Common Forms of Quartz Crystals.
Common Forms of Quartz Crystals.
Common Forms of Diamonds.The African stones most resemble the figure above at the left (octahedron). The Wisconsin stones most resemble the figure above at the right (dodecahedron).
Common Forms of Diamonds.The African stones most resemble the figure above at the left (octahedron). The Wisconsin stones most resemble the figure above at the right (dodecahedron).
The range of the present distribution of the diamonds, while perhaps not limited exclusively to the "kettle moraine," will, as the events have indicated, be in the main confined to it. This moraine, with its numerous subordinate ranges marking halting places in the final retreat of the ice, has now been located with sufficient accuracy by the geologists of the United States Geological Survey and others, approximately as entered upon the accompanying map. Within the territory of the United States the large number of observations of the rock scorings makes it clear that the ice of each lobe or glacier moved from the central portion toward the marginal moraines, which are here indicated by dotted bands. In the wilderness of Canada the observations have been rare, but the few data which have been gleaned are there represented by arrows pointed in the direction of ice movement.
There is every encouragement for persons who reside in or near the marginal moraines to search in them for the scattered jewels, which may be easily identified and which have a large commercial as well as scientific value.
The Wisconsin Geological and Natural History Survey is now interesting itself in the problem of the diamonds, and has undertaken the task of disseminating information bearing on the subject to the people who reside near the "kettle moraine." With the co-operation of a number of mineralogists who reside near this "diamond belt," it offers to make examination of the supposed gem stones which may be collected.
The success of this undertaking will depend upon securing the co-operation of the people of the morainal belt. Wherever gravel ridges have there been opened in cuts it would be advisable to look for diamonds. Children in particular, because of their keen eyes and abundant leisure, should be encouraged to search for the clear stones.
The serious defect in this plan is that it trusts to inexperienced persons to discover the buried diamonds which in the "rough" are probably unlike anything that they have ever seen. The first result of the search has been the collection of large numbers of quartz pebbles, which are everywhere present but which are entirely valueless. There are, however, some simple ways of distinguishing diamonds from quartz.
Diamonds never appear in thoroughly rounded forms like ordinary pebbles, for they are too hard to be in the least degree worn by contact with their neighbors in the gravel bed. Diamonds always show, moreover, distinct forms of crystals, and these generally bear some resemblance to one of the forms figured. They are never in the least degree like crystals of quartz, which are, however, the ones most frequently confounded with them. Most of the Wisconsin diamonds have either twelve or forty-eight faces. Crystals of most minerals are bounded by plane surfaces—that is to say, their faces are flat—the diamond, however, is inclosed by distinctly curving surfaces.
The one property of the diamond, however, which makes it easy of determination is its extraordinary hardness—greater than that of any other mineral. Put in simple language, the hardness of a substance may be described as its power to scratch other substances when drawn across them under pressure. To compare the hardness of two substances we should draw a sharp point of one across a surface of the other under a pressure of the fingers, and note whether a permanent scratch is left. The harder substances will always scratch the softer, and if both have the same hardness they may be made to mutually scratch each other. Since diamond, sapphire, and ruby are the only minerals which are harder than emery they are the only ones which, when drawn across a rough emery surface, will not receive a scratch. Any stone whichwill not take a scratch from emery is a gem stone and of sufficient interest to be referred to a competent mineralogist.
The dissemination of information regarding the lake diamonds through the region of the moraine should serve the twofold purpose of encouraging search for the buried stones and of discovering diamonds in the little collections of "lucky stones" and local curios which accumulate on the clock shelves of country farmhouses. When it is considered that three of the largest diamonds thus far found in the region remained for periods of seven, eight, and sixteen years respectively in the hands of the farming population, it can hardly be doubted that many other diamonds have been found and preserved as local curiosities without their real nature being discovered.
If diamonds should be discovered in the moraines of eastern Ohio, of western Pennsylvania, or of western New York, considerable light would thereby be thrown upon the problem of locating the ancestral home. More important than this, however, is the mapping of the Canadian wilderness to the southeastward and eastward of James Bay, in order to determine the direction of ice movement within the region, so that thetrackingof the stones already found may be carried nearer their home. The Director of the Geological Survey of Canada is giving attention to this matter, and has also suggested that a study be made of the material found in association with the diamonds in the moraine, so that if possible its source may be discovered.
With the discovery of new localities of these emigrant stones and the collection of data regarding the movement of the ice over Canadian territory, it will perhaps be possible the more accurately and definitely to circumscribe their home country, and as its boundaries are drawn closer and closer to pay this popular jewel a visit in its ancestral home, there to learn what we so much desire to know regarding its genesis and its life history.
William Pengelly related, in one of his letters to his wife from the British Association, Oxford meeting, 1860, of Sedgwick's presidency of the Geological Section, that his opening address was "most characteristic, full of clever fun, most imperative that papers should be as brief as possible—about ten minutes, he thought—he himself amplifying marvelously." The next day Pengelly himself was about to read his paper, when "dear old Sedgwick wished it compressed. I replied that I would do what I could to please him, but did not know which to follow, his precept or example. The roar of laughter was deafening. Old Sedgwick took it capitally, and behaved much better in consequence." On the third day Pengelly went to committee, where, he says, "I found Sedgwick very cordial, took my address, and talks of paying me a visit."
William Pengelly related, in one of his letters to his wife from the British Association, Oxford meeting, 1860, of Sedgwick's presidency of the Geological Section, that his opening address was "most characteristic, full of clever fun, most imperative that papers should be as brief as possible—about ten minutes, he thought—he himself amplifying marvelously." The next day Pengelly himself was about to read his paper, when "dear old Sedgwick wished it compressed. I replied that I would do what I could to please him, but did not know which to follow, his precept or example. The roar of laughter was deafening. Old Sedgwick took it capitally, and behaved much better in consequence." On the third day Pengelly went to committee, where, he says, "I found Sedgwick very cordial, took my address, and talks of paying me a visit."
NEEDED IMPROVEMENTS IN THEATER SANITATION.
By WILLIAM PAUL GERHARD, C. E.,
CONSULTING ENGINEER FOR SANITARY WORKS.
Buildings for the representation of theatrical plays must fulfill three conditions: they must be (1) comfortable, (2) safe, and (3) healthful. The last requirement, ofhealthfulness, embraces the following conditions: plenty of pure air, freedom from draughts, moderate warming in winter, suitable cooling in summer, freedom at all times from dust, bad odors, and disease germs. In addition to the requirements for the theater audience, due regard should be paid to the comfort, healthfulness, and safety of the performers, stage hands, and mechanics, who are required to spend more hours in the stage part of the building than the playgoers.
