Another great source of vitiation of the stream of tendency is found in two people who marry in a truly enough physiological sense, but who find or force themselves in lives of wear and tear which progressively unfit them for childbearing and child nurture. Poorly calculated ambitions, unexpected difficulties to be surmounted, depressing oppositions, with perhaps more or less actual disease or accident, largely account for this in a general way. Obviously, during the child-rearing age, the effect of what parents are obliged to endure and execute upon the fortunes of progeny becomes a matter of far-reaching importance. That anything which persistently exhausts or overstrains the parents must tell in the later dynamic tendency anddevelopment is premised at least by certain recent studies, especially those of Hodge on the influence of fatigue, and of Van Gieson on the effects of exhaustion and intoxication upon the nervous elements. (See also Peterson,op. cit.) In no sense can parents be said to live for themselves chiefly. Always the influence of their own health, happiness, and prosperity upon their children should be remembered, and should be made as constructive as possible. That this can be consciously attempted with commensurate results is more or less evidenced not only by common observation but by investigation. Not, however, in the sense that parents are always able to endow children with some particular, much-wished-for characteristic, as so many suppose—for it must be remembered that perhaps pretty fixed tendencies for several generations may have to be overcome and reversed before such special results can be obtained, but in the much better sense of giving such an impetus healthward and strengthward and lifeward as may later on be the beginning of a constitutional foundation that shall support many generations of full health and longevity.
If, then, the first steps—and, generally speaking, the most important steps—are discovered in the unphysiological marriage and its influence upon the bearing and rearing of progeny, then it is obvious enough that prevention of incurable insanity should begin with giving adequate attention to this phase of the subject, and this first and emphatically. Already the law says that certain peculiarly afflicted individuals can not marry; and probably this is about as far as the law can helpfully go until, at least, public intelligence as well as private sentiment will sustain it in going further. So we must look to these latter—a widespread intelligence and a corresponding earnest sentiment founded upon such intelligence—for the means of making progress toward the prevention of insanity. But how can this needed knowledge and helpful sentiment come to be? Certainly not by perpetuating the present notions of so-called "modesty" and "purity," which, as now held, must always interfere with the study and practice necessary for ascertaining the truth, and for applying it to the needs of race-building. The time ought to come soon, very soon, when matters of such serious content shall not be so absolutely subject to the dominance of conventionality and guesswork and recklessness as now, but shall instead be subject to the sway of accurate science and its careful adaptation to human conditions. Every marriage now is at best but an experiment—blind and chance-taking often, in a most wasteful and dangerous sense. Let it remain, if it must, an experiment still, but one which shall be henceforth conducted with such foresight and skill, and withal with such intelligent purpose, as shall certainly point to improved results from generation togeneration. Experience shows that it is comparatively easy to ascertain what marriages, generally speaking, are prone to result in obviously vitiated progeny; or if not in these, then, to some extent at least, in the progeny which, being unnaturally constituted, are prone to develop their weaker strands of personality, and so to break down in the end. But to this course neither prudery nor superstition nor selfishness will ever assent; it must be pursued in spite of these, and by the only method which science now recognizes—namely, accurate observation, careful record, and the most comprehensive, skillful comparison, all in order that truthful inductions may be finally secured. That parents should train up their children to look forward to marriage not as the acme of personal indulgence and satisfaction, but as a most responsible partnership for the developmental keeping of unborn fortunes, and the proper nurturing of the children that may come to them, is no longer speculation, but a science-founded fact. Undoubtedly the highest state of adult satisfaction will always be closely associated with what may be characterized as child completion. Moreover, that an educational system which so thoroughly ignores this most important of all educational subjects must, in time, be subjected to the criticism which science may justly develop, is amply borne out by the cases studied. Often, indeed, has it appeared that had a modicum of real knowledge been at hand, most disastrous results would naturally have been obviated. Educators lead the day; why not they lead in directions which shall most truly correct the results of physiological ignorance and daring? That no man or woman should go forth from college with such vital knowledge unlearned is probably the first and most important means of preventing incurable insanity conceivable; and that these in turn should never hesitate to diffuse popularly that which they have been so favored in the learning, implies a duty which the intelligence itself makes clear.
So, too, if persistent overstrain and exhaustion of parents, either prospective or actual, leads directly to starvation of their own structural elements, how probable that the initiating and bearing and nurturing of children is to a like extent detrimentally interfered with in any given case through the development of an "erratic cell growth." Certain it is that completeness of development depends on two things—namely, nutrition and exercise. In a biological sense both these are dependent upon a right adjustment of supply to demand. Hence starvation or engorgement, inactivity or overwork, each may lead to the same dynamic result—that is to say, to an interference with the proper growth of the organism. That due heed, then, should always be given to the necessary health preservation of those who essay to become parents, not only in preparation for but during the wholeso-called childbearing period, is so scientifically deducible that it may be for all practical purposes considered as axiomatic. The way to have healthy, long-lived, and happy children is for parents to be healthful and intelligently careful themselves; while the whole science of health must eventually consist in the science of such symmetrical and high development as will enable individuals to endure necessary strain, resist disease, and rapidly and fully recover from accident and infection.
The name of William Pengelly is most closely associated with the explorations of caves in England containing relics of men together with the remains of extinct animals, the results of which, confirming similar conclusions that had been reached in France, convinced English geologists of man's extreme antiquity. Speaking of him at the time of his death as one of the last survivors of the heroes who laid the foundation of geological science, Prof. T. G. Bonney said, "He has left behind an example of what one man can do in advancing knowledge by energy and perseverance."
William Pengellywas born at East Looe, a fishing village in Cornwall, England, January 12, 1812, and died in Torquay, March 16, 1894. The name of Pengelly is not uncommon in Cornwall, and has figured in English history—among others, in the person of Sir Thomas Pengelly, who was chief baron of the exchequer, and left certain sums for the discharge of debtors from the jails of Bodmin and Launceston. His father was captain of a small coasting vessel, and he acquired a strong attachment to the sea. He was sent to the Dame's School in his native village when very young, and before he was five years old had made so rapid progress that his mother applied to the master of a school for larger boys to receive him as a pupil. The master declined to take him, but, hearing him reading as he passed the door of the house not long afterward, concluded to grant the mother's request. At school he soon gained such a reputation for scholarship that the boys made him spend all his play hours helping them in their lessons. His school days ended when he was twelve years old, and he accompanied his father to sea, making, however, voyages that were seldom more than three days long, most of the work of which consisted in taking in and taking out cargo. The sailors soon discovered his clerkly gifts and employed him to write their letters, but did not so well appreciate his excellent conversational powers. On "tailoring days" it was understood that his clothes should be repaired for him, while he read aloud for the general benefit, and the sailors would amuse themselves by findingsolutions to questions in Walkingham's Arithmetic. His seafaring life closed in his sixteenth year, when the death of a brother made it desirable that he should remain at home.
