest interest of scientific men. But until about 1840 the interest was purely physical. It was Louis Agassiz who first recognized ice as a greatgeological agent. He had long been familiar with the characteristic marks of glacial action, and with the fact that Alpine glaciers were far more extensive formerly than now, and had, moreover, conceived the idea of a Glacial epoch—an ice age in the history of the earth. With this idea in his mind, in 1840 he visited England, and found the marks of glaciers all over the higher regions of England and Scotland. He boldly announced that the whole of northern Europe was once covered with a universal ice sheet. A few years later he came to the United States, and found the tracks of glaciers everywhere, and again astonished the world by asserting that the whole northern part of the North American continent was modeled by a moving ice sheet. This idea has been confirmed by all subsequent investigation, especially here in America.

But it would be strange, indeed, if the cold of the Glacial epoch should be absolutely unique. Attention was soon called to similar marks in rocks of other geological periods, especially in the Permian of the southern hemisphere. This opened up the general question ofgeological climates and their causes.

Perhaps no subject connected with the physics of the earth is more obscure and difficult than this. The facts, as far as we know them, are briefly as follows: (1) All the evidence we have point to a high, even an ultra-tropical, climate in early geological times; (2) all the evidence points to a uniform distribution of this early high temperature, so that the zonal arrangement of temperatures, such as characterizes present climates, did not then exist; (3) temperature zones were apparently first introduced in the late Mesozoic (Cretaceous) or early Tertiary times, and during the Tertiary the colder zones were successively added, until at the end there was formed a polar ice-cap as now.

Thus far all might be explained by progressive cooling of the earth and progressive clearing of the atmosphere of its excess CO2and aqueous vapor. But (4) from time to time (i. e., at critical periods) there occurred great oscillations of temperature, the last and probably the greatest of these being the Glacial period. The cause of these great oscillations of temperature, and especially the cause of the glacial climate, is one of the most interesting and yet one of the obscurest and therefore one of most hotly disputed points in geology. Indeed, the subject has entered into the region of almost profitless discussion. We must wait for further light and for another century. Only one remark seems called for here. It is in accordance with a true scientific method that we should exhaust terrestrial causes before we resort to cosmical. The most usual terrestrial cause invoked is the oscillation of the earth's crust. But recently Chamberlin, in a most suggestive paper,[7]has invoked oscillations in the composition of the atmosphere, especially in its proportion of CO2, as theimmediatecause, although this in turn is due to oscillations of the earth's crust.

Heretofore the geological history of the earth has been studied only in the record of stratified rocks and their contained fossils. But in every place there have been land-periods in which, of course, erosion took the place of sedimentation. This kind of record is very imperfect, because there are no fossils. Until recently no account was taken of these erosion-periods except as breaks of indefinite length in the record—as lost intervals. But now, and mainly through the work of American geologists, interpretation of these erosion-periods has fairly commenced, and so important has this new departure in the study of geology seemed to some that it has been hailed as a new era in geology, connecting it more closely with geography. Heretoforeformerland periods were recognized by unconformities and the amount of time by the degree of change in the fossils, but now the amount of time is estimated inexistingland surfaces by topographicformsalone. This idea was introduced into geology by Major J. W. Powell, and has been applied with success by William Morris Davis, W. J. McGee, and others.

The principle is this: Land surface subject to erosion and standing still is finally cut down to gently sweeping curves, with low, rounded divides and broad, shallow troughs. Such a surface is called by Davis a Peneplain. Such a peneplain is characteristic of old topography. If such a surface be again lifted to higher level, the rivers again dissect it by ravines, which are deep and narrow in proportion to the amount and rate of the uplift. If the land again remains steady, the sharply dissected surface is again slowly smoothed out to the gentle curves of a peneplain. If, on the contrary, the surface be depressed, the rivers fill up the channels with sediment which, on re-elevation, is again dissected. Thus the wholeontogenyof land surfaces have been studied out, so that their age may be recognized at sight.

Thus, while heretofore the more recent movements of the crust were supposed to be readable only on coast lines and by means of the old sea strands, now we read with equal ease the movements of the interior by means of the physiognomy of the topography, and especially the structure of the river channels. Moreover, while heretofore the history of the earth was supposed to be recorded only in stratified rock and their contained fossils, now we find that recent history is recorded and may be read also in the general topography of the land surfaces. Geography is studied no longer as mere description of earth forms, but also as to the causes of these forms, no longer as to present forms, but also as to the history of their becoming. Thus geography, by its alliance with geology, has become a truly scientific study, and as such is now introduced into the colleges and universities. It is this alliance with geology which has caused the dry bones of geographic facts to live. It is this which has created a soul under the dry "ribs of this death." This mode of study of the history of the earth has just commenced. How much will come of it is yet to be shown in the next century.

