LIQUID AIR.

Bronze Breastplate from Olympia.Bronze Breastplate from Olympia.(After Furtwaengler's Olympia, 1892.)[Larger Image]

The Oriental affinities of the Hallstatt culture have been especially emphasized by recent archæological discoveries at Koban, in the Caucasus Mountains. A stage of culture transitional between bronze and iron, almost exactly equivalent to that of the eastern Alps, is revealed. Similarities in little objects, like fibulæ, might easily be accounted for as having passed in trade, but the relationship is too intimate to be thus explained. Hungary forms the connecting link between the two. In many respects its bronze age is different from that of Hallstatt, notably in that the latter seems to have acquired the knowledge of iron and of bronze at about the same time. In Hungary the pure bronze age lasted a long time, and attained a full maturity. A characteristic piece is represented herewith. In respect of the representation of figures of animals such as these, Hallstatt, Hungary, and Koban are quite alike.

Hungarian Bronze Vessel.Hungarian Bronze Vessel.(After Hampel, 1876.)

Have we proved that bronze culture came from Asia by reason of these recent finds in the Caucasus? Great stress has been laid upon them in the discussion of European origins. Are we justified in agreeing with Chantre that two currents of culture have swept from Asia into Europe—one by the Caucasus north of the BlackSea and up the Danube; the other across Asia Minor and into the Balkan peninsula, thence joining the first in the main center of Hallstatt civilization, east of the Alps? The point seems by no means established. Relationship does not prove parentage. Far more likely does it appear that the Koban culture is a relic or an offshoot rather than a cradle of bronze civilization. And even Chantre, ardent advocate as he is of Oriental derivations, seems to feel the force of this in his later writings, for he confesses that Koban is rather from Mediterranean European sources than that Europe is from Koban. Most probable of all is it, that both Hallstatt and Koban are alike derived from a common root in the neighborhood of Chaldea.

III.The Hallstatt (or Celtic?) civilization of bronze and iron roughly overlies the present area occupied by the broad-headed Alpine race; yet this type is not always identified with the Oriental culture. It seems to have appeared in Europe in a far lower stage of civilization, and to have subsequently made progress culturally upon the spot.

To trace any definite connection between race and civilization in Europe is rendered extremely hazardous scientifically by reason of the appearance along with bronze of the custom of burning instead of burying the dead, their ashes being disposed in cinerary urns, jars, or other receptacles. By this procedure all possible clew to the physical type of the people is, of course, annihilated at once. It has become almost an axiom among archæologists that bronze culture and incineration are constant companions. Wherever one appears, the other may confidently be looked for. Together they have long been supposed to be the special and peculiar attributes of a new broad-headed immigrant race from the East. To prove this conclusively is, of course, absolutely impossible for the above-mentioned reason. Of the two, it seems as if incineration would be a more reliable test of race than a knowledge of bronze; for burial customs, involving as they do the most sacred instincts and traditions of a people, would be most persistently maintained, even throughout long-continued migrations. The use of bronze, on the other hand, being a matter of obvious utility, and capable of widespread dissemination commercially, is seemingly of far less ethnic significance.

To indicate the uncertainty of proof in these matters, let us suppose that the Hallstatt civilization, for example, is the result of an immigration of a brachycephalic Oriental civilized race overlying a primitive native long-headed one. That seems best to conform to the data, which northern Italy at least affords. Suppose the new people—call them Celts with the best authorities, if you please—brought not only bronze and iron, but the custom of incineration. Prior to their appearance inhumation was the rule. What would be the result if one attempted to determine the physical character of thatpeople from a study of the remains in their necropoli? All the crania to be found in the graves with the precious objects of bronze would in no wise represent the people who brought that bronze. They burned their bridges behind them at death, and disappeared for good and all. And the remains left to the archæologist would represent precisely that class in the population which had nothing to do with the main characteristics of its civilization. And then, again, we must bear in mind that the interments in these necropoli as a whole, both with burned or buried dead, constitute a selected type. Neither Hallstatt, Watsch, nor any of the burial places of their type were open to the great mass of the common people. They were sacred spots, far removed among the mountains from any centers of population. Only the rich or powerful presumably had access to them. They are no more typical of the Hallstatt people, therefore, than interments in Westminster Abbey are representative of the English masses. All our data are necessarily drawn from a class within a class. Inductions from them must be very gingerly handled.

