CHAPTER VIII

This is a principle which applies to worldsanywhere; not merely within the limits of the solar system but wherever they exist. Everywhere the surface must vary with the square of the diameter; the volume with the cube; everywhere the smaller planet must have the rarer atmosphere, and with a rare atmosphere the extreme range of temperature must be great, while the range of temperature within which water will flow will be restricted. Our Earth stands as the model of a world of the right size for the maintenance of life; much smaller than our Earth would be too small; much larger, as we shall see later, would be too large.

So far we have dealt with Mars as if it received the same amount of light and heat from the Sun that the Earth does. But, as the Table shows, from its greater distance from the Sun, Mars receives per unit of surface only about three-sevenths of the light and heat of that received by the Earth.

The inclination of the axis of Mars is almost the same as that of the Earth, so that the general character of the seasons is not very different on the two planets, and the torrid, temperate, and frigid zones have almost the same proportions. The length of the day is also nearly the same for both, the Martian day being slightly longer; but the most serious factor is the greater distance of Mars, and the consequent diminution in the light and heat received from the Sun. The light and heat received by the Earth are not so excessive thatwe could be content to see them diminished, even by 5 per cent, but for Mars they are diminished by 57 per cent. How can we judge the effect of so important a difference?

The mean temperature of our Earth is supposed to be about 60°F., or 16°C. Three-sevenths of this would give us 7°C. as the mean temperature of Mars, which would signify a planet not impossible for life. But the zero of the Centigrade scale is not the absolute zero; it only marks the freezing-point of water. The absolute zero is computed to be -273° on the Centigrade scale; the temperature of the Earth on the absolute scale therefore should be taken as 289°, and three-sevenths of this would give 124° of absolute temperature. But this is 149° below freezing-point, and no life could exist on a planet under such conditions.

But the mean temperature of Mars cannot be computed quite so easily. The hotter a body is the more rapidly it radiates heat; the cooler it is the slower its radiation. According to Stefan’s Law, the radiation varies for a perfect radiator with the 4th power of the absolute temperature; so that if Mars were at 124° abs., while the Earth were at 289° abs., the Earth would be radiating its heat nearly 30 times faster than Mars. The heat income of Mars would therefore be in a much higher proportion than its expenditure; and necessarily its heat capital would increase until income and expenditurebalanced. Prof. Poynting has made the temperature of the planets under the 4th power law of radiation the subject of an interesting enquiry, and the figures which he has obtained for Mars and other planets are included in the Table.

The equatorial and average temperatures are given under the assumption that Mars possesses an atmosphere as efficient as our own in equalizing the temperature of the whole planet. If, on the other hand, its atmosphere has no such regulating power, then under the zenith Sun the upper limit of the temperature of a portion of its surface reflecting one-eighth would be, as shown in the Table, 64°C. This would imply that the temperature on the dark side of the planet was very nearly at the absolute zero. “If we regard Mars as resembling our Moon, and take the Moon’s effective average temperature as 297° abs., the corresponding temperature for Mars is 240° abs., and the highest temperature is four-fifths of 337° = 270° abs. But the surface of Mars has probably a higher coefficient of absorption than the surface of the Moon—it certainly has for light—so that we may put his effective average temperature, on this supposition, some few degrees above 240° abs., and his equatorial temperature some degrees higher still. It appears as exceedingly probable, then, that whether we regard Mars as like the Earth or, going to the other extreme, as like the Moon, thetemperature of his surface is everywhere below the freezing-point of water.”[14]As the atmospheric circulation on Mars must be languid, and the atmosphere itself is very rare, the general condition of the planet will approximate rather to the lunar type than to the terrestrial, and the extremes, both of heat and cold, will approach those which would prevail on a planet without a regulating atmosphere.

There is another way of considering the effect on the climate of Mars and its great distance from the Sun, which, though only rough and crude, may be helpful to some readers. If we take the Earth at noonday at the time of the equinox, then a square yard at the equator has the Sun in its zenith, and is fully presented to its light and heat. But, as we move away from the equator, we find that each higher latitude is less fully presented to the Sun, until, when we reach latitude 64½°—in other words just outside the Arctic Circle—7 square yards are presented to the Sun so as to receive only as much of the solar radiation as 3 square yards receive at the equator. We may take, then, latitude 64½° as representing Mars, while the equator represents the Earth. Or, we may take it that we should compare the climate of Archangel with the climate of Singapore.

Now the mean temperature of latitude 64½°, say the latitude of Archangel, is just about freezing-point (0°C.), while that of the equator is about 28°C. We should therefore expect from this a difference between the mean temperatures of the Earth and Mars of 28°; that is to say, as the Earth stands at 16°C, Mars would be at -12°C. But, on the Earth, the evaporation and precipitation is great, and the atmospheric circulation vigorous. Evaporation is always going on in equatorial regions, and the moisture-laden winds are continually moving polewards, carrying with them vast stores of heat to be liberated as the rain falls. The oceanic currents have the same effect, and how great the modification which they introduce may be seen by comparing the climates of Labrador and Scotland. There appear to be no great oceans on Mars. The difference of 28° which we find on the Earth between the equator and the edge of the Arctic Circle is a difference which remains after the convection currents of air and sea have done much to reduce the temperature of the equator and to raise that of high latitudes. If we suppose that their effect has been to reduce this difference to one half of what it would have been were each latitude isolated from the rest, we shall not be far wrong, and we should get a range of 56° as the true equivalent difference between the mean temperatures of Singapore and Archangel; i.e. of the Earth and Mars; and Mars would stand at -40°C. Thecloseness with which this figure agrees with that reached by Prof. Poynting suggests that it is a fair approximation to the correct figure.

The size of Mars taught us that we have in it a planet with an atmosphere of but one half the density of that prevailing on the top of our highest mountain; the distance of Mars from the Sun showed us that it must have a mean temperature close to that of freezing mercury. What chance would there be for life on a world the average condition of which would correspond to that of a terrestrial mountain top, ten miles high and in the heart of the polar regions? But Mars in the telescope does not look like a cold planet. As we look at it, and note its bright colour, the small extent of the white caps presumed to be snow, and the high latitudes in which the dark markings—presumed to be water or vegetation—are seen, it seems difficult to suppose that the mean temperature of the planet is lower than that of the Earth. Thus on the wonderful photographs taken by Prof. Barnard in 1909, the Nilosyrtis with the Protonilus is seen as a dark canal. Now the Protonilus is in North Lat. 42°, and on the date of observation—September 28, 1909—the winter solstice of the northern hemisphere of Mars was just past. There would be nothing unusual for the ground to be covered with snow and the water to be frozen in a corresponding latitude if in a continental situation on the Earth. Then, again, in the summer, thewhite polar caps of Mars diminish to a far greater extent than the snow and ice caps of the Earth; indeed, one of the Martian caps has been known to disappear completely.