In this connection it is interesting to trace the effect of environment on geological reasonings in different countries. Heretofore, especially in England, what we have called peneplains were usually attributed to marine denudation—i. e., to cutting back of a coast line by constant action of the waves, leaving behind a level submarine plateau, which is afterward raised above sea level and dissected by rivers. American geologists, on the contrary, are apt to regard such level surfaces as the final result of aërial degradation or a base level of rain and river erosion. The same difference is seen in the interpretation of glacial phenomena. Until recently, English geologists were inclined to attribute more to iceberg, Americans more to land ice. Again, in England coast scenery is apt to be attributed mainly to the ravages of the sea, while in America we attribute more to land erosion combined with subsidence of the coast line. In a word, in the tight little sea-girt island of Great Britain, where the ravages of the sea are yearly making such serious inroads upon the area of the land, it is natural that the power of the sea should strongly affect the imagination and impress itself on geological theories, and tend perhaps to exaggeration of sea agencies, while the broad features of the American continent and the evidences of prodigious erosion in comparatively recent geological time tend to the exaggeration of erosive agency of rain and rivers. These two must be duly weighed and each given its right proportion in the work of earth sculpture.

Paleontology at first attracted attention mainly by the new and strange life forms which it revealed. It is the interest of a zoölogical garden. This interest is of course perennial, but can hardly be called scientific. Geology at first was a kind of wonder book.

Next fossils, especially marine shells, were studied as characteristic forms denoting strata of a particular age. They were coins by which we identify certain periods of history. They were "medals of creation." It was in this way chiefly that William Smith, the founder of English stratigraphic geology, used them. It was in this way that Lyell and all the older geologists, until the advent of evolution, were chiefly interested in them.

It was Cuvier, the great zoölogist and comparative anatomist, who, in the beginning of the present century, first studied fossils, especially mammalian fossils, from thezoölogicalpoint of view—i. e., as to their affinities with existing animals. Cuvier's studies of the vertebrates of the Paris basin may be said to have laid the foundation of scientific paleontology from this point of view.

Thenceforward two views of paleontology and two modes of study gradually differentiated from one another, the one zoölogical, the other geological. In the one case we study fossils intaxonomicgroups—i. e., as species, genera, families, orders, etc.—and trace the gradual evolution of each of these from generalized forms to their specialized outcomes, completing as far as possible the genetic chain through all time. In the other we study fossils infaunal groups, as successive geological faunas, and the geographic diversity in each geological period—i. e., the evolution of geologic faunas and the causes of geographic diversity in each. In a word, we study the laws of distribution of faunas in time geologically and in space geographically, and the causes of these laws in each case. The first is strictly a branch of zoölogy and botany, and we leave it to these specialists. The second alone belongs properly to geology. In this purely geologic paleontology, as seen from its scope given above, there are many questions of widest philosophical interest which are only now attracting the attention they deserve. I only touch lightly two which have been brought forward in these very last years of the century.

I.General Laws of Faunal Evolution.—The evolution of the organic kingdom from this strictly geological point of view may be briefly formulated as follows:

1. Throughout all geological time there has been a general movement upward and onward, as it were abreast, everywhere. If this were all, there would be only geological progress, but no geographical diversity. Geological history would be the same everywhere. A time horizon would be easily determined by identity of fossil species. This we know is not true. Therefore there are other elements besides this.

2. In different countries, isolated from one another and under different conditions, evolution takes differentdirectionsand differentrates, producing geographical diversity in each geological period. This diversity increases with time as long as the isolation continues. If this were all, the geographical diversity by continued divergence would have become so great that it would be impossible even approximately to determine any geological horizon. The history of each country must be studied for itself. A general history of the earth would be impossible. But this also is not true. There is therefore still another element.

3. From time to time, at long intervals—i. e.,critical periods—there are widespread readjustments of the crust to internal strain, determining changes of physical geography and of climate, and therefore wide migrations of species with mingling and conflict of faunas. This would produce more rapid movement of evolution,but at the same time more or less complete obliteration of geographical diversity.

4. After these periods of migrations and minglings there would be re-isolations in new localities, and the process of diversification would recommence and increase as long as the isolation continues.

The last of these critical periods of migrations and minglings and struggles for life among competing species was theGlacial epochor ice age. Therefore the present geographical distribution of species was largely determined by the extensive migrations of that time.

II.Cosmopolitan and Provincial Faunas.—There are apparently in the history of the earth periods of widespread or cosmopolitan faunas, alternating with localized or provincial faunas. The cosmopolitan periods are usually times of prevalence of limestones or organic sediments, and the fossils are very abundant. The provincial periods are usually characterized by sandstones and shales or mechanical sediments, and are comparatively poor in fossils. Moreover, it is believed that the cosmopolitan limestone periods are oceanic periods—i. e., periods of wide oceans and lower and smaller continents and little erosive activity, while the sandstone periods, characterized by provincial faunas, are periods of higher and larger continents, and therefore of great erosion and abundant mechanical sedimentation.

