A light here, maids, hang out your lights,And see your horns be clear and bright,That so your candle clear may shine,Continuing from six till nine;That honest men that walk alongMay see to pass safe without wrong.
A light here, maids, hang out your lights,And see your horns be clear and bright,That so your candle clear may shine,Continuing from six till nine;That honest men that walk alongMay see to pass safe without wrong.
A light here, maids, hang out your lights,
And see your horns be clear and bright,
That so your candle clear may shine,
Continuing from six till nine;
That honest men that walk along
May see to pass safe without wrong.
In 1668, when some regulations were made for improving the streets of London, the inhabitants were ordered "for the safety and peace of the city to hang out candles duly to the accustomed hour." Apparently this method of obtaining lighting for the streets was not met by the enthusiastic support of the people, for during the next few decades the Lord Mayor was busy issuing threats and commands. In 1679 he proclaimed the "neglect of the inhabitants of this city in hanging and keeping out their lights at the accustomed hours, according to the good and ancient usage of this City and Acts of the Common Council on that behalf." The result of this neglect was "when nights darkened the streets then wandered forth the sons of Belial, flown with insolence and wine."
In 1694 Hemig patented a reflector which partially surrounded the open flame of a whale-oil lamp and possessed a hole in the top which aided ventilation. He obtained the exclusive rights of lighting London for a period of years and undertook to place a light before every tenth door, between the hours of six and twelveo'clock, from Michaelmas to Lady Day. His effort was a worthy one, but he was opposed by a certain faction, which was successful in obtaining a withdrawal of his license in 1716. Again the burden of lighting the streets was thrust upon the residents and fines were imposed for negligence in this respect. But this procedure after a few more years of desultory lighting was again found to be unsatisfactory.
In 1729 certain individuals contracted to light the streets of London by taxing the residents and paid the city for this monopoly. Householders were permitted to hang out a lantern or a candle or to pay the company for doing so. But robberies increased so rapidly that in 1736 the Lord Mayor and Common Council petitioned Parliament to erect lamps for lighting the city. An act was passed accordingly, giving them the privilege to erect lamps where they saw fit and to burn them from sunset to sunrise. A charge was made to the residents, on a sliding scale depending upon the rate of rental of the houses. As a consequence five thousand lamps were soon installed. In 1738 there were fifteen thousand street lamps in London and they were burned an average of five thousand hours annually.
In the annals of these early times street-lighting is almost invariably the result of an attempt to reduce the number of robberies and other crimes. In appealing for more street-lamps in 1744 the Lord Mayor and aldermen of London in a petition to the king, stated
that divers confederacies of great numbers of evil-disposed persons, armed with bludgeons, pistols, cutlasses, and other dangerous weapons, infest not onlythe private lanes and passages, but likewise the public streets and places of public concourse, and commit most daring outrages upon the persons of your Majesty's good subjects, whose affairs oblige them to pass through the streets, by terrifying, robbing and wounding them; and these facts are frequently perpetrated at such times as were heretofore deemed hours of security.
that divers confederacies of great numbers of evil-disposed persons, armed with bludgeons, pistols, cutlasses, and other dangerous weapons, infest not onlythe private lanes and passages, but likewise the public streets and places of public concourse, and commit most daring outrages upon the persons of your Majesty's good subjects, whose affairs oblige them to pass through the streets, by terrifying, robbing and wounding them; and these facts are frequently perpetrated at such times as were heretofore deemed hours of security.
It has already been seen that gas-lighting was introduced in the streets of London for the first time in 1807. This marks the real beginning of public-service lighting companies. In the next decade interest in street-lighting by means of gas was awakened on the Continent, and it was not long before this new phase of civilization was well under way. Although this first gas-lighting was done by the use of open flames, it was a great improvement over all the preceding efforts. Lawlessness did not disappear entirely, of course, and perhaps it never will, but it skulked in the back streets. A controlling influence had now appeared.
But early innovations in lighting did not escape criticism and opposition. In fact, innovations to-day are not always received by unanimous consent. There were many in those early days who felt that what was good for them should be good enough for the younger generation. The descendants of these opponents are present to-day but fortunately in diminishing numbers. It has been shown that in Philadelphia in 1833 a proposal to install a gas-plant was met with a protest signed by many prominent citizens. A few paragraphs of an article entitled "Arguments against Light" which appeared in the CologneZeitungin 1816indicate the character of the objections raised against street-lighting.
The foregoing objections require no comment, for they speak volumes pertaining to the thoughts and activities of men a century ago. It is difficult to believe that civilization has traveled so far in a single century, but from this early beginning of street-lighting social progress received a great impetus. Artificial light-sources were feeble at that time, but they made the streets safer and by means of them social intercourse was extended. The people increased theirhours of activity and commerce, industry, and knowledge grew apace.