Yet, as the accompanying diagram will show, something of this kind is precisely what we ought to expect to see. The diagram has been constructed in the following manner: A curve of mean temperatures has been laid down for every 10° of latitude on the Earth, derived as far as possible from accepted isothermals in continental countries in the northern hemisphere. From this curve ordinates have been drawn at each 10°, upward to show average deviation from the mean temperature for the hottest part of the day in summer, downward for the deviation for the coldest part of the night in winter. Obviously, on the average, the range from maximum to minimum will increase from the equator to the poles. The mean temperature of the Earth has been taken as 16°C, and as representing that prevailing in about 42° lat. The diagram shows that the maximum temperature of no place upon the Earth’s surface approaches the boiling-point of water, and that it is only within the polar circle that the mean temperature is below freezing-point. Water, therefore, on the Earth must be normally in the liquid state.

Larger Image

Thermographs of the Earth and Mars

In constructing a similar diagram for Mars, three modifications have to be made. First of all, the mean temperature of the planet must be considerably lower than that of the Earth. Next, since the atmospheric circulation is languid and there are no great oceans, the temperatures of different latitudes cannot be equalized to the same extent as on the Earth. It follows, therefore, that the range in mean temperature from equator to pole must be considerably greater on Mars than on the Earth. Thirdly, the range in temperature in any latitude, from the hottest part of the day in summer to the coldest part of the night in winter, must be much greater than with us; partly on account of the very slight density of the atmosphere, and partly on account of the length of the Martian year.

We cannot know the exact figures to adopt, but the general type of the thermograph for Mars as compared with that of the Earth will remain. The mean temperature of Mars will be lower, the range of temperature from equator to pole will be greater, and the extremes of temperature in any given latitude more pronounced than upon the Earth. And the general lesson of the diagram may be summed up in a sentence. The maximum temperature on the planet is well above freezing-point, and the part of the planet at maximum temperature is precisely the part that we see the best. But while this is so, it is clear that water on Mars must normally be in the state of ice; Mars is essentially a frozen planet; and the extremes of cold experienced there, not only every year butevery night, far transcend the bitterest extremes of our own polar regions.

The above considerations do not appear to render it likely that there is any vegetation on Mars. A planet ice-bound every night and with its mean temperature considerably below freezing-point does not seem promising for vegetation. If vegetation exists, it must be of a kind that can pass through all the stages of its life-history during the few bright hours of the Martian day. Every night will be for it a winter, a winter of undescribable frost, which it could only endure in the form of spores. So if there be vegetation it must be confined to some hardy forms of a low type. At a distance of forty millions of miles it is not easy to discriminate between the darkness of sheets of water and the darkness of stretches of vegetation. Some of the so-called “seas” may possibly be really of the latter class, but that there must be expanses of water on the planet is clear, for if there were no water surfaces there would be no evaporation; and if there were no evaporation from whence could come the supply of moisture that builds up the winter pole cap?

The great American astronomer, Prof. Newcomb, gave inHarper’s Weeklyfor July 25, 1908, an admirable summary of the verdict of science as to the character of the meteorology of Mars. “The most careful calculation shows that if there are any considerable bodies of water on our neighbouringplanet they exist in the form of ice, and can never be liquid to a depth of more than one or two inches, and that only within the torrid zone and during a few hours each day.... There is no evidence that snow like ours ever forms around the poles of Mars. It does not seem possible that any considerable fall of such snow could ever take place, nor is there any necessity of supposing actual snow or ice to account for the white caps. At a temperature vastly below any ever felt in Siberia, the smallest particles of moisture will be condensed into what we call hoar frost, and will glisten with as much whiteness as actual snow.... Thus we have a kind of Martian meteorological changes, very slight indeed and seemingly very different from those of our earth, but yet following similar lines on their small scale. For snowfall substitute frostfall; instead of feet or inches say fractions of a millimetre, and instead of storms or wind substitute little motions of an air thinner than that on the top of the Himalayas, and we shall have a general description of Martian meteorology.”

What we know of Mars, then, shows us a planet, icebound every night, but with a day temperature somewhat above freezing-point. As we see it, we look upon its warmest regions, and the rapidity with which it is cleared of ice, snow, and cloud shows the atmosphere to be rare and the moisture little in amount and readily evaporated. The seas are probably shallow depressions, filled withice to the bottom, but melted as to their surfaces by day. From the variety of tints noted in the seas, and the recurrent changes in their outlines, they are composed of congeries of shallow pools, fed by small sluggish streams; great ocean basins into which great rivers discharge themselves are quite unknown.

THE ILLUSIONS OF MARS

Thetwo preceding chapters have led to two opposing, two incompatible conclusions. In Chapter VI, a summary was given of Prof. Lowell’s claim to have had ocular demonstration of the handiwork of intelligent organisms on Mars. In Chapter VII, it was shown that the indispensable condition for living organisms, water in the liquid state, is only occasionally present there, the general temperature being much below freezing-point, so that living organisms of high development and more than ephemeral existence are impossible.

Prof. Lowell argues that the appearance of the network of lines and spots formed by the canals and oases, and its regular behaviour, “preclude its causation on such a scale by any natural process,” his assumption being that he has obtained finality in his seeing of the planet, and that no improvement in telescopes, no increase in experience, no better eyesight will ever break up the perfect regularity of form and position, which he gives to the canals, into finer and more complex detail.