It is no exaggeration to state that in the majority of theater buildings disgracefully unsanitary conditions prevail. In the older existing buildings especially sanitation and ventilation are sadly neglected. The air of many theaters during a performance becomes overheated and stuffy, pre-eminently so in the case of theaters where illumination is effected by means of gaslights. At the end of a long performance the air is often almost unbearably foul, causing headache, nausea, and dizziness.
In ill-ventilated theaters a chilly air often blows into the auditorium from the stage when the curtain is raised. This air movement is the cause of colds to many persons in the audience, and it is otherwise objectionable, for it carries with it noxious odors from the stage or under stage, and in gas-lighted theaters this air is laden with products of combustion from the footlights and other means of stage illumination.
Attempts at ventilation are made by utilizing the heat due to the numerous flames of the central chandelier over the auditorium, to create an ascending draught, and thereby cause a removal of the contaminated air, but seldom is provision made for the introduction of fresh air from outdoors, hence the scheme of ventilation results in failure. In other buildings, openings for the introduction of pure air are provided under the seats or in the floor, but are often found stuffed up with paper because the audience suffered from draughts. The fear of draughts in a theater also leads to the closing of the few possibly available outside windows and doors. The plan of a theater building renders it almost impossible to provide outside windows, therefore "air flushing" during the day can not be practiced. In the case of the older theaters, which arelocated in the midst or rear of other buildings, the nature of the site precludes a good arrangement of the main fresh-air ducts for the auditorium.
Absence of fresh air is not the only sanitary defect of theater buildings; there are many other defects and sources of air pollution. In the parts devoted to the audience, the carpeted floors become saturated with dirt and dust carried in by the playgoers, and with expectorations from careless or untidy persons which in a mixed theater audience are ever present. The dust likewise adheres to furniture, plush seats, hangings, and decorations, and intermingled with it are numerous minute floating organisms, and doubtless some germs of disease.
Behind the curtain a general lack of cleanliness exists—untidy actors' toilet rooms, ill-drained cellars, defective sewerage, leaky drains, foul water closets, and overcrowded and poorly located dressing rooms into which no fresh air ever enters. The stage floor is covered with dust; this is stirred up by the frequent scene shifting or by the dancing of performers, and much of it is absorbed and retained by the canvas scenery.
Under such conditions the state of health of both theater goers and performers is bound to suffer. Many persons can testify from personal experience to the ill effects incurred by spending a few hours in a crowded and unventilated theater; yet the very fact that the stay in such buildings is a brief one seems to render most people indifferent, and complaints are seldom uttered. It really rests with the theater-going public to enforce the much-needed improvements. As long as they will flock to a theater on account of some attractive play or "star actor," disregarding entirely the unsanitary condition of the building, so long will the present notoriously bad conditions remain. When the public does not call for reforms, theater managers and owners of playhouses will not, as a rule, trouble themselves about the matter. We have a right to demand theater buildings with less outward and inside gorgeousness, but in which the paramount subjects of comfort, safety, and health are diligently studied and generously provided for. Let the general public but once show a determined preference for sanitary conditions and surroundings in theaters and abandon visits to ill-kept theaters, and I venture to predict that the necessary reforms in sanitation will soon be introduced, at least in the better class of playhouses. In the cheaper theaters, concert and amusement halls, houses with "continuous" shows, variety theaters, etc., sanitation is even more urgently required, and may be readily enforced by a few visits and peremptory orders from the Health Board.
When, a year ago, the writer, in a paper on Theater Sanitation presented at the annual meeting of the American Public Health Association, stated that "chemical analyses show the air in the dress circle and gallery of many a theater to be in the evening more foul than the air of street sewers," the statement was received by some of his critics with incredulity. Yet the fact is true of many theaters. Taking the amount of carbonic acid in the air as an indication of its contamination, and assuming that the organic vapors are in proportion to the amount of carbonic acid (not including the CO2due to the products of illumination), we know that normal outdoor air contains from 0.03 to 0.04 parts of CO2per 100 parts of air, while a few chemical analyses of the air in English theaters, quoted below, suffice to prove how large the contamination sometimes is:
Strand Theater,10 P.M.,gallery0.101partsCO2per 100.Surrey Theater,10 P.M.,boxes0.126"""Surrey Theater,12 P.M.,boxes0.218"""Olympia Theater,11.30 P.M.,boxes0.082"""Olympia Theater,11.55 P.M.,boxes0.101"""Victoria Theater,10 P.M.,boxes0.126"""Haymarket Theater,10 P.M.,boxes0.076"""City of London Theater,11.15 P.M.,pit0.252"""Standard Theater,11 P.M.,pit0.320"""Theater Royal, Manchester,pit0.2734"""Theater Royal, Manchester,pit0.2734"""Grand Theater, Leeds,pit0.150"""Grand Theater, Leeds,upper circle0.143"""Grand Theater, Leeds,balcony0.142"""Prince's Theater, Manchester,balcony0.11-0.17"""
(Analyses made by Drs. Smith, Bernays, and De Chaumont.)
Compare with these figures some analyses of the air of sewers. Dr. Russell, of Glasgow, found the air of a well-ventilated and flushed sewer to contain 0.051 vols. of CO2. The late Prof. W. Ripley Nichols conducted many careful experiments on the amount of carbonic acid in the Boston sewers, and found the following averages, viz., 0.087, 0.082, 0.115, 0.107, 0.08, or much less than the above analyses of theater air showed. He states: "It appears from these examinations that the air even in a tide-locked sewer does not differ from the standard as much as many no doubt suppose."
A comparison of the number of bacteria found in a cubic foot of air inside of a theater and in the street air would form a more convincing statement, but I have been unable to find published records of any such bacteriological tests. Nevertheless, we know that while the atmosphere contains some bacteria, the indoor air of crowded assembly halls, laden with floating dust, is particularlyrich in living micro-organisms. This has been proved by Tyndall, Miquel, Frankland, and other scientists; and in this connection should be mentioned one point of much importance, ascertained quite recently, namely, that the air of sewers, contrary to expectation, is remarkably free from germs. An analysis of the air in the sewers under the Houses of Parliament, London, showed that the number of micro-organisms was much less than that in the atmosphere outside of the building.
In recent years marked improvements in theater planning and equipment have been effected, and corresponding steps in advance have been made in matters relating to theater hygiene. It should therefore be understood that my remarks are intended to apply to the average theater, and in particular to the older buildings of this class. There are in large cities a few well-ventilated and hygienically improved theaters and opera houses, in which the requirements of sanitation are observed. Later on, when speaking more in detail of theater ventilation, instances of well-ventilated theaters will be mentioned. Nevertheless, the need of urgent and radical measures for comfort and health in the majority of theaters is obvious. Much is being done in our enlightened age to improve the sanitary condition of school buildings, jails and prisons, hospitals and dwelling houses. Why, I ask, should not our theaters receive some consideration?