The open gas-jet and kerosene-flame lamps held forth on the streets until within the memory of middle-aged persons of to-day. The lamplighter with his ladder is still fresh in memory. Many of the towns and villages have never been lighted by gas, for they stepped from the oil-lamp to the electric lamp. The gas-mantle has made it possible for gas-lighting to continue as a competitor of electric-lighting for the streets.
In 1877 Mr. Brush illuminated the Public Square of Cleveland with a number of arc-lamps, and these met with such success that within a short time two hundred and fifty thousand open-arc lamps were installed in this country, involving an investment of millions of dollars. Adding to this investment a much greater one in central-station equipment, a very large investment is seen to have resulted from this single development in lighting.
This open-arc lamp was the first powerful light-source available and, appearing several years before the gas-mantle, it threatened to monopolize street-lighting. It consumed about 500 watts and had a maximum luminous intensity of about 1200 candles at an angle of about 45 degrees. Its chief disadvantage was its distribution of light, mainly at this angle of 45 degrees, which resulted in a spot of light near the lamp and little light at a distance. A satisfactory street-lighting unit must emit its light chiefly just below the horizontal in those cases where the lamps must be spaced far apart for economical reasons. On referring to the chapter on the electric arc it will be seenthat the upper (positive) carbon of the open-arc emits most of the light. Thus most of the light tends to be sent downward, but the lower carbon obstructs some of this with a resulting dark spot beneath the lamp.
The gas-mantle followed closely after the arrival of the carbon arc and is responsible for the existence of gas-lighting on the streets at the present time. It is a large source of light and therefore its light cannot be controlled by modern accessories as well as the light from smaller sources, such as the arc or concentrated-filament lamp. As a consequence, there is marked unevenness of illumination along the streets unless the gas-mantle units are spaced rather closely. Even with the open-arc, without special light-controlling equipment there is about a thousand times the intensity near the lamps when placed on the corners of the block as there is midway between them.
In 1879 the incandescent filament lamp was introduced and it began to appear on the streets in a short time. It was a feeble, inefficient light-source, compared with the arc-lamp, but it had the advantage of being installed on a small bracket. As a consequence of simplicity of operation, the incandescent lamp was installed to a considerable extent, especially in the suburban districts.
THE MOORE NITROGEN TUBETHE MOORE NITROGEN TUBEIn lobby of Madison Square Garden
THE MOORE NITROGEN TUBEIn lobby of Madison Square Garden
CARBON-DIOXIDE TUBE FOR ACCURATE COLOR-MATCHINGCARBON-DIOXIDE TUBE FORACCURATE COLOR-MATCHING
CARBON-DIOXIDE TUBE FORACCURATE COLOR-MATCHING
The open-arc lamp possessed the disadvantage of emitting a very unsteady light and of consuming the carbons so rapidly that daily trimming was often necessary. In 1893 the enclosed arc appeared and although it consumed as much electrical energy as the open-arc and emitted considerably less light, it possessed the great advantage of operating a week without requiring a renewal of carbons. By surrounding the arc by means of a glass globe, little oxygen could come in contact with the carbons and they were not consumed very rapidly. The light was fairly steady and these arcs operated satisfactorily on alternating current. The latter feature simplified the generating and distributing equipment of the central station.
The magnetite or luminous arc-lamp next appeared and met with considerable success. It was more efficient than the preceding lamps but was handicapped by being solely a direct-current device. Those familiar with the generation and distribution of electricity will realize this disadvantage. However, its luminous intensity just below the horizontal was about 700 candles and its general distribution of light was fairly satisfactory. Later the flame-arcs began to appear and they were installed to some extent. The arc-lamp has served well in street-lighting from the year 1877, when the open-arc was introduced, until the present time, when the luminous-arc is the chief survivor of all the arc-lamps.
MODERN STREET LIGHTINGMODERN STREET LIGHTINGTunnels of light boring through the darkness provide safe channels for modern traffic
MODERN STREET LIGHTINGTunnels of light boring through the darkness provide safe channels for modern traffic
The carbon incandescent filament lamp was used extensively until 1909, when the tungsten filament lamp began to replace it very rapidly. However, it was not until 1914, when the gas-filled tungsten lamp appeared, that this type of light-source could compete with arc-lamps on the basis of efficiency. The helical construction of the filament made it possible to confine the filament of a high-intensity tungsten lamp in a small space and for the first time a high degree of control of the light of street lamps was possible. Prismatic "refractors" were designed, somewhat on the principle ofthe lighthouse refractor, so that the light would be emitted largely just below the horizontal. This type of distribution builds up the illumination at distant points between successive street lamps, which is very desirable in street-lighting. The incandescent filament lamp possesses many advantages over other systems. It is efficient; capable of subdivision; operates on direct and alternating current; requires little attention; and is capable of most successful use with light-controlling apparatus.