But the history of our knowledge of the planet’s surface teaches us a different lesson. Two smallobjects appear repeatedly on the drawings made by Beer and Mädler in 1830; these are two similar dark spots, the one isolated, the other at the end of a gently curved line. Both spots resemble in form and character the oases of Prof. Lowell, and the curved line, at the termination of which one of the spots appears, represents closely the appearance presented by several of the canals. In the year 1830 no better drawings of Mars had appeared; and in representing these two spots as truly circular and the curved line as narrow, sharp, and uniform, Beer and Mädler undoubtedly portrayed the planet as actually they saw it. The one marking was named by Schiaparelli the Lacus Solis, the other, the Sinus Sabæus, and they are two of the best known and most easily recognized of the planet’s features; so that it is easy to trace the growth of our knowledge of both of them from 1830 up to the present time. They were drawn by Dawes in 1864, by Schiaparelli in 1877 and the succeeding years, by Lowell in 1894 and since, and by Antoniadi in 1909 and 1911. But whereas the drawings of Beer and Mädler, made by the aid of a telescope of 4 inches aperture, show the two spots as exactly alike, in those of Dawes, made with a telescope of 8 inches, the resemblance between the two has entirely vanished, and neither is shown as a plain circular dot. Since then, observers of greater experience and equipped with more powerful instruments have directed theirattention to these two objects, and a mass of complicated structure has been brought out in the regions which were so simple in the sight of Beer and Mädler, so that not a trace of resemblance remains between the two objects that to them appeared indistinguishable.

Now the gradation in size, from the Lacus Solis down to the smallest oasis of Lowell, is a complete one. If a future development in the power of telescopes should equal the advance made from the 4-inch of Beer and Mädler, to the 33-inch which Antoniadi used in 1909, is it reasonable to suppose that Prof. Lowell’s oases will refuse to yield to such improvement, and will all still show themselves as uniform spots, precisely circular in outline? It is clear that Beer and Mädler would have been mistaken if they had argued that the apparently perfect circularity of the two oases which they observed proved them to be artificial, because the increase in telescopic power has since shown us that neither is circular. The obvious reason why they appeared so round to Beer and Mädler was that they were too small to be defined in their instruments; their minor irregularities were therefore invisible, and their apparent circularity covered detail of an altogether different form.

Beer and Mädler only drew two such spots; Lowell shows about two hundred. Beer and Mädler’s two spots seemed to them exactly alike; these two spots as we see them to-day have noresemblance to each other. Prof. Lowell’s two hundred oases, with few exceptions, seem all of the same character; is it possible to suppose, if telescopes develop in the future as they have done in the past, that the two hundred oases will preserve their uniformity of appearance any more than the Lacus Solis and the head of the Sinus Sabæus? If a novice begins to work upon Mars with a small telescope, he will draw the Lacus Solis and the Sinus Sabæus as two round, uniform spots, and as he gains experience, and his instrumental power is increased, he will begin to detect detail in them, and draw them as Dawes and Schiaparelli and others have shown them later. It is no question of planetary change; it is a question of experience and of “seeing.”

There is a much simpler explanation of the regularity of the canals and oases than to suppose that an industrious population of geometers have dug them out or planted them; it is connected with the nature of vision.

A telegraph wire seen against a background of a bright cloud can be discerned at an amazing distance—in fact, at 200,000 times the breadth of the wire; a distance at which the wire subtends a breadth of a second of arc. For average normal sight the perception of the wire will be quite unmistakable, but at the same time it would be quite untrue to say that the perception of the wire was of the nature of defined vision, as would beseen at once if small objects of irregular shape were threaded on the wire; these would have to be many times the breadth of the wire in order to be detected. Again, if instead of a wire of very great length extending right across the field of view of both eyes, a short, black line be drawn on a white ground, it will be found that as the length of the line is diminished below a certain point so its breadth must be increased. If the observer is distant from the line 6000 times its length, then the breadth must be increased to be equal to the length, and the object, whatever its actual shape, can be just recognized as a small circular spot, which will subtend about 34 seconds of arc.

But though a black spot, 34 seconds in diameter, can be perceived on a white ground, we have not yet attained to defined vision. For if we place two black spots each 34 seconds of arc in diameter, near each other, they will not be seen as separate spots unless there is a clear space between them of six times that amount. Nearer than that they will give the impression that they form one circular spot, or an oval one, or even a uniform straight line, according to the amount of separation. If two equal round spots be placed so that the distance between their centres is equal to two diameters, then the diameter of each spot must be, at least, 70 seconds of arc for them to be distinctly defined; that is to say for the spots to be seen as two separate objects.

It will be seen that there is a wide range between objects that are large enough to be quite unmistakably perceived, and objects which are large enough to have their true outline really defined. It is a question of seconds of arc in the one case and of minutes of arc in the other. Within this range, between the limit at which objects can be just perceived and that where they can be just defined, objects must all appear as of one of two forms—the straight line and the circular dot.

This depends upon the structure of the eye and of the retina; the eye being essentially a lens with its defining power necessarily limited by its aperture, and the retina a sensitive screen built up of an immense number of separate elements each of which can only transmit a single sensation. Different eyes will have different limits, both for the smallest objects which can be discerned and for the smallest objects that can be defined, but for any sight the range between the two will be of the order just indicated.

Prof. Lowell has drawn attention to the “strangely economic character of both the canals and oases in the matter of form.” It is true that straight lines and circles are economic forms, but they are economic not only in the construction of irrigation works but also in vision. “The circle is the figure which encloses the maximum area for the minimum average distance from its centre to any point situated within it;”therefore, if a small spot be perceived by the sight but be too small to have its actual outline defined, it will be recognized by the eye as being truly circular, on the principle of economy of effort. So, again, a straight line is the shortest that can be drawn between two points; and a straight line can be perceived as such when of an angular breadth quite 40 times less than that of the smallest spot. A straight line is that which gives the least total excitement in order to produce an appreciable impression, and therefore the smallest appreciable impression produces the effect of a straight line.

It is sufficient, then, for us to suppose that the surface of Mars is dotted over with minute irregular markings, with a tendency to aggregate in certain directions, such as would naturally arise in the process of the cooling of a planet when the outer crust was contracting above an unyielding nucleus. If these markings are fairly near each other it is not necessary, in order to produce the effect of “canals,” that they should be individually large enough to be seen. They may be of any conceivable shape, provided that they are separately below the limit of defined vision, and are sufficiently sparsely scattered. In this case the eye inevitably sums up the details (which it recognizes but cannot resolve) into lines essentially “canal-like” in character. Wherever there is a small aggregation of these minute markings, an impression will begiven of a circular spot, or, to use Prof. Lowell’s nomenclature, an “oasis.” If the aggregation be greater still and more extended, we shall have a shaded area—a “sea.”

The above remarks apply to observation with the unaided eye, but the same principle applies yet more strongly to telescopic vision. No star is near enough or sufficiently large to give the least impression of a true disc; its diameter is indistinguishable; it is for us a mathematical point, “without parts or magnitude.” But the image of a star formed by a telescope is not a point but a minute disc, surrounded by a series of diffraction rings. This disc is “spurious,” for the greater the aperture of the telescope the smaller the apparent disc.