Though working hard all the day for a mere support, young Pengelly managed to spend several hours every night in study, seeking to master mathematics. He had no tutor and no really good text-books, but made such progress in his studies that in a comparatively short time he became "a mathematical tutor of no mean order." He bought his first Euclid of a peddler who occasionally visited the place; then, having saved up a little money for the purpose, it was a happy day for him when he walked thirty miles to Devonport and back, bearing, on his return, twenty volumes in a bundle over his shoulder; among them were the works of some of the standard authors, for he cultivated a literary as well as a mathematical taste.
He received his first lesson in geology while he was still a sailor boy, at Lyme Regis—a spot exceedingly rich in fossils. A laborer whom he was observing broke a stone, the opening of which disclosed a fine ammonite. To his question as to what the fossil was, the laborer replied that if he had read his Bible he would have known; that there was once a flood that covered all the world; the things that were drowned were buried in the mud, and this was a snake which had suffered that fate. "A snake! but where's his head?" He was again referred to the Bible, which would tell him why the snakes in the rocks had no heads. "We're told there that the seed of the woman shall bruise the serpent's head. That's how 'tis." The second lesson came a few years later, in a reading club of which Pengelly was a member. They were reading Dick's Christian Philosopher, and came to a geological section, when the reader remarked that "as geology was very likely to be extremely dry, and as many good people thought it dangerous if not decidedly infidel in its teachings, he would propose that the selection should not be read. This was passed by acclamation, and the reader passed on to astronomy."
While still young, Pengelly removed to Torquay, where he spent the remainder of his life. Shortly after arriving there, he opened a small day school on the Pestalozzian system, into which he introduced the novelty of the use of chalk and the blackboard in giving instruction. Beginning with six pupils, the school grew rapidly. He had private pupils, too, and in 1846 these had become so numerous that he gave up his school, and as a special tutor in mathematics and the natural sciences found his life occupation. Some of his pupils became distinguished in after life; while others, like the two Russian princes, nephews of the Czar Alexander II, and Princess Mary, of the Netherlands, all of whom became much attached to him, were famous by reason of their position. His attention was broughtfor a third time to geology while looking over some books which he thought might be useful to his pupils, when he found one published by the brothers Chambers, which contained a chapter on that science. This was not much, but it was enough to inform him how much had already been done in geology, and, perhaps, to give him a hint of some of the possibilities that lay in it. From this time on, he was ardently interested in geology. The journal of his first visit to London and the British Museum, in 1843, attests how he was becoming absorbed in it. He spent his holidays in geological explorations and in excursions which gradually grew larger, until his position as a geologist was recognized, and he became an authority respecting all points and phenomena which had come under his personal knowledge. A hint dropped to him by Professor Jameson as he was about to visit the Isle of Arran taught him to make his notes of observations on the spot, and greatly helped, his daughter Hester observes in the biography on which we have drawn very largely, "to form those habits of extreme accuracy which characterized all his scientific work."
In 1837 Mr. Pengelly assisted in the reorganization of the Torquay Mechanics' Institute, with which he maintained a connection for more than twenty years, and before which he delivered many lectures. In 1844 he participated in the organization of the Torquay Natural History Society, of which he became, in 1851, honorary secretary, and remained so for more than thirty-nine years. "Under his guidance it became a scientific power in the country. Year after year he lectured there, tincturing the locality with his own enthusiasm; and from the society there ultimately sprang the museum in Babbacombe Road, with its admirable collections."
His lectures, delivered gratuitously at Torquay, were very popular, and were attended by large audiences. The fame of them spread, and he was called to other places—Exeter, Exmouth, and larger towns and farther off, and to the great learned societies—where he lectured, always with success, and to the satisfaction and delight of his audiences. "Those persons living, and they are many," says Mr. F. S. Ellis in the preface to Hester Pengelly's biography of her father, "who had the good fortune to hear Pengelly lecture will bear ready witness to the complete mastery he always had of his subject, and of the faculty of imparting his knowledge. Even when speaking upon abstruse subjects to a mixed audience, he would make the matter perfectly clear without in any degree appearing to talk down to the capacity of those he was addressing.... His manner was no less pleasing and attractive than the language in which he clothed his ideas was grateful to the ear." Geology and astronomy furnished the subjects of the lectures.
It would be impracticable in a brief sketch to follow the detailof Pengelly's geological investigations previous to his engaging in systematic cave exploration. They embraced fields chiefly in Devonshire and Cornwall, and afforded subjects for correspondence and discussion with many of the most eminent British geologists, and some of other countries than England. A study of some fossil fish, first observed by Mr. Charles W. Peach in Cornwall, furnished the occasion for one of his first recorded papers, On the Ichthyolites of East Cornwall, in the Transactions of the Royal Geological Society of East Cornwall, 1849-'50; and a single volume—the seventh—of these Transactions contains nine of his papers. Another subject of interest was the beekites, curious formations of chalcedonic silica on the limestone fragments in the New Red Sandstone of Devonshire, first observed by Dr. Beek, of Bristol, concerning which he read a paper at the Cheltenham meeting of the British Association, the first which he attended, in 1856. In 1860 he completed the formation of a collection of Devonian fossils from Devon and Cornwall, which was presented by the Baroness Burdett-Coutts to the new museum of the University of Oxford, in connection with the foundation of a geological scholarship, and was named "the Pengelly Collection."
The first of the more important geological researches with which Pengelly's name is intimately associated was the exploration of the peculiar formation at Bovey Tracey, for the identification of its fossils and the determination of its age. The plain in which the formation lay had an aspect suggesting the basin of an ancient lake, and its deposits, "very different from the solid rocks of the surrounding hills," confirmed the suggestion. They consisted of gravels, sands, and clays, distinctly stratified, with seams of lignite, for which they had been worked. The pits had already attracted some notice, and the deposits had been mentioned in scientific literature, but very little had been learned concerning their age. In 1860 the subject was mentioned by the late Dr. Falconer, an eminent paleontologist, to Miss Burdett-Coutts as one the investigation of which would be a boon to science. Miss Coutts supplied the money that was needed, and the direction of the systematic investigation was intrusted to Pengelly; on learning which, Sir Charles Lyell wrote to him: "I am very glad of the prospect of our knowing something of the Bovey coal plants. It is almost a reproach to English geology that they have been so little explored, as they are perhaps the only fossils of the Tertiary period to which they belong." In order to determine accurately the nature, thickness, and order of the successive beds, and to make a satisfactory collection of fossils, a new section of the deposit was made, measuring one hundred and twenty-five feet, down to the bottom of a seam of lignite four feet in thickness, the "last bed" of the workmen, but not at the actual base of the deposit.Thirteen of the thirty-one beds of lignite which were cut through, and two of the beds of clay, yielded distinguishable plant remains. These were sent to Dr. Oswald Heer, of Switzerland, for examination; and he determined from the collection fifty species, including ferns, conifers, figs, cinnamon trees, an oak, a laurel, vines, andromedas, a bilberry, a gardenia, a water lily, and some leguminous plants. Heer referred the group to the Lower Miocene period, but some modification was afterward made in this determination in the light of a fuller knowledge of the Tertiary flora. The deposits and work at Bovey Tracey were the subject of a memoir to the Royal Society by Sir Charles Lyell; and Dr. Heer's account of his work—The Fossil Flora of Bovey Tracey—was published in 1863.