According to the reports of the Department of Commerce the number of electric arc-lamps for street-lighting supplied by public electric-light plants decreased from 348,643 in 1912 to 256,838 in 1917, while the number of electric incandescent filament lamps increased from 681,957 in 1912 to 1,389,382 in 1917.
Street-lighting is not only a reinforcement for the police but it decreases accidents and has come to be looked upon as an advertising medium. In the downtown districts the high-intensity "white-way" lighting is festive. The ornamental street lamps have possibilities in making the streets attractive and in illuminating the buildings. However, it is to be hoped that in the present age the streets of cities and towns will be cleared of the ragged equipment of the telephone and lighting companies. These may be placed in the alleys or underground, leaving the streets beautiful by day and glorified at night by the torches of advanced civilization.
At the present time thousands of lighthouses, light-ships, and light-buoys guide the navigator along the waterways and into harbors and warn him of dangerous shoals. Many wonderful feats of engineering are involved in their construction and in no field of artificial lighting has more ingenuity been displayed in devising powerful beams of light. Many of these beacons of safety are automatic in operation and require little attention. It has been said that nothing indicates the liberality, prosperity, or intelligence of a nation more clearly than the facilities which it affords for the safe approach of the mariner to its shores. Surely these marine lights are important factors in modern navigation.
The first "lighthouses" were beacon-fires of burning wood maintained by priests for the benefit of the early commerce in the eastern part of the Mediterranean Sea. As early as the seventh century before Christ these beacon-fires were mentioned in writings. In the third century before the Christian era a tower said to be of a great height was built on a small island near Alexandria during the reign of Ptolemy II. The tower was named Pharos, which is the origin of the term "pharology" applied to the science of lighthouse construction. Cæsar, who visited Alexandria two centuries later, described the Pharos as a "tower of great height, of wonderful construction." Fire was kept burning in it night and day and Pliny said of it, "During the night it appears as bright as a star, and during the day it is distinguished by the smoke." Apparently this tower served as a lighthouse for more than a thousand years. It was found in ruins in 1349. Throughout succeeding centuries many towers were built, but little attention was given to the development of light-sources and optical apparatus.
The first lighthouse in the United States and perhaps on the Western continents was the Boston Light, which was completed in 1716. A few days after it was put into operation a news item in a Boston paper heralded the noteworthy event as follows:
By virtue of an Act of Assembly made in the First Year of His Majesty's Reign, For Building and Maintaining a Light House upon the Great Brewster (called Beacon-Island) at the Entrance of the Harbour of Boston, in order to prevent the loss of the Lives and Estates of His Majesty's Subjects; the said Light House has been built; and on Fryday last the 14th Currant the Light was kindled, which will be very useful for all Vessels going out and coming in to the Harbour of Boston, or any other Harbours in the Massachusetts Bay, for which all Masters shall pay to the Receiver of Impost, one Penny per Ton Inwards, and another Penny Outwards, except Coasters, who are to pay Two Shillings each, at their clearance Out, And all Fishing Vessels, Wood Sloops, etc. Five Shillings each by the Year.
By virtue of an Act of Assembly made in the First Year of His Majesty's Reign, For Building and Maintaining a Light House upon the Great Brewster (called Beacon-Island) at the Entrance of the Harbour of Boston, in order to prevent the loss of the Lives and Estates of His Majesty's Subjects; the said Light House has been built; and on Fryday last the 14th Currant the Light was kindled, which will be very useful for all Vessels going out and coming in to the Harbour of Boston, or any other Harbours in the Massachusetts Bay, for which all Masters shall pay to the Receiver of Impost, one Penny per Ton Inwards, and another Penny Outwards, except Coasters, who are to pay Two Shillings each, at their clearance Out, And all Fishing Vessels, Wood Sloops, etc. Five Shillings each by the Year.
This was the practical result of a petition of Boston merchants made three years before. The tower wasbuilt of stone, at a cost of about ten thousand dollars. Two years later the keeper and his family were drowned and the catastrophe so affected Benjamin Franklin, a boy of thirteen, that he wrote a poem concerning it. The lighthouse was badly damaged during the Revolution, by raiding-parties, and in 1776, when the British fleet left the harbor, a squad of sailors blew it up. It was rebuilt in 1783 and has since been increased in height.
Apparently oil-lamps were used in it from the beginning, notwithstanding the fact that candles and coal fires served for years in many lighthouses of Europe. In 1789 sixteen lamps were used and in 1811 Argand lamps and reflectors were installed, with a revolving mechanism. It now ceased to be a fixed light and the day of flashing lights had arrived. At the present time the Boston Light emits a beam of 100,000 candle-power directed by modern lenses.