That which holds good for a bright point like a star holds good for every individual point of a planetary surface when viewed through the telescope; that is to say, each point is represented by a minute disc; all lines and outlines therefore are slightly blurred, so that minute irregularities are inevitably smoothed out.

When we come to photographs, the process is carried to a third stage. The image is formed by the telescope, subject to all the limitations of telescopic images, and is received on a plate essentially granular in structure, and is finally examined by the eye. The granular structure of the plate acts as the third factor in concealingirregularities and simplifying details; a third factor in producing the two simplest types of form—the straight line and the circular dot.

Prof. Lowell describes the canals as like lines drawn with pen, ink and ruler, but not a few of our best observers have advanced much beyond this stage. Even as far back as 1884, some of the canals were losing their strict rectilinear appearance to Schiaparelli, and the observers of the planet who have been best favoured by the power of the telescope at their disposal, by the atmospheric conditions under which they worked, and by their own skill and experience—such as Antoniadi, Barnard, Cerulli, Denning, Millochau, Molesworth, Phillips, Stanley Williams and others—have found them to show evident signs of resolution. Thus, in 1909, Antoniadi found that of 50 canals, 14 were resolved into disconnected knots of diffused shadings, 4 were seen as irregular lines, 10 as more or less dark bands; and he found that, in good seeing, there was no trace whatever of the geometrical network.

The progress of observation, therefore, has left Prof. Lowell behind, and has dispelled the fable which he has defended with so much ingenuity. But, indeed, there never was any more reason for taking seriously his theory as to the presence of artificial waterways on Mars than for believing in the actual existence of the weird creatures described by H. G. Wells in theWar of the Worlds.

There are too many oversights in the canal theory.

Thus no source is indicated for the moisture supposed to be locked up in the winter pole cap. Prof. Lowell holds that there are no large bodies of water on the planet; that the so-called seas are really cultivated land. In this case there could be little or no evaporation, and so no means by which the polar deposits could be recruited.

Yet it is certain that the supply of the winter pole cap must come from the evaporation of water in some region or other. And here is another oversight of the artificial canal theory. The canals are supposed to be necessary for the conveyance of water from the pole towards the equator; although, as this was “uphill,” vast pumping stations at short intervals had to be predicated. But it is not supposed that the water needed to travel by way of the canals to the poles. If, however, the moisture is conveyed as vapour through the atmosphere to the pole as winter approaches, it cannot be impossible that it should be conveyed in the same manner from the pole as summer draws on, and in that case the artificial canals would not be needed. If the canals are necessary for conveying the water in one direction, they would be necessary for the opposite direction. But there would be something too farcical in the idea of the careful Martians dispatching theirwater first to the pole to be frozen there, and then, after it had been duly frozen and melted again, fetching it back along thousands of miles and through numerous pumping stations for use in irrigating their fields.

Of all the many hundreds of canals only a few actually touch the polar caps. But on the theory that the entire canal system is fed by the polar cap in summer, the carrying capacity of the polar canals should be equal to, if not greater than, that of the entire system outside the polar circle. A glance at the charts of the planet shows that the polar canals could not supply a twentieth part of the water needed for those in the equatorial regions. Another oversight is that of the significance of the alleged uniformity and breadth of the canals. Prof. Lowell repeatedly insists that the canals are of even breadth from end to end, and spring into existence at once throughout their whole length. This statement is in itself a proof that the canals cannot be what he supposes them to be. An irrigation system could not have these characteristics; the region fertilized would take time to develop; we should see the canal extending itself gradually across the continent, and its breadth would not be uniform from end to end, but the region fertilized would grow narrower with increase of distance from the fountain head of the canal.

Under what conditions can we see straight lines,perfectly uniform from end to end, spring into existence, in their entirety, without going through any stages of growth? When the lines are not actual images, but are suggested by markings perceived, but not perfectly defined. In 1902 and 1903, in conjunction with Mr. Evans, the headmaster of Greenwich Hospital School, I tried a number of experiments on this point, with the aid of about two hundred of the boys of the school. They had several qualifications in respect of these experiments; they were keen-sighted, well drilled; accustomed to do what they were told without asking questions; and they knew nothing whatsoever of astronomy, certainly nothing about Mars.

A diagram was hung up, based upon some drawing or other of the planet made by Schiaparelli, Lowell or other Martian observer, but the canals were not inserted; only a few dots or irregular markings were put in here and there. And the boys were arranged at different distances from the diagram and told to draw exactly what they saw. Those nearest the diagram were able to detect the little irregular markings and represented them under their true forms. Those at the back of the room could not see anything of them, and only represented the broadest features of the diagram, the continents and seas. Those in the middle of the room were too far off to define the minute markings, but were near enough for thosemarkings to produce some impression upon them; and that impression always was of a network of straight lines, sometimes with dots at the points of meeting. Advancing from a distance toward the diagram the process of development became quite clear. At the back of the room no straight lines were seen; as the observer came slowly forward, first one straight line would appear completely, then another, and so on, until all the chief canals drawn by Schiaparelli and Lowell in the region represented had come into evidence in their proper places. Advancing still further, the canals disappeared, and the little irregular markings which had given rise to them were perceived in their true forms.

These experiments at the Greenwich Hospital School were merely the repetition of similar ones that I had myself made privately twelve years earlier, leading me to the conclusion, published in 1894, that the canals of Mars were simply the summation of a complexity of detail too minute to be separately discerned.

A little later, in his work “Marte nel 1896-7,” Dr. Cerulli independently arrived at the same conclusion, and wrote: “These lines are formed by the eye ... which utilizes ... the dark elements which it finds along certain directions”; and “a large number of these elements forms a broad band”; and “a smaller number of them gives rise to a narrow line.” Also, “themarvellous appearance of the lines in question has its origin, not in the reality of the thing, but in the inability of the present telescope to show faithfully such a reality.” In 1907, Prof. Newcomb made some experiments in the same direction and reached the same general conclusion. More recently still, Prof. W. H. Pickering has worked on the same lines and with the same result. The venerable George Pollock, formerly the Senior Master of the Supreme Court and King’s Remembrancer, sent to me, in his 91st year, the following note as affording an apt illustration of the true nature of the canaliform markings on Mars:

“On Saturday last, journeying in a motor-car, I came into a broad road bounded by a dark wood. Looking up I was amazed to see distinct, well-defined, vertical, parallel white lines, the wood forming the dark background. On getting nearer, these lines resolved themselves into spots, and they proved to be the white insulators supporting the telegraph wires.”