While this investigation was going on, Lyell was preparing the fifth edition of his Manual of Geology. He invited Pengelly to suggest corrections to the text, saying that, besides positive mistakes, he would "be glad of any hints and suggestions made freely, which your knowledge of the manner in which beginners are struck may enable you to send us." The criticisms supplied by Mr. Pengelly were adopted by Lyell except where they had already been made unnecessary.
On the accidental discovery by workmen, in 1858, of a cavern in Windmill Hill, overhanging the town of Brixham, Pengelly at once thought of finding what was in it, and what story it might have to tell. He visited the place and applied to the owner for permission to explore it in behalf of the Torquay Natural History Society. But on consultation with Dr. Hugh Falconer it was decided that as that society probably had not means sufficient to bear the expense of the exploration, the Royal and Geographical Societies should be applied to for a grant. This was obtained, and the work was carried on under the superintendence of Professor Prestwich and Mr. Pengelly, on whom, as a resident of the place, the burden substantially fell. The decision to explore the cave was brought about largely by the fact that it was a virgin cave which had been inaccessibly closed during an incalculably long period, the last previous event in its history having been the introduction of a reindeer antler, which was found attached to the upper surface of the stalagmitic floor. It was therefore free from the objection urged against Kent's Cavern that, having been long known and open, it had probably been ransacked again and again. A thorough method of exploration was determined upon, beginning with the examination and removal of the stalagmitic floor; after which the upper bed should be dealt with in a similar manner horizontally throughout the entire length of the cavern, or so far as practicable; then the next lower bed, and so on, till all the deposits had been removed. By this method the generalstratigraphical order of the deposits and their characteristics could be learned, all their fossils secured, and the highest possible exactness attained. The excavations were continued through twelve months, at the end of which the cave had been practically emptied. Besides furnishing interesting indications relative to its physical history, the cave yielded sixteen hundred and twenty-one bones and thirty-six flints. While most of the flints were flakes, some of which possibly might not be artificial, three were fairly well made implements of paleolithic type; and it was therefore concluded that man either frequented or at any rate sometimes entered the Brixham Cave while Devonshire was inhabited by various mammals which are now extinct. Previous to the execution of this work, all geological evidence as to the antiquity of man had been received, even by English geologists of the first rank, with what Pengelly called apathy and skepticism. After the work it soon became evident, Pengelly said in an address to the Section of Anthropology of the British Association, in 1883, that this geological apathy had been more apparent than real. "In fact, geologists were found to have been not so much disinclined to entertain the question of human antiquity, as to doubt the trustworthiness of the evidence which had previously been offered to them on the subject." The discoveries are thought to have had a considerable share in disposing Mr. Prestwich to undertake the investigation of the remains at Amiens and Abbeville in France and Hoxne in England, "which added to his own great reputation and rescued M. Boucher de Perthes from undeserved neglect." Prof. Boyd Dawkins says that they established beyond all doubt the existence of paleolithic man in the Pleistocene age, and caused the whole of the scientific world to awake to the fact of the vast antiquity of the human race. Of course, they aroused a theological controversy which was long and bitter, and has only recently died out. Pengelly had no trouble through it all. "Geologists," he said, "see no mode of reconciling the Mosaic account of creation with geological science.... For myself, I am satisfied that science can do nothing for the salvation of the soul, and that the Bible is able, through God's grace, to make us wise unto salvation." No doubts or difficulties could ever undermine his faith as a Christian.
The evidence accumulated at Brixham suggested the propriety of a re-examination of other evidences of man's antiquity, and particularly, in England, of those from Kent's Hole, or Cavern, at Torquay. The existence of this cave had been known from time immemorial, but the first recorded exploration of it was made in 1824 by Mr. Northmore, of Cleve, looking for organic remains and an ancient temple of Mithras. Mr. W. C. Trevelyan followed him, and first obtained results of value to science. The Rev. J. MacEnery, aRoman Catholic priest, began a four years' exploration of the cave in 1825, and prepared a narrative of his work, which was not published for several years after his death, having been lost, and found by Pengelly after a long search. He showed that the cave had been inhabited, practically at the same time, by man and various extinct animals; but the antiquity of man not being yet a live subject, little regard was paid to his evidences. With a grant of a hundred pounds from the British Association, the work was begun under the direction of a committee of which Pengelly was the leading spirit and the working member. It opened a new chapter in his life, his daughter says, "for he not only superintended the exploration of the cavern, but undertook its entire management, throwing himself, heart and soul, into the numerous duties which it entailed. The labor was arduous, and severely taxed his energies for fifteen years; but it was a congenial employment, and most faithfully performed.... After undertaking the exploration, Pengelly became such an enthusiast in the progress made that, when in Torquay, he never (unless prevented by illness) failed on a single week day to visit the cavern, while he devoted many hours at home in the examination of the specimens exhumed. He even abridged his short holidays, and all idea of living in London was abandoned on this account." In the investigation, the surface accumulations having been removed and preserved for examination, the floor of granular stalagmite was stripped off, so as to lay bare the cave earth, and this was dug out ultimately to a depth of four feet in a series of prismatic blocks, a yard long and a foot square in section, layer by layer. This material was examined in the cave by candlelight, then at the door by daylight. A box was appropriated to each "yard," in which all the objects of interest found in that particular earth were put. The boxes, with the record of what they contained, were sent daily to Pengelly, who cleaned the articles and repacked them, and kept regular records of his day's works. Other materials were dealt with with similar thoroughness in ways according to their nature. "Whatever was discovered beneath the stalagmite flooring must have been sealed up by it for, at the very least, two thousand years, probably for a much longer time." The exploration was completed June 19, 1880. The more than seventy-three hundred prisms of material which proved productive yielded, besides fifty thousand bones examined by Prof. Boyd Dawkins, numerous implements, including those of bone, the work of man. Two deposits were evident, one of "cave earth," and one of breccia beneath it. A glance at the implements from them showed that they were very dissimilar. Those from the breccia were more massive and ruder in every way than the others, and none of them were of bone. "In short, the stone tools, though both sets were unpolishedand coeval with extinct mammals, represent two distinct civilizations. It is equally clear that the ruder men were the more ancient, for their tools were lodged in a deposit which, whenever the two occurred in the same vertical section, was invariably the undermost." Various conditions in the deposits united in indicating that the interval between them must have been very considerable. Other caves were examined by Pengelly, but his most important discoveries were made in those of Brixham and Kent.
A third section of Pengelly's scientific work reviewed by Prof. T. G. Bonney in the summary he has added to Miss Pengelly's biography, from which we have quoted freely, includes miscellaneous papers on geology and kindred subjects, relating almost exclusively to the southwest of England. As a rule, the papers are comparatively short, being the fruits of researches which either did not demand a long time, or could be carried on at intervals as circumstances allowed, and appeared mostly in the transactions of local societies.
