CHAPTER XV

Fig. 12.Fig. 12.—The "Black Drop."

This appearance may be roughly compared to the manner in which a drop of liquid (or, preferably, of some glutinous substance) tends for a while to adhere to an object from which it is falling.

When the planet is in turn making its way off the face of the sun, the ligament is again seen to form and to attach it to the sun's edge before its due time.

The phenomenon of the black drop, or ligament, is entirely an illusion, and, broadly speaking, of an optical origin. Something very similar will be noticed if onebrings one's thumb and forefingerslowlytogether against a very bright background.

This peculiar phenomenon has proved one of the greatest drawbacks to the proper observation of transits, for it is quite impossible to note the exact instant of the planet's entrance upon and departure from the solar disc in conditions such as these.

The black drop seems to bear a family resemblance, so to speak, to the phenomenon of Baily's beads. In the latter instance the lunar peaks, as they approach the sun's edge, appear to lengthen out in a similar manner and bridge the intervening space before their time, thus giving prominence to an effect which otherwise should scarcely be noticeable.

The last transit of Mercury, which, as has been already stated, took place on November 14, 1907, was not successfully observed by astronomers in England, on account of the cloudiness of the weather. In France, however, Professor Moye, of Montpellier, saw it under good conditions, and mentions that the black drop remained very conspicuous for fully a minute. The transit was also observed in the United States, the reports from which speak of the black drop as very "troublesome."

Before leaving the subject of transits it should be mentioned that it was in the capacity of commander of an expedition to Otaheite, in the Pacific, to observe the transit of Venus of June 3, 1769, that Captain Cook embarked upon the first of his celebrated voyages.

In studying the surfaces of Venus and Mercury with the telescope, observers are, needless to say, very much hindered by the proximity of the sun. Venus,when at the greatest elongations, certainly draws some distance out of the glare; but her surface is, even then, so dazzlingly bright, that the markings upon it are difficult to see. Mercury, on the other hand, is much duller in contrast, but the disc it shows in the telescope is exceedingly small; and, in addition, when that planet is left above the horizon for a short time after sunset, as necessarily happens after certain intervals, the mists near the earth's surface render observation of it very difficult.

Until about twenty-five years ago, it was generally believed that both these planets rotated on their axes in about twenty-four hours, a notion, no doubt, originally founded upon an unconscious desire to bring them into some conformity with our earth. But Schiaparelli, observing in Italy, and Percival Lowell, in the clear skies of Arizona and Mexico, have lately come to the conclusion that both planets rotate upon their axes in the same time as they revolve in their orbits,[12]the result being that they turn one face ever towards the sun in the same manner that the moon turns one face ever towards the earth—a curious state of things, which will be dealt with more fully when we come to treat of our satellite.

The marked difference in the brightness between the two planets has already been alluded to. The surface of Venus is, indeed, about five times as bright as that of Mercury. The actual brightness of Mercury is about equivalent to that of our moon, and astronomers are, therefore, inclined to think that it mayresemble her in having a very rugged surface and practically no atmosphere. This probable lack of atmosphere is further corroborated by two circumstances. One of these is that when Mercury is just about to transit the face of the sun, no ring of diffused light is seen to encircle its disc as would be the case if it possessed an atmosphere. Such a lack of atmosphere is, indeed, only to be expected from what is known as theKinetic Theory of Gases. According to this theory, which is based upon the behaviour of various kinds of gas, it is found that these elements tend to escape into space from the surface of bodies whose force of gravitation is weak. Hydrogen gas, for example, tends to fly away from our earth, as any one may see for himself when a balloon rises into the air. The gravitation of the earth seems, however, powerful enough to hold down other gases, as, for instance, those of which the air is chiefly composed, namely, oxygen and nitrogen. In due accordance with the Kinetic theory, we find the moon and Mercury, which are much about the same size, destitute of atmospheres. Mars, too, whose diameter is only about double that of the moon, has very little atmosphere. We find, on the other hand, that Venus, which is about the same size as our earth, clearly possesses an atmosphere, as just before the planet is in transit across the sun, the outline of its dark body is seen to be surrounded by a bright ring of light.

The results of telescopic observation show that more markings are visible on Mercury than on Venus. The intense brilliancy of Venus is, indeed, about the same as that of our white clouds when the sun isshining directly upon them. It has, therefore, been supposed that the planet is thickly enveloped in cloud, and that we do not ever see any part of its surface, except perchance the summit of some lofty mountain projecting through the fleecy mass.