Prof. Lowell has objected that all experiments and illustrations of this kind are irrelevant; only observations upon the planet itself ought to be taken into account.

But such observations have been made upon the planet itself with just the same result. Observers have seen streaks upon Mars—knotted, broken, irregular, full of detail—and when the planet has receded to a greater distance, the very samemarking has shown itself as a narrow straight line, uniform from end to end, as if drawn with pen, ink and ruler. The greater distance has caused the irregularities, seen when nearer at hand, to disappear. In this, and not in any gigantic engineering works, is the explanation of the artificiality of the markings on Mars as Prof. Lowell sees them. That artificiality has already disappeared under better seeing with more powerful telescopes.

This chapter is entitled “The Illusions of Mars.” Yet the illusions of Mars are not the straight lines and round dots of the canal system, but the forced and curious interpretation which has been put upon them. If the planet be within a certain range of distance and under examination with a certain telescopic power, the straight lines and round dots are inevitable. Their artificiality is not a function of the actual Martian details themselves, but of the mode in which, under given conditions, we are obliged to see them.

VENUS, MERCURY AND THE ASTEROIDS

Ofall the planets, Venus appears, to the unassisted eye, by far the loveliest. When seen in the early morning before sunrise—its “western elongation”—or after sundown in the evening—its “eastern elongation”—and still more as it attains its greatest brilliancy, it has attracted attention everywhere and in all ages. It then shines with brilliance ten times as great as Jupiter in opposition, and the brightest members of the heavenly host look pale and dim beside it. It is emphatically the morning or the evening star, Lucifer, or Vesper, herald or follower of the Sun; it can even assert itself in the presence of the Lord of Day, for it has often been seen at noonday by watchers who knew where to look; sometimes by the general crowd.

But in the telescope Venus appears less satisfying. It is a pretty spectacle indeed to watch the phases of the gleaming little globe of silver, for, like the Moon under varying illumination from the Sun, it undergoes change of apparent shape. But the surface of the planet yields little detail, and that little is illusive and ill-defined. Theclear-cut outlines and black shadows of the Moon have no place here, nor do the ruddy plains and blue-grey “seas” of Mars find any analogues. All that can be observed beyond the changes of phase are a few faint, ill-defined patches, where the molten silver of the general surface is slightly dimmed and tarnished, and perhaps one or two spots, not less evasive and difficult to fix, that exceed the rest of the surface in brightness.

This very difficulty in making out the markings on Venus is hopeful for our search; it points to a veiling over the planet, a veiling by an atmosphere. And the statistics of the Table show that Venus closely resembles our Earth in size and mass, and therefore probably in atmospheric equipment. If we assume that the atmosphere of any planet is in direct proportion to its mass—and as Venus is so nearly the twin of the Earth there is no reason to expect any great difference between the two in this respect—the atmosphere of Venus would have a pressure of about 11·2 lb. on the square inch, and the level of half pressure would be nearly four miles above the surface. In other words the atmosphere would be both thinner and deeper than that of the Earth, but the difference would not be important in amount.

But Venus is nearer to the Sun than the Earth, and receives nearly double the light and heat. Its theoretical equatorial temperature is 368°abs., or 95°C, and its corresponding mean temperatureis 69° C. But water under a pressure of 11·2 lb. will boil at 93° C, so that at the equator of Venus the upper limit for water as a liquid is just passed, but, for the planet in general, a fairly safe margin is maintained. Here then is sufficient explanation why the topography of Venus is concealed. The atmosphere will always be abundantly charged with water-vapour, and an almost unbroken screen of clouds be spread throughout its upper regions. Such a screen will greatly protect the planet from the full scorching of the Sun, and tend to equalize the temperature of day and night, of summer and winter, of equator and poles. The temperature range will be slight, and there will be no wide expanses of polar ice. Water that flows will be abundant everywhere.

So far all the facts connected with Venus are favourable for life, even though the picture called up to the mind may not seem inviting to us. For views of the heavens must be rare; the Sun must seldom pierce through the cloud veil; there is no moon and the stars must be almost always hidden. The Earth with its Moon might form a beautiful ornament at times in the midnight sky if the cloud-shell should occasionally open, but on the whole, the planet is shut up to itself in a perpetual vapour-bath, and its condition will approach that of some of the most humid countries in the terrestrial tropics during the height of their rainy seasons.

But it would seem that life both of plants and animals, under such conditions, might flourish and be abundant. The mean temperature would not, in general, be high enough to drive off the water as steam, nor low enough to congeal it into ice; it would remain water—water that flows.

But there is still a possible hindrance to life on Venus, a hindrance that actually exists in the case of Mercury.

Mercury, the “Twinkler,” is not an easy object in our Northern latitudes, but, in countries near the tropics, is often quite conspicuous, a little scintillating gem of light in the bright sky, before sunrise or after sunset. In the telescope it is not so attractive as Venus, partly because it is smaller, partly because, though it receives more than three times as much light from the Sun, it is duller in hue. Yet it is not quite so secretive as its neighbour, and a certain number of markings have been detected upon its disc, markings which, like those of the Moon, appear to be permanent.

A glance at the Table will show that this was to be expected. In size, Mercury comes between the Moon and Mars, and the atmospheric veil ought therefore to be, as it evidently is, very slight and transparent; offering little or no hindrance to an observer scanning it from another world. The other necessary consequences of small size and mass will follow; the feeble force of gravitation, the languid atmospheric circulation, the extremerange of temperatures, the low temperature at which water will boil.

But the heat to which Mercury is exposed far transcends our terrestrial experience. In the mean it receives nearly seven times as much heat from the Sun as the Earth does, but this supply is not maintained uniformly, for Mercury moves round the Sun in a very eccentric orbit, so that when in aphelion it receives, surface for surface, only about four times as much heat as the Earth, but some six weeks later when in perihelion it receives more than eleven times. The great range of temperature due to the thinness of the atmosphere must therefore be further increased by the varying distance of the planet from the Sun.

A reference to Prof. Poynting’s figures shows that the mean temperature of Mercury must approximate to 194° C., while water will boil at 40° C. or even lower. Here, then, is a condition the exact reverse of Mars. Water as a liquid will be rare on Mercury, not because it is congealed, but because it is evaporated; on the dark side of the planet it may, indeed, pass into ice, but on the side exposed to the Sun it must exist normally as a constituent of the atmosphere. Water in a liquid state, water that flows, must be almost unknown.