When the United States Government was organized in 1789 there were ten lighthouses owned by the Colonies, but the Boston Light was in operation thirty years before the others. Sandy Hook Light, New York Harbor, was established in 1764 and its original masonry tower is still standing and in use. It is the oldest surviving lighthouse in this country. It was built with funds raised by means of two lotteries authorized by the New York Assembly. A few days after it was lighted for the first time the following news item appeared in a New York paper:
On Monday evening last the New York Light-house erected at Sandy Hook was lighted for the first time. The House is of an Octagon Figure, having eight equalSides; the Diameter at the Base 29 Feet; and at the top of the Wall, 15 Feet. The Lanthorn is 7 feet high; the Circumference 33 feet. The whole Construction of the Lanthorn is Iron; the Top covered with Copper. There are 48 Oil Blazes. The Building from the Surface is Nine Stories; the whole from Bottom to Top is 103 Feet.
On Monday evening last the New York Light-house erected at Sandy Hook was lighted for the first time. The House is of an Octagon Figure, having eight equalSides; the Diameter at the Base 29 Feet; and at the top of the Wall, 15 Feet. The Lanthorn is 7 feet high; the Circumference 33 feet. The whole Construction of the Lanthorn is Iron; the Top covered with Copper. There are 48 Oil Blazes. The Building from the Surface is Nine Stories; the whole from Bottom to Top is 103 Feet.
From these early years the number of lighthouses has steadily grown, until now the United States maintains lights along 50,000 miles of coast-line and river channels, a distance equal to twice the circumference of the earth. It maintains at the present time about 15,000 aids to navigation at an annual cost of about $5,000,000. In 1916 this country was operating 1706 major lights, 53 light-ships, and 512 light-buoys—a total of 5323.
The earliest lighthouses were equipped with braziers or grates in which coal or wood was burned. These crude light-sources were used until after the advent of the nineteenth century and in one case until 1846. In the famous Eddystone tower off Plymouth, England, candles were used for the first time. The first Eddystone tower was completed in 1698, but it was swept away in 1703. Another was built and destroyed by fire in 1755. Smeaton then built another in 1759. Inasmuch as Smeaton is credited with having introduced the use of candles, this must have occurred in the eighteenth century; still it appears that, as we have said, the Boston Light, built in 1716, used oil-lamps from its beginning. However, Smeaton installed twenty-four candles of rather large size each credited with an intensity of 2.8 candles. The total luminousintensity of the light-source in this tower was about 67 candles. Inasmuch as this was before the use of efficient reflectors and lenses, it is obvious that the early lighthouses were rather feeble beacons.
According to British records, oil-lamps with flat wicks were first used in the Liverpool lighthouses in 1763. The Argand lamp, introduced in about 1784, became widely used. The better combustion obtained with this lamp having a cylindrical wick and a glass chimney greatly increased the luminous intensity and general satisfactoriness of the oil-lamp. Later Lange added an improvement by providing a contraction toward the upper part of the chimney. Rumford and also Fresnel devised multiple-wick burners, thus increasing the luminous intensity. In these early lamps sperm-oil and colza-oil were burned and they continued to be until the middle of the nineteenth century. Cocoanut-oil, lard-oil, and olive-oil have also been used in lighthouses.
Naturally, mineral oil was introduced as soon as it was available, owing to its lower cost; but it was not until nearly 1870 that a satisfactory mineral-oil lamp was in operation in lighthouses. Doty is credited with the invention of the first successful multiple-wick lighthouse lamp using mineral oil, and his lamp and modifications of it were very generally used until the latter part of the nineteenth century. These lamps are of two types—one in which oil is supplied to the burner under pressure and the other in which oil is maintainedata constant level. In some of the smallest lamps the ordinary capillarity of the wick is depended on to supply oil to the flame.
Coal-gas was introduced into lighthouses in about the middle of the nineteenth century. Inasmuch as the gas-mantle had not yet appeared, the gas was burned in jets. Various arrangements of the jets, such as concentric rings forming a stepped cone, were devised. The gas-mantle was a great boon to the mariner as well as to civilized beings in general. It greatly increases the intensity of light obtainable from a given amount of fuel and it is a fairly compact bright source which makes it possible to direct the light to some degree by means of optical systems. Owing to the elaborate apparatus necessary for making coal-gas, several other gases have been more desirable fuels for lighthouse lamps. Various simple gas-generators have been devised. Some of the high-flash mineral-oils are vaporized and burned under a mantle. Acetylene, which is so simply made by means of calcium carbide and water, has been a great factor in lighting for navigation. By the latter part of the nineteenth century lighthouses employing incandescent gas-burners were emitting beams of light having luminous intensities as great as several hundred thousand candles. These special gas-mantle light-sources have brightness as high as several hundred candles per square inch.