With regard to the great brilliancy of Venus, it may be mentioned that she has frequently been seen in England, with the naked eye in full sunshine, when at the time of her greatest brightness. The writer has seen her thus at noonday. Needless to say, the sky at the moment was intensely blue and clear.

The orbit of Mercury is very oval, and much more so than that of any other planet. The consequence is that, when Mercury is nearest to the sun, the heat which it receives is twice as great as when it is farthest away. The orbit of Venus, on the other hand, is in marked contrast with that of Mercury, and is, besides, more nearly of a circular shape than that of any of the other planets. Venus, therefore, always keeps about the same distance from the sun, and so the heat which she receives during the course of her year can only be subject to very slight variations.

[11]In employing the terms Inferior and Superior the writer bows to astronomical custom, though he cannot help feeling that, in the circumstances, Interior and Exterior would be much more appropriate.[12]This question is, however, uncertain, for some very recent spectroscopic observations of Venus seem to show a rotation period of about twenty-four hours.

[11]In employing the terms Inferior and Superior the writer bows to astronomical custom, though he cannot help feeling that, in the circumstances, Interior and Exterior would be much more appropriate.

[11]In employing the terms Inferior and Superior the writer bows to astronomical custom, though he cannot help feeling that, in the circumstances, Interior and Exterior would be much more appropriate.

[12]This question is, however, uncertain, for some very recent spectroscopic observations of Venus seem to show a rotation period of about twenty-four hours.

[12]This question is, however, uncertain, for some very recent spectroscopic observations of Venus seem to show a rotation period of about twenty-four hours.

Wehave already seen (in Chapter I.) how, in very early times, men naturally enough considered the earth to be a flat plane extending to a very great distance in every direction; but that, as years went on, certain of the Greek philosophers suspected it to be a sphere. One or two of the latter are, indeed, said to have further believed in its rotation about an axis, and even in its revolution around the sun; but, as the ideas in question were founded upon fancy, rather than upon any direct evidence, they did not generally attract attention. The small effect, therefore, which these theories had upon astronomy, may well be gathered from the fact that in the Ptolemaic system the earth was considered as fixed and at the centre of things; and this belief, as we have seen, continued unaltered down to the days of Copernicus. It was, indeed, quite impossible to be certain of the real shape of the earth or the reality of its motions until knowledge became more extended and scientific instruments much greater in precision.

We will now consider in detail a few of the more obvious arguments which can be put forward to show that our earth is a sphere.

If, for instance, the earth were a plane surface, a ship sailing away from us over the sea would appearto grow smaller and smaller as it receded into the distance, becoming eventually a tiny speck, and fading gradually from our view. This, however, is not at all what actually takes place. As we watch a vessel receding, its hull appears bit by bit to slip gently down over the horizon, leaving the masts alone visible. Then, in their turn, the masts are seen to slip down in the same manner, until eventually every trace of the vessel is gone. On the other hand, when a ship comes into view, the masts are the first portions to appear. They gradually rise up from below the horizon, and the hull follows in its turn, until the whole vessel is visible. Again, when one is upon a ship at sea, a set of masts will often be seen sticking up alone above the horizon, and these may shorten and gradually disappear from view without the body of the ship to which they belong becoming visible at all. Since one knows from experience that there is noedgeat the horizon over which a vessel can drop down, the appearance which we have been describing can only be explained by supposing that the surface of the earth is always curving gradually in every direction.

The distance at which what is known as thehorizonlies away from us depends entirely upon the height above the earth's surface where we happen at the moment to be. A ship which has appeared to sink below the horizon for a person standing on the beach, will be found to come back again into view if he at once ascends a high hill. Experiment shows that the horizon line lies at about three miles away for a person standing at the water's edge. The curving of the earth's surface is found, indeed, to be at the rateof eight inches in every mile. Now it can be ascertained, by calculation, that a body curving at this rate in every direction must be a globe about 8000 miles in diameter.

Again, the fact that, if not stopped by such insuperable obstacles as the polar ice and snow, those who travel continually in any one direction upon the earth's surface always find themselves back again at the regions from which they originally set out, is additional ground for concluding that the earth is a globe.

We can find still further evidence. For instance, in an eclipse of the moon the earth's shadow, when seen creeping across the moon's face, is noted to bealwayscircular in shape. One cannot imagine how such a thing could take place unless the earth were a sphere.