But we have good reason to believe that that which is the dark side of Mercury at one time is always dark; that which is exposed to the Sun is always exposed to it.

Since Mercury wears no concealing veil of atmosphere, and displays markings that can be identified and followed, a surprising circumstance has come to light. In 1889, Schiaparelli discovered that Mercury, instead of rotating on its axis in about 24 hours like the Earth and Mars, rotates in 88 days; that is to say, it always turns the same face towards the Sun, just as the Moon turns the same face towards the Earth. This fact, confirmed theoretically by Prof. G. H. Darwin in his development of the theory of tidal friction, puts the condition of Mercury in quite a new light. No alternation of day or night refreshes and restores the little world; one hemisphere is for ever exposed to the blasting heat of the Sun, seven times hotter for it than for the Earth; the other hemisphere is for ever exposed to the darkness and cold of outer space, a range from something like 390° C. above freezing-point, to 270° C. below. It is true that between the two hemispheres there is a “debatable land,” for, owing to the ellipticity of the orbit, the face turned to the Sun is not exactly the same at all times, and a region about 47° in width on each side of the planet, that is to say, rather more than a quarter of its entire surface, has one day and one night in each period of 88 days, but these more favoured sections can scarcely be considered more habitable than the rest.

The conditions of Mercury are so unfavourable for life that, even if this remarkable relation ofrotation period to revolution did not hold good, it would still be impossible to regard it as a world for habitation. But its case shows that a further condition of habitability has to be satisfied by a planet. Size and distance from the Sun afford the first two conditions; a suitable rotation period is now seen to be a third.

And it is possible that in this very particular Venus fails to qualify. Schiaparelli, the first observer of his time, assisted by the clear Italian sky, believed that he had demonstrated that Venus, like Mercury, rotates once in her year; her day being thus equal in length to 225 of ours, and the face that she turns to the Sun being always the same.

And in her case this statement requires practically no qualification, for, her orbit being nearly circular, there is hardly any libration; a place that has the Sun in its zenith has it so for ever; one on the night side of Venus can never have a sunrise, or gladden in the daylight. The side exposed to the Sun will wither in a temperature of about 227° C., in which all moisture will be evaporated; the side remote from it will be bound in eternal ice. In neither hemisphere will water exist in the liquid state; in neither hemisphere will life be possible.

But as yet the evidence is not conclusive that Venus has this long rotation period. Several observers of high rank believe that our neighbour rotates in nearly the same time as the Earth, butits markings are so faint and elusive that the problem is a difficult one. The spectroscopic method of determining the speed of rotation has been equally indecisive. Until, therefore, the rotation period has been decided, the habitability of Venus must remain in question. If it always turns the same face to the Sun, there can be no more life upon it than upon Mercury; if on the contrary it rotates in much the same time as the Earth, then, so far as we know, it may well be a habitable world. Whether it is actually inhabited is a matter at present entirely beyond our knowledge.

A page or two back we touched lightly on the eccentricity of the orbit of Mercury—lightly, because it was not the chief factor in disabling the planet for habitation. But the condition introduced by this eccentricity is one which of itself would be sufficient to put it out of court. In the six weeks in which Mercury moves from aphelion to perihelion, it approaches the Sun by fourteen millions of miles, and the heat received by it is increased 2½ times. Then, in the next six weeks, it recedes as far, and there is a like diminution. In other words, six weeks makes a greater proportional change in this one planet’s condition than we should experience if our Earth were transported from its own orbit to that of Mars.

But there are other members of the solar system whose orbits are so elongated that that of Mercuryseems in comparison almost circular. These are the comets, some of which all but graze the surface of the Sun at perihelion, and then recede from him for periods that it takes even thousands of years to complete. But without dwelling on such extreme cases, two of the best known of the periodic comets may be taken as examples of the rest. Encke’s is the comet of shortest period, returning in about 3·3 years. At perihelion it is 31 millions of miles from the Sun; one-third the distance of the Earth. It receives, therefore, at this part of its orbit, 9 times as much light and heat as the Earth. But at aphelion it retreats deep into the region of the asteroids, and is much more than four times the mean distance of the Earth. At this part of its orbit it receives but1⁄17th as much heat as the Earth. By far the most famous of all the comets is that known by the name of Halley, and its mean period is 76 years. At perihelion it comes within the orbit of Venus; indeed, nearly halfway between that and the orbit of Mercury. At aphelion it recedes to thirty-five times the distance of the Earth, far beyond the orbit of Neptune. The range in its light and heat from the Sun is from 3 times that of the Earth to less than1⁄1200th; or, in other words, the supply of heat at one time is nearly 4000 times that at another, and of the 76 years of its period, only 80 days are spent within the orbit of the Earth.

Comets cannot be homes of life; they are notsufficiently condensed; indeed, they are probably but loose congeries of small stones. But even if comets were of planetary size it is clear that life could not be supported on them; water could not remain in the liquid state on a world that rushed from one such extreme of temperature to another.

Between the orbits of Mars and Jupiter there are scattered an untold number of little planets commonly known as asteroids or minor planets. Minor planets indeed they are, for the one first discovered—Ceres—probably outweighs all the rest, known and unknown, put together, though something like 700 have already been detected, and the list grows at the rate of about one a week.

As the Table shows, Ceres is so small that the Earth exceeds it in volume 5000 times; even the Moon is 90 times as large. The mass of Ceres is not known; being so small, its density is probably less than that of the Moon, so that the Earth may easily outweigh it 10,000 times. The unfavourable conditions resulting from smallness of size that the Moon presents are therefore exaggerated exceedingly in the case of Ceres; its atmosphere must approach in tenuity what we should regard as a vacuum in a terrestrial laboratory, and water as a liquid be entirely unknown. Its distance from the Sun is another hostile factor; for in consequence it receives per unit of surface only 13 per cent of the light and heat that falls on the Earth; its maximum temperature under a zenith Sun willfall far below freezing-point, the minimum on the dark side will approach the absolute zero.

With Ceres the whole of the asteroidal family can be dismissed as possible abodes of life. No astronomer can regard them as such. Yet they have their lesson to teach. Life can exist on the Earth only on the upper face of its crust, and in a very thin film of air and water; but the enormous solid bulk within, inert though it be, that supports the stage on which the great drama of life is played, is as really essential as air and water themselves. If that bulk were much smaller and less massive life could find no place upon its surface.

THE MAJOR PLANETS

Itis a striking change to pass from Ceres, the giant of the minor planets, to Jupiter, the giant of the major planets. Instead of a world that the Earth exceeds in volume 5000 times, we are confronted by one that exceeds the Earth 1400 times. Ceres, when viewed through a large telescope, is just able to present a perceptible disc; Jupiter offers the largest shown by any heavenly body after the Sun and Moon.

And that disc is one that never fails to charm the attentive student, for it abounds in colour, movement and change. The late Prof. James Keeler, an observer of the first rank, having the advantage of observing the planet from the summit of Mt. Hamilton and with the great 36-inch telescope of the Lick Observatory, thus describes the aspect of the planet in 1889.

“Seen with this instrument on a fine night, the disc of Jupiter was a most beautiful object, covered with a wealth of detail which could not possibly be accurately represented in a drawing.... Scarcely any portion of Jupiter, except the Red Spot and the extreme polar regions, was of auniform tint, the surface being mottled with flocculent and more or less irregular cloud masses.... The equatorial zone, occupying the space between the red belts, was marked in the centre by a salmon-coloured stripe, which was occasionally interrupted by an extension of the white clouds on the sides of the zone. The edges were brilliant white, and were formed of rounded cloud-like masses, which at certain places extended into the red belts as long streamers.... Near their junction with the equatorial zone, the streamers were white and definite in outline, but they became redder in tint toward their outer extremities, and more diffuse, until they were lost in the general red colour of the background. When the seeing was good they were seen to be formed of irregular rounded or feathery clouds, fading toward the outer ends, until the structure could no longer be distinguished.... The portions of the equatorial zone surrounding the roots of well-marked streamers were somewhat brighter than at other places, and it is a curious circumstance that they were almost invariably suffused with a pale olive-green colour, which seemed to be associated with great disturbance, and which was rarely seen elsewhere.... The red belts presented on all occasions the appearance of a passive medium, in which the phenomena of the streamers and other forms ... were manifested. The phenomena would be exactly reproduced by streamers of cloudy white matter floating in a semi-transparent reddish fluid, sometimes submerged and sometimes rising to the surface.... The dark spots frequently seen on the red belts usually occupied spaces left by sharp turns in the streamers, and they were of the samecolour as the belts, but deeper in tint, as if the fluid medium could be seen to a greater depth.”[15]

In other words, Jupiter is a striped or banded planet, the bands lying along the direction of turning. These bands are coloured in varying tints, and the planet rotates very rapidly, for the details in the bands pass quickly from one limb to the other. And not only is the speed of rotation of the whole very rapid—Jupiter turns about its axis in a little less than ten hours, so that a particle at its equator moves through 466 miles in each minute—but the various items that form the bands rotate in different times. They may also alter their form and their colour. Jupiter seems, then, to be a planet with a great and rapidly changing atmosphere that extends above a shoreless sea formed of some liquified substance or substances—the whole in a state of flux.

But if we turn back to the Table, we see that Jupiter at its mean distance from the Sun is 5·2 times that of the Earth; that is to say, it receives only1⁄27th of the light and heat that we receive. But in Chapter VIII, we learnt from Mars that as this receives only3⁄7ths of the Earth’s light and heat, its mean temperature would sink to -30°C.; the Earth’s being 16°C. Mars is therefore almost always a frozen planet; frozen except on its mere surface when this is exposed to the full rays of the Sun. No sea there would ever bemelted to a depth of more than a few inches, even at noonday in midsummer. And yet Mars has at least ten times the advantages of Jupiter. Jupiter, then, must be a frozen planet through and through; no liquid of any sort can exist on its surface; no vapour of any substance can exist in its atmosphere. It must be icebound even at its summer noonday.

Yet, from the description given by Prof. Keeler, it is manifestly not so; and another item in the Table emphasizes that it cannot be so. The density of the Sun is 1·4 that of water, Jupiter’s is 1·33, showing that but a very small proportion (if any) of its bulk can be solid; the rest must be vaporous, or at least fluid. How then can we reconcile these inconsistencies?

It is in the dimensions of Jupiter that we find the answer. The mass of the planet is 317 times that of the Earth; it is indeed nearly three times as great as that of all the other planets put together. But the aggregation of so vast an amount of material is of itself a source of heat; the chief source at the present time of the enormous output of heat from the Sun is ascribed to its gradual contraction; the slow falling of its substance, if we may so express it, a little nearer to its centre. The great mass of Jupiter points to its inherent store of heat being much greater than that of any other planet. And of two bodies equally hot, the larger must cool more slowly than the smaller. If, therefore, all the members of the solar system had atone and the same moment possessed the same surface temperature, that equality would have ceased directly they began to radiate their heat into space; the temperature of the smaller bodies falling more rapidly than those of the larger. This is another example of the principle that has already been noted, that the properties of a small world are not those of a large world divided by a constant factor. It is not possible to conceive a model of the solar system in which all the significant factors should be true to the same scale. If the diameters and distances were all made on a one-tenth scale, the surfaces would be one-hundredth of reality, the volumes one-thousandth.

But a radiating body radiates from its surface, while the store of heat from which that radiation is kept up is supplied by its volume. It follows, therefore, that a large and heavy world must differ from a small light world, not merely in scale, but also in kind.

The surface of a world is all that we see of it; it is, therefore, very commonly all that we consider. But unseen, and hence often unconsidered, beneath the surface lies its substance or mass, and it is this that determines the state and condition of the surface; it is the underlying power. Two men may be contending in a financial struggle; to the eye they may look alike, equally prosperous; both may have the same amount of money actually in their pockets; but the one has nothing else,the other has a great banking account and vast investments, and is, in fact, a millionaire; and it is his unseen power and resources that will make themselves felt.

Jupiter therefore introduces us to a new factor in world-condition; not all its heat is derived from the Sun; much is inherent to it. And though it is not possible at present to say that the mass of Jupiter being so much its inherent heat must be this or that quantity as a function of that mass, yet in general, and neglecting other considerations, we can say that of two worlds the one with the greater mass will be that with the higher inherent temperature. This factor of inherent temperature was one that did not require to be noticed in dealing with the Moon, or Venus, or Mars, for these and all the planets yet noticed are less in size, surface, volume, and mass than the Earth, and hence possess less inherent heat. It is only now that the greater planets are being considered that the question of a source of heat, other than the Sun, can arise.