Electric arc-lamps were first introduced into lighthouse service in about 1860, but these lamps cannot be considered to have been really practicable until about 1875. In 1883 the British lighthouse authorities carried out an extensive investigation of arc-lamps. It was found that the whiter light from these lamps suffered a greater absorption by the atmosphere than the yellower light from oils, but the much greater luminousintensity of the arc-lamp more than compensated for this disadvantage. The final result of the investigation was the conclusion that for ordinary lighthouse purposes the oil-and gas-lamps were more suitable and economical than arc-lamps; but where great range was desired, the latter were much more advantageous, owing to their great luminous intensity. Electric incandescent filament lamps have been used for the less important lights, and recently there has been some application of the modern high-efficiency filament lamps.
Besides the high towers there are many minor beacons, light-ships, and light-buoys in use. Many of these are untended and therefore must operate automatically. The light-ship is used where it is impracticable or too expensive to build a lighthouse. Inasmuch as it is anchored in fairly deep water, it is safe in foggy weather to steer almost directly toward its position as indicated by the fog-signal. Light-ships are more expensive to maintain than lighthouses, but they have the advantages of smaller cost and of mobility; for sometimes it may be desired to move them. The first light-ship was established in 1732 near the mouth of the Thames, and the first in this country was anchored in Chesapeake Bay near Norfolk in 1820. The early ships had no mode of self-propulsion, but the modern ones are being provided with their own power. Oil and gas have been used as fuel for the light-sources and in 1892 the U. S. Lighthouse Board constructed a light-ship with a powerful electric light. Since that time several have been equipped with electric lights supplied by electric generators and batteries.
Untended lights were not developed until about 1880,when Pintsch introduced his welded buoys filled with compressed gas and thereby provided a complete lighting-plant. With improvements in lamps and controls the untended light-buoys became a success. The lights burn for several months, and even for a year continuously; and the oil-gas used appears to be very satisfactory. Recently some experiments have been made with devices which would be actuated by sunlight in such a manner that the light would be extinguished during the day excepting a small pilot-flame. By this means a longer period of burning without attention may be obtained. Electric filament lamps supplied by batteries or by cables from the shore have been used, but the oil-gas buoy still remains in favor. Acetylene has been employed as a fuel for light-buoys. Automatic generators have been devised, but the high-pressure system is more simple. In the latter case purified acetylene is held in solution under high pressure in a reservoir containing an asbestos composition saturated with acetone.
The light-sources of beacons have had the same history as those of other navigation lights. Many of these are automatic in operation, sometimes being controlled by clockwork. During the last twenty years the gas-mantle has been very generally applied to beacon-lights. In the latter part of the nineteenth century a mineral-oil lamp was devised with a permanent wick made by forming upon a thick wick a coating of carbon. The operation is such that this is not consumed and it prevents further burning of the wick.
The optical apparatus of navigation lights has undergone many improvements in the past century. Theearly lights were not equipped with either reflecting or refracting apparatus. In 1824 Drummond devised a scheme for reflecting light in order that a distant observer might make a reading upon the point where the apparatus was being operated by another person. He was led by his experiments to suggest the application of mirrors to lighthouses. His device was essentially a parabolic mirror similar to the reflectors now widely used in automobile head-lamps, search-lights, etc. He employed the lime-light as a source of light and was enthusiastic over the results obtained. His discussion published in 1826 indicates that little practical work had been done up to that time toward obtaining beams or belts of light by means of optical apparatus. However, lighthouse records show that as early as 1763 small silvered plane glasses were set in plaster of Paris in such a manner as to form a partially enveloping reflector. Spherical reflectors were introduced in about 1780 and parabolic reflectors about ten years later.
All the earlier lights were "fixed," but as it is desirable that the mariner be able to distinguish one light from another, the revolving mechanism evolved. By its agency characteristic flashes are obtained and from the time interval the light is recognized. The first revolving mechanism was installed in 1783. The early flashing lights were obtained by means of revolving reflectors which gathered the light and directed it in the form of a beam or pencil. The type of parabolic reflector now in use does not differ essentially from that of an automobile head-lamp, excepting that it is larger.
Lenses appear to have been introduced in the latterpart of the nineteenth century. They were at first ground from a solid piece of glass, in concentric zones, in order to reduce the thickness. They were similar in principle to some of the tail-light lenses used at present on automobiles. Later the lenses were built up by means of separate annular rings. The name of Fresnel is permanently associated with lighthouse lenses because in 1822 he developed an elaborate built-up lens of annular rings. The centers of curvature of the different rings receded from the axis as their distance from the center increased, in such a manner as to overcome a serious optical defect known as spherical aberration. Fresnel devised many improvements in which he used refracting and reflecting prisms for the outer elements.