Also, it is found from observation that the sun, the planets, and the satellites are, all of them, round. This roundness cannot be the roundness of a flat plate, for instance, for then the objects in question would sometimes present their thin sides to our view. It happens, also, that upon the discs which these bodies show, we see certain markings shifting along continually in one direction, to disappear at one side and to reappear again at the other. Such bodies must, indeed, be spheres in rotation.

The crescent and other phases, shown by the moon and the inferior planets, should further impress the truth of the matter upon us, as such appearances can only be caused by the sunlight falling from various directions upon the surfaces of spherical bodies.

Another proof, perhaps indeed the weightiest of all, is the continuous manner in which the stars overheadgive place to others as one travels about the surface of the earth. When in northern regions the Pole Star and its neighbours—the stars composing the Plough, for instance—are over our heads. As one journeys south these gradually sink towards the northern horizon, while other stars take their place, and yet others are uncovered to view from the south. The regularity with which these changes occur shows that every point on the earth's surface faces a different direction of the sky, and such an arrangement would only be possible if the earth were a sphere. The celebrated Greek philosopher, Aristotle, is known to have believed in the globular shape of the earth, and it was by this very argument that he had convinced himself that it was so.

The idea of the sphericity of the earth does not appear, however, to have been generally accepted until the voyages of the great navigators showed that it could be sailed round.

The next point we have to consider is the rotation of the earth about its axis. From the earliest times men noticed that the sky and everything in it appeared to revolve around the earth in one fixed direction, namely, towards what is called the West, and that it made one complete revolution in the period of time which we know as twenty-four hours. The stars were seen to come up, one after another, from below the eastern horizon, to mount the sky, and then to sink in turn below the western horizon. The sun was seen to perform exactly the same journey, and the moon, too, whenever she was visible. One or two of the ancient Greek philosophers perceived that this might be explained, either by a movementof the entire heavens around the earth, or by a turning motion on the part of the earth itself. Of these diverse explanations, that which supposed an actual movement of the heavens appealed to them the most, for they could hardly conceive that the earth should continually rotate and men not be aware of its movement. The question may be compared to what we experience when borne along in a railway train. We see the telegraph posts and the trees and buildings near the line fly past us one after another in the contrary direction. Either these must be moving, or we must be moving; and as we happen toknowthat it is, indeed, we who are moving, there can be no question therefore about the matter. But it would not be at all so easy to be sure of this movement were one unable to see the objects close at hand displacing themselves. For instance, if one is shut up in a railway carriage at night with the blinds down, there is really nothing to show that one is moving, except the jolting of the train. And even then it is hard to be sure in which direction one is actually travelling.

The way we are situated upon the earth is therefore as follows. There are no other bodies sufficiently near to be seen flying past us in turn; our earth spins without a jolt; we and all things around us, including the atmosphere itself, are borne along together with precisely the same impetus, just as all the objects scattered about a railway carriage share in the forward movement of the train. Such being the case, what wonder that we are unconscious of the earth's rotation, of which we should know nothing at all, were it not for that slow displacementof the distant objects in the heavens, as we are borne past them in turn.

If the night sky be watched, it will be soon found that its apparent turning movement seems to take place around a certain point, which appears as if fixed. This point is known as the north pole of the heavens; and a rather bright star, which is situated very close to this hub of movement, is in consequence called the Pole Star. For the dwellers in southern latitudes there is also a point in their sky which appears to remain similarly fixed, and this is known as the south pole of the heavens. Since, however, the heavens do not turn round at all, but the earth does, it will easily be seen that these apparently stationary regions in the sky are really the points towards which the axis of the earth is directed. The positions on the earth's surface itself, known as the North and South Poles, are merely the places where the earth's axis, if there were actually such a thing, would be expected to jut out. The north pole of the earth will thus be situated exactly beneath the north pole of the heavens, and the south pole of the earth exactly beneath the south pole of the heavens.

We have seen that the earth rotates upon its imaginary axis once in about every twenty-four hours. This means that everything upon the surface of the earth is carried round once during that time. The measurement around the earth's equator is about 24,000 miles; and, therefore, an object situated at the equator must be carried round through a distance of about 24,000 miles in each twenty-four hours. Everything at the equator is thus moving along at the rapid rate of about 1000 miles an hour, or between sixteenand seventeen times as fast as an express train. If, however, one were to take measurements around the earth parallel to the equator, one would find these measurements becoming less and less, according as the poles were approached. It is plain, therefore, that the speed with which any point moves, in consequence of the earth's rotation, will be greatest at the equator, and less and less in the direction of the poles; while at the poles themselves there will be practically no movement, and objects there situated will merely turn round.