Pengelly was one of the prime movers and a leading spirit in the organization, in 1862, of the Devonshire Association for the Advancement of Science, Literature, and Art, at Plymouth, and was its president in 1867-'68. The objects of the association were "to give a stronger impulse and a more systematic direction to scientific inquiry in Devonshire, and to promote the intercourse of those who cultivate science, literature, or art in different parts of the country." It worked according to the methods of the British Association, with literature and art added to its objects, besides giving some attention to history and archæology. The first meeting was held under the presidency of Sir John Bowring. In 1872 the president was the bishop of the diocese, Dr. Temple, now Archbishop of Canterbury. In 1863 Pengelly was elected a Fellow of the Royal Society.
From 1856, when he read a paper at the Cheltenham meeting, Mr. Pengelly was almost a constant attendant upon the meetings of the British Association, and gained, as the years advanced, a prominent position among its leading members. He was president of the Geological Section at the Plymouth meeting, 1877. At the jubilee meeting of the association, held at York in 1880, he made the acquaintance of Prof. Asa Gray, which ripened into a friendship and resulted in a visit of Professor Gray and Mrs. Gray to Torquay. He met another distinguished American man of science, Prof. O. C. Marsh, recently deceased, at the International Geological Congress in London, in 1888. In 1801 he received a visit from Prof. G. F. Wright. He opposed the transference of the meeting of the British Association to Montreal in 1884, on account of the expense and the sacrifice of time which he thought many who would like to attend could not afford, and did not go himself. InMarch, 1874, he was visited at Torquay by Professor Phillips and others in behalf of a number of members of the British Association, and presented with an illuminated parchment containing the signatures of the contributors and a check, as a testimonial "in recognition of his long and valued services to science in general, and more especially for the exploration of Kent's Cavern. Replying to the addresses, he said he had done the work in connection with Kent's Cavern simply because he liked it.... He had experienced intense pleasure in it, and he could assure them that, on his finding aMachairodus latidus, after seven years and a half exploration, the discovery of that one tooth, in his opinion, was worth all the money that had been spent in the exploration of the cavern."
Besides geology, Mr. Pengelly had a living concern with astronomy, on subjects of which he lectured and read papers, and in folklore, and was "extremely interested" in the religious history of Cornwall. He became a member of the Society of Friends about 1853, and married his second wife, Lydia Spriggs, in that body. She assisted him in his scientific work, preparing diagrams.
Of Pengelly's character as a man, Professor Bonney speaks of the great charm in his personality, and the union in him of "such strong mental powers, and no less strong sense of what was just, true, and right, to such genuine humor and hearty enjoyment of wit." Sir Archibald Geikie speaks of his "genial, kindly, and helpful nature, and his invariably bright, cheery, and witty talk." Prof. Rupert Jones characterizes him as "a good example of a religious man—earnest, persevering, and exact in scientific research." The Rev. Robert Hardy says, "He did not obtrude his theological opinions, but it was easy to perceive that he was a man of true religious character." Sir Joseph Lister, looking back to the times of his acquaintance with him, recalled "vividly the impression of his great intellectual powers, his genial benevolence, and his sparkling humor."
As a lecturer his style is described as having been "most attractive. It is incisive, clear, and at times there are touches of humor. His perfect knowledge of the subject, combined with intense earnestness, clothed his lecture with genuine eloquence."
Miss Pengelly's biography abounds with illustrations of her father's rare faculty of attracting and interesting workingmen. A letter from one such man expresses gratitude, mingled with great pleasure, for the lasting happiness he was "so anxious and constant to impart to us young men during the Young Men's Society and afterward at the Mechanics' Institute, ... and I have often felt and said I owe more gratitude for the small amount of knowledge I possess, to Mr. Pengelly, of Torquay, than to any living man, and I think there are a few now in Torquay who might truly say so too."
We do not know whether the verb "to kindergartenize" has yet crept into the language, but, after reading the article of Miss Marion Hamilton Carter in the March Atlantic on The Kindergarten Child—after the kindergarten, one is disposed to think that such a verb is a present necessity. The question as to whether the kindergarten on the whole is a good institution is too wide for discussion within the restricted limits of the Table; but no one can read Miss Carter's article without being forced to the conclusion that, in some of its aspects, kindergarten work is of very doubtful utility. That lady found by actual experience with two or three successive levies of kindergarten children that they seemed to have an impaired rather than an improved faculty of acquiring knowledge, that their infancy seemed to have been artificially prolonged, that they had become accustomed to a nauseating amount of endearment in the language addressed to them by their instructors, that they seemed to expect to be continually amused, and that a certain drill through which they had been put for the alleged purpose of developing their powers of imagination had gone a long way toward making them incapable of speaking of things simply as they found them. All this is set forth in Miss Carter's article in a manner which leaves little doubt that she has described things substantially as they fell under her observation.
There is one important principle in education which it seems to us the kindergarten system too much ignores, if it does not completely set it at defiance, and that is that very young children require a great deal of letting alone. The spontaneous activity of the little ones—and they are sure to be active if they get the chance—is worth more for their education than any amount of directed activity. Their imaginations, too, will take care of themselves much better than we can take care of them. Nothing is less favorable to the development of imagination in a child than constant intercourse with grown people who have passed the imaginative stage, and whose daily duty it is to lay out ordered knowledge for assimilation by these babes. It is no wonder that part of the system should consist of special exercises for the cultivation of the very faculty which the system as a whole is so adapted to dull and to weaken. Anything much more silly, however, than the method described by Miss Carter it would be difficult to imagine.
The great popularity of the kindergarten is due in large measure to the fact that it relieves mothers during part of the day of the care of their small children. That it does this in very many cases at the expense of weakening the tie between mother and child there is too much reason to fear. The State has been stepping in more and more between parents and children, until now it lays its hand almost upon the cradle. The mothers of the republic are giving way, so far as influence over the rising generation is concerned, to the schoolmarms; but it is idle to expect that the latter can take the place of the mothers we used to know. The kindergarten constitutes a vast extension of the educational machinery previously in operation, and machinery is always impressive, especially to those whodo not understand it. What people see is that the system works very smoothly and uniformly and rhythmically, and that it saves, or seems to save, them a great deal of trouble; and that it is enough to make them think it something very fine. Whether it is really saving trouble in the end is a question which we consider quite open to discussion. There is room, in our opinion, to inquire whether the stimulus of society is not too early and too systematically brought to bear on the infants who throng the educational nursery—whether it is well for children of three and four to be brought every day under the eye of, and more or less into competition with, a large number of companions of their own age. We doubt much whether it tends to simplicity of character, and we can not but regard it as distinctly unfavorable to the development of individuality. The rule of fashion begins at once to operate with great intensity, and the child loses the power of conceiving life except in the herd. As to whether trouble on the whole is being saved to parents by the new system, the question could best be answered by ascertaining whether, in the long run, parents have more or less trouble with their children now than formerly. We should be surprised to hear any one maintaining that they had less.