But the evidence of such heat on Jupiter is not to be disputed. The albedo or reflective index of Jupiter has been put by the late Prof. G. Bond, of Harvard College Observatory, as higher than unity; in other words, that it emits more light than it receives. This is now generally regarded as an excessive estimate, but the albedo of the disc as a whole cannot be put lower than 0·72, or about that of white paper. But many of the “belts” ordark regions are of a dull copper tint, and the polar caps are dusky, so that Bond’s estimate must be realized for the most brilliant “zones,” as the brighter regions are called; certainly for the whitest of the white spots.

No direct evidence of inherent luminosity has been obtained, for the satellites disappear entirely in eclipse. But though their shadows in transit appear very dark, it is clear that they are not absolutely black, since sometimes such a shadow is not distinguishable in darkness from the satellite that casts it; a delicate proof that the background on which it falls has some intrinsic luminosity.

Unless there is the counteracting effect of a high temperature, the atmosphere of Jupiter would have a pressure at the surface of 104 lb. to the square inch, and the level of half pressure be attained at a mile and a quarter; the reverse condition to that on Mars would obtain, and the atmosphere of Jupiter would be much denser and much shallower than that of the Earth. Denser it probably is; shallower it cannot be, for the great white spots, each often five or six thousand miles in diameter, that range themselves at times along the equatorial regions till they look like the portholes of a ship, evidently rise from depths great even as compared with their size. But it is only by intense heat that the effect of the great mass of Jupiter in constricting its atmosphere within shallow depths can be overcome.

Again, the extraordinary lightness of the planet, so little above the density of water, points in the same direction. So, not less unmistakably, do the magnitude and rapidity of the atmospheric movements. The clouds and storms of our own atmosphere are worked by solar heat; solar heat it is that draws up the vapours and provides the chief part of the energy manifested in the speed and strength of the air-current. But solar heat can only give1⁄27th the amount of that energy at the distance of Jupiter, so that, if they were entirely dependent on solar radiation, the winds of Jupiter should be very feeble.

Further, the difference of presentment due to the difference of latitude is a fruitful cause of inequalities of temperature and pressure in the terrestrial atmosphere. But as a degree of latitude on Jupiter is eleven times as wide as on the Earth, such inequalities connected with a given difference in latitude are spread over eleven times the distance that they would be on the Earth, and are, therefore, so much the less pronounced. Yet, across a gulf of 400 millions of miles we can clearly discern the bright zones of Jupiter now narrowing down and constricting the red belts, now thrust apart by them, and can detect changes taking place in an hour of time over areas equal to that of a terrestrial hemisphere.

A notable peculiarity of Jupiter is found in the proper motions of its spots. Many of the whitespots are exceedingly swift, giving a rotation period of 9h. 50m. while the equatorial belt in general gives a period 5m. longer; so that in 119 rotations (nearly 49 days) a white spot will have passed entirely round the belt, gaining upon it at a rate of nearly 240 miles an hour.

The most famous of all the markings in Jupiter is the Great Red Spot, which became conspicuous in 1878, since when the spot itself, or at least the nest in which it lay, has always been visible. It has been identified with a great red spot observed by Hooke and Cassini in 1664-6, that appeared and vanished again eight times between 1665 and 1708. It therefore has had a history practically as long as our telescopic knowledge of the planet, and may be looked upon as in some sort a permanent feature. Yet that it is not in the nature of a portion of a solid crust is clear. It occupies on Jupiter much the position and relative area of Australia on the Earth, but whereas Australia of necessity rotates in one piece with all the other continents, the Great Red Spot has a rotation period which is neither that of the equatorial belt, nor of the quickly moving white spots, and is not itself stable. An “Australia on the loose” is impossible, even unthinkable here, but the Great Red Spot, for all its long duration, is mobile and inconstant, and is therefore no portion of a solid permanent crust.

The giant planet Jupiter, therefore, offers us anexample of what we may call a “semi-sun”; a world still bubbling with tremendous energies of its own, still pulsing with its own inherent heat, still without a solid crust; probably without a solid nucleus, liquid or vaporous throughout. Whatever the future may hold for such an orb, it is clearly no world for habitation at present. Full of colour, and movement, and change as it is, it lacks the Earth’s “gloom of iron substance,” which is necessary, no less than its veiling by the plant, as a stage for “the passion and perishing of mankind.”

But if Jupiter be a semi-Sun, still a source of heat, perhaps even of light, can it yield the means of life to its satellites? For Jupiter is sun-like, not merely in its own condition, but also in that it is the centre and ruler of a system of its own. We know already of eight satellites revolving round it.

Of these eight, only four—the four discovered by Galileo, in the first days of his possession of a telescope—need be considered; the other four are of the same order of size as the asteroids, and are indeed much smaller than Ceres.

But the Galilean satellites are of a higher rank. Europa, the smallest, is in size a twin to the Moon; Callisto, the outermost, is almost exactly the size of Mercury; Io, the innermost, is midway between the two in its dimensions. But Ganymede, the largest, is almost comparable with Mars, its diameter being 0·45 that of the Earth instead of the 0·53 of Mars.

But the Moon, Mercury, and Mars have all been shown, on the ground of their small size, to be worlds unfit for habitation; the satellites of Jupiter are, therefore, all rejected on the same score. Nor can the greater nearness of their immediate primary compensate for their remoteness from the Sun. It is true that Jupiter presents to Ganymede a disc with more than 200 times the apparent area that the Sun presents to the Earth, but to make up for the falling-off of the solar radiation, each unit of this area should radiate about1⁄250th as much heat as each unit of the Sun’s surface. In other words, the absolute surface temperature of Jupiter should be ¼th that of the Sun, or about 1550° C., and this is higher than can be admitted. The Sun and Jupiter together cannot put Ganymede in as favourable a position as Mars, much less as favourable as the Earth.

The case of Jupiter carries with it those of Saturn, Uranus, and Neptune. All three, from their high albedoes and low densities, are still in a vaporous condition; still in some sort, semi-Suns; sources of a certain amount of heat, and not recipients merely. The days are yet far distant when a solid crust can form on any one of them, and the water condense from the steamy atmosphere to form oceans, seas, and rivers. Not till then, if at all, when water as a liquid, water that flows, is present, can life begin to appear and enter on its long course of change.


Back to IndexNext