The situation above described seems to prevail almost everywhere in the Hallstatt cultural area. Two distinct burial customs denote possibly two separate peoples, the inhumers being certainly the older. In the Hallstatt necropolis, for example, about one third of the graves once contained human remains, all the others containing mere ashes. So ancient are these graves that only eight crania from the hundreds of interments of the first class are available for study. These are of a pronounced long-headed type.[8]The modern populations of this part of Europe are, as we have seen, among the broadest-headed people in the world, as are also all the modern Illyrians. Yet from the great necropolis at Glasinac in Bosnia, with its twenty thousand tumuli, the meager Hallstatt returns are amply corroborated.[9]The ancient inhabitants were as long-headed as they are pronouncedly of the opposite type to-day. Up in Bohemia and Moravia also, according to Niederle, the first bronze-age people, such as we know them, were still dolichocephalic quite like their predecessors in the pure stone age. And here also is incineration just about frequent enough to make it uncertain whether the human remains are typical or not.

Under these circumstances, three suppositions are open to us. We may hold that these long-headed crania of the Hallstatt people are worthless for any anthropological purposes whatever. This one would certainly be tempted to do were the testimony, such as it is, not so unanimous. Or, secondly, we may assume that these long-headed Hallstatt people belonged to a period subsequent to the appearance of the brachycephalic type in western Europe. If we do so, we place them in the same class with the Teutonic race which so certainlyappears to overlie this one in the later iron age in Switzerland and throughout southern Germany; for the Helvetians and theReihengräberconquerors from the north surely imposed a novel culture, albeit a militant one, upon the long-settled Alpine people, racially speaking. The Hallstatt civilization is immeasurably too early to permit of this hypothesis. At this time the long-headed Teutonic peoples about Scandinavia were certainly vastly inferior in culture, as we shall attempt to prove shortly. Thus we are forced to the third conclusion if we admit the competency of our cranial evidence—namely, that the Hallstatt people in this early bloom of civilization in Europe were allied to the Mediterranean type of the south. No other source for such a dolichocephalic population is possible. Our stock of types of this kind is exhausted.

It does not require a great credulity to admit of this hypothesis, that the Hallstatt people were of Mediterranean type. Were not the Greeks, the Phœnicians, and the Egyptians all members of this same race? One single difficulty presents itself. Over in Italy, throughout the valley of the Po, an entirely analogous civilization to that of the eastern Alps occurs. Hallstatt and Villanova, Watsch and Bologna, are almost identical culturally. And yet over here in Italy the new culture of bronze and of incineration seems to be borne by a broad-headed people of the same type as the modern one. Thus, for example, at Novilara so long as the bodies were all inhumed, the people were of the long-headed Mediterranean type once indigenous to the whole of Italy, now surviving, as we have seen, only in the southern half. On the other hand, when incineration begins to appear in this place, the human remains still left to us are of a mixed and far more broad-headed type. It would seem admissible to assume that when the modern brachycephalic Alpine race submerged the native one it brought new elements of civilization with it. Many Italian authorities, at all events, agree in ascribing the new culture—call it Umbrian with Sergi, or proto-Etruscan with Helbig—to a new race of Veneto-Illyrian or Alpine physical proclivities. What they have not definitely proved, however, is that any necessary connection between race and culture exists. There is much to show that the broad-headed race came in some time before the introduction of the new arts. Even in the laterTerramareperiod, preceding the Italian Hallstatt culture, when stone and copper only are in evidence, a change of physical type in the people apparently begins, just as also in France in the neolithic period.

The most indubitable testimony that the Alpine race did not appear in western Europe, armedcap-à-piewith bronze and other attributes of culture, is afforded by the lake dwellings of Switzerland. Here in the pile-built villages of the Swiss lakes we can trace an uninterrupteddevelopment of civilization from the pure stone age through bronze and into iron. Beginning at a stage of civilization about equal to that of the ancient Aryan-speaking peoples, judged by the root words known to us; not only knowledge of the metals, but of agriculture, of the domestication of animals, and of the finer arts of domestic life, have little by little been acquired. Equally certain is it that no change of physical type has occurred among these primitive Swiss, at least until the irruptions of the Teutonic Helvetians and others at the opening of the historic period. From the very earliest times in the stone age a broad-headedness no less pronounced than that of the modern Swiss prevailed among these people.[10]Here would seem to be pretty conclusive proof that the Alpine race entered Europe long before the culture with which its name has been all too intimately associated.

In the outlying parts of Europe, perhaps even in Gaul, it is extremely doubtful whether any closer connection between race and culture exists than in the Alps. It has long been maintained that the brachycephalic people of the Round Barrows introduced bronze into Britain. Surely, as we have already shown, things point to that conclusion.[11]Beddoe, Dawkins, and other authorities maintain it at all events. Yet Canon Taylor makes it pretty evident that the new race arrived in Britain, as it certainly did in Gaul, considerably in advance of any knowledge of the metals. As for Scandinavia, much the same relation holds true. Both race and culture, as we shall see, came from the south, but it is by no means clear that they arrived at the same time or that one brought the other. In Spain, Siret has asserted that bronze came in the hands of a new immigrant broad-headed race, but the authoritative opinion of Cartailhac discovers no direct evidence to this effect.