We are aware that parents, for the most part, enthusiastically testify that their children enjoy the kindergarten very much; but may it not be possible for children, as well as their elders, to like what is not altogether for their good? We do not consider that we can safely follow all a child's likes and dislikes in the matter of diet, or companionship, or hours for going to bed and rising. Sensible people do not think that everything children crave should be given to them, or that more than a limited number of excitements should be thrown in their way. It is one of the drawbacks to wealth that the possessors of it can hardly refrain from half burying their children beneath a profusion of toys, and crowding upon them such a multitude of distractions, in the way of travel, shows of all kinds, and society, that all chance of development from within is well-nigh destroyed. It has been remarked by many that the children of to-day who rarely read a story that is not illustrated, have much less imagination than the children of former days, who in reading had to make and did make their own mental pictures. Yet what pampered child ever said he or she was pampered too much? What overflattered child ever asked for a surcease of flattery? What child suffering from an excessive amount of social excitement ever requested that it might have less of such unhealthy stimulation? The inference we draw is that it does not settle the question finally in favor of the kindergarten to say that children enjoy it. If Miss Carter's experience is to be depended on, the result at least of some kindergarten training is to stimulate the vanity of the little ones and give them a quite undue sense of their self-importance. They would enjoy that while it lasted, poor little things! but it would be a bad preparation for the subsequent work of education. One broad fact stares the educational world in the face, and that is that the average child has to-day, at a given age, a less capacity for learning than the average child of twenty-five or thirty years ago. What share the kindergarten may have had in this retardment of intellectual development is a question which deserves investigation. Messrs. McLellan and Dewey, in their work on The Psychology of Number (International Education Series), say (page 154): "We have known the seven-year-old'head boy' of a kindergarten, conducted by a noted kindergarten teacher, who could not recognize a quantity of three things without counting them by ones.... There is surely something lacking either in the kindergarten as a preparation for the primary school, or in the primary school as a continuation of the kindergarten, when a child, after full training in the kindergarten, together with two years' work in the primary school, is considered able to undertake nothing (in arithmetic) beyond the number twenty." These authors enter into a very elaborate analysis of the number concept, and lay down with extreme care what they conceive to be the best lines of approach to the youthful mind in the teaching of arithmetic. It seems to us, however, that the number concept will dawn upon the youthful mind without much effort on the part of teachers when the time arrives for it to be of use. In most childish games the element of number is involved. The smallest girl with a skipping rope will get into the way of counting her skips with a more or less distinct conception of the difference between one number and another. So in the matter of "turns" in any game in which two or more are engaged: if one child wants to have more "turns" than it is entitled to, the others have to be very young indeed not to protest. In a tug-of-war with, say, four on each side, the addition of a fifth to one side without permission would make trouble in the camp. When candies are being distributed the arithmetical sense is generally keenly alive.
We conclude by commending Miss Carter's article to the careful consideration of all who are interested in educational problems. She writes with a certain tinge of vexation, and, without meaning it, may have somewhat forced the case against her kindergarten children. The Atlantic Monthly deserves credit, we must add, for the many able and timely articles which it has lately been publishing on educational topics—articles stamped by the breadth of thought and high culture which are characteristic of our contemporary, and eminently adapted to assist in delivering our educational methods from bondage to a mechanical routine, and bringing them nearer to the simplicity and freedom of Nature.
Since the United States turned its ambition toward the tropics, the question as to whether its political institutions can be extended to the inhabitants there has been widely discussed. As might be expected, the philanthropic advocates of expansion have insisted that "the blessings of freedom and civilization" are not limited by latitude or longitude. Any other position would, of course, have involved them in the charge of inconsistency and hypocrisy. But certain philosophic expansionists, as they may be politely called, have taken the opposite view. "It is a cardinal fact," they say, quoting the language of a recent essay of Mr. Benjamin Kidd, "that in the tropics the white man lives and works only as a diver lives and works under water.... Neither physically, morally, nor politically can he be acclimatized in the tropics." Still quoting his language, they say again that "a clearer insight into the laws that have shaped the course of human evolution must bring us to see that the process which has gradually developed the energy, enterprise, and social efficiency of the race northward, and which has left less richly endowed in this respect the people inhabiting the regions where the conditions of life are easiest, is no passing accident, nor the result of circumstances changeable at will, butpart of the cosmic order of things which we have no power to alter."
Whether Mr. Kidd recognizes the odious significance of his captivating speculation or not, it is certainly a plea and an apology for slavery and political despotism in the tropics. Most welcome will it be to all those nations and people of easy conscience and measureless greed that now hold in bondage of greater or less intensity millions of the inhabitants of that rich and splendid region. But there is reason to believe that it must be relegated to the limbo of a kindred and popular superstition. Within the past year much has been said about the genius of the Anglo-Saxon for freedom and the ethnic incapacity of the Latins for that boon of civilization. Even so great a scholar as Guizot encourages this extraordinary theory. Again and again does he point out in his History of Civilization how the spirit of freedom may be traced to the Teutonic hordes that swarmed the forests of Germany. He does so despite the overwhelming evidence against him to be found in his own pages even. In apology for his misinterpretation of social phenomena there can be urged his ignorance of the law of evolution and of the hardly less important law of the militant origin of despotism and the pacific origin of freedom. No such apology can, however, be made in behalf of Mr. Kidd, or of any other apostle of imperialism. Not only have they at command all the generalizations of social science, but all the facts upon which those generalizations are based, to prove that neither climate nor race is a limitation upon freedom.
If climate determined the character of the political institutions of a people, many questions would be suggested at once that would be beyond solution. Why, for instance, should a certain freedom have existed in Athens, and the most intolerable despotism in Sparta? Again, why should there be despotism in Russia and Germany as well as in Morocco and Egypt? Another series of questions equally perplexing can be raised. Why should there be more freedom in England to-day than six hundred or even one hundred years ago? The climate has not changed in the interval. Why should the institutions of Spain in the thirteenth century have been more liberal than in the seventeenth? Why was it that the freedom that existed in Germany before the Thirty Years' War had virtually ceased to exist at the Peace of Westphalia? Here also the climate had not changed. Why, finally, was there a reaction toward despotism in France after the French Revolution, in Germany after the disturbances of 1848, in England after the Crimean War, and in the United States after the rebellion? The only satisfactory answer to these questions is to be found in the fact that militant activities always lead to despotism, and pacific activities always to freedom. When people get into war, the central power must exercise all the authority over life and property essential to success in battle. The impulse thus given to despotism spreads to every part of the social fabric. When people are devoted to the pursuits of peace, the forces that make for freedom transform their ideas, feelings, morals, and institutions, political, industrial, and social.