The considerations above set forth, with regard to the different speeds at which different portions of a rotating globe will necessarily be moving, is the foundation of an interesting experiment, which gives us further evidence of the rotation of our earth. The measurement around the earth at any distance below the surface, say, for instance, at the depth of a mile, will clearly be less than a similar measurement at the surface itself. The speed of a point at the bottom of a mine, which results from the actual rotation of the earth, must therefore be less than the speed of a point at the surface overhead. This can be definitely proved by dropping a heavy object down a mine shaft. The object, which starts with the greater speed of the surface, will, when it reaches the bottom of the mine, be found, as might be indeed expected, to be a little ahead (i.e.to the east) of the point which originally lay exactly underneath it. The distance by which the object gains upon this point is, however, very small. In our latitudes it amounts to about an inch in a fall of 500 feet.

The great speed at which, as we have seen, theequatorial regions of the earth are moving, should result in giving to the matter there situated a certain tendency to fly outwards. Sir Isaac Newton was the first to appreciate this point, and he concluded from it that the earth must bebulgeda little all round the equator. This is, indeed, found to be the case, the diameter at the equator being nearly twenty-seven miles greater than it is from pole to pole. The reader will, no doubt, be here reminded of the familiar comparison in geographies between the shape of the earth and that of an orange.

In this connection it is interesting to consider that, were the earth to rotate seventeen times as fast as it does (i.e.in one hour twenty-five minutes, instead of twenty-four hours), bodies at the equator would have such a strong tendency to fly outwards that the force of terrestrial gravity acting upon them would just be counterpoised, and they would virtually haveno weight. And, further, were the earth to rotate a little faster still, objects lying loose upon its surface would be shot off into space.

The earth is, therefore, what is technically known as anoblate spheroid; that is, a body of spherical shape flattened at the poles. It follows of course from this, that objects at the polar regions are slightly nearer to the earth's centre than objects at the equatorial regions. We have already seen that gravitation acts from the central parts of a body, and that its force is greater the nearer are those central parts. The result of this upon our earth will plainly be that objects in the polar regions will be pulled with a slightly stronger pull, and will thereforeweigha trifle more than objects in the equatorial regions. This is,indeed, found by actual experiment to be the case. As an example of the difference in question, Professor Young, in hisManual of Astronomy, points out that a man who weighs 190 pounds at the equator would weigh 191 at the pole. In such an experiment the weighing would, however, have to be made with aspring balance, andnot with scales; for, in the latter case, the "weights" used would alter in their weight in exactly the same degree as the objects to be weighed.

It used to be thought that the earth was composed of a relatively thin crust, with a molten interior. Scientific men now believe, on the other hand, that such a condition cannot after all prevail, and that the earth must be more or less solid all through, except perhaps in certain isolated places where collections of molten matter may exist.

Theatmosphere, or air which we breathe, is in the form of a layer of limited depth which closely envelops the earth. Actually, it is a mixture of several gases, the most important being nitrogen and oxygen, which between them practically make up the air, for the proportion of the other gases, the chief of which is carbonic acid gas, is exceedingly small.

It is hard to picture our earth, as we know it, without this atmosphere. Deprived of it, men at once would die; but even if they could be made to go on living without it by any miraculous means, they would be like unto deaf beings, for they would never hear any sound. What we callsoundsare merely vibrations set up in the air, which travel along and strike upon the drum of the ear.

The atmosphere is densest near the surface of theearth, and becomes less and less dense away from it, as a result of diminishing pressure of air from above. The greater portion of it is accumulated within four or five miles of the earth's surface.

It is impossible to determine exactly at what distance from the earth's surface the air ceases altogether, for it grows continually more and more rarefied. There are, however, two distinct methods of ascertaining the distance beyond which it can be said practically not to exist. One of these methods we get from twilight. Twilight is, in fact, merely light reflected to us from those upper regions of the air, which still continue to be illuminated by the sun after it has disappeared from our view below the horizon. The time during which twilight lasts, shows us that the atmosphere must be at least fifty miles high.

But the most satisfactory method of ascertaining the height to which the atmosphere extends is from the observation of meteors. It is found that these bodies become ignited, by the friction of passing into the atmosphere, at a height of about 100 miles above the surface of the earth. We thus gather that the atmosphere has a certain degree of density even at this height. It may, indeed, extend as far as about 150 miles.