The final conclusions which would seem to follow from our tedious summary is this: That the nearly contemporaneous appearance of a brachycephalic race and the first knowledge of metals indicative of Oriental cultural influences in western Europe, is more or less a coincidence. The first civilized peoples of the Hallstatt period seem to have been closely allied, both in physical type and culture, with the Greeks and other peoples of the classic East. Among them, perhaps over them, swept the representatives of our broad-headed Alpine type who came from the direction of Asia. These invaders may havebeen the Scythians, although the matter is incapable of proof. Pressure from this direction set both culture and population in motion toward the west, in much the same way that the fall of Constantinople in the fifteenth century induced the Renaissance in Italy.

IV.The remarkable prehistoric civilization of Italy is due to the union of two cultures: one from the Hallstatt region having entered Europe by way of the Danube, the other coming from the southeast by sea being distinctly Mediterranean. From these evolved the Umbrian and the Etruscan civilizations, followed in the historic period by the early Latin.

The earliest culture in Italy worthy the name is found in thepalafitteor pile dwellings, in the northern lakes, and in the so-calledterramaresettlements in the valley of the Po. The former are not distinguishable from similar structures in the Swiss lake dwellings, but theterramareare entirely peculiar to Italy. Their like is not found anywhere else in Europe. Briefly described, they are villages built upon raised platforms of earth, encircled by a moat, and generally having a ditch or small pond in the middle, in which an altar is erected. These complicated structures are built upon the low, marshy, alluvial plains along the Po, but show many points of similarity with the true pile dwellings. The people of this early period were in the pure stone age, with few arts save that of making the coarser kinds of pottery. From their osseous remains, they seem to have been of a long-headed type, quite like their predecessors, who were cave dwellers. After a time, without any modification of the modes of construction of their settlements, new elements appear among theseterramarepeople, bringing bronze and introducing cremation. At about the same period, as we have said, the Alpine broad-headed race began its submergence of the primitive Ligurian type, leading to the formation of the north Italian population as we see it to-day. This type surely invaded Italy from the north and northeast.

From the foregoing considerations it will appear that there were two constituent streams of culture and also of men here uniting in the valley of the Po and on the northern slopes of the Apennines. Possibly, as Chantre affirms, these two streams were from a common Oriental source, here being reunited after long and independent migrations. At all events, a remarkable advance in culture speedily ensued, superior to either of those from which its elements were derived. For the civilization unearthed at Villanova, in the Certosa at Bologna, at Este, and elsewhere, while in much of its bronze work similar to the Hallstatt types, contained a number of added features, obviously either indigenous or brought directly from the south. The Hallstatt affinities are especially revealed in thesitulæto which we have already called attention. That of Arnoaldi, discovered at Bologna,betrays much the same grade of skill in manufacture as the one from Watsch. Its flat development is shown by the accompanying cut. The scenes represented are not dissimilar. The boxers armed with the cestus, the chariots, and horses closely resemble one another. No doubt of a close intercourse between the two regions of Bologna and Austria can possibly exist.

Arnoaldi Situla, Bologna.Arnoaldi Situla, Bologna.(From Revue Archéologique, 1885, vol. ii, Plate XXV.)[Larger Image]

The influence of the second or native element in prehistoric Italian civilization appears most clearly in the Etruscan period. Etruria, lying south of the Apennines, was more essentially Italian, as we might expect, than the region about Bologna, where the Umbro-Hallstatt or continental culture flourished. It is easy to note the superiority in the former case. It is most clearly indicated in the pottery. Here we find an art which is truly indigenous to the climate and soil of the Mediterranean.

Popularly, the word "Etruscan" at once suggests the ceramic art; the progress effected in a short time was certainly startling. To give an idea of the sudden change, we have reproduced upon page 30 illustrations of typical bits of Italian pottery.[12]The first vase, prior to the full Etruscan culture, shows its crudity at once, both in its defects of form and the plainness and simplicity of its ornamentation. Such a vessel might have been made in Mexico or even by our own Pueblo Indians. In a century or two some teacher made it possible to produce the sample depicted in the next cut. Perfect in form, superb in grace of outline,its decoration is most effective; yet it betrays greater skill in geometrical design than in the representation of animate life. The dog drawn on the girdle is still far from lifelike. Then come—probably after inspiration from Greek art—the possibilities in complex ornamentation represented by our third specimen. Not more pleasing in form, perhaps less truly artistic because of its ornateness, it manifests much skill in the delineation of human and animal forms. The culture culminates at this point. From profusion of ornament and overloaded decoration, degeneracy begins. It is the old story of the life and decay of schools of art, time in and time out, the world over.