Now, according to Chamberlin, these remarkable alternations are due to oscillations of the crust, in which the continents are alternately lifted and depressed. It must be remembered that abyssal faunas are almost unknown among fossils. This is the necessary result of substantial permanency of oceanic basins. The whole geological record is in shallow-water faunas. These shallow waters are along continental shore lines and in interior continental seas. According to Chamberlin again, during a period of continental depression all the flat continental margins are submerged, forming broad submarine platforms, and the lower interior portions of the continents are also submerged, forming wide and shallow interior seas. Under these conditions continental waste, and therefore sand and clay sediments, are reduced to a minimum. Life, animal and vegetal, abounds, and therefore much limestone is formed. The oceans are widely connected with one another, and therefore the faunas are widespread or cosmopolitan. During the period of elevation, on the contrary, the continents are extended to the margin of the deep oceanic basins, the broad, shallow submarine platforms are abolished, the interior seas are also abolished, the shallow-water areas are reduced to isolated bays, and their faunas are peculiar or provincial. Also, elevated and enlarged continentsgive rise to maximum erosion, and therefore abundant sediments of sandstone and clay, and comparative poverty of life and therefore of limestone. Chamberlin also gives reasons why the oceanic periods should be warm, humid, equable in temperature, and the atmosphere highly charged with CO2, and therefore highly favorable to abundant life, both vegetal and animal, while land periods would be drier and cooler, the atmosphere deficient in CO2, and therefore cold from that cause and in many ways unfavorable to abundant life.

These extremely interesting views, however, must be regarded as still on trial, as a provisional hypothesis to be sifted, confirmed, or rejected, or in any case modified, in the next century.

Lastly, it is interesting to note the ever-increasing part taken by American geologists in the advance of this science. There has been through the century a gradual movement of what might be called the center of gravity of geological research westward, until now, at its end, the most productive activity is here in America. This is not due to any superiority of American geologists, but to the superiority of their opportunities. Dana has well said thatAmerica is the type continent of the world. All geological problems are expressed here with a clearness and a simplicity not found elsewhere. We must add to this the comparative recency of geological study in this rich field. In Europe the simpler and broader problems are already worked out, and all that remain are difficult problems requiring much time. In America, on the contrary, not only are all problems expressed in simpler terms, but many great and broad problems are still awaiting solution. For these reasons the greatest activity in research, and the most rapid advance during the next century, will probably be here in America.