The layer of atmosphere surrounding our earth acts somewhat in the manner of the glass covering of a greenhouse, bottling in the sun's rays, and thus storing up their warmth for our benefit. Were this not so, the heat which we get from the sun would, after falling upon the earth, be quickly radiated again into space.

It is owing to the unsteadiness of the air that starsare seen to twinkle. A night when this takes place, though it may please the average person, is worse than useless to the astronomer, for the unsteadiness is greatly magnified in the telescope. This twinkling is, no doubt, in a great measure responsible for the conventional "points" with which Art has elected to embellish stars, and which, of course, have no existence in fact.

The phenomena ofRefraction,[13]namely, that bending which rays of light undergo, when passingslant-wisefrom a rare into a dense transparent medium, are very marked with regard to the atmosphere. The denser the medium into which such rays pass, the greater is this bending found to be. Since the layer of air around us becomes denser and denser towards the surface of the earth, it will readily be granted that the rays of light reaching our eyes from a celestial object, will suffer the greater bending the lower the object happens to be in the sky. Celestial objects, unless situated directly overhead, are thus not seen in their true places, and when nearest to the horizon are most out of place. The bending alluded to is upwards. Thus the sun and the moon, for instance, when we see them resting upon the horizon, are actuallyentirelybeneath it.

When the sun, too, is sinking towards the horizon, the lower edge of its disc will, for the above reason,look somewhat more raised than the upper. The result is a certain appearance of flattening; which may plainly be seen by any one who watches the orb at setting.

In observations to determine the exact positions of celestial objects correction has to be made for the effects of refraction, according to the apparent elevation of these objects in the sky. Such effects are least when the objects in question are directly overhead, for then the rays of light, coming from them to the eye, enter the atmosphere perpendicularly, and not at any slant.

A very curious effect, due to refraction, has occasionally been observed during a total eclipse of the moon. To produce an eclipse of this kind,the earth must, of course, lie directly between the sun and the moon. Therefore, when we see the shadow creeping over the moon's surface, the sun should actually be well below the horizon. But when a lunar eclipse happens to come on just about sunset, the sun, although really sunk below the horizon, appears still above it through refraction, and the eclipsed moon, situated, of course, exactly opposite to it in the sky, is also lifted up above the horizon by the same cause. Pliny, writing in the first century of the Christian era, describes an eclipse of this kind, and refers to it as a "prodigy." The phenomenon is known as a "horizontal eclipse." It was, no doubt, partly owing to it that the ancients took so long to decide that an eclipse of the moon was really caused by the shadow cast by the earth. Plutarch, indeed, remarks that it was easy enough to understand that a solar eclipse was caused by the interposition of the moon, but that one could notimagine by the interpositionof what bodythe moon itself could be eclipsed.

In that apparent movement of the heavens about the earth, which men now know to be caused by the mere rotation of the earth itself, a slight change is observed to be continually taking place. The stars, indeed, are always found to be gradually drawing westward,i.e.towards the sun, and losing themselves one after the other in the blaze of his light, only to reappear, however, on the other side of him after a certain lapse of time. This is equivalent to saying that the sun itself seems always creeping slowlyeastwardin the heaven. The rate at which this appears to take place is such that the sun finds itself back again to its original position, with regard to the starry background, at the end of a year's time. In other words, the sun seems to make a complete tour of the heavens in the course of a year. Here, however, we have another illusion, just as the daily movement of the sky around the earth was an illusion. The truth indeed is, that this apparent movement of the sun eastward among the stars during a year, arises merely from acontinuous displacement of his positioncaused by an actual motion of the earth itself around him in that very time. In a word, it is the earth which really moves around the sun, and not the sun around the earth.

The stress laid upon this fundamental point by Copernicus, marks the separation of the modern from the ancient view. Not that Copernicus, indeed, had obtained any real proof that the earth is merely a planet revolving around the sun; but it seemed to his profound intellect that a movement of this kindon the part of our globe was the more likely explanation of the celestial riddle. The idea was not new; for, as we have already seen, certain of the ancient Greeks (Aristarchus of Samos, for example) had held such a view; but their notions on the subject were very fanciful, and unsupported by any good argument.