Etruscan pieces.Early Etruscan.Later Etruscan.Greek Etruscan.[Larger Image]

The advance in culture typified by our vases was equaled in all the details of life. The people built strongly walled cities; they constructed roads and bridges; their architecture, true predecessor of the Roman, was unique and highly evolved. All the plain and good things of life were known to these people, and their civilization was rich in its luxury, its culture and art as well. In costumes, jewelry, the paraphernalia of war, in painting and statuary they were alike distinguished. Their mythology was very complex, much of the Roman being derived from it. Most of our knowledge of them is derived from the rich discoveries in their chambered tombs, scattered all over Italy from Rome to Bologna. There can be no doubt of a very high type of civilization attained long before the Christian era. Roman history is merged in the obscurity of time, five or six hundred years later than this. The high antiquity of the Etruscan is therefore beyond question. But its highly evolved art and culture show that we have no longer to do with European origins; to discuss it further would lead us to trench upon the field of classical rather than prehistoric archæology.

V.The northwestern corner of Europe, including Scandinavia, Denmark, and the Baltic plain of Germany, throughout the prehistoric period has been characterized by backwardness of culture as compared with the rest of Europe. It was populated from the south, deriving a large part of such primitive civilization as it possessed from the south and the southeast as well.

That this region was necessarily uninhabited during the Glacial epoch, long after the advent of man in southern Europe, is indubitable. It is proved by the extent of the glaciated area, which extends on the mainland as far south as Hamburg, Berlin, and Posen, and over the entire British Isles at the same time.[13]It was by the melting of this vast sheet of ice that those high level river terraces in France and Belgium were formed, in which the most ancient and primitive implements of human manufacture occur. In the area beneath this ice sheet no trace of human occupation until long after this time occurs. This fact of itself, is not absolutely conclusive, for glaciation would have obliterated all traces of anterior habitation or activity. As to the possibility of a tertiary population before the Glacial epoch, it presents too remote a contingency for us to consider, although we do not deny its possibility. It too far antedates prehistory, so to speak.

At the notable International Congress of Anthropology and Prehistoric Archæology at Stockholm in 1874 a landmark in these sciences was established by substantial agreement among the leading authorities from all over Europe upon the proposition now before us.[14]First of all, every one subscribed to the view that the palæolithic or oldest stone age was entirely unrepresented in Sweden. The earliest and simplest stone implements discovered in the southern part of that country betray a degree of skill and culture far above that so long prevalent in France and Germany. Stone is not only rubbed and polished into shape, but the complicated art of boring holes in it has been learned. Norway also seems to be lacking in similar evidence of a human population in the very lowest stage of civilization. Stone implements anterior to the discovery of the art of rubbing or polishing are almost unknown. Only about Christiania have any finds at all been made. In Denmark some few very rude implements have been found. They are so scarce as to suggest that they are mere rejects or half-finished ones of a later type. The kitchen middens,or shell heaps, of Jutland, for which the region is most notable, as described by Steenstrup, abound in stone implements. They all represent man in the neolithic age. Polished stones are as abundant as the rudely hammered ones are rare. From the absence of all the very early stone implements, and from the sudden appearance of others of a far more finished type, the possibility of a gradual evolution of culture about Scandinaviain situis denied on all hands. The art of working stone has surely been introduced from some more favored region. The only place to look for the source of this culture is to the south.

Flint Dagger, Stone Axe, Bronze Axe.Flint Dagger.(From Montelius, 1895 b.)Stone Axe.(From Montelius, 1895 b.)Bronze Axe.(From Montelius, 1895 b.)

Tardy in its human occupation and its stone culture, Scandinavia was still more backward, as compared with the rest of Europe, in its transition to the age of bronze. This is all the more remarkable in view of the rich store of raw materials on every hand. Nowhere else in Europe does the pure stone age seem to have been so unduly protracted. A necessary consequence of this was that stone-working reached a higher stage of evolution here than anywhere else in the world save in America. In other parts of Europe the discovery of metal-working, of course, immediately put an end to all progress in this direction. The ultimate degree of skill to which they attained is represented in the accompanying cuts. The first, a flint poniard, shows the possibilities, both in the line of form and finish, of manufacture by the chipping process. To equal this example one must look to the most skillful of the AmericanIndians, as in Tennessee, where they were too remote from mines of native copper to make use of a ready substitute for stone. Our second implement is an axe hammer, made of diorite. To shape, sharpen, bore, and polish a piece of stone like this certainly required a long apprenticeship in the art.