"SALAMANDERS" AND "SALAMANDER" CATS.By NORMAN ROBINSON.In many places in the extreme Southern States, especially in what is locally known as the "piney woods," one of the most notable features is the constantly recurring mounds of yellow sand which everywhere dot and, it must be confessed, disfigure the monotonous landscape. These piles of earth are usually nearly circular in form, fairly symmetrical in contour, from six inches to two feet in diameter, and, save where they have been beaten down by rain or winds or the trampling of cattle, about half as high as they are broad. Often these sand heaps are pretty evenly distributed, sometimes so thickly as to cover at least one fourth of thesoil surface. If you ask a native the cause of this singular phenomenon, which you will perhaps at first be disposed to consider a kind of arenaceous eruption which has somehow broken out on the face of Nature, your informant will sententiously reply, "Salamanders!"All this disfigurement is indeed the work of a curious little rodent popularly so named and about the size and color of an ordinary rat. He is never seen above ground if he can possibly help it. He digs innumerable branching underground tunnels at depths varying from one to six feet, and these mounds of sand are simply the "dump heaps" which, in his engineering operations, he finds it necessary to make."Snap-shot" View of a Live "Salamander."After carrying the excavated earth to the surface this cautious little miner takes the greatest pains to cover up his tracks. No opening into his burrow is left. How he manages to so carefully smooth over his little sand mound and then literally "pull the hole in after him" is as yet unexplained. The work is mostly done at night, when observation is especially difficult. Sometimes, when he is a little belated and the early morning twilight admonishes him that it is "quitting time," he gets in a hurry and slights his work. Then a little depression at the top of the mound tells where he has made a hasty exit. Ordinarily the rounding out of the sand pile is as deftly done as though it had all been managed from above. Indeed, the feat actually accomplished by this little underground builder appears more puzzling the more it is considered. The most skilled human engineer would confess his inability tothus pile up a mound of loose sand, go down through it, leave the top perfectly smoothed over, and, with no supports save the sand itself, to so fill up the passageway above him as he went down that not the slightest mark should be left to indicate his pathway of retreat.Even if you dig into and under one of these sand mounds you will find very little to betray the builder's whereabouts. It is seemingly all solid earth, and unless you know exactly when and where and how to dig you will probably give up the search in disgust, with your labor and your backache but no "salamander" hole for your pains. Indeed, the cunning of this little rodent in hiding his burrow is quite as conspicuous as his skill in digging it. "Strategy" is his strong point. If by any chance you come upon his burrow it is probably an old abandoned one that is closed up and leads nowhere. The chances are ten to one that his real burrow is rods if not furlongs away.Provided you can find the last mound he has built and not more than four or five hours have elapsed since its completion, by digging diagonally to the right or left, at the distance of a foot or so, you will have a fair chance of encountering his burrow. He is probably near by, resting from the severe labors of the previous night. If you give him time to get his nap out and finish his job, your wiser plan will be to stop hunting and digging a little before you begin.Why this little underground dweller should be called "salamander" is one of those mysteries of popular nomenclature which is seemingly inexplicable. There is certainly nothing in the habits or appearance of the animal to suggest the fabled fireproof batrachian. Like some other lovers of darkness, he has quite a number ofaliasesby which in various portions of the South and West he is known. "Gopher," "pouched rat," "hamster," and "muelos" are some of the titles by which he is locally known. "Salamander" appears to be the most generally accepted one.This enterprising little rodent belongs to an ancient if not honorable family. By naturalists he is generally known as "pocket gopher," and is classed among theGeomyidæ. Some fifteen known species have been recognized, with possibly more to hear from, and with a habitat extending quite across the continent. The Florida species is probablyGeomys tuza(Ord.), and though not as large as one or two others, is quite the peer of any of his cousins in enterprise and ability to look out for himself.The illustration given is from what is probably the only photograph of a living "salamander" ever taken. Mr. Geomys is not a model "sitter." No unwilling candidate for the "rogues' gallery"has more decided views on the subject of having his picture taken. In a general way, it may be said that he doesn't pose for anybody. Precisely how this prejudice was finally overcome it is needless to state. Perseverance and "snap shots" were too much for our recalcitrant rodent. In the matter of "looking pleasant" it must be conceded that Mr. Geomys was a little intractable."Dump Heaps" of the "Salamander."The fore legs and feet of the "salamander" are worth studying. They remind one somewhat of those of the mole, but are more stoutly built, with much longer claws, and are evidently designed for harder tasks. They are controlled by powerful brachial and pectoral muscles, and, as we shall see, are not only special tools adapted to special and difficult work, but work which requires an enormous expenditure of physical force.The engineering problems which this little troglodyte has to solve are far and away ahead of any that the New York Rapid-Transit Commission has to deal with. It is very much as though a single miner were placed over in Hoboken, a hundred feet below the surface, with instructions to tunnel under the Hudson Riverwith no tools except his hands, without a chance of seeing daylight until he reached it on the New York side, and with the added conditions that all the excavated earth should be carried out at the eastern opening of the tunnel, and finally that he should obliterate all marks of his work and, as he retreated into his tunnel, pack the exit shaft above him so tightly and so deftly that it is impossible to trace its course!How our little fur-coated engineer solves all these problems is as yet a mystery. We only know that he does it. He has a steam engine in his shoulders and shovels for hands, but his exact methods of using them is as yet largely a matter of conjecture. Only two plans of operation would seem to be possible. One would be for the "salamander" to first carry the excavated earth all to the rear into some portion of his already finished tunnel, and finally, when the outward exit is completed, to carry it back again and deposit it on the surface. This, of course, involves a double transfer of all the earth removed. It is more likely that the "salamander" first forces a narrow passageway along the line of his future tunnel in a way similar to that pursued by the mole. The latter animal has the advantage of working near the surface, and the earth always yields along the line of least resistance, which of course is upward. Four or five feet down there is no such line, and the amount of force required to push the ground aside must be something enormous. When the "salamander" comes to the upper air the work of excavation and enlargement begins. He then piles upon the surface all the earth that he can not use in obliterating his upward passageway. As the writer has frequently observed fresh sand mounds hundreds of feet from any others, he is inclined to believe that this is the real method pursued.The exceeding care which the "salamander" takes to leave no opening into his subterranean home arises, no doubt, from his horror of snakes. In this respect no woman can surpass him. His antipathies to reptiles are probably the accumulated embodiment of hundreds of centuries of ancestral experience. He is aware that these hereditary enemies of his race are of a very investigating turn of mind, and put in a good deal of spare time when awake in crawling into and exploring any tempting hole they may discover. And so Mr. Geomys, like the sensible fellow that he is, not only takes good care to shut and lock his front gate every time he