The optical apparatus of lighthouses usually aims (1) to concentrate the rays of light into a pencil of light, (2) to concentrate them into a belt of light, or (3) to concentrate the rays over a limited azimuth. In the first case a single lens or a parabolic reflector suffices, but in the second case a cylindrical lens which condenses the light vertically into a horizontal sheet of light is essential. The third case is a combination of the first two. The modern lighthouse lenses are very elaborate in construction, being built up by means of many elements into several sections. For example, the central section may consist of a spherical lens ground with annular rings. In the next section refracting prisms may be used and in the outer section reflecting glass prisms are employed. The various elements are carefully designed according to the laws of geometrical optics.
The flashing light has such advantages over the fixed that it is generally used for important beacons. A variety of methods of obtaining intermittent light have been employed, but they are not of particular interest. Sometimes the lens or reflector is revolved and in other types an opaque screen containing slits is revolved. In the larger lighthouses the optical apparatus and its structure sometimes weigh several tons. When it is necessary to revolve apparatus of this weight, the whole mechanism is floated upon mercury contained in a cast-iron vessel of suitable size, and by an ingenious arrangement only a small portion of mercury is required.
The characteristics of navigation lights are varied considerably in order to enable the mariner to distinguish them and thereby to learn exactly where he is. The fixed light is liable to be confused with others, so it has now become a minor light. Flashes of short duration followed by longer periods of darkness are extensively used. The mariner by timing the intervals is able to recognize the light. This method is extended to groups of short flashes followed by longer intervals of darkness. In fact, short flashes have been employed to indicate a certain number so that a mariner could recognize the light by a number rather than by means of his watch. However, a time element is generally used. A combination of fixed light upon which is superposed a flash or a group of flashes of white or of colored light has been used, but it is in disrepute as being unreliable. A type known as "occulating lights" consists of a fixed light which is momentarily eclipsed, but the duration of the eclipse isusually less than that of the light. Obviously, groups of eclipses may be used. Sometimes lights of different colors are alternated without any dark intervals. The colored ones used are generally red and green, but these are short-range lights at best. Colored sectors are sometimes used over portions of the field, in order to indicate dangers, and white light shows in the fairway. These are usually fixed lights for marking the channel.
The distance at which a light may be seen at sea depends upon its luminous intensity, upon its color or spectral composition, upon its height and that of the observer's eyes above the sea-level, and upon the atmospheric conditions. Assuming a perfectly clear atmosphere, the visibility of a light-source apparently depends directly upon its candle-power. The atmosphere ordinarily absorbs the red, orange, and yellow rays less than the green, blue, and violet rays. This is demonstrated by the setting sun, which as it approaches closer to the horizon changes from yellow to orange and finally to red as the amount of atmosphere between it and the eye increases. For this reason a red light would have a greater range than a blue light of the same luminous intensity.
Under ordinary atmospheric conditions the range of the more powerful light-sources used in lighthouses is greater than the range as limited by the curvature of the earth. For the uncolored illuminants the range in nautical miles appears to be at least equal to the square root of the candle-power. A real practical limitation which still exists is the curvature of the earth, and the distance an object may be seen by the eye at sea-leveldepends upon the height of the object. The relation is approximately expressed thus,—
A. A COMPLETED LIGHTHOUSE LENS B. TORRO POINT LIGHTHOUSE, PANAMA CANALA. A COMPLETED LIGHTHOUSE LENSB. TORRO POINT LIGHTHOUSE, PANAMA CANAL
A. A COMPLETED LIGHTHOUSE LENSB. TORRO POINT LIGHTHOUSE, PANAMA CANAL
Range in nautical miles = 8/7 √Height of object in feet. For example, the top of a tower 100 feet high is visible to an eye at sea-level a distance of 8/7 √100= 80/7 = 11.43 miles. Now if the eye is 49 feet above sea-level, a similar computation will show how far away it may be seen by the original eye at sea-level. This is 8/7 √49= 8 miles. Hence an eye 49 feet above sea-level will be able to see the top of the 100-foot tower at a distance of 11.43 + 8 or 19.43 nautical miles. Under these conditions an imaginary line drawn from the top of the tower to the eye will be just tangent to the spherical surface of the sea at a distance of 8 miles from the eye and 11.43 miles from the tower.
The luminous intensity of a light-source or of the beam of light is directly responsible for the range. The luminous intensity of the early beacon-fires and oil-lamps was equivalent to a few candles. The improvements in light-sources and also in reflecting and refracting optical systems have steadily increased the candle-power of the beams, until to-day the beams from gas-lamps have intensities as high as several hundred thousand candle-power. The beams sent forth by modern lighthouses equipped with electric lamps and enormous light-gathering devices are rated in millions of candle-power. In fact, Navesink Light at the entrance of New York Bay is rated as high as 60,000,000 candle-power.