Bronze culture, when it did at last appear in this remote part of Europe, came upon the scene suddenly and in full maturity. Whether this was as early as the eighth to the tenth century, as Montelius avers, is disputed by many. All are nevertheless agreed that evidence is absolutely lacking that the art was of indigenous origin. From what part of the world this knowledge of bronze ultimately came we leave an open question, as also whether it came with Phœnician traders or direct from Greece, as Worsaae affirms. It was certainly introduced into Sweden, making its way into Norway about the same time directly from the peninsula of Jutland. Its first appearance is in a highly evolved state. Such crude attempts at manufacture as Chantre finds so long prevalent along the Rhone Valley, for example, are entirely absent. Both in form and ornamentation the hand of the master is apparent. This bronze age, like that of stone, lasted a very long time—far longer than anywhere else on the continent. Central Europe passed through three stages of metallic progress while Scandinavia was evolving two. Not until the second or third century of our era—not until the time of the Romans, it would appear—did iron begin to supplant bronze. History repeats itself. The excessive duration of the bronze age, as in the case of stone antecedently, led to the attainment of a remarkable skill. The two accompanying cuts are typical of the best work of this time. In the one case, merely superficial ornament, especially the skillful use of the spiral; in the other, real beauty of form in the bracelet, are clearly apparent. Possessed of such skill in the working of bronze, it is small wonder that the need of a better metal was not felt. Only when fashioned into weapons of war does iron reveal its supremacy over bronze. This, of course, with the campaigns of historical times, brings us to the end of our chronicle.

Bronze Bracelet.Bronze Bracelet: 650-500B. C.(From Montelius, 1895 b.)

The prehistoric experience of metal-working in Scandinavia is typical of the other details of its cultural evolution. In its earliest epoch no trace of domestic animals is present. It is rather a remarkable fact that even the reindeer seems to have beenunknown.[15]What can Penka say to this in his positive affirmation that the original Aryans got up into Scandinavia, having followed the reindeer from central Europe north after the retreat of the ice sheet? The fact is, archæologically speaking, from the evidence furnished by the kitchen middens, that if they ever did this "they left a fine country, where deer were plenty, to subsist upon shellfish on the foggy coasts of Denmark."[16]The entire absence of economic motive for such a migration is at once apparent. Men seldom travel far under such conditions. Quite early, however, even in the stone age, do evidences of domestic animals occur, to the dog being added the ox, horse, swine, and sheep. Pottery in a rude form also follows. Finally, and in apparent coincidence with the bronze culture, comes a new custom of incineration. The dead are no longer buried, but burned. A profound modification of religious ideas is hereby implied. It seems to have been at about this time also that our Alpine racial type entered Scandinavia from Denmark, although, as we have already observed, it is yet far from certain that the new race was the active agent in introducing the new elements of culture. All that we know is that they both came from the south, and reached this remote region at about the same time.

That the origins of culture in Europe are certainly mixed would seem to be about the main conclusion to be drawn from our extended discussion. It has an iconoclastic tone. Yet we would not leave the matter entirely in the air, nor would we agree with Mantegazza (1884) in his conclusion that "Ignoramus" sums up our entire knowledge of the subject. There is some comfort to be drawn even from this mass of conflicting opinions. Our final destructive aim has been achieved if we have emphasized the danger of correlating data drawn from several distinct sciences, whose only bond of unity is that they are all concerned with the same object—man. The positive contribution which we would seek to make is that the whole matter of European origins is by no means so simple as it has too often been made to appear. It is not imperative that conclusions from all the contributory sciences of physical anthropology, philology, and cultural history should be susceptible of interweaving into a simple scheme of common origins for all. The order of races, for example, need mean nothing as respects priority of culture. Nor do the two sciences, philology and archæology, involve one another's conclusions so far as civilization is concerned. Language and industrial culture may have had very different sources; their migrations need stand in no relation toone another in the least. Each science is fully justified in its own deductions, but must be content to leave the results of others in peace. Such is the ultimate conclusion to which all the latest authority is tending. Only by a careful comparison of data from each sphere of investigation may we finally hope to combine them all in a composite whole, as many-sided and complex as the life and nature of man itself.

ByIRA REMSEN,

PROFESSOR OF CHEMISTRY IN THE JOHNS HOPKINS UNIVERSITY.

Water, the substance most familiar to us, is known in the liquid, in the solid, and in the gaseous state. Everybody knows that by heating the solid it passes into the liquid state, and that by heating the liquid it passes into the form of gas or vapor. So also everybody knows that when the vapor of water is cooled it is liquefied, and that by cooling liquid water sufficiently it becomes solid or turns to ice. In the same way many of the substances that are known to us as liquids, such as alcohol and ether, can be converted into the form of gas or vapor by heat. In fact, this is true of most liquids. The temperature at which a solid passes into the liquid state is called its melting point, and the temperature at which a liquid passes into the gaseous state is called its boiling point. The boiling point of water, for example, is 100° C. (212° F.) in the open air. But the boiling point varies with the pressure exerted upon the surface. The pressure that we ordinarily have to deal with is that of the atmosphere. If the pressure is increased the boiling point is raised, and if the pressure is decreased the boiling point is lowered. In dealing, then, with the conversion of a gas into a liquid, or that of a liquid into a gas, both the temperature and the pressure have to be considered.