What Copernicus, however, really seems to have done was toinsistupon the idea that the sun occupied thecentre, as being more consonant with common sense. No doubt, he was led to take up this position by the fact that the sun appeared entirely of a different character from the other members of the system. The one body in the scheme, which performed the important function of dispenser of light and heat, would indeed be more likely to occupy a position apart from the rest; and what position more appropriate for its purposes than the centre!

But here Copernicus only partially solved the difficult question. He unfortunately still clung to an ancient belief, which as yet remained unquestioned;i.e.the great virtue, one might almost say, thedivineness, of circular motion. The ancients had been hag-ridden, so to speak, by the circle; and it appeared to them that such a perfectly formed curve was alone fitted for the celestial motions. Ptolemy employed it throughout his system. According to him the "planets" (which included, under the ancient view, both the sun and the moon), moved around the earth in circles; but, as their changing positions in the sky could not be altogether accounted for in this way, it was further supposed that they performed additional circular movements, around peculiarly placed centres, during the course of their orbital revolutions.Thus the Ptolemaic system grew to be extremely complicated; for astronomers did not hesitate to add new circular movements whenever the celestial positions calculated for the planets were found not to tally with the positions observed. In this manner, indeed, they succeeded in doctoring the theory, so that it fairly satisfied the observations made with the rough instruments of pre-telescopic times.

Although Copernicus performed the immense service to astronomy of boldly directing general attention to the central position of the sun, he unfortunately took over for the new scheme the circular machinery of the Ptolemaic system. It therefore remained for the famous Kepler, who lived about a century after him, to find the complete solution. Just as Copernicus, for instance, had broken free from tradition with regard to the place of the sun; so did Kepler, in turn, break free from the spell of circular motion, and thus set the coping-stone to the new astronomical edifice. This astronomer showed, in fact, that if the paths of the planets around the sun, and of the moon around the earth, were not circles, butellipses, the movements of these bodies about the sky could be correctly accounted for. The extreme simplicity of such an arrangement was far more acceptable than the bewildering intricacy of movement required by the Ptolemaic theory. The Copernican system, as amended by Kepler, therefore carried the day; and was further strengthened, as we have already seen, by the telescopic observations of Galileo and the researches of Newton into the effects of gravitation.

And here a word on the circle, now fallen fromits high estate. The ancients were in error in supposing that it stood entirely apart—the curve of curves. As a matter of fact it is merelya special kind of ellipse. To put it paradoxically, it is an ellipse which has no ellipticity, an oval without any ovalness!

Notwithstanding all this, astronomy had to wait yet a long time for a definite proof of the revolution of the earth around the sun. The leading argument advanced by Aristotle, against the reality of any movement of the earth, still held good up to about seventy years ago. That philosopher had pointed out that the earth could not move about in space to any great extent, or the stars would be found to alter their apparent places in the sky, a thing which had never been observed to happen. Centuries ran on, and instruments became more and more perfect, yet no displacements of stars were noted. In accepting the Copernican theory men were therefore obliged to suppose these objects as immeasurably distant. At length, however, between the years 1835 and 1840, it was discovered by the Prussian astronomer, Bessel, that a star known as 61 Cygni—that is to say, the star marked in celestial atlases as No. 61 in the constellation of the Swan—appeared, during the course of a year, to perform a tiny circle in the heavens, such as would result from a movement on our own part around the sun. Since then about forty-three stars have been found to show minute displacements of a similar kind, which cannot be accounted for upon any other supposition than that of a continuous revolution of the earth around the sun. The triumph of the Copernican system is now at last supreme.

If the axis of the earth stood "straight up," so to speak, while the earth revolved in its orbit, the sun would plainly keep always on a level with the equator. This is equivalent to stating that, in such circumstances, a person at the equator would see it rise each morning exactly in the east, pass through thezenith, that is, the point directly overhead of him, at midday, and set in the evening due in the west. As this would go on unchangingly at the equator every day throughout the year, it should be clear that, at any particular place upon the earth, the sun would in these conditions always be seen to move in an unvarying manner across the sky at a certain altitude depending upon the latitude of the place. Thus the more north one went upon the earth's surface, the more southerly in the sky would the sun's path lie; while at the north pole itself, the sun would always run round and round the horizon. Similarly, the more south one went from the equator the more northerly would the path of the sun lie, while at the south pole it would be seen to skirt the horizon in the same manner as at the north pole. The result of such an arrangement would be, that each place upon the earth would always have one unvarying climate; in which case there would not exist any of those beneficial changes of season to which we owe so much.