Whether despotism exists, as Mr. Kidd and his followers assume, among all the indigenous populations of the tropics, only a careful investigation of the subject would permit one to say. But that it must, as they contend, always exist there, none of the laws of social evolution gives the slightest warrant. Wherever it does exist, it had the same origin that it had in England, and in obedience to the same forces of peace and industry that operated against it in that country, it must pass away. Thestruggles between clans and tribes for the possession of desirable territory, or for the capture of food or slaves, or for the gratification of predatory and belligerent instincts, gave rise to the permanent chief, to the ruling hierarchy, and to all the other characteristics of a militant society. The degree of heat or humidity or the luxuriant vegetation of the tropics had no more to do with this political organization than the degree of cold, or the dryness of the atmosphere, or the comparative poverty of the soil of some of the Western States with the similar political organization of the Indians that roamed over them. None of these physical characteristics can prevent the play of those forces that drive people eventually to the adoption of that form of social organization that will best promote their happiness. As the social philosophy of evolution shows, the social organization best fitted for this purpose is the one where the largest individual freedom prevails. Since the abolition of slavery and serfdom and many other forms of despotism has been found necessary for the best interests of society in Europe, we have a right to believe that the abolition of the same forms of despotism will be found necessary for the best interests of society in the tropics.
It is true that in the tropics the white man has found it uncomfortable to work, and has often reduced the indigenes to a kind of slavery. But that either is inevitable and unavoidable because of the laws of social evolution, or any more than a temporary reversion, there is no reason for holding. Alfred Russel Wallace, who spent twelve years in the tropics, says in a recent article that the white man can and does work in every part of them. If he does not work, it is simply for the same reason that he does not work in Europe or the United States—namely, because he does not have to. When, however, necessity lays its heavy hands on him, driving him to earn his living by the sweat of his brow, he does it in the tropical region quite as well as he does in the temperate. That is shown particularly in Queensland. But when natives can be reduced to slavery the crime is committed with slight compunction, and defended on the same ground that it was defended in the South and elsewhere. The time must come, however, as it came in Brazil and in other countries where slave labor was found too wasteful and demoralizing, when it will be displaced with free labor. The time must come, too, when free institutions will be found as essential under the equator as farther north. Without them social evolution can not reach its highest point, nor man attain to his greatest happiness, a state that he is always seeking, no matter where he lives.
The famous discovery in Java, by Dubois, of the skullcap, femur, and two teeth in the upper Tertiary rocks has led to many interesting discussions, among which was a paper read by Ernst Haeckel before the International Congress of Zoölogists, held in Cambridge, England, last year. In this paper Haeckel contended that in these remains we had at last the long-sought-for missing link.[41]This paper excited much interest,which led to a request for its publication. The intelligent public, without knowing much about the value of the osteological points under discussion, were ready to grant that here indeed was the missing link, since the highest authorities in science were divided in opinion as to whether the remains belonged to a very low member of the human race or a very high member of the manlike apes. The conclusion would naturally follow that it made but little difference whether the remains proved to be those of man or monkey, as here was a creature so intermediate in structure that it stood on the dividing line, so to speak. In this little book Haeckel presents the old evidences as to the structural similarities between man and the higher apes, and places the Java remains (Pithicanthropus erectus) as the last link in the chain of descent. He also traces the ancestors of the apes through the mammalian series down, step by step, to the lowest vertebrates, and on through the invertebrates to the lowest forms of life. The suggestions are in many cases hypothetical yet instructive, as showing the possible lines of descent.
The unaccountable attitude of the distinguished Virchow in the presence of these remains is in harmony with his uncompromising and, one might say, unreasoning attitude in regard to the derivative theory. Haeckel shows this up very clearly in the following, which we quote: "Virchow went to the Leyden Congress with the set purpose of disproving that the bones found by Dubois belonged to a creature which linked together apes and man. First, he maintained that the skull was that of an ape, while the thigh belonged to man. This insinuation was at once refuted by the expert paleontologists, who declared that without the slightest doubt the bones belonged to one and the same individual. Next, Virchow explained that certain exostoses or growths observable on the thigh proved its human nature, since only under careful treatment the patient could have healed the original injury. Thereupon Professor Marsh, the celebrated paleontologist, exhibited a number of thigh bones of wild monkeys which showed similar exostoses, and had healed without hospital treatment. As a last argument the Berlin pathologist declared that the deep constriction behind the upper margin of the orbits proved that the skull was that of an ape, as such never occurred in man. It so happened that a few weeks later Professor Nehring, of Berlin, demonstrated exactly the same formation on a human prehistoric skull received by him from Santos, in Brazil."
Mr.Russellexpresses a hope that the review of some of the characteristics of rivers given in one of the chapters of hisRivers of North America[42]may stimulate a desire in American students "to know more of the many and varied charms of their native land." The study of rivers is an alluring one, whether pursued upon the little local stream of one's neighborhood or upon the grand rivers that form systems and determine geographical districts; whether made with the assistance of a fishing-rod or of a steamboat. It can not fail to be promoted by Mr. Russell's instructive book, which the local student or the excursionist may consult with profit, while the geographer and geologist will find it a convenient manual. A river, when we come to think of it, means a great deal. Economically, it is the most valuable topographical feature a country can possess; geologically and geographically, it is a result of prominent features of the earth's structure, and is the cause of modifications in its surface which in timemay revolutionize the topographical conditions and produce climatic and physical changes. All these characteristics of rivers are systematically and comprehensively set forth in Mr. Russell's book, where the life-history of the stream is presented, from its beginning in a little mountain torrent or hillside rill, through its course as it descends to the plain, wearing and tearing and deepening its channel. In the plain its character and action are modified under the new conditions in which it finds itself, and gradually, as it approaches its mouth, it deposits, whereas it had torn away at its beginning, and shows contrasts quite as marked as those between youth and old age. Rivers have their growth in time, too, and a stream that has been carrying on its work for long ages presents different characteristics throughout its course from one that comes fresh to its task, and these differences are pointed out. We are told, too, how rivers grow, drawing new affluents to themselves and extending their sources backward, and how when the sources of streams on different sides of a watershed approach on the summit, there is a struggle for the mastery. These are only a few of the new suggestions which the book offers us. Coming to the more matter-of-fact details, the laws governing streams and their course; the influence of inequalities and the hardness of rocks, especially on riverside scenery; and the office of rivers as carriers of material in suspension and in solution, are considered; then their deposits, under various heads and aspects, and the effects of changes in the elevation of the land, of variations in the load of material and of changes of climate upon them; the origin and characteristics of stream terraces and stream development, the topics concerning which are too many and varied to bear more than a passing reference. The more salient characteristics of American rivers are discussed as to the nine drainage slopes—the Atlantic, St. Lawrence, Hudson Bay, Arctic, Bering, Pacific, Great Basin, Gulf, and Caribbean—each slope presenting its own general characteristics, with varieties in detail almost as numerous as the rivers. The whole is briefly summarized in the last chapter, The Life History of a River. We have given merely the tamest inventory of only a part of the topics of Mr. Russell's book. As the subject is treated by the author with careful attention to specific features, as the magnitude of our river systems is indicated, and as rivers with different or contrasting characteristics—the St. Lawrence and the Colorado, for example—are compared with one another, the subject takes on an aspect that is really grand.