Just as water is most familiar to us in the liquid form, so there are substances that are most familiar to us in the gaseous form. In fact, the only gaseous substances that can be said to be familiar to everybody are the gases contained in the air. The principal constituents of the air are nitrogen and oxygen, which form respectively about four fifths and one fifth of its bulk. Besides these gases, however, the air contains water vapor, carbonic-acid gas, ammonia, argon in small quantities, and many other substances in still smaller quantities. For the purposes of this article it is only necessary to have in mind the nitrogen, oxygen, water vapor, and carbonic acid. Of these, the water vapor is easily converted into liquid, as, for example,in the formation of rain, while the other constituents are liquefied with difficulty. The name "liquid air" is applied to the substance that is obtained by converting the air as a whole into a liquid; but in this process the water and the carbonic acid become solid and can be filtered from the liquid so that the latter consists almost wholly of oxygen and nitrogen. A few years ago this liquid was obtainable in only very small quantities. To-day, thanks especially to the efforts of Mr. Charles E. Tripler, of New York, it can be produced in any desired quantity, and at moderate cost. In consequence of this, it has come to be talked about in a familiar way, and many persons have had the privilege of seeing and feeling it, and of learning something about its wonderful properties. The object of this article is to explain the method employed in the production of liquid air, to give an account of some of its properties, and to indicate some of the uses to which it may possibly be put.

In the older text-books of physics and of chemistry certain gases were classed as "permanent," under the impression that these could not be liquefied, and this impression was based upon the fact that all efforts to liquefy them had failed. A brief account of these efforts will be helpful.

Among the so-called permanent gases was chlorine. An English chemist, Northmore, first succeeded, early in this century, in liquefying chlorine. His work was, however, lost sight of, and in 1823 Faraday at the Royal Institution showed independently that this transformation of gaseous chlorine into the liquid can be effected comparatively easily. The method used by him is this: When chlorine gas is passed into cold water it forms with the water a solid product known as chlorine hydrate. If kept well cooled this hydrate can be dried. If then its temperature is raised even to the ordinary temperature of the room, the solid hydrate is decomposed into liquid water and gaseous chlorine. Faraday put some of the solid hydrate into a stout glass tube sealed at one end and bent at the middle. The other end of the tube was then closed. The tube was then suspended so that the two ends were turned downward. On gently warming the end in which was the solid hydrate, this was decomposed into chlorine and water. But the gas given off would under ordinary conditions have occupied a much larger space than the solid hydrate. Being prevented from expanding by the tube in which it was inclosed, it was under very considerable pressure. The end of the tube that was not warmed was cooled, and in this end, in consequence of the pressure and the comparatively low temperature, chlorine, which is gaseous under the ordinary pressure of the air, appeared as a liquid. The general method made use of by Faraday in this classical experiment is that which is always made use of for the purpose of liquefyinggases, but for some gases pressures very much higher and temperatures very much lower are required. Faraday himself succeeded in liquefying all the gases then known except oxygen, hydrogen, nitrogen, nitric oxide, and marsh gas. He subjected oxygen to a pressure of about one thousand pounds to the square inch, or nearly seventy atmospheres, but it showed no signs of liquefaction. Later experimenters increased the pressure to four thousand pounds to the square inch, with no better results, so that it is not surprising that it came to be held that some gases are permanent.

Within comparatively recent years several gases have been liquefied on the large scale by means of pressure. These are ammonia, carbonic acid, nitrous oxide, and chlorine. Ammonia is used for producing low temperatures, as in breweries and in cold-storage plants and in the manufacture of ice; carbonic acid, for fire extinguishers and for charging beer with the gas; nitrous oxide, for producing anæsthesia; and chlorine in connection with several branches of chemical manufacture. The production of low temperatures by means of liquid ammonia and of liquid carbonic acid will be more fully dealt with further on, when the principles involved will be briefly presented. It is to be borne in mind that these substances are liquefied by means of pressure alone, at temperatures that are easily reached, so that it appears that by mechanical pressure it is possible to produce low temperatures. In 1869 an important fact was discovered by Andrews. It was that for every gas there is a temperature above which it is impossible to liquefy it by pressure. Thus, if chlorine is at any temperature above 146° C. (294° F.) it can not be liquefied. This temperature is called the "critical temperature" of chlorine. The pressure to which the gas must be subjected at the "critical temperature" in order that the gas may be liquefied is called the "critical pressure." In the case of chlorine this is 93.5 atmospheres. Now, the critical temperature of the gases that were called permanent gases are very low—lower than could be reached by the means at the command of earlier experimenters. The critical temperature of oxygen, for example, is -118.8° C. (-182° F.), while that of nitrogen is -146° C. (-230° F.). The critical pressures are 50.8 and 35 atmospheres respectively. As there is no difficulty in obtaining these pressures, the problem of liquefying oxygen and nitrogen and air resolves itself into finding a method of producing temperatures below the critical temperatures of these gases.