The changes of season, which we fortunately experience, are due, however, to the fact that the sun does not appear to move across the sky each day at one unvarying altitude, but is continually altering the position of its path; so that at one period of the year it passes across the sky low down, and remainsabove the horizon for a short time only, while at another it moves high up across the heavens, and is above the horizon for a much longer time. Actually, the sun seems little by little to creep up the sky during one half of the year, namely, from mid-winter to mid-summer, and then, just as gradually, to slip down it again during the other half, namely, from mid-summer to mid-winter. It will therefore be clear that every region of the earth is much more thoroughly warmed during one portion of the year than during another,i.e.when the sun's path is high in the heavens than when it is low down.

Once more we find appearances exactly the contrary from the truth. The earth is in this case the real cause of the deception, just as it was in the other cases. The sun does not actually creep slowly up the sky, and then slowly dip down it again, but, owing to the earth's axis being set aslant, different regions of the earth's surface are presented to the sun at different times. Thus, in one portion of its orbit, the northerly regions of the earth are presented to the sun, and in the other portion the southerly. It follows of course from this, that when it is summer in the northern hemisphere it is winter in the southern, andvice versâ(see Fig. 13, p. 176).

Fig. 13.Fig. 13.—Summer and Winter.

The fact that, in consequence of this slant of the earth's axis, the sun is for part of the year on the north side of the equator and part of the year on the south side, leads to a very peculiar result. The path of the moon around the earth is nearly on the same plane with the earth's path around the sun. The moon, therefore, always keeps to the same regions of the sky as the sun. The slant of the earth's axis thus regularly displaces the position of both the sun and the moon to the north and south sides of the equator respectively in the manner we have been describing. Were the earth, however, a perfect sphere, such change of position would not produce any effect. We have shown, however, that the earth is not a perfect sphere, but that it is bulged out all round the equator. The result is that this bulged-out portion swings slowly under the pulls of solar and lunar gravitation, in response to the displacements of the sun and moon to the north and to the south of it. This slow swing of the equatorial regions results, of course, in a certain slow change of the direction of the earth's axis, so that the north pole does not go on pointing continually to the same region of the sky. The change in the direction of the axis is, however, so extremely slight, that it shows up only after the lapse of ages. The north pole of the heavens, that is, the region of the sky towards which the north pole of the earth's axis points, displacestherefore extremely slowly, tracing out a wide circle, and arriving back again to the same position in the sky only after a period of about 25,000 years. At present the north pole of the heavens is quite close to a bright star in the tail of the constellation of the Little Bear, which is consequently known as the Pole Star; but in early Greek times it was at least ten times as far away from this star as it is now. After some 12,000 years the pole will point to the constellation of Lyra, and Vega, the most brilliant star in that constellation, will then be considered as the pole star. This slow twisting of the earth's axis is technically known asPrecession, or thePrecession of the Equinoxes(see Plate XIX., p. 292).

The slow displacement of the celestial pole appears to have attracted the attention of men in very early times, but it was not until the second centuryB.C.that precession was established as a fact by the celebrated Greek astronomer, Hipparchus. For the ancients this strange cyclical movement had a mystic significance; and they looked towards the end of the period as the end, so to speak, of a "dispensation," after which the life of the universe would begin anew:—

"Magnus ab integro sæclorum nascitur ordo.Jam redit et Virgo, redeunt Saturnia regna;······Alter erit tum Tiphys, et altera quæ vehat ArgoDelectos heroas; erunt etiam altera bella,Atque iterum ad Trojam magnus mittetur Achilles."

We have seen that the orbit of the earth is an ellipse, and that the sun is situated at what is called thefocus, a point not in the middle of the ellipse,but rather towards one of its ends. Therefore, during the course of the year the distance of the earth from the sun varies. The sun, in consequence of this, is about 3,000,000 milesnearerto us in our northernwinterthan it is in our northern summer, a statement which sounds somewhat paradoxical. This variation in distance, large as it appears in figures, can, however, not be productive of much alteration in the amount of solar heat which we receive, for during the first week in January, when the distance is least, the sun only looks aboutone-eighteenthbroader than at the commencement of July, when the distance is greatest. The great disparity in temperature between winter and summer depends, as we have seen, upon causes of quite another kind, and varies between such wide limits that the effects of this slight alteration in the distance of the sun from the earth may be neglected for practical purposes.

The Tides are caused by the gravitational pull of the sun and moon upon the water of the earth's surface. Of the two, the moon, being so much the nearer, exerts the stronger pull, and therefore may be regarded as the chief cause of the tides. This pull always draws that portion of the water, which happens to be right underneath the moon at the time, into a heap; and there is also asecondheaping of water at the same momentat the contrary side of the earth, the reasons for which can be shown mathematically, but cannot be conveniently dealt with here.

As the earth rotates on its axis each portion of its surface passes beneath the moon, and is swelled up by this pull; the watery portions being, however, theonly ones to yield visibly. A similar swelling up, as we have seen, takes place at the point exactly away from the moon. Thus each portion of our globe is borne by the rotation through two "tide-areas" every day, and this is the reason why there are two tides during every twenty-four hours.

The crest of the watery swelling is known as high tide. The journey of the moon around the earth takes about a month, and this brings her past each place in turn by about fifty minutes later each day, which is the reason why high tide is usually about twenty-five minutes later each time.

The moon is, however, not the sole cause of the tides, but the sun, as we have said, has a part in the matter also. When it is new moon the gravitational attractions of both sun and moon are clearly acting together from precisely the same direction, and, therefore, the tide will be pulled up higher than at other times. At full moon, too, the same thing happens; for, although the bodies are now acting from opposite directions, they do not neutralise each other's pulls as one might imagine, since the sun, in the same manner as the moon, produces a tide both under it and also at the opposite side of the earth. Thus both these tides are actually increased in height. The exceptionally high tides which we experience at new and full moons are known asSpring Tides, in contradistinction to the minimum high tides, which are known asNeap Tides.

The ancients appear to have had some idea of the cause of the tides. It is said that as early as 1000B.C.the Chinese noticed that the moon exerted an influence upon the waters of the sea. The Greeks andRomans, too, had noticed the same thing; and Cæsar tells us that when he was embarking his troops for Britain the tide was highbecausethe moon was full. Pliny went even further than this, in recognising a similar connection between the waters and the sun.

From casual observation one is inclined to suppose that the high tide always rises many feet. But that this is not the case is evidenced by the fact that the tides in the midst of the great oceans are only from three to four feet high. However, in the seas and straits around our Isles, for instance, the tides rise very many feet indeed, but this is merely owing to the extra heaping up which the large volumes of water undergo in forcing their passage through narrow channels.

As the earth, in rotating, is continually passing through these tide-areas, one might expect that the friction thus set up would tend to slow down the rotation itself. Such a slowing down, or "tidal drag," as it is called, is indeed continually going on; but the effects produced are so exceedingly minute that it will take many millions of years to make the rotation appreciably slower, and so to lengthen the day.

Recently it has been proved that the axis of the earth is subject to a very small displacement, or rather, "wobbling," in the course of a period of somewhat over a year. As a consequence of this, the pole shifts its place through a circle of, roughly, a few yards in width during the time in question. This movement is, perhaps, the combined result of two causes. One of these is the change of place during the year of large masses of material upon our earth; such as occurs, for instance, when ice and snowmelt, or when atmospheric and ocean currents transport from place to place great bodies of air and water. The other cause is supposed to be the fact that the earth is not absolutely rigid, and so yields to certain strains upon it. In the course of investigation of this latter point the interesting conclusion has been reached by the famous American astronomer, Professor Simon Newcomb, that our globe as a whole isa little more rigid than steel.

We will bring this chapter to a close by alluding briefly to two strange appearances which are sometimes seen in our night skies. These are known respectively as the Zodiacal Light and the Gegenschein.

TheZodiacal Lightis a faint cone-shaped illumination which is seen to extend upwards from the western horizon after evening twilight has ended, and from the eastern horizon before morning twilight has begun. It appears to rise into the sky from about the position where the sun would be at that time. The proper season of the year for observing it during the evening is in the spring, while in autumn it is best seen in the early morning. In our latitudes its light is not strong enough to render it visible when the moon is full, but in the tropics it is reported to be very bright, and easily seen in full moonlight. One theory regards it as the reflection of light from swarms of meteors revolving round the sun; another supposes it to be a very rarefied extension of the corona.

TheGegenschein(German for "counter-glow") is a faint oval patch of light, seen in the sky exactly opposite to the place of the sun. It is usually treated of in connection with the zodiacal light, and one theory regards it similarly as of meteoric origin.Another theory, however—that of Mr. Evershed—considers it a sort oftailto the earth (like a comet's tail) composed of hydrogen and helium—the twolightestgases we know—driven off from our planet in the direction contrary to the sun.


Back to IndexNext