An unfulfilled intention entertained by two successive prosectors of the London Zoölogical Society—the late Professor Garrod and the late W. A. Forbes—of writing a treatise on bird anatomy, is carried out in the present work[43]by their successor,Frank E. Beddard. Professor Garrod had nearly completed an account of the Anatomy of the Fowl, which was to be followed by a presentation of the anatomical characters of the different groups. Professor Forbes died before he was able to add anything to the manuscripts left by Professor Garrod. In the instance of the present work the detailed account ofGallus, with which Professor Garrod intended to preface his book, has been rendered unnecessary by Dr. Shufeldt's monograph on the Raven, dealing with one particular bird type. Accepting this as a sufficient presentation of that feature of the subject, Mr. Beddard begins with a general sketch of bird structure, purposely avoiding histological detail and the elaborate description of anatomical facts, which in the present state of ourknowledge are not of great use in classification. The main part of the book is the account of the structure of the different groups of birds, which is treated of to a considerable extent; and a large number of facts, some of which are recorded for the first time, are incorporated in the systematic part of the book. While all the principal facts pertaining to the subject are believed to have been given, and nothing of importance to have been left out, references are made in each section to most of the memoirs already published. The majority of the facts of bird structure have been verified by the author, especially those relating to osteology and anatomy, and he has drawn liberally on the notebooks of his two predecessors. The book gives first an account of the general structure of birds; next of the reproductive and renal organs, the circulatory, respiratory, and muscular systems, osteology, brain and nervous system, and affinities of birds, and, finally, the classification.
Bush Fruits[44]is the first of a proposed series of monographs on the various types of American fruits, to be published under the editorial direction of Prof. L. H. Bailey. Its purpose is to present both the practical and the technical phases of all the important questions concerned in the cultivation and domestication of the fruits that grow on bushes; and the attempt is made to present these two sides separate from the details of history, botany, and entomology, so that the practical reader may be introduced at once to the information he is seeking. The aim is made to treat general truths and principles rather than mere details of practice, leaving the reader to think out and solve the local problems for himself. The author, Mr.F. W. Card, who presented the work originally as a Cornell University thesis, was first a bush-grower, and then a student and teacher, acquiring first the practice and then the theory. The fruits treated of are raspberries, blackberries, dewberries, currants, gooseberries, buffalo berry, gounie, huckleberries, Juneberries, the cranberry, barberry, and sand cherry—all, as to their important types, except the currants, evolutions from the species of our own woods. A useful list of American books on bush fruits is given in the appendix.
The History of the World, from the Earliest Historical Time to the Year 1898,[45]is the latest addition to the Concise Knowledge Library, "a series of volumes on great subjects, containing in an abridged form a wealth of exact information which can be thoroughly relied upon by the student, and yet of such a popular character as to meet the needs of the general reader." This compact volume of 790 pages presents a complete survey of the world's history. After a brief introduction describing the various races that have furthered civilization, ancient history proper begins with the Egyptians, the people of whom we possess the earliest records, and who were the first to emerge out of the darkness of prehistoric times. Closely connected with them, both by racial affinities and political ties, were the other great empires in the southwestern part of Asia that one after the other rose, flourished, and fell into decay. The interesting part of the book here is the constant reference to the familiar facts of the Bible, the connection of the known with the unknown. The rise and development of Greece and Rome, following in due course, bring us down to the middle ages. Mediæval history has for its stage Europe, and for its argument the upbuilding of the states on which our modern political institutions rest. Modern history, dating from the discovery of America, then turns the eyes of the nations westward, to found empires beyond the sea. Nor is the East forgotten. Asia, the cradle of man, and Africa, where he first rose into consciousness of himself and recorded his deeds, again claim the historian's attention. But now it is China and Japan on the one continent, and the conquests and colonies of the Europeans on the other. Neither is the country youngest in civilization, Australasia,passed by. And the history of all these countries, whether east or west, is brought down to date. Even our recent war with Spain is briefly told. Indeed, the value of the book as a work of reference lies in the fact that it encompassesallthe world's history, giving in compact, handy form the chief data in the progress of the human race, that otherwise must be sought for in a dozen different places. Another valuable feature of the book, attainable only on the plan of rigid selection of salient points, is the connection between the different peoples. Their interdependence, the sequence of their appearance on the stage of action, and their decline, are most vividly realized in such a bird's-eye view. The book has maps and a full index.
The essays comprised in Mr.William M. Bryant'svolume entitledLife, Death, and Immortality, and Kindred Essays[46]have developed, as he expresses it, one by one during a number of years past. The term developed is a happy one, for the papers were certainly not made to order, but read like results of systematic, continuous thinking. They concern the religious aspect of human nature. The author thinks that negative criticism has for the time being exhausted its resources, and the time has come for further positive interpretation of the fundamental conceptions of the Christian doctrine as to man's nature and destiny. A reference to a few of the points in the first essay, which gives the title to the book, will afford a view of the author's method. Men of science are constantly insisting that the total quantity of energy is changeless, and nothing can be added to it and nothing taken away. What are the "total quantity of energy" and the "great first cause" but the same, to the activity of which is due every phase of reality? This being changeless, it could not at some period "have created a world and afterward left it to spin on of its own accord 'without interference.'" Mind is a form of energy, consequently indestructible and undying, and the question of immortality is reduced to the form "whether in respect of man's essential nature as a thinking unit, death can ever be more than transition from one to another grade of life." Other essays are on Oriental Religions, Church Organization, The Heresy of Non-Progressive Orthodoxy, Christian Ethics and those of other religions, and Eternity.
ProfessorMerriman'sElements of Sanitary Engineering[47]is a thoroughly practical treatise setting forth the principal rules and laws relating to sanitation, both individual and municipal, as it is practiced to-day. A brief historical introduction is followed by a classification of diseases, and a general consideration of such questions as filth and disease, impure air and disease, drinking water and disease, etc. The second chapter takes up the question of the purification of water. Chapter III discusses the practical aspects, for a municipality, of water-supply systems. Consumption of water, capacity of storage reservoirs, pipe lines, pumping engines, tanks and stand pipes and street mains are among the special headings. Sewerage systems are next dealt with. A discussion of questions connected with the disposal of garbage and sewage forms the fifth and last chapter of the book. An item which adds value to the volume is the series of exercises and problems, practically applying the laws set forth, which follows each chapter.
An Epitome of Human Histology[48]has been written by Mr.Weysseto meet the difficulty in which the conscientious student of microscopic anatomy is placed who finds himself in possession of a great many isolated facts about the minute structure of the body, but with rather an indefinite conception of the relation of those facts to one another and of the subject as a whole. In the writing the author has sought to present all the facts that are of real importance to the student; to express them in the briefest and clearest language, omitting whatever is not strictly required; and to arrange them in sucha way that the reader, in considering any organ, may, if he will, actually sketch each part as he proceeds, and thus make a diagrammatic plan or picture of the entire structure. The book is not for idle students, but for serious ones, and it is not a text-book or intended to take the place of one; and it can serve its true purpose only when used by students who have had laboratory practice as well as lectures in histology, and have thus examined the actual structures.
In his work onElementary Botany,[49]ProfessorAtkinsonintroduces the method which he has found successful in teaching beginners. Many of the newer botanical text-books, in reacting against the plan of presenting first the higher types of plant life, overwhelm the student not only with a multitude of unfamiliar forms, but demand from him powers of comparison and analysis that are generally the result of much scientific discipline. In this book the pupil receives some preliminary guidance in habits of correct induction. By studying the processes of transpiration, nutrition, growth, and irritability in plants belonging to higher as well as lower groups, he learns the universality of these life principles, and is led to see the foundations for sound generalization. This the author considers vastly more important than the knowledge of individual plants. The student, however, in this investigation becomes acquainted with special forms among the lower plants, and is thus prepared to take up morphology systematically. This topic begins with the study of Spirogyra, and ends with an outline of twenty lessons in the angiosperms. The final third of the book is devoted to ecology, the study of plants in their natural surroundings and of their modifying factors—climate, soil, topography, etc. The illustrations, which are above the average throughout the work, are in this division exceedingly good. The descriptive text of the same section is entertaining enough to be used as a class reader, and would interest those unfamiliar with botany. There are several slight errors to be corrected in a future edition. In the table of measures a kilometre is made to equal one hundred instead of one thousand metres, and the references to plates are occasionally wrong. On page 345 the reference should be 449, and on page 349 should be 458 in place of 457. In describing pollination of the skunk cabbage, the words "rub off" are ambiguous. The uninitiated might suppose that the insect obtained pollen from the stigmas instead of depositing it there. The book is not intended for recitation, but for reference and as a guide in study. It is supplied with an appendix upon the collection and preservation of material, and an index.
A notice of a book[50]of this nature is justified in this column, since it contains much that will be of interest to the student of ethnology, folklore, and cognate subjects. It is interesting to get a glimpse of matters pertaining to social customs, ways of thinking, and the occurrences which animated these ways among the Japanese a thousand and more years ago. The author says, "It is a remarkable and, I believe, an unexampled fact that a very large and important part of the best literature which Japan has produced was written by women."
The preparation of hisElementary Text-Book of Botany[51]was undertaken by Mr.Vinesto meet a demand which appeared to exist for a less bulky and expensive volume than his Students' Text-Book. A more important feature than the diminution of the bulk is claimed in the simplification which the contents have undergone from the omission of certain difficult and still debatable topics. The usual divisions into morphology, anatomy, physiology, and systematic botany are followed; but the caution is appended that it must not be forgotten that these are all parts of one subject, different methods of studying one object—the plant. Hence they must be pursued together. "For instance, the morphology of theleaf can not be profitably studied without a knowledge of its structure and functions; and it is also important to know what is the systematic position of each of the various plants whose leaves afford the material for study. In a word, the student should not attempt to read the book straight through from the beginning as if it were a novel. On the contrary, he may begin with any one of the four parts as his main subject; but that part must be studied in close relation with the other three parts"; and this method of proceeding is facilitated by the insertion of a large number of cross-references in the text.
A satisfactory account is given byC. Francis JenkinsinAnimated Pictures[52]of the development and present state of chronophotography, or the art of "conveying by persistence of vision a counterfeit impression of objects in motion through the display in rapid succession of a series of related pictures." The story shows very clearly that this, like most other inventions of consequence, is no sudden discovery, but is the culmination of a very long series of experiments. The principle of it is embodied in the toy, the zoetrope, the origin of which is not known, though a citation from Lucretius indicates that something of the kind existed in his time. With the discovery of instantaneous photography, a new application of the principle of the zoetrope was found. Muybridge and Marey were pioneers in this development with their photographs of the motions of animals valuable in sciences. Since their work was begun the photographic processes and apparatus have been greatly improved. Mr. Jenkins forecasts a brilliant and useful future for the art, which he hopes will be prosecuted along the line of other than its present most popular uses. The book is practical as well as historical and prophetic, and contains an account of Mr. Jenkins's phantoscope as the first successful "moving picture projecting apparatus," for which he received the Elliott Cresson medal from the Franklin Institute.
The Metric System of Weights and Measures, prepared by Mr.A. D. Risteen, and published by the Hartford Steam-Boiler Inspection Company, Hartford, Connecticut (price, $1.25), gives what has long been wanted—a neat volume, convenient for the pocket and durably bound, furnishing tables for instantly converting all the metrical units up to one hundred of each into those of the English weights and measures, andvice versa. Calculation, being needed only for the numbers above one hundred, for which there are already short devices, is reduced to the lowest possible limit.
Terrestrial Magnetism, an international quarterly journal, edited byL. A. BauerandThomas French, Jr., and published at the University of Cincinnati, is the recognized organ of the International Conference on Terrestrial Magnetism and Atmospheric Electricity. The September number, 1898, contains the proceedings of the conference, which met in connection with the last Bristol meeting of the British Association. It contains in full the welcoming address of Prof. W. E. Ayrton, the opening address of A. W. Rücker, president of the conference, and ten of the papers read at the meeting.
The name of Prof.John Trowbridgeas author of such a book asPhilip's Experiments; or, Physical Science at Home(D. Appleton and Company, $1) is a sure guarantee of its scientific value. The author has given a chapter substantially out of his own experience, for he says his taste for science and for drawing were stimulated by his father in the manner here described. His object in publishing it is "to show that a few moments devoted each day at home to simple investigations can result in habits of self-reliance in the acquirement of a modern language and in the study of the art of drawing." He endeavors also to show how to cultivate a taste for mathematics by studying practical problems in surveying and in sailing a boat; and how much a parent can accomplish in the formation of a son's tastes without special knowledge, and without the expenditure of much time and money.The account is in the form of letters from the father to a friend, describing his experiments with his son Philip in this method of teaching. He has always cultivated fellowship with the boy; and, finding him inclined to improve and add to the designs on the wall-paper, puts objects to be drawn and copied in his way, and induces him to go out and draw from Nature. So the boy learns to study forms and observe. To teach language he gives him regularly the daily German newspaper, to pick out what he can from it, and joins him in the sport. In a similar way he introduces Philip to surveying and physics, and other branches of science. The plan is a success; Philip attracts attention by the ingenuity which his training has enabled him to develop, and going to college is graduated with credit and in possession of a live as well as a book knowledge of what he has studied.
InThe Story of the English(American Book Company) the more prominent facts of English history from the beginning to the present time are related byH. A. Guerberin simple, brief narratives. A commendable feature of the book is the insistence in the preface of the essential oneness of the English and American people—an idea that can hardly be too sedulously cultivated. The author's principal object has been to render pupils so familiar with the prominent characters of English history that they shall henceforth seem like old acquaintances, and, in addition, to make the story attractive; but it is a fact to be regretted that he has regarded the growth of English law and liberty and the changes in religion as too unintelligible and uninteresting to be more than touched upon "very briefly and in the most simple way." The growth of law and liberty are the very things that it is most important to fix the attention of children upon, and it is only because they have suffered comparative neglect in the education of teachers in favor of stories of war and intrigue that they are not the most intelligible and interesting branch of the subject.