It is well known that a temperature somewhat below the freezing point of water can be produced artificially by mixing ice and salt. The ordinary ice-cream freezer is a familiar application of this method of producing cold. Other freezing mixtures that are sometimes used consist of calcium chloride and snow, that gives the temperature-48° C. (-54.4° F.), and solid carbonic acid and ether, that is capable of lowering the temperature to -100° C. (-148° F.). But even with the latter mixture it is not possible to reach the critical temperature of oxygen or that of nitrogen. How, then, is it possible to reach these extremely low temperatures?

In order to answer this question it will be necessary to take into consideration certain temperature changes that are observed when solids are melted and liquids are boiled, as well as when gases are liquefied and liquids are frozen. When heat is applied to a mass of ice at its melting point it melts and forms a mass of water having the same temperature. Heat disappears in the operation. It is stored up in the water. This disappearance of heat that accompanies the melting of ice can be shown in a very striking way by mixing a certain weight of ice with the same weight of water that has been heated to 80° C. (176° F.). The ice will melt and all the water obtained will be found to have the temperature of the melting ice—that is, 0° C. (32° F.). The water of 80° C. is thus cooled down to 0° by the melting of the ice. Again, when heat is applied to water its temperature rises until the boiling point is reached. Then it is converted into vapor, but this vapor has the temperature of the boiling water. During the process of boiling there is no rise in the temperature of the water or of the vapor. Heat disappears, therefore, or is used up in the process of vaporization. Similar phenomena are observed whenever a solid is melted or a liquid is boiled. When, however, a gas is liquefied it gives up again the heat that is absorbed by it when it is formed from a liquid; and so also when a liquid solidifies it gives up the heat it absorbs when it is formed from a solid.

But it is not necessary that a gas should be converted into a liquid in order that it should give up heat. Whenever it is compressed it becomes warmer. Some of the heat stored up in it is, as it were, squeezed out of it. Conversely, whenever a gas expands, it takes up heat and, of course, surrounding objects from which the heat is taken become colder. Now, it is a comparatively simple matter to compress air. Every wheelman knows that, and he also knows that the process causes a rise in temperature; at least he knows it if he uses a small hand pump. With large pumps run by steam any desired pressure can be reached. This is simply a question of securing the proper engines, and vessels sufficiently strong to stand the pressure. It has already been pointed out that several gases are now liquefied on the large scale by means of pressure. It is to be noted that low temperatures can be produced by converting certain gases, such as ammonia and carbonic acid, into liquids, and by compressing certain gases, as, for example, air. When liquefied gasesare used it is only necessary to allow them to pass rapidly into the gaseous state, when more or less heat is absorbed. This is the basis for the use of liquid ammonia in the manufacture of ice. A vessel containing the liquid ammonia is placed in another containing water. The inner vessel being opened, the liquid ammonia is rapidly converted into the gas; heat is absorbed from the water; it freezes. When a vessel containing liquid carbonic acid is opened so that the gas that is formed escapes through a small valve, so much heat is absorbed that a part of the liquid carbonic acid is itself frozen. In this case the substance is present in all three states of aggregation—the solid, the liquid, and the gaseous. The use of a mixture of ether and solid carbonic acid as a freezing mixture has already been referred to. Its value depends, of course, principally upon the fact that solid carbonic acid is liquefied, and the liquid then converted into gas, both of which operations involve absorption of heat.

We are now prepared to understand the important experiments of Cailletet and of Pictet, the results of which were published in 1877. It should be said that they worked independently of each other—Cailletet in Paris and Pictet in Geneva. Pictet liquefied carbonic acid and sulphur dioxide by pressure. The liquid carbonic acid was passed through a tube that was surrounded by liquid sulphur dioxide boiling in a partial vacuum. The liquid carbonic acid thus cooled was then boiled under diminished pressure in a jacket surrounding a tube in which the gas to be liquefied was contained under high pressure. When this gas was allowed to escape from a small opening its temperature was so reduced by the expansion that a part of it was liquefied in the tube and passed off as a liquid. Cailletet worked in essentially the same way, but on a smaller scale. Neither of these experimenters liquefied oxygen or nitrogen on the large scale, but they pointed out the way that must be followed in order that success may be attained. They destroyed the belief in "permanent" gases.

Fig. 1.—Laboratory Liquefaction Apparatus of Dewar for the Production of Liquid Oxygen, etc.Fig. 1.—Laboratory Liquefaction Apparatus of Dewar for the Production of Liquid Oxygen, etc.A, air or oxygen inlet; B, carbon-dioxide inlet; C, carbon-dioxide valve; D, regenerator coils; F, air or oxygen expansion valve; G, vacuum vessel with liquid oxygen; H, carbon-dioxide and air outlet; ○, air coil; ●, carbon-dioxide coil.

Later experimenters in this field are Wroblewski, Olszewski, and Dewar, who have been interested mainly in the purely scientific side of the problem, while Linde in Germany, Hampson in England, and Tripler in the United States have their minds on the practical side. Notwithstanding the low temperatures involved in the experiments, a number of heated discussions have been carried on in the scientific journals touching the question of priority. To the unprejudiced observer it appears that all of those named above are entitled to credit. They have all helped the cause along, but just how to apportion the credit no one knows. In a general way, however, some of the results obtained by each in turn should be given. Wroblewski and Olszewski have carried on the work begun by Cailletet and Pictet,and have produced lower temperatures. In the latest form of apparatus used by Olszewski, liquid ethylene is used as the cooling agent. Its boiling point is -102° C. (-151.6° F.). By causing it to boil rapidly under diminished pressure a temperature below the critical temperature of oxygen can be reached. As early as 1891 Olszewski obtained as much as two hundred cubic centimetres of liquid air by this method. Dewar has also made use of liquid ethylene. This was passed through a spiral copper tube surrounded by solid carbonic acid and ether. It was then passed into a cylinder surrounded by another cylinder containing solid carbonic acid and ether. A spiral copper tube, which runs through the outer cylinder and also through the inner cylinder in which the ethylene was boiling under diminished pressure, carried the air. This was liquefied and then collected in a vacuum vessel below. Later he found that air can be liquefied by using liquid carbonic acid alone as the cooling agent. A sectional drawing of his apparatus described in 1896 is given herewith. As he remarks: "With this simple machine, one hundred cubic centimetres of liquid oxygen can readily be obtained, the cooling agent being carbon dioxide, at the temperature of -79°. If liquid air has to be made by this apparatus, then the carbonic acid must be kept under exhaustion of about one inch of mercury pressure, so as to begin with a temperature of -115°."

The introduction of the vacuum vessel by Dewar has been of great service in all the work on liquefied gases. A vacuum vessel is a double-walled glass vessel, as shown in Fig. 1, G. The space between the inner and outer walls of the vessel is exhausted by means of an air pump before it is closed. The vessel is therefore surrounded by a vacuum. As heat is not conducted by a vacuum, it is possible to keep specimens of liquefied gases in such vessels for a surprisingly long time. Heat enough can not pass through thevacuum to vaporize the liquid rapidly. The most common form of these vessels is that of a globe. Such a vessel is known as a Dewar globe or bulb.

It has been found that liquid air can be kept very well by putting it in a tin or galvanized iron vessel, which in turn is placed in a larger one, and then filling the space between the two with felt. Under these conditions vaporization takes place quite slowly, and it is possible to transport the liquid comparatively long distances. It has, for example, been transported from New York to Baltimore and Washington. In one case with which the writer is familiar two cans were taken from Mr. Tripler's laboratory in the morning, delivered at the Johns Hopkins University in the afternoon, and used to illustrate a lecture in the evening. After the lecture there was enough left for certain experiments that were carried on during the rest of the night.

Tripler, Linde, and Hampson have all succeeded in devising forms of apparatus by means of which air can be liquefied without the aid of other cooling agents than the expanding air. In principle the methods employed by these three workers are essentially the same. It appears from the published statements that at the present time Tripler's plant is the most efficient. While a few years ago a half pint or so of liquid air is said to have cost five hundred dollars, now five gallons can be made for about twenty dollars, and probably much less. The general working of Tripler's apparatus can be made clear by the aid of the accompanying drawing, Fig. 2. A1, A2, A3represent steam compression pumps. Air is taken through I from above the roof of the laboratory. In the first pump it is compressed to sixty-five pounds to the square inch. It, of course, becomes heated as it is compressed. In order to cool it down again it is passed through a coil, B1, which is surrounded by water of the ordinary temperature. This compressed and cooled air is then furthercompressed in the second pump, A2, to four hundred pounds to the square inch. Again it is cooled in the same way as before by means of water which circulates around the coil B2. Once more the air is compressed, this time in the cylinder A3, in which it is subjected to a pressure of two thousand to twenty-five hundred pounds to the square inch; and then this compressed air is brought down to the ordinary temperature in the cooler B3. The air under this great pressure is now passed through the purifier C, where it is freed from particles of dust and to a great extent from moisture. From C the air passes into the inner bent tube, about thirty feet in length, until it reaches D. This may be called the critical point of the apparatus. Here is situated a needle valve from which the air is allowed to escape. It, of course, expands enormously, and is correspondingly cooled. This very cold air passes into the space between the inner and outer tubes, and finally escapes at F. The result of this is that the compressed air in the inner tube is soon cooled down so far that a considerable part of the air that escapes at D appears in the liquid form. This collects in the lower part of the jacket, and on opening the stopcock at E the liquid escapes in a stream the size of one's finger.


Back to IndexNext