The efficient ventilation of a theater building is conceded to be an unusually difficult problem. In order to ventilate a theater properly, the causes of noxious odors arising from bad plumbing or defective drainage should be removed; outside fumes or vapors must not be permitted to enter the building either through doors or windows, or through the fresh-air duct of the heating apparatus. The substitution of electric lights in place of gas is a great help toward securing pure air. This being accomplished, a standard of purity of the air should be maintained by proper ventilation. This includes both the removal of the vitiated air and the introduction of pure air from outdoors and the consequent entire change of the air of a hall three or four times per hour. The fresh air brought into the building must be ample in volume; it should be free from contamination, dust and germs (particularly pathogenic microbes), and with this in view must in cities be first purified by filtering, spraying, or washing. It should be warmed in cold weather by passing over hot-water or steam-pipe stacks, and cooled in warm weather by means of ice or the brine of mechanical refrigerating machines. The air should be of a proper degree of humidity, and, what is most important of all, it should be admitted into the various parts of the theater imperceptibly, so as not to cause the sensation ofdraught; in other words, its velocity at the inlets must be very slight. The fresh air should enter the audience hall at numerous points so well and evenly distributed that the air will be equally diffused throughout the entire horizontal cross-section of the hall. The air indoors should have as nearly as possible the composition of air outdoors, an increase of the CO2from 0.3 to 0.6 being the permissible limit. The vitiated air should be continuously removed by mechanical means, taking care, however, not to remove a larger volume of air than is introduced from outdoors.
Regarding the amount of fresh outdoor air to be supplied to keep the inside atmosphere at anything like standard purity, authorities differ somewhat. The theoretical amount, 3,000 cubic feet per person per hour (50 cubic feet per minute), is made a requirement in the Boston theater law. In Austria, the law calls for 1,050 cubic feet. The regulations of the Prussian Minister of Public Works call for 700 cubic feet, Professor von Pettenkofer suggests an air supply per person of from 1,410 to 1,675 cubic feet per hour (23 to 28 cubic feet per minute), General Morin calls for 1,200 to 1,500 cubic feet, and Dr. Billings, an American authority, requires 30 cubic feet per minute, or 1,800 cubic feet per hour. In the Vienna Opera House, which is described as one of the best-ventilated theaters in the world, the air supply is 15 cubic feet per person per minute. The Madison Square Theater, in New York, is stated to have an air supply of 25 cubic feet per person.
In a moderately large theater, seating twelve hundred persons, the total hourly quantity of air to be supplied would, accordingly, amount to from 1,440,000 to 2,160,000 cubic feet. It is not an easy matter to arrange the fresh-air conduits of a size sufficient to furnish this volume of air; it is obviously costly to warm such a large quantity of air, and it is a still more difficult problem to introduce it without creating objectionable currents of air; and, finally, inasmuch as this air can not enter the auditorium unless a like amount of vitiated air is removed, the problem includes providing artificial means for the removal of large air volumes.
Where gas illumination is used, each gas flame requires an additional air supply—from 140 to 280 cubic feet, according to General Morin.
A slight consideration of the volumes of air which must be moved and removed in a theater to secure a complete change of air three or four times an hour, demonstrates the impossibility of securing satisfactory results by the so-called natural method of ventilation—i. e., the removal of air by means of flues with currents due either to the aspirating force of the wind or due to artificiallyincreased temperature in the flues. It becomes necessary to adopt mechanical means of ventilation by using either exhaust fans or pressure blowers or both, these being driven either by steam engines or by electric motors. In the older theaters, which were lighted by gas, the heat of the flames could be utilized to a certain extent in creating ascending currents in outlet shafts, and this accomplished some air renewal. But nowadays the central chandelier is almost entirely dispensed with; glowing carbon lamps, fed by electric currents, replace the gas flames; hence mechanical ventilation seems all the more indicated.
Two principal methods of theater ventilation may be arranged: in one the fresh air enters at or near the floor and rises upward to the ceiling, to be removed by suitable outlet flues; in this method the incoming air follows the naturally existing air currents; in the other method pure air enters at the top through perforated cornices or holes in the ceiling, and gradually descends, to be removed by outlets located at or near the floor line. The two systems are known as the "upward" and the "downward" systems; each of them has been successfully tried, each offers some advantages, and each has its advocates. In both systems separate means for supplying fresh air to the boxes, balconies, and galleries are required. Owing to the different opinions held by architects and engineers, the two systems have often been made the subject of inquiry by scientific and government commissions in France, England, Germany, and the United States.
A French scientist, Darcet, was the first to suggest a scientific system of theater ventilation. He made use of the heat from the central chandelier for removing the foul air, and admitted the air through numerous openings in the floor and through inlets in the front of the boxes.
Dr. Reid, an English specialist in ventilation, is generally regarded as the originator of the upward method in ventilation. He applied the same with some success to the ventilation of the Houses of Parliament in London. Here fresh air is drawn in from high towers, and is conducted to the basement, where it is sprayed and moistened. A part of the air is warmed by hot-water coils in a sub-basement, while part remains cold. The warm and the cold air are mixed in special mixing chambers. From here the tempered air goes to a chamber located directly under the floor of the auditorium, and passes into the hall at the floor level through numerous small holes in the floor. The air enters with low velocity, and to prevent unpleasant draughts the floor is covered in one hall with hair carpet and in the other with coarse hemp matting, both of which are cleaned every day. The removal of the foulair takes place at the ceiling, and is assisted by the heat from the gas flames.
The French engineer Péclet, an authority on heating and ventilation, suggested a similar system of upward ventilation, but instead of allowing the foul air to pass out through the roof, he conducted it downward into an underground channel which had exhaust draught. Trélat, another French engineer, followed practically the same method.
A large number of theaters are ventilated on the upward system. I will mention first the large Vienna Opera House, the ventilation of which was planned by Dr. Boehm. The auditorium holds about three thousand persons, and a fresh-air supply of about fifteen cubic feet per minute, or from nine hundred to one thousand cubic feet per hour, per person is provided. The fresh air is taken in from the gardens surrounding the theater and is conducted into the cellar, where it passes through a water spray, which removes the dust and cools the air in summer. A suction fan ten feet in diameter is provided, which blows the air through a conduit forty-five square feet in area into a series of three chambers located vertically over each other under the auditorium. The lowest of these chambers is the cold-air chamber; the middle one is the heating chamber and contains steam-heating stacks; the highest chamber is the mixing chamber. The air goes partly to the heating and partly to the mixing chamber; from this it enters the auditorium at the rate of one foot per second velocity through openings in the risers of the seats in the parquet, and also through vertical wall channels to the boxes and upper galleries. The total area of the fresh-air openings is 750 square feet. The foul air ascends, assisted by the heat of the central chandelier, and is collected into a large exhaust tube. The foul air from the gallery passes out through separate channels. In the roof over the auditorium there is a fan which expels the entire foul air. Telegraphic thermometers are placed in all parts of the house and communicate with the inspection room, where the engineer in charge of the ventilation controls and regulates the temperature.