Of course, light-production has increased enormously in efficiency in the past century, but without optical devices for gathering the light, the enormous beam intensity would not be obtained. For example, consider a small source of light possessing a luminous intensity of one candle in all directions. If all this light which is emitted in all directions is gathered and sent forth in a beam of small angle, say one thousandth of the total angle surrounding a point, the intensity of this beam would be 1000 candles. It is in this manner that the enormous beam intensities are built up.
There is an interesting point pertaining to short flashes of light. To the dark-adapted eye a brief flash is registered as of considerably higher intensity than if the light remained constant. In other words, the lookout on a vessel is adapted to darkness and a flash from a beam of light is much brighter than if the same beam were shining steadily. This is a physiological phenomenon which operates in favor of the flashing light.
AMERICAN SEARCH-LIGHT POSITION ON WESTERN FRONT IN 1919AMERICAN SEARCH-LIGHT POSITION ON WESTERN FRONT IN 1919
AMERICAN SEARCH-LIGHT POSITION ON WESTERN FRONT IN 1919
Doubtless, the reader has noted that reliability, simplicity, and low cost of operation are the primary considerations for light-sources used as aids to navigation. This accounts for the continued use of oil and gas. From an optical standpoint the electric arc-lamps and concentrated-filament lamps are usually superior to the earlier sources of light, but the complexity of a plant for generating electricity is usually a disadvantage in isolated places. The larger light-ships are now using electricity generated by apparatus installed in the vessels. There seems to be a tendency toward the useof more buoys and fewer lighthouses, but the beam-intensities of the latter are increasing.
AMERICAN STANDARD FIELD SEARCH-LIGHT AND POWER UNITAMERICAN STANDARD FIELD SEARCH-LIGHT AND POWER UNIT
AMERICAN STANDARD FIELD SEARCH-LIGHT AND POWER UNIT
In the hundred years since the Boston Light was built the same great changes wrought by the development of artificial light in other activities of civilization have appeared in the beacons of the mariner. The development of these aids to navigation has been wonderful, but it must go on and on. The surface of the earth comprises 51,886,000 square statute miles of land and 145,054,000 square miles of water. Three fourths of the earth's surface is water and the oceans will always be highways of world commerce. All the dangers cannot be overcome, but human ingenuity is capable of great achievements. Wreckage will appear along the shore-lines despite the lights, but the harvest of the shoals has been much reduced since the time described by Robert Louis Stevenson, when the coast people in the Orkneys looked upon wrecks as a source of gain. He states:
It had become proverbial with some of the inhabitants to observe that "if wrecks were to happen, they might as well be sent to the poor island of Sanday as anywhere else." On this and the neighboring island, the inhabitants have certainly had their share of wrecked goods. On complaining to one of the pilots of the badness of his boat's sails, he replied with some degree of pleasantry, "Had it been His [God's] will that you come na here wi these lights, we might a' had better sails to our boats and more o' other things."In the leasing of farms, a location with a greater probability of shipwreck on the shore brought a much higher rent.
It had become proverbial with some of the inhabitants to observe that "if wrecks were to happen, they might as well be sent to the poor island of Sanday as anywhere else." On this and the neighboring island, the inhabitants have certainly had their share of wrecked goods. On complaining to one of the pilots of the badness of his boat's sails, he replied with some degree of pleasantry, "Had it been His [God's] will that you come na here wi these lights, we might a' had better sails to our boats and more o' other things."
In the leasing of farms, a location with a greater probability of shipwreck on the shore brought a much higher rent.
When the recent war broke out science responded to the call and under the stress of feverish necessity compressed the normal development of a half-century into a few years. The airplane, in 1914 a doubtful plaything of daredevils, emerged from the war a perfected thing of the air. Lighting did not have the glamor of flying or the novelty of chemical warfare, but it progressed greatly in certain directions and served well. While artificial lighting conducted its unheralded offensive by increasing production in the supporting industries and helped to maintain liaison with the front-line trenches by lending eyes to transportation, it was also doing its part at the battle front. Huge search-lights revealed the submarine and the aërial bomber; flares exposed the manœuvers of the enemy; rockets brought aid to beleaguered vessels and troops; pistol lights fired by the aërial observer directed artillery fire; and many other devices of artificial light were in the fray. Many improvements were made in search-lights and in signaling devices and the elements of the festive fireworks of past ages were improved and developed for the needs of modern warfare.