is compelled to go through it, but he blocks up the whole passageway and does his best to convince trespassers that it is all a mistake to suppose that there ever has been any roadway leading to his underground home.Indeed, it is by taking advantage of this morbid antipathy to intruders and daylight that our little underground dweller is usually caught. If by skillful digging a recently formed burrow is reached, one may be reasonably certain that in from five to ten minutes Mr. "Salamander" will be on hand to see what has happened and to repair damages. A shotgun kept steadily aimed at the opening, and with a quick pull on the trigger the instant the slightest movement in the sand is seen, "fetches" him every time. Another very successful method is to place a strong trap right at the opening into his burrow. In making repairs our "salamander" is in too big a hurry to look very carefully where he steps, and so is quite likely to blunder into the trap. He is always caught, however, by one of his legs, and if left any length of time is quite apt to gnaw off the captive limb and thus make his escape. Spartan bravery or love of freedom surpassing this would be hard to find.The food ofGeomys bursariusappears to be exclusively vegetable. Native roots and root stocks, cones and bulbs, together with the root bark of various trees, are eaten by him, and sometimes in a very annoying way. Orange trees are peculiarly liable to his attacks. He gnaws through and around the tap root as near to the surface as he can without disturbing it or in any way calling attention to his work, and not infrequently he continues his depredations until every root of any size is eaten off. This, of course, means the death of the tree.From the "salamander" point of view, however, the greatest food "bonanza" of all is a sweet-potato patch. "A 'possum up a 'simmon tree" or a "pig in clover" is not more alive to the delights and advantages of the situation. He not only eats all he can stuff, but invites his relatives and friends. Nor is this all. He has learned that in autumn sweet potatoes are liable to suddenly disappear, so he "takes time"—and the potatoes—"by the forelock," and packs them away in liberal measure in his burrow for winter use. So well understood are the ways and weaknesses of this underground marauder that any suspicious mound of earth in a sweet-potato field is the signal for an active campaign of extermination, which ends only in the intruder's flight or death.The "side pockets" of the "salamander" have already been referred to. They are undoubtedly a great convenience to their owner in carrying food and possibly other things. The capacity of these cheek pouches is about sufficient to give room for a pigeon's egg. They are, however, quite extensile, and can readily be made to hold three or four times this amount. Indeed, the skin and underlying connective tissue are so elastic that these pockets canreadily be turned inside out. It is claimed that the "salamander" employs his handlike fore feet to fill and empty these receptacles, using the right foot for the left pouch, andvice versa. A gentleman in Florida recently assured me that by a lucky thrust of a spade he once killed one of these mischievous rodents as he was in the very act of cutting off the roots of an orange tree. The cheek pouches of the culprit were filled with fragments of bark which he had gnawed off, doubtless to be stowed away in his burrow.Why, in a climate where there is almost no winter, where there is very little interruption to vegetable growth and the food supply is practically unlimited, provisions should thus be stored away is somewhat difficult to explain. It is not impossible that it is simply the survival of an ancestral habit acquired during the Glacial period. Or it may be that, like the dog, the "salamander" finds the flavor of old and well-seasoned food more to his taste. All that can be positively affirmed is that this wise little rodent does, occasionally at least, thuscachéhis food supplies.One of the most curious results of the existence and habits of this elusive little burrowing rodent is the development of a new and peculiar breed ofFelis domestica, called "salamander" cats. Ordinary tabbys do not understand or admire the ways ofGeomys bursarius, or, for some other good and sufficient feline reason, do not include him in their game list. The variety of cats in question, which, so far as the author knows, is confined to Florida, appears to have been developed spontaneously and with very little if any human agency, and is noted for its special skill in catching "salamanders," as well as a decided liking for the sport. Any Mrs. Tabby of this breed, especially if she has a family to provide for, is up betimes in the morning. The particular object of her pursuit is a remarkably early riser, and finishes his day's work before most people have begun theirs. So if there is a convenient fence around the grounds she proposes to hunt she mounts it with the first peep of day, and, with a sharp eye to landward, starts on her tour of observation. Any fresh pile of sand is closely scrutinized. The slightest movement there brings her to the mound with a spring, and she is at once crouching behind it; so when Mr. Geomys comes up in a big hurry with his next load of sand he finds somebody to meet him that is in a bigger hurry still, and so the unsuspecting victim is borne off in triumph.An estimable lady of the writer's acquaintance who owned one of these "salamander" cats, with a single juvenile pussy to provide for, kept an accurate account of the number of these rodents which she saw this industrious mother cat bring to her offspring in a single month. The number was thirty, and as the month happenedto be February this gave, of course, two more than a "salamander" a day.One other curious observed feature of this new variety of cats is their want of fecundity. The mother tabby seldom has more than one kitten at a birth. The writer once owned a fine female of this breed that scrupulously adhered to the traditional habits of her race.This particular pussy, like the rest of us, had her family troubles. Her one kitten—probably from its mixed parentage—was always inclined to rebel at the "salamander" diet. There was something amusing to a degree and suggestively human in the old cat's methods of discipline. When she had succeeded in catching a salamander she would always first bring it and lay it down before her mistress, to make sure of the praise and the petting. Then, with a motherly "meow," she would call her kitten. That frisky little youngster was always quite ready for his breakfast, but showed a decided preference for the "maternal font." Then the old cat would give him a "cuff" that would send him spinning. Then she would take up the "salamander" and put it down before her hopeful offspring with an air that said as plainly as words could do: "There, now! Eat that or go hungry!" Then her mother love would get the better of her and she would go to licking and petting her disobedient baby, and it would usually end in the kitten's having its own way and satisfying its hunger with milk from the "original package." By persistence and the force of example the old cat finally succeeded in accustoming her offspring to what she evidently thought the orthodox diet of her race.The writer is quite well aware of the intrinsic difficulties involved in the spontaneous development of any new variety of cats. Still, such branching of types has occurred in the past, and of course is possible now. When his attention was first called to the matter he was inclined to consider it merely an instance of animal education. A fact that came under his personal observation seems, however, hard to reconcile with this or any theory that does not concede the hereditary transmission of acquired habits and tastes.A kitten of the breed of cats in question was taken when very young and reared nearly a mile away from its mother. When grown it developed the same skill in hunting "salamanders," and the same love for the sport as that for which its mother was celebrated.Dogs, of course, have long been noted for the readiness with which acquired knowledge, habits, and tastes manifest and perpetuate themselves in hereditary forms. The setter, pointer, collie,St. Bernard, and other well-known breeds will occur to everyone as illustrating this psychic plasticity. Doubtless the cat brain is somewhat less impressible, but there would seem to be good reasons for including it among the educably variable types.

By NORMAN ROBINSON.

In many places in the extreme Southern States, especially in what is locally known as the "piney woods," one of the most notable features is the constantly recurring mounds of yellow sand which everywhere dot and, it must be confessed, disfigure the monotonous landscape. These piles of earth are usually nearly circular in form, fairly symmetrical in contour, from six inches to two feet in diameter, and, save where they have been beaten down by rain or winds or the trampling of cattle, about half as high as they are broad. Often these sand heaps are pretty evenly distributed, sometimes so thickly as to cover at least one fourth of thesoil surface. If you ask a native the cause of this singular phenomenon, which you will perhaps at first be disposed to consider a kind of arenaceous eruption which has somehow broken out on the face of Nature, your informant will sententiously reply, "Salamanders!"

All this disfigurement is indeed the work of a curious little rodent popularly so named and about the size and color of an ordinary rat. He is never seen above ground if he can possibly help it. He digs innumerable branching underground tunnels at depths varying from one to six feet, and these mounds of sand are simply the "dump heaps" which, in his engineering operations, he finds it necessary to make.

"Snap-shot" View of a Live "Salamander."

"Snap-shot" View of a Live "Salamander."

"Snap-shot" View of a Live "Salamander."

After carrying the excavated earth to the surface this cautious little miner takes the greatest pains to cover up his tracks. No opening into his burrow is left. How he manages to so carefully smooth over his little sand mound and then literally "pull the hole in after him" is as yet unexplained. The work is mostly done at night, when observation is especially difficult. Sometimes, when he is a little belated and the early morning twilight admonishes him that it is "quitting time," he gets in a hurry and slights his work. Then a little depression at the top of the mound tells where he has made a hasty exit. Ordinarily the rounding out of the sand pile is as deftly done as though it had all been managed from above. Indeed, the feat actually accomplished by this little underground builder appears more puzzling the more it is considered. The most skilled human engineer would confess his inability tothus pile up a mound of loose sand, go down through it, leave the top perfectly smoothed over, and, with no supports save the sand itself, to so fill up the passageway above him as he went down that not the slightest mark should be left to indicate his pathway of retreat.

Even if you dig into and under one of these sand mounds you will find very little to betray the builder's whereabouts. It is seemingly all solid earth, and unless you know exactly when and where and how to dig you will probably give up the search in disgust, with your labor and your backache but no "salamander" hole for your pains. Indeed, the cunning of this little rodent in hiding his burrow is quite as conspicuous as his skill in digging it. "Strategy" is his strong point. If by any chance you come upon his burrow it is probably an old abandoned one that is closed up and leads nowhere. The chances are ten to one that his real burrow is rods if not furlongs away.

Provided you can find the last mound he has built and not more than four or five hours have elapsed since its completion, by digging diagonally to the right or left, at the distance of a foot or so, you will have a fair chance of encountering his burrow. He is probably near by, resting from the severe labors of the previous night. If you give him time to get his nap out and finish his job, your wiser plan will be to stop hunting and digging a little before you begin.

Why this little underground dweller should be called "salamander" is one of those mysteries of popular nomenclature which is seemingly inexplicable. There is certainly nothing in the habits or appearance of the animal to suggest the fabled fireproof batrachian. Like some other lovers of darkness, he has quite a number ofaliasesby which in various portions of the South and West he is known. "Gopher," "pouched rat," "hamster," and "muelos" are some of the titles by which he is locally known. "Salamander" appears to be the most generally accepted one.

This enterprising little rodent belongs to an ancient if not honorable family. By naturalists he is generally known as "pocket gopher," and is classed among theGeomyidæ. Some fifteen known species have been recognized, with possibly more to hear from, and with a habitat extending quite across the continent. The Florida species is probablyGeomys tuza(Ord.), and though not as large as one or two others, is quite the peer of any of his cousins in enterprise and ability to look out for himself.

The illustration given is from what is probably the only photograph of a living "salamander" ever taken. Mr. Geomys is not a model "sitter." No unwilling candidate for the "rogues' gallery"has more decided views on the subject of having his picture taken. In a general way, it may be said that he doesn't pose for anybody. Precisely how this prejudice was finally overcome it is needless to state. Perseverance and "snap shots" were too much for our recalcitrant rodent. In the matter of "looking pleasant" it must be conceded that Mr. Geomys was a little intractable.

"Dump Heaps" of the "Salamander."

"Dump Heaps" of the "Salamander."

"Dump Heaps" of the "Salamander."

The fore legs and feet of the "salamander" are worth studying. They remind one somewhat of those of the mole, but are more stoutly built, with much longer claws, and are evidently designed for harder tasks. They are controlled by powerful brachial and pectoral muscles, and, as we shall see, are not only special tools adapted to special and difficult work, but work which requires an enormous expenditure of physical force.

The engineering problems which this little troglodyte has to solve are far and away ahead of any that the New York Rapid-Transit Commission has to deal with. It is very much as though a single miner were placed over in Hoboken, a hundred feet below the surface, with instructions to tunnel under the Hudson Riverwith no tools except his hands, without a chance of seeing daylight until he reached it on the New York side, and with the added conditions that all the excavated earth should be carried out at the eastern opening of the tunnel, and finally that he should obliterate all marks of his work and, as he retreated into his tunnel, pack the exit shaft above him so tightly and so deftly that it is impossible to trace its course!

How our little fur-coated engineer solves all these problems is as yet a mystery. We only know that he does it. He has a steam engine in his shoulders and shovels for hands, but his exact methods of using them is as yet largely a matter of conjecture. Only two plans of operation would seem to be possible. One would be for the "salamander" to first carry the excavated earth all to the rear into some portion of his already finished tunnel, and finally, when the outward exit is completed, to carry it back again and deposit it on the surface. This, of course, involves a double transfer of all the earth removed. It is more likely that the "salamander" first forces a narrow passageway along the line of his future tunnel in a way similar to that pursued by the mole. The latter animal has the advantage of working near the surface, and the earth always yields along the line of least resistance, which of course is upward. Four or five feet down there is no such line, and the amount of force required to push the ground aside must be something enormous. When the "salamander" comes to the upper air the work of excavation and enlargement begins. He then piles upon the surface all the earth that he can not use in obliterating his upward passageway. As the writer has frequently observed fresh sand mounds hundreds of feet from any others, he is inclined to believe that this is the real method pursued.

The exceeding care which the "salamander" takes to leave no opening into his subterranean home arises, no doubt, from his horror of snakes. In this respect no woman can surpass him. His antipathies to reptiles are probably the accumulated embodiment of hundreds of centuries of ancestral experience. He is aware that these hereditary enemies of his race are of a very investigating turn of mind, and put in a good deal of spare time when awake in crawling into and exploring any tempting hole they may discover. And so Mr. Geomys, like the sensible fellow that he is, not only takes good care to shut and lock his front gate every time he is compelled to go through it, but he blocks up the whole passageway and does his best to convince trespassers that it is all a mistake to suppose that there ever has been any roadway leading to his underground home.

Indeed, it is by taking advantage of this morbid antipathy to intruders and daylight that our little underground dweller is usually caught. If by skillful digging a recently formed burrow is reached, one may be reasonably certain that in from five to ten minutes Mr. "Salamander" will be on hand to see what has happened and to repair damages. A shotgun kept steadily aimed at the opening, and with a quick pull on the trigger the instant the slightest movement in the sand is seen, "fetches" him every time. Another very successful method is to place a strong trap right at the opening into his burrow. In making repairs our "salamander" is in too big a hurry to look very carefully where he steps, and so is quite likely to blunder into the trap. He is always caught, however, by one of his legs, and if left any length of time is quite apt to gnaw off the captive limb and thus make his escape. Spartan bravery or love of freedom surpassing this would be hard to find.

The food ofGeomys bursariusappears to be exclusively vegetable. Native roots and root stocks, cones and bulbs, together with the root bark of various trees, are eaten by him, and sometimes in a very annoying way. Orange trees are peculiarly liable to his attacks. He gnaws through and around the tap root as near to the surface as he can without disturbing it or in any way calling attention to his work, and not infrequently he continues his depredations until every root of any size is eaten off. This, of course, means the death of the tree.

From the "salamander" point of view, however, the greatest food "bonanza" of all is a sweet-potato patch. "A 'possum up a 'simmon tree" or a "pig in clover" is not more alive to the delights and advantages of the situation. He not only eats all he can stuff, but invites his relatives and friends. Nor is this all. He has learned that in autumn sweet potatoes are liable to suddenly disappear, so he "takes time"—and the potatoes—"by the forelock," and packs them away in liberal measure in his burrow for winter use. So well understood are the ways and weaknesses of this underground marauder that any suspicious mound of earth in a sweet-potato field is the signal for an active campaign of extermination, which ends only in the intruder's flight or death.

The "side pockets" of the "salamander" have already been referred to. They are undoubtedly a great convenience to their owner in carrying food and possibly other things. The capacity of these cheek pouches is about sufficient to give room for a pigeon's egg. They are, however, quite extensile, and can readily be made to hold three or four times this amount. Indeed, the skin and underlying connective tissue are so elastic that these pockets canreadily be turned inside out. It is claimed that the "salamander" employs his handlike fore feet to fill and empty these receptacles, using the right foot for the left pouch, andvice versa. A gentleman in Florida recently assured me that by a lucky thrust of a spade he once killed one of these mischievous rodents as he was in the very act of cutting off the roots of an orange tree. The cheek pouches of the culprit were filled with fragments of bark which he had gnawed off, doubtless to be stowed away in his burrow.

Why, in a climate where there is almost no winter, where there is very little interruption to vegetable growth and the food supply is practically unlimited, provisions should thus be stored away is somewhat difficult to explain. It is not impossible that it is simply the survival of an ancestral habit acquired during the Glacial period. Or it may be that, like the dog, the "salamander" finds the flavor of old and well-seasoned food more to his taste. All that can be positively affirmed is that this wise little rodent does, occasionally at least, thuscachéhis food supplies.

One of the most curious results of the existence and habits of this elusive little burrowing rodent is the development of a new and peculiar breed ofFelis domestica, called "salamander" cats. Ordinary tabbys do not understand or admire the ways ofGeomys bursarius, or, for some other good and sufficient feline reason, do not include him in their game list. The variety of cats in question, which, so far as the author knows, is confined to Florida, appears to have been developed spontaneously and with very little if any human agency, and is noted for its special skill in catching "salamanders," as well as a decided liking for the sport. Any Mrs. Tabby of this breed, especially if she has a family to provide for, is up betimes in the morning. The particular object of her pursuit is a remarkably early riser, and finishes his day's work before most people have begun theirs. So if there is a convenient fence around the grounds she proposes to hunt she mounts it with the first peep of day, and, with a sharp eye to landward, starts on her tour of observation. Any fresh pile of sand is closely scrutinized. The slightest movement there brings her to the mound with a spring, and she is at once crouching behind it; so when Mr. Geomys comes up in a big hurry with his next load of sand he finds somebody to meet him that is in a bigger hurry still, and so the unsuspecting victim is borne off in triumph.

An estimable lady of the writer's acquaintance who owned one of these "salamander" cats, with a single juvenile pussy to provide for, kept an accurate account of the number of these rodents which she saw this industrious mother cat bring to her offspring in a single month. The number was thirty, and as the month happenedto be February this gave, of course, two more than a "salamander" a day.

One other curious observed feature of this new variety of cats is their want of fecundity. The mother tabby seldom has more than one kitten at a birth. The writer once owned a fine female of this breed that scrupulously adhered to the traditional habits of her race.

This particular pussy, like the rest of us, had her family troubles. Her one kitten—probably from its mixed parentage—was always inclined to rebel at the "salamander" diet. There was something amusing to a degree and suggestively human in the old cat's methods of discipline. When she had succeeded in catching a salamander she would always first bring it and lay it down before her mistress, to make sure of the praise and the petting. Then, with a motherly "meow," she would call her kitten. That frisky little youngster was always quite ready for his breakfast, but showed a decided preference for the "maternal font." Then the old cat would give him a "cuff" that would send him spinning. Then she would take up the "salamander" and put it down before her hopeful offspring with an air that said as plainly as words could do: "There, now! Eat that or go hungry!" Then her mother love would get the better of her and she would go to licking and petting her disobedient baby, and it would usually end in the kitten's having its own way and satisfying its hunger with milk from the "original package." By persistence and the force of example the old cat finally succeeded in accustoming her offspring to what she evidently thought the orthodox diet of her race.

The writer is quite well aware of the intrinsic difficulties involved in the spontaneous development of any new variety of cats. Still, such branching of types has occurred in the past, and of course is possible now. When his attention was first called to the matter he was inclined to consider it merely an instance of animal education. A fact that came under his personal observation seems, however, hard to reconcile with this or any theory that does not concede the hereditary transmission of acquired habits and tastes.

A kitten of the breed of cats in question was taken when very young and reared nearly a mile away from its mother. When grown it developed the same skill in hunting "salamanders," and the same love for the sport as that for which its mother was celebrated.

Dogs, of course, have long been noted for the readiness with which acquired knowledge, habits, and tastes manifest and perpetuate themselves in hereditary forms. The setter, pointer, collie,St. Bernard, and other well-known breeds will occur to everyone as illustrating this psychic plasticity. Doubtless the cat brain is somewhat less impressible, but there would seem to be good reasons for including it among the educably variable types.


Back to IndexNext