The Vienna Hofburg Theater was ventilated on the same system.
The new Frankfort Opera House has a ventilation system modeled upon that of the Vienna Opera House, but with improvements in some details. The house has a capacity of two thousand people, and for each person fourteen hundred cubic feet of fresh air per hour are supplied. A fan about ten feet in diameter and making ninety to one hundred revolutions per minute brings in the fresh air from outdoors and drives it into chambers under theauditorium arranged very much like those at Vienna. The total quantity of fresh air supplied per hour is 2,800,000 cubic feet. The air enters the auditorium through gratings fixed above the floor level in the risers. The foul air is removed by outlets in the ceilings, which unite into a large vertical shaft below the cupola. An exhaust fan of ten feet diameter is placed in the cupola shaft, and is used for summer ventilation only. Every single box and stall is ventilated separately. The cost of the entire system was about one hundred and twenty-five thousand dollars; it requires a staff of two engineers, six assistant engineers, and a number of stokers.
Among well-ventilated American theaters is the Madison Square Theater (now Hoyt's), in New York. Here the fresh air is taken down through a large vertical shaft on the side of the stage. There is a seven-foot suction fan in the basement which drives the air into a number of boxes with steam-heating stacks, from which smaller pipes lead to openings under each row of seats. The foul air escapes through openings in the ceiling and under the galleries. A fresh-air supply of 1,500 cubic feet per hour, or 25 cubic feet per minute, per person is provided.
The Metropolitan Opera House is ventilated on the plenum system, and has an upward movement of air, the total air supply being 70,000 cubic feet per hour.
In the Academy of Music, Baltimore, the fresh air is admitted mainly from the stage and the exits of foul air are in the ceiling at the auditorium.
Other theaters ventilated by the upward method are the Dresden Royal Theater, the Lessing Theater in Berlin, the Opera House in Buda-Pesth, the new theater in Prague, the new Municipal Theater at Halle, and the Criterion Theatre in London.
The French engineer General Arthur Morin is known as the principal advocate of the downward method of ventilation. This was at that time a radical departure from existing methods because it apparently conflicted with the well-known fact that heated air naturally rises. Much the same system was advocated by Dr. Tripier in a pamphlet published in 1864.[7]The earlier practical applications of this system to several French theaters did not prove as much of a success as anticipated, the failure being due probably to the gas illumination, the central chandelier, and the absence of mechanical means for inducing a downward movement of the air.
In 1861 a French commission, of which General Morin was a member, proposed the reversing of the currents of air by admitting fresh air at both sides of the stage opening high up in the auditorium, and also through hollow floor channels for the balconiesand boxes; in the gallery the openings for fresh air were located in the risers of the steppings. The air was exhausted by numerous openings under the seats in the parquet. This ventilating system was carried out at the Théâtre Lyrique, the Théâtre du Cirque, and the Théâtre de la Gaieté.
Dr. Tripier ventilated a theater in 1858 with good success on a similar plan, but he introduced the air partly at the rear of the stage and partly in the tympanum in the auditorium. He removed the foul air at the floor level and separately in the rear of the boxes. He also exhausted the foul air from the upper galleries by special flues heated by the gas chandelier.
The Grand Amphitheater of the Conservatory of Arts and Industries, in Paris, was ventilated by General Morin on the downward system. The openings in the ceiling for the admission of fresh air aggregated 120 square feet, and the air entered with a velocity of only eighteen inches per second; the total air supply per hour was 630,000 cubic feet. The foul air was exhausted by openings in steps around the vertical walls, and the velocity of the outgoing air was about two and a half feet per second.
The introduction of the electric light in place of gas gave a fresh impetus to the downward method of ventilation, and mechanical means also helped to dispel the former difficulties in securing a positive downward movement.
The Chicago Auditorium is ventilated on this system, a part of the air entering from the rear of the stage, the other from the ceiling of the auditorium downward. This plan coincides with the proposition made in 1846 by Morrill Wyman, though he admits that it can not be considered the most desirable method.
A good example of the downward method is given by the New York Music Hall, which has a seating capacity of three thousand persons and standing room for one thousand more. Fresh air at any temperature desired is made to enter through perforations in or near the ceilings, the outlets being concealed by the decorations, and passes out through exhaust registers near the floor line, under the seats, through perforated risers in the terraced steps. About 10,000,000 cubic feet of air are supplied per hour, and the velocity of influx and efflux is one foot per second. The air supplied per person per hour is figured at 2,700 cubic feet, and the entire volume is changed from four and a half to five times per hour. The fresh air is taken in at roof level through a shaft of seventy square feet area. The air is heated by steam coils, and cooled in summer by ice. The mechanical plant comprises four blowers and three exhaust fans of six and seven feet in diameter.
The downward method of ventilation was suggested in 1884for the improvement of the ventilation of the Senate chamber and the chamber of the House of Representatives in the Capitol at Washington, but the system was not adopted by the Board of Engineers appointed to inquire into the methods.
The downward method is also used in the Hall of the Trocadéro, Paris; in the old and also the new buildings for the German Parliament, Berlin; in the Chamber of Deputies, Paris; and others.
Professor Fischer, a modern German authority on heating and ventilation, in a discussion of the relative advantages of the two methods, reaches the conclusion that both are practical and can be made to work successfully. For audience halls lighted by gaslights he considers the upward method as preferable.
In arranging for the removal of foul air it is necessary, particularly in the downward system, to provide separate exhaust flues for the galleries and balconies. Unless this is provided for, the exhaled air of the occupants of the higher tiers would mingle with the descending current of pure air supplied to the occupants of the main auditorium floor.
Mention should also be made of a proposition originating in Berlin to construct the roof of auditoriums domelike, by dividing it in the middle so that it can be partly opened by means of electric or hydraulic machinery; such a system would permit of keeping the ceiling open in summer time, thereby rendering the theater not only airy, but also free from the danger of smoke. A system based on similar principles is in actual use at the Madison Square Garden, in New York, where part of the roof consists of sliding skylights which in summer time can be made to open or close during the performance.
From the point of view of safety in case of fire, which usually in a theater breaks out on the stage, it is without doubt best to have the air currents travel in a direction from the auditorium toward the stage roof. This has been successfully arranged in some of the later Vienna theaters, but from the point of view of good acoustics, it is better to have the air currents travel from the stage toward the auditorium. Obviously, it is a somewhat difficult matter to reconcile the conflicting requirements of safety from smoke and fire gases, good acoustics and perfect ventilation.
The stage of a theater requires to be well ventilated, for often it becomes filled with smoke or gases due to firing of guns, colored lights, torches, representations of battles, etc. There should be in the roof over the stage large outlet flues, or sliding skylights, controlled from the stage for the removal of the smoke. These, in case of an outbreak of fire on the stage, become of vital importance in preventing the smoke and fire gases from being drawn into the auditorium and suffocating the persons in the gallery seats.
Where the stage is lit with gaslights it is important to provide a separate downward ventilation for the footlights. This, I believe, was first successfully tried at the large Scala Theater, of Milan, Italy.
The actors' and supers' dressing rooms, which are often overcrowded, require efficient ventilation, and other parts of the building, like the foyers and the toilet, retiring and smoking rooms, must not be overlooked.
The entrance halls, vestibules, lobbies, staircases, and corridors do not need so much ventilation, but should be kept warm to prevent annoying draughts. They are usually heated by abundantly large direct steam or hot-water radiators, whereas the auditorium and foyers, and often the stage, are heated by indirect radiation. Owing to the fact that during a performance the temperature in the auditorium is quickly raised by contact of the warm fresh air with the bodies of persons (and by the numerous lights, when gas is used), the temperature of the incoming air should be only moderate. In the best modern theater-heating plants it is usual to gradually reduce the temperature of the air as it issues from the mixing chambers toward the end of the performance. Both the temperature and the hygrometric conditions of the air should be controlled by an efficient staff of intelligent heating engineers.
But little need be said regarding theater lighting. Twice during the present century have the system and methods been changed. In the early part of the present century theaters were still lighted with tallow candles or with oil lamps. Next came what was at the time considered a wonderful improvement, namely, the introduction of gaslighting. The generation who can remember witnessing a theater performance by candle or lamp lights, and who experienced the excitement created when the first theater was lit up by gas, will soon have passed away. Scarcely twenty years ago the electric light was introduced, and there are to-day very few theaters which do not make use of this improved illuminant. It generates much less heat than gaslight, and vastly simplifies the problem of ventilation. The noxious products of combustion, incident to all other methods of illumination, are eliminated: no carbonic-acid gas is generated to render the air of audience halls irrespirable, and no oxygen is drawn to support combustion from the air introduced for breathing.
It being now an established fact that the electric light increases the safety of human life in theaters and other places of amusement, its use is in many city or building ordinances made imperative—at least on the stage and in the main body of the auditorium. Stairs, corridors, entrances, etc., may, as a matter of precaution, be lighted by a different system, by means of either gas or auxiliary vegetable oil or candle lamps, protected by glass inclosures against smoke or draught, and provided with special inlet and outlet flues for air.
Passing to other desirable internal improvements of theaters, I would mention first the floors of the auditorium. The covering of the floor by carpets is objectionable—in theaters more so even than in dwelling houses. Night after night the carpet comes in contact with thousands of feet, which necessarily bring in a good deal of street dirt and dust. The latter falls on the carpets and attaches to them, and as it is not feasible to take the carpets up except during the summer closing, a vast accumulation of dirt and organic matter results, some of the dirt falling through the crevices between the floor boards. Many theater-goers are not tidy in their habits regarding expectoration, and as there must be in every large audience some persons afflicted with tuberculosis, the danger is ever present of the germs of the disease drying on the carpet, and becoming again detached to float in the air which we are obliged to breathe in a theater.
As a remedy I would propose abolishing carpets entirely, and using instead a floor covering of linoleum, or thin polished parquetry oak floors, varnished floors of hard wood, painted and stained floors, interlocked rubber-tile floors, or, at least for the aisles, encaustic or mosaic tiling. Between the rows of seats, as well as in the aisles, long rugs or mattings may be laid down loose, for these can be taken up without much trouble. They should be frequently shaken, beaten, and cleaned.
Regarding the walls, ceilings, and cornices, the surfaces should be of a material which can be readily cleaned and which is non-absorbent. Stucco finish is unobjectionable, but should be kept flat, so as not to offer dust-catching projections. Oil painting of walls is preferable to a covering with rough wall papers, which hold large quantities of dust. The so-called "sanitary" or varnished wall papers have a smooth, non-absorbent, easily cleaned surface, and are therefore unobjectionable. All heavy decorations, draperies, and hangings in the boxes, and plush covers for railings, are to be avoided.
The theater furniture should be of a material which does not catch or hold dust. Upholstered plush-covered chairs and seats retain a large amount of it, and are not readily cleaned. Leather-covered or other sanitary furniture, or rattan seats, would be a great improvement.
In the stage building we often find four or five actors placed in one small, overheated, unventilated dressing room, located in the basement of the building, without outside windows, and fitted with three or four gas jets, for actors require a good light in "making up." More attention should be paid to the comfort and health of the players, more space and a better location should be given to their rooms. Every dressing room should have a window to the outer air, also a special ventilating flue. Properly trapped wash basins should be fitted up in each room. In the dressing rooms and in the corridors and stairs leading from them to the stage all draughts must be avoided, as the performers often become overheated from the excitement of the acting, and dancers in particular leave the heated stage bathed in perspiration. Sanitation, ventilation, and cleanliness are quite as necessary for this part of the stage building as for the auditorium and foyers.
It will suffice to mention that defects in the drainage and sewerage of a theater building must be avoided. The well-known requirements of house drainage should be observed in theaters as much as in other public buildings.[8]
The removal of ashes, litter, sweepings, oily waste, and other refuse should be attended to with promptness and regularity. It is only by constant attention to properly carried out cleaning methods that such a building for the public can be kept in a proper sanitary condition. Floating air impurities, like dust and dirt, can not be removed or rendered innocuous by the most perfect ventilating scheme. Mingled with the dust floating in the auditorium or lodging in the stage scenery are numbers of bacteria or germs. Among the pathogenic germs will be those of tuberculosis, contained in the sputum discharged in coughing or expectorating. When this dries on the carpeted floor, the germs become readily detached, are inhaled by the playgoers, and thus become a prolific source of danger. It is for this reason principally that the processes of cleaning, sweeping, and dusting should in a theater be under intelligent management.
To guard against the ever-present danger of infection by germs, the sanitary floor coverings recommended should be wiped every day with a moist rag or cloth. Carpeted floors should be covered with moist tea leaves or sawdust before sweeping to prevent the usual dust-raising. The common use of the feather duster is tobe deprecated, for it only raises and scatters the dust, but it does not remove it. Dusting of the furniture should be done with a dampened dust cloth. The cleaning should include the hot-air registers, where a large amount of dust collects, which can only be removed by occasionally opening up the register faces and wiping out the pipe surfaces; also the baseboards and all cornice projections on which dust constantly settles. While dusting and sweeping, the windows should be opened; an occasional admission of sunlight, where practicable, would likewise be of the greatest benefit.
The writer believes that a sanitary inspection of theater buildings should be instituted once a year when they are closed up in summer. He would also suggest that the granting of the annual license should be made dependent not only, as at present, upon the condition of safety of the building against fire and panic, but also upon its sanitary condition. In connection with the sanitary inspection, a thorough disinfection by sulphur, or better with formaldehyde gas, should be carried out by the health authorities. If necessary, the disinfection of the building should be repeated several times a year, particularly during general epidemics of influenza or pneumonia.
Safety measures against outbreaks of fire, dangers from panic, accidents, etc., are in a certain sense also sanitary improvements, but can not be discussed here.[9]
In order to anticipate captious criticisms, the writer would state that in this paper he has not attempted to set forth new theories, nor to advocate any special system of theater ventilation. His aim was to describe existing defects and to point out well-known remedies. The question of efficient theater sanitation belongs quite as much to the province of the sanitary engineer as to that of the architect. It is one of paramount importance—certainly more so than the purely architectural features of exterior and interior decoration.
In presenting to the British Association the final report on the northwestern tribes of Canada, Professor Tylor observed that, while the work of the committee has materially advanced our knowledge of the tribes of British Columbia, the field of investigation is by no means exhausted. The languages are still known only in outlines. More detailed information on physical types may clear up several points that have remained obscure, and a fuller knowledge of the ethnology of the northern tribes seems desirable. Ethnological evidence has been collected bearing upon the history of the development of the area under consideration, but no archæological investigations, which would help materially in solving these problems, have been carried on.
In presenting to the British Association the final report on the northwestern tribes of Canada, Professor Tylor observed that, while the work of the committee has materially advanced our knowledge of the tribes of British Columbia, the field of investigation is by no means exhausted. The languages are still known only in outlines. More detailed information on physical types may clear up several points that have remained obscure, and a fuller knowledge of the ethnology of the northern tribes seems desirable. Ethnological evidence has been collected bearing upon the history of the development of the area under consideration, but no archæological investigations, which would help materially in solving these problems, have been carried on.
THE NEW FIELD BOTANY.
By BYRON D. HALSTED, Sc. D.,
OF RUTGERS COLLEGE.
There is something novel every day; were it not so this earth would grow monotonous to all, even as it does now to many, and chiefly because such do not have the opportunity or the desire to learn some new thing. Facts unknown before are constantly coming to the light, and principles are being deduced that serve as a stepping stone to other and broader fields of knowledge. So accustomed are we to this that even a new branch of science may dawn upon the horizon without causing a wonder in our minds. In this day of ologies the birth of a new one comes without the formal two-line notice in the daily press, just as old ones pass from view without tear or epitaph.
Phytoecologyas a word is not long as scientific terms go, and the Greek that lies back of it barely suggests the meaning of the term, a fact not at all peculiar to the present instance. Of course, it has to do with plants, and is therefore a branch of botany.
In one sense that which it stands for is not new, and, as usual, the word has come in the wake of the facts and principles it represents, and therefore becomes a convenient term for a branch of knowledge—a handle, so to say—by which that group of ideas may be held up for study and further growth. The wordecologywas first employed by Haeckel, a leading light in zoölogy in our day, to designate the environmental side of animal life.
We will not concern ourselves with definitions, but discuss the field that the term is coined to cover, and leave the reader to formulate a short concise statement of its meaning.
Within the last year a new botanical guide book for teachers has been published, of considerable originality and merit, in which the subject-matter is thrown into four groups, and one of these is Ecology. Another text-book for secondary schools is now before us in which ecology is the heading of one of the three parts into which the treatise is divided. The large output of the educational press at the present time along the line in hand suggests that the magazine press should sound the depths of the new branch of science that is pushing its way to the front, or being so pushed by its adherents, and echo the merits of it along the line.
Botany in its stages of growth is interesting historically. It fascinated for a time one of the greatest minds in the modern school, and as a result we have the rich and fruitful history of the science as seen through eyes as great as Julius Sachs's, the master of botany during the last half century. From this work it can be gathered that early in the centuries since the Christian era botany was little more than herborizing—the collecting of specimens, and learning their gross parts, as size of stem and leaf and blossom.
This branch of botany has been cultivated to the present day, and the result is the systematist, with all the refinements of species making and readjustment of genera and orders with the nicety of detail in specific descriptions that only a systematist can fully appreciate.
Later on the study of function was begun, and along with it that of structure; for anatomy and physiology, by whatever terms they may be known, advance hand in hand, because inseparable. One worker may look more to the activities than another who toils with the structural relations and finds these problems enough for a lifetime.
This botany of the dissecting table in contrast with that of the collector and his dried specimens grew apace, taking new leases of life at the uprising of new hypotheses, and long advances with the improvement of implements for work. It was natural that the cell and all that is made from it should invite the inspector to a field of intense interest, somewhat at the expense of the functions of the parts. In short, the field was open, the race was on, and it was a matter of self-restraint that a man did not enter and strive long and well for some anatomical prize. This branch of botany is still alive, and never more so than to-day, when cytology offers many attractive problems for the cytologist. What with his microtome that cuts his imbedded tissue into slices so thin that twenty-five hundred or more are needed to measure an inch in thickness, with his fixing solutions that kill instantly and hold each particle as if frozen in a cake of ice, and his stains and double stains that pick out the specks as the magnet draws iron filing from a bin of bran—with all these and a hundred more aids to the refinement of the art there is no wonder that the cell becomes a center of attraction, beyond the periphery of which the student can scarcely live. In our closing days of the century it may be known whether the blephroblasts arise antipodally, and whether they are a variation of the centrosomes or should be classed by themselves!
One of the general views of phytoecology is that the forms of plants are modified to adapt them to the conditions under which they exist. Thus the size of a plant is greatly modified by the environment. Two grains of corn indistinguishable in themselves and borne by the same cob may be so situated that one grows into a stately stalk with the ear higher than a horse's head, while theother is a dwarf and unproductive. Below ground the conditions are many, and all subject to infinite variation. Thus, the soil may be deep or shallow, the particles small or large, the moisture abundant or scant, and the food elements close at hand or far to seek—all of which will have a marked influence upon the root system, its size, and form.
Coming to the aërial portion, there are all the factors of weather and climate to work singly or in union to affect the above-ground structure of the plant. Temperature varies through wide ranges of heat and cold, scorching and freezing; while humidity or aridity, sunshine or cloudiness, prevailing winds or sudden tornadoes all have an influence in shaping the structure, developing the part, and fashioning the details of form of the aërial portions. Phytoecology deals with all these, and includes the consideration of that struggle for life that plants are constantly waging, for environment determines that the forms best suited to a given set of conditions will survive. This struggle has been going on since the vegetable life of the earth began, and as a result certain prevailing conditions have brought about groups of plants found as a rule only where these conditions prevail. As water is a leading factor in plant growth, a classification is made upon this basis into the plants of the arid regions called xerophytes. The opposite to desert vegetation is that of the fresh ponds and lakes, called hydrophytes. A third group, the halophytes, includes the vegetation of sea or land where there is an excess of various saline substances, the common salt being the leading one. The last group is the mesophytes, which include plants growing in conditions without the extremes accorded to the other three groups.
This somewhat general classification of the conditions of the environment lends much of interest to that form of field botany now under consideration. As the grouping is made chiefly upon the aqueous conditions, it is fair to assume that plants are especially modified to accommodate themselves to this compound. Plants, for example, unless they are aquatics, need to use large quantities of water to carry on the vital functions. Thus the salts from the soil need to rise dissolved in the crude sap to the leaves, and in order that a sufficient current be kept up there is transpiration going on from all thin or soft exposed parts. The leaves are the chief organs where aqueous vapor is being given off, sometimes to the extent of tons of water upon an acre of area in a single day. This evaporation being largely surface action, it is possible for the plant to check this by reducing the surface, and the leaf is coiled or folded. Other plants have through the ages become adapted to the destructive actions of drought and a dry, hot atmosphere, andhave only needle-shaped leaves or even no true ones at all, as many of the cacti in the desert lands of the Western plains.
Again, the surface of the plant may become covered with a felt of fine hairs to prevent rapid evaporation, while other plants with ordinary foliage have the acquired power of moving the leaves so that they will expose their surfaces broadside to the sun, or contrariwise the edges only, as heat and light intensity determine.
Phytoecology deals with all those adaptations of structure, and from which permit the plants to take advantage of the habits and wants of animals. If we are studying the vegetation of a bog, and note the adaptation of the hydrophytic plants, the chances are that attention will soon be called to colorations and structures that indicate a more complete and far-reaching adjustment than simply to the conditions of the wet, spongy bog. A plant may be met with having the leaves in the form of flasks or pitchers, and more or less filled with water. These strange leaves are conspicuously purplish, and this adds to their attractiveness. The upper portion may be variegated, resembling a flower and for the same purpose—namely, to attract insects that find within the pitchers a food which is sought at the risk of life. Many of the entrapped creatures never escape, and yield up their life for the support of that of the captor. Again, the mossy bog may glisten in the sun, and thousands of sundew plants with their pink leaves are growing upon the surface. Each leaf is covered with adhesive stalked glands, and insects lured to and caught by them are devoured by this insectivorous vegetation.
In the pools in the same lowland there may be an abundance of the bladderwort, a floating plant with flowers upon long stalks that raise them into the air and sunshine. With the leaves reduced to a mere framework that bears innumerable bladders, water animals of small size are captured in vast numbers and provide a large part of the nourishment required by the highly specialized hydrophyte.
These are but everyday instances of adaptation between plants and animals for the purpose of nutrition, the adjustment of form being more particularly upon the vegetative side. Zoölogists may be able to show, however, that certain species of animals are adapted to and quite dependent upon the carnivorous plants.
An ecological problem has been worked out along the above line to a larger extent than generally supposed. If we should take the case of ants only in their relation to structural adaptations for them in plants, it would be seen that fully three thousand species of the latter make use of ants for purposes of protection. The large fighting ants of the tropics, when provided with nectar, food,and shelter, will inhabit plants to the partial exclusion of destructive insects and larger foraging animals. Interesting as all this is, it is not the time and place to go into the details of how the ant-fostering plants have their nectar glands upon stems or leaf, rich soft hairs in tufts for food, and homes provided in hollows and chambers. There is still a more intimate association of termites with some of the toadstool-like plants, where the ants foster the fungi and seem to understand some of the essentials of veritable gardening in miniature form.
The most familiar branch of phytoecology, as it concerns adaptations for insect visitations, is that which relates to the production of seed. Floral structures, so wonderfully varied in form and color and withal attractive to every lover of the beautiful, are familiar to all, and it only needs to be said in passing that these infinite forms are for the same end—namely, the union of the seed germs, if they may be so styled, of different and often widely separated blossoms.
Sweetness and beauty are not the invariable rule with insect-visited blossoms, for in the long ages that have elapsed during which these adaptations have come about some plants have established an unwritten agreement between beetles and bugs with unsavory tastes. Thus there are the "carrion flowers," so called because of their fetid odor, designed for the sense organs of carrion insects. The "stink-horn" fungi have their offensive spores distributed by a similar set of carrion carriers.
Water and wind claim a share of the species, but here adaptation to the method of fertilization is as fully realized as when insects participate, and the uselessness of showy petals and fantastic forms is emphasized by their absence.
Coming now to the fruits of plants, it is again seen that plants have adapted their offspring, the seed, to the surrounding conditions, not forgetting the wind, the waves, and the tastes and the exterior of passing animals. The breezes carry up and hurl along the light wing-possessed seeds, and the river and ocean bear these and many others onward to a distant land, while by grappling hooks many kinds cling to the hair of animals, or, provided with a pleasing pulp, are carried willingly by birds and other creatures. In short, the devices for seed dispersion are multitudinous, and they provide a large chapter in that branch of botany now styled phytoecology.
How different is the old field botany from the new! Then there was the collector of plants and classifier of his finds, and an arranger of all he could get by exchange or otherwise. His success was measured by the size of his herbarium and his stock intrade as so many duplicates all taken in bloom, but the time of year, locality, and the various conditions of growth were all unknown.
His implements for work were, first, a can or basket, a plant press, and a manual; and, secondly, a lot of paper, a paste pot, and some way of holding the mounts in packets or pigeonholes.
The eyes grew keen as the hunter scoured the forest and field for some kind of plant he had not already possessed. There was a keen relish in discoveries, and it heightened into ecstasy when the specimen needed to be sent away for a name and was returned with his own Latinized and appended to that of the genus.
This was all well and good so far as it went, but looked at from the present vantage ground there was not so much in it. However, his was an essential step to other things, as much so as that of the census taker.
We need to know the species of plants our fair land possesses, and have them described and named. But when the nine hundred and ninety-nine are known, it is a waste of time to be continually hunting for the thousandth. Look for it, but let it be secondary to that of an actual study of the great majority already known. The older botany was a study of the dried plants in all those details that are laid down in the manuals. It lacked something of the true vitality that is inherent in a biological science, for often the life had gone out before the subject came up for study. To the phytoecologist it was somewhat as the shell without the meat, or the bird's nest of a previous year.
Since those days of our forefathers there has come the minute anatomy of plants, followed closely by physiology; and now with the working knowledge of these two modern branches of botany the student has again taken to the field. He is making the wood-lot his laboratory, and the garden, so to say, his lecture room. He has a fair knowledge of systematic botany, but finds himself rearranging the families and genera to fit the facts determined by his ecological study. If two species of the same genus are widely separated in habitat, he is determining the factors that led to the separation. Why did one smart weed become a climber, another an upright herb, and a third a prostrate creeper, are questions that may not have entered the mind of the plant collector; but now the phytoecologist finds much interest in considering questions of this type. What are the differences between a species inhabiting the water and another of the same genus upon dry land, or what has led one group of the morning-glory family to become parasites and exist as the dodders upon other living plants?
The older botanist held his subject under the best mental illumination of his time, but his physical light, that of a pine knotor a tallow dip, also contrasts strongly with that of the present gas jet and electric arc.
The wonder should be that he saw so well, and all who follow him can not but feel grateful for the path he blazed through the dense forests of ignorance and the bridges he made over the streams of doubt in specific distinctions. It was a noble work, but it is nearly past in the older parts of our country; and while some of that school should linger to readjust their genera, make new combinations of species, and attempt to satisfy the claims of priority, the rank and file will largely leave systematic botany and the herborizing it embraces, and betake themselves to the open fields of phytoecology. It may be along the line of structural adaptations when we will have morphological phytoecology, or the adjustment of function to the environment when there will be physiological phytoecology. These two branches when combined to elucidate problems of relationship between the plant and its surroundings as involved in accommodation in its comprehensive sense there will be phytoecology with climate, geology, geography, or fossils as the leading feature, as the case may be.
In the older botany the plant alone in itself was the subject of study. The newer botany takes the plant in its surroundings and all that its relationships to other plants may suggest as the subject for analysis. In the one case the plant was all and its place of growth accidental, a dried specimen from any unknown habitat was enough; but now the environment and the numerous lines of relationship that reach out from the living plantin situare the major subjects for study. The former was field botany because the field contained the plant, the latter is field botany in that the plant embraces in its study all else in the field in which it lives. The one had as its leading question, What is your name and where do you belong in my herbarium? while the other raises an endless list of queries, of which How came you here and when? Why these curious glands and this strange movement or mimicry? are but average samples. Every spot of color, bend of leaf, and shape of fruit raises a question.
The collector of fifty years ago pulled up or cut off a portion of his plant for a specimen, and rarely measured, weighed, and counted anything about it. The phytoecologist to-day watches his subject as it grows, and if removed it is for the purpose of testing its vital functions under varying circumstances of moisture, heat, or sunlight, and exact recording instruments are a part of the equipment for the investigation.
The underlying thought in the seashore school and the tropical laboratory in botany is this of getting nearer to the haunts of theliving plant. Forestry schools that have for their class room the wooded mountains and the botanical gardens with their living herbaria are welcome steps toward the same end of phytoecology.
In view of the above facts, and many more that might be mentioned did space permit, the writer has felt that the present incomplete and faulty presentation of the subject of the newer botany should be placed before the great reading public through the medium of a journal that has as its watchword Progress in Education.
DO ANIMALS REASON?
By the Rev. EGERTON R. YOUNG.
This interesting subject has been ably handled from the negative side by Edward Thorndike, Ph. D., in the August number of the Popular Science Monthly. Dr. Thorndike, with all his skill in treating this very interesting subject, seems to have forgotten one very important point. His expectation has not only been higher than any fair claim of an animal's reasoning power, but he has overlooked the fact that there are different ways of reasoning. Men of different races and those of little intelligence can be placed in new environments and be asked to perform things which, while utterly impossible to them, are simple and crude to those of higher intelligence and who have all their days been accustomed to high mental exercise. If such difference exists between the highest and most intelligent of the human race and the degraded and uncultured, vastly greater is the gulf that separates the lowest stratum of humanity from the most intelligent of the brute creation. The fair way to test the intelligence of the so-called lower orders of men is to go to their native lands and study them in their own environments and in possession of the equipments of life to which they have been accustomed. The same is true of the brute creation. Only the highest results can be expected from congenial environments. To pass final judgment upon the animal kingdom, having for data only the results of the doctor's experiments, seems to us manifestly unfair. He takes a few cats and dogs and submits them to environments which are altogether foreign to them, and then expects feats of mind from them which would be far greater than the mastering of the reason why two and two make four is to the stupidest child of man. As the doctor has been permitted to tell the results of his experiments, may I claim a similar privilege? While I did not use dogs merely to test their intelligence—my business demanding of myself andthem the fullest use of all our energies and all the intelligence, be it more or less, that was possessed by man or beast—I had the privilege of seeing in my dogs actions that were, at least to me, convincing that they possessed the rudiments of reasoning powers, and, in the more intelligent, that which will be utterly inexplicable if it is not the product of reasoning faculties.
For a number of years I was a resident missionary in the Hudson Bay Territories, where, in the prosecution of my work, I kept a large number of dogs of various breeds. With these dogs I traveled several thousands of miles every winter over an area larger than the State of New York. In summer I used them to plow my garden and fields. They dragged home our fish from the distant fisheries, and the wood from the forests for our numerous fires. They cuddled around me on the edges of my heavy fur robes in wintry camps, where we often slept out in a hole dug in the snow, the temperature ranging from 30° to 60° below zero. When blizzard storms raged so terribly that even the most experienced Indian guides were bewildered, and knew not north from south or east from west, our sole reliance was on our dogs, and with an intelligence and an endurance that ever won our admiration they succeeded in bringing us to our desired destination.
It is conceded at the outset that these dogs of whom I write were the result of careful selection. There are dogs and dogs, as there are men and men. They were not picked up in the street at random. I would no more keep in my personal service a mere average mongrel dog than I would the second time hire for one of my long trips a sulky Indian. As there are some people, good in many ways, who can not master a foreign tongue, so there are many dogs that never rise above the one gift of animal instinct. With such I too have struggled, and long and patiently labored, and if of them only I were writing I would unhesitatingly say that of them I never saw any act which ever seemed to show reasoning powers. But there are other dogs than these, and of them I here would write and give my reason why I firmly believe that in a marked degree some of them possessed the powers of reasoning.
Two of my favorite dogs I called Jack and Cuffy. Jack was a great black St. Bernard, weighing nearly two hundred pounds. Cuffy was a pure Newfoundland, with very black curly hair. These two dogs were the gift of the late Senator Sanford. With other fine dogs of the same breeds, they soon supplanted the Eskimo and mongrels that had been previously used for years about the place.