Night after night along the battle front flares were sent up to reveal patrols and any other enemy activity. On the slightest suspicion great swarms of these brilliant lights would burst forth as though flocks of huge fireflies had been disturbed. They were even used as light barrages, for movements could be executed in comparative safety when a large number of these lights lay before the enemy's trenches sputtering their brilliant light. The airman dropped flares to illuminate his target or his landing field. The torches of past parades aided the soldier in his night operations and rockets sent skyward radiated their messages to headquarters in the rear. The star-shell had the same missions as other flares, but it was projected by a charge of powder from a gun. These and many modifications represent the useful applications of what formerly were mere "fireworks." Those which are primarily signaling devices are discussed in another chapter, but the others will be described sufficiently to indicate the place which artificial light played in certain phases of warfare.
The illuminating compounds used in these devices are not particularly new, consisting essentially of a combustible powder and chemical salts which make the flame luminous and give it color when desired. Among the ingredients are barium nitrate, potassium perchlorate, powdered aluminum, powdered magnesium, potassium nitrate, and sulphur. One of the simplest mixtures used by the English is,
Barium nitrate37 per cent.Powdered magnesium34 per cent.Potassium nitrate29 per cent.
The magnesium is coated with hot wax or paraffin, which not only acts as a binder for the mixture whenit is pressed into its container but also serves to prevent oxidation of the magnesium when the shells are stored. The barium and potassium nitrates supply the oxygen to the magnesium, which burns with a brilliant white flame. The potassium nitrate takes fire more readily than the barium nitrate, but it is more expensive than the latter.
Owing to the cost of magnesium, powdered aluminum has been used to some extent as a substitute. Aluminum does not have the illuminating value of magnesium and it is more difficult to ignite, but it is a good substitute in case of necessity. An English mixture containing these elements is,
Barium nitrate58 per cent.Magnesium29 per cent.Aluminum13 per cent.
Mixtures which are slow to ignite must be supplemented by a primary mixture which is readily ignited. For obtaining colored lights it is only necessary to add chemicals which will give the desired color. The mixtures can be proportioned by means of purely theoretical considerations; that is, just enough oxygen can be present to burn the fuel completely. However, usually more oxygen is supplied than called for by theory.
The illuminating shell is perhaps the most useful of these devices to the soldier. It has been constructed with and without parachutes, the former providing an intense light for a brief period because it falls rapidly. These shells of the larger calibers are equipped with time-fuses and are generally rather elaborate in construction. The shell is of steel, and has a time-fuseat the tip. This fuse ignites a charge of black powder in the nose of the shell and this explosion ejects the star-shell out of the rear of the steel casing. At the same time the black powder ignites the priming mixture next to it, which in turn ignites the slow-burning illuminating compound. The star-shell has a large parachute of strong material folded in the rear of the casing and the cardboard tube containing the illuminating mixture is attached to it. The time of burning varies, but is ordinarily less than a minute. Certain structural details must be such as to endure the stresses of a high muzzle velocity. Furthermore, a velocity of perhaps 1000 feet per second still obtains when the star-shell with its parachute is ejected at the desired point in the air.
The non-parachute illuminating shell is designed to give an intense light for a brief interval and is especially applicable to defense against air raids. Such a light aims to reveal the aircraft in order that the gunners may fire at it effectively. These shells are fitted with time-fuses which fire the charge of black powder at the desired interval after the discharge of the shell from the gun. The contents of the shell are thereby ejected and ignited. The container for the illuminating material is so designed that there is rapid combustion and consequently a brilliant light for about ten seconds. The enemy airman in this short time is unable to obtain any valuable knowledge pertaining to the earth below and furthermore he is likely to be temporarily blinded by the brilliant light if it is near him.
The rifle-light which resembles an ordinary rocket,is fired from a rifle and is designed for short-range use. It consists of a steel cylindrical shell a few inches long fastened to a steel rod. A parachute is attached to the cardboard container in which the illuminating mixture is packed and the whole is stowed away in the steel shell. Shore delay-fuses are used for starting the usual cycle of events after the rifle-light has been fired from the gun. The steel rod is injected into the barrel of a rifle and a blank cartridge is used for ejecting this rocket-like apparatus. Owing to inertia the firing-pin in the shell operates and the short delay-fuse is thus fired automatically an instant after the trigger of the rifle is pulled.
Illuminating "bombs" of the same general principles are used by airmen in search of a landing for himself or for a destructive bomb; in signaling to a gunner, and in many other ways. They are simple in construction because they need not withstand the stresses of being fired from a gun; they are merely dropped from the aircraft. The mechanism of ignition and the cycle of events which follow are similar to those of other illuminating shells.
The value of such artificial-lighting devices depends both upon luminous intensity and time of burning. Although long-burning is not generally required in warfare, it is obvious that more than a momentary light is usually needed. In general, high candle-power and long-burning are opposed to each other, so that the most intense lights of this character usually are of short duration. Typical performances of two flares of the same composition are as follows: