Few people realise that, with the advent of autumn, the great majority of the swarms of bacteria which have been circulating in the air during the hot summer months take their leave of us and disappear.
Practically, however, we are all conscious of this fact, for we know what greater difficulties attend the keeping of food sweet and wholesome in the summer than are met with in the winter; bacteria, not unlike some other armies of occupation, securing a footing rather by their numbers at this season of the year, than by virtue of the superior strategy or, in other words, special attributes of their units. Bacterial operations are, however, distinctly favoured by the accident of temperature, the warmth of the summer encouraging their vitality and multiplication.
When Pasteur first announced his conviction that the familiar phenomena of putrefaction and decay were due to minute living particles present in our surroundings, his sceptical critics sought to ridicule his conclusions by declaring that, were this the case, the air must of necessity be so heavily laden with living forms that we should be surrounded by a thick fog—"dense comme du fer." We do not now, forty years later, require to recite the exquisitely simple experiments which, whilst sufficiently establishing his theories, served to effectually suppress those of his opponents.
Since Pasteur's pioneering work was carried out, a vast number of investigations have been made in all parts of the world by scientists of almost every nationality on the subject of the distribution of bacteria in air, and not only on their distribution, but on their functions or the place they occupy in the economy of nature. With our increased knowledge concerning their distribution has come our ability to differentiate between individuals, and to adequately assess the value and importance of their work from various points of view.
In the bacterial treatment of sewage we have not only one of the latest, but perhaps also one of the most successful examples of that system of division of labour, or specialisation of energy, which forms such a characteristic feature of work of all kinds at the present time. Other familiar instances of the applications of individual and special bacterial labourers to the solution of industrial problems are to be found in the conduct of commercial undertakings of such national magnitude and importance as brewing and agriculture. But it is not with these beneficent or great industrial classes of bacteria that we are now more immediately concerned, but rather with the malevolent varieties, or the so-called "submerged tenth," for which no labour colony has at present been created to direct their energies into useful and profitable channels.
We know that as regards mere numbers the bacteria in air may vary from 0 to millions in a couple of gallons, these extremes being dependent upon the surrounding conditions or relative purity of the atmosphere.
Out at sea, beyond the reach of land breezes, it is no uncommon thing to find none whatever; on mountains and even hills of humble elevation the paucity of bacteria is very marked if there are no abnormal or untoward circumstances contributing to their distribution. In illustration of this the recent investigations of the air on the summit of Mont Blanc by M. Jean Binot are of especial interest, inasmuch as the altitude at which they were carried out is the highest at which the search after bacteria has so far been pursued. This intrepid investigator spent no less than five days in the observatory, which is situated on the top of the mountain. As was to be anticipated, frequently no bacteria at all were found, and it was only when such comparatively large volumes of air as one thousand litres (about 200 gallons) were explored that microbes in numbers varying from four to eleven were discovered. The air of the country is far freer from microbial life than that of cities; whilst open spaces, such as those afforded by the London parks, are paradises of purity compared with the streets with their attendant bacterial slums.
That it is no exaggeration to describe streets from the bacterial point of view as slums is to be gathered from the fact that much less than a thimbleful of that dust which is associated with the blustering days of March and the scorching pavements of summer may contain from nine hundred to one hundred and sixty millions of bacteria. But investigators have not been content to merely quantitatively examine street dust; in addition to estimating the numerical strength of these bacterial dust-battalions, the individual characteristics of their units have been exhaustively studied, and the capacity for work, beneficent or otherwise, possessed by them has been carefully recorded. The qualitative discrimination of the bacteria present in dust has resulted in the discovery of, amongst other disease germs, the consumption bacillus, the lock-jaw or tetanus bacillus, bacteria associated with diphtheria, typhoid fever, pulmonary affections, and various septic processes. Such is the appetising menu which dust furnishes for our delectation.
There can be no doubt, therefore, that dust forms a very important distributing agent for micro-organisms, dust particles, aided by the wind, being to bacteria what the modern motor-car, with its benzine or electric current, is to the ambitious itinerant of the present day. Attached to dust, bacteria get transmitted with the greatest facility from place to place, and hence the significance of their presence in dust.
Mention has been made of the fact that the germs of typhoid fever have been discovered in dust, and the belief in the possibility of this disease being spread by dust is gaining ground.
An interesting case in point is afforded by an outbreak of typhoid fever which occurred in Athens a few years ago, and in which the starting-point or nucleus was discovered to be a group of labourers who were engaged upon excavating the soil in a street through which a sewer had once been taken. The epidemic subsequently spread to those districts of the city swept by the prevailing wind, which passed over the place where the soil had been turned up and exposed. M. Bambas, who brought his observations before the International Congress of Hygiene at Buda-Pesth, was convinced from the inquiries he made that this outbreak of typhoid was due to the disturbance of the soil and the dissemination by means of the wind of typhoid-dust-particles to certain parts of the city.
That this hypothesis is by no means without experimental justification is shown by the properties possessed by the typhoid bacillus in regard to its vitality in soil which have been discovered. Thus numerous investigators have studied the important question of the behaviour of this micro-organism in soil, and have found that it can exist over periods extending from three to twelve or more months in the ground. This property of the typhoid bacillus may possibly explain the appearance over and over again of typhoid fever in particular localities, suggesting that the bacteria had become indigenous in the soil.
Dr. Mewius, of Heligoland, describes an epidemic of typhoid fever in the island, concerning which he made a most searching and elaborate inquiry. It appears that a case of typhoid occurred and was concealed from the medical authorities, so that no steps for disinfection could be taken in the first instance; and, following the primitive custom which prevails on the island, the dejecta was thrown over and upon the cliffs, this being the usual method of disposing of sewage. Ample opportunity was thus given for its desiccation and subsequent distribution as dust. That this typhoidal matter did subsequently become pulverised and spread the infection Dr. Mewius has no doubt, the germs having been conveyed to the open rain-water cisterns which constitute the water-supply of the majority of the inhabitants. His theory is again supported by the coincidence between the prevailing direction of the wind and the quarter where the outbreak occurred.
That diphtheria germs can remain for a long time in a living and, what is more, virulent condition in dust has been clearly demonstrated by Germano, amongst other investigators, this organism being specially endowed with the capacity for resisting the, to other microbes, lethal effect of getting dried up.
Bacteria, however, survive this desiccation process much better when they are herded together in large numbers than when they have to face such untoward conditions as isolated individuals. This has been well illustrated in the case of diphtheria bacilli, and the difference in their powers of endurance under these respective conditions is very striking. Thus when a few only were exposed to a very dry atmosphere on silken threads they disappeared after eight days; but when somewhat larger numbers were taken they contrived to exist for eighteen days, whilst when great multitudes of them were herded together even one hundred and forty days' starvation in these desert-like surroundings could not entirely stamp out their vitality.
This dangerous property possessed by the germs of diphtheria should, if possible, increase the vigilance with which the outbreaks of this disease are watched and dealt with. Abel cites an instance in which a wooden toy in the sickroom of a child suffering from diphtheria was found six months later to havevirulentdiphtheria bacilli upon it.
This reminds me of a case in which tetanus or lock-jaw ensued from the use of some old cobwebs in stopping the bleeding of a cut. The wound was a perfectly clean one, and nothing need have resulted from this obedience to a superstitious prejudice had not the cobwebs unfortunately arrested some tetanus germs, and these getting access to the wound set up the typical symptoms of lock-jaw. That this implication of the cobweb was no idle accusation was subsequently proved by portions of the same web, on being inoculated into animals, inducing in the latter well-defined symptoms of tetanus.
That cobwebs readily catch dust is familiar to everyone who has the mortification of seeing them adorn ceilings and corners; that they also arrest bacteria follows as a natural consequence of the presence of dust, and hence these delicate filaments may become veritable bacterial storehouses, more especially as it is usually in the dark and remote corners that they best succeed in eluding the vigilance of the domestic eye, and are thus also out of reach of the lethal action of sunbeams; and hence their unwelcome lodgers may manage to maintain a very comfortable existence over long periods of time.
That the bacillus of consumption should have been very frequently found in dust by different investigators is hardly surprising when it is realised that the sputum of phthisical persons may contain the tubercle germ in large numbers, and that until recently no efforts have been made in this country to suppress that highly objectionable and most reprehensible practice of indiscriminate expectoration. Considering that the certified deaths from phthisis in 1901, in England and Wales only, reached the enormous total of 42,408, and bearing in mind the hardy character of thebacillus tuberculosiswhen present in sputum, it having been found alive in the latter even when kept in a dry condition after ten months, it is not too much to demand that vigorous measures should be taken by the legislature to cope with what is now regarded as one of the most fruitful means of spreading consumption. We know that in some of the states of America public opinion has permitted the enactment of laws penalising this practice. Local rules to the same effect exist in our Australian colonies. On the Continent the trend of public opinion is evident by the prohibition found in the railway carriages and the notices to that effect conspicuously posted in public places. In this country public opinion moves so slowly that we are not yet ripe for any such strong step, and so far one of the few attempts at official activity in this respect is to be found in a circular issued by the Local Government Board of Ireland to the various local authorities stating that "tuberculous sputum is the main agent for the conveyance of the virus of tuberculosis from man to man, and that indiscriminate spitting should therefore be suppressed." The public exhibition of notices calling attention to the danger accruing from expectoration in public resorts is, as already pointed out, one means of educating the people, and it has been stated that such a notice is posted in every beerhouse in Manchester. The question has also been raised of the inspection of beerhouses and the suggestion made that licences should be withdrawn in the case of those holders who did not wash the floors of their public rooms and keep them in a sanitary state. At the present time, in this country, it is perhaps more to the private conscience of the individual and the pressure of public opinion than to penal enactments that we must look for effective reform in this direction, for the objection of the English to official sanitary control is deeply rooted. It is to be hoped, however, that with the spread and popularisation of the knowledge acquired through the arduous labours of so many scientific authorities, it may come to be regarded as a matter for both public and private morality that every step should be taken which lies in the power of each member of society to minimise the opportunities for the spread of a disease which by its very familiarity we have until the last few years accepted as incurable and the ravages of which as inevitable.[1]
Now that we are considering the status of street dust in bacterial circles, it will not perhaps be out of place to inquire into the character of another waste product of streets,i.e.the discarded ends of cigars and cigarettes. That what is carelessly tossed away on the one hand may be as carefully collected on the other is well known, as is also the fact that such material may subsequently be raised once more to the dignity of a marketable commodity. Under these circumstances, it is of hygienic interest and importance to ascertain whether disease germs, should they have obtained access to this tobacco refuse, are in a virulent or quiescent condition.
Some experiments to decide this question in connection with the tubercle bacillus have been recently carried out in Padua by Dr. Peserico, who, whilst extending our knowledge on the subject of bacteria and tobacco, has also confirmed the earlier results obtained by Kerez.
Portions of cigar-stumps smoked by phthisical persons in whose saliva the tubercle bacillus was known to be abundantly present were inoculated into guinea-pigs, with the result that fifty per cent. of the animals thus treated succumbed to tuberculosis. Thus neither the fumes nor juice of the tobacco had destroyed the consumption bacillus. In these experiments the cigar ends were used directly they were discarded, in another series of investigations they were collected and kept in a dry place for from fifteen to twenty days before being tested; but even storage for this length of time did not prevent the animals inoculated with them from contracting tuberculosis. In another series of experiments Dr. Peserico kept the infected cigar-ends in damp surroundings, and it was satisfactory to find that under these conditions the tubercle bacillus at the end of ten days was entirely deprived of its virulence. Encouraged by these results, inoculations were made with cigar-ends which had been left in the open and exposed to normal atmospheric conditions, which included falls of rain and snow, and in this case also no symptoms of tuberculosis followed their introduction into the guinea-pigs. These experiments show that the tubercle bacillus is prejudicially affected by contact with tobacco when the latter is kept in a moist condition, but that in a dry condition the properties in tobacco inimical to its vitality are not liberated and the bacillus can retain its virulent properties for a period of over twenty days.
In view of the importance of this discovery on the destruction of the toxic character of the tubercle bacillus by contact with moist tobacco, further experiments were made in which emulsions of tobacco were infected with tuberculous sputum. It was found that the bacilli steadily declined in virulence as the length of time they were kept in the emulsion was prolonged. Thus whereas after a few hours they were still armed with all their virulent properties, after three days, out of the four animals inoculated with the emulsion three succumbed to tuberculosis, after five days two out of four succumbed, whilst after eight days only one animal out of the four was infected, and after a period of ten days' immersion in the tobacco emulsion the tubercle bacillus failed to kill a single animal.
Cigar- and cigarette-ends were collected from the streets and cafés of Padua by Peserico, but in spite of consumption being stated to be very prevalent in this city, in no single case could the presence of the tubercle bacillus be discovered, although, as in the other investigations, the surest method for its detection,i.e.animal inoculations, was employed.
Brief reference may be made also to the experiments conducted to ascertain if cigars and cigarettes, as sold, contain the tubercle bacillus. The more interest attaches to this investigation because it is well known that the operators employed in tobacco factories are, as a rule, an unhealthy class, diseases of the respiratory organs, and especially tuberculosis, being very prevalent amongst them. A German official report on this subject states that the average duration of life of such factory hands only reaches thirty-eight years. Doubtless the lightness of the occupation encourages many to seek employment in these factories whose state of health would debar them from obtaining work under more trying circumstances. Some of the conditions under which cigars and cigarettes are made, such as the workers using their saliva to facilitate the rolling of them and fixing of the leaves, and the testing of the "drawing" properties of a cigar by placing it in the mouth, with the facilities offered for the dissemination of dried tuberculous sputum as dust, contribute to make it highly probable that tobacco as it leaves the factory may contain the germs of consumption.
Before leaving the subject of tobacco and disease germs it may be of interest to inquire what justification in fact there is for the practice adopted by anxious mothers, when travelling in times of epidemics of zymotic disease, of thrusting themselves and their children into the sanctum of the other sex—the smoking compartment of a railway carriage. I have frequently seen this done, despite the voluble protests of its legitimate occupants. Tassinari has made some very interesting experiments on the effect of tobacco smoke on the vitality of various descriptions of disease germs. He constructed an apparatus in which he suspended pieces of linen soaked in broth infected with the particular micro-organism to be tested. Tobacco smoke was then admitted, and the microbes were retained in this stifling atmosphere for half an hour. In these surroundings cholera and typhoid germs were destroyed, and other bacteria, such as the anthrax bacillus and the pneumonia bacillus, were so prejudicially affected, that when subsequently transferred to their normal surroundings it was only with extreme difficulty that they could be revived. When, however, the tobacco smoke was made to pass through water before reaching the bacteria, its pernicious influence was entirely removed, and the latter suffered no detriment. Hence the practice, so often seen in the East, of passing tobacco smoke through rose or other perfumed water before inhaling it, whilst doubtless rendering it less noxious to the smoker, deprives the exhaled tobacco fumes of all their bactericidal or disinfecting properties.
To return, however, after this somewhat lengthy digression, to the question of dust and its bacterial properties, we have learnt enough to enable us to realise that the movement for the migration of the working-classes from crowded streets to rural districts, in which Mr. George Cadbury has played so practical and important a part in the creation of his model village, with its gardens and open spaces, some five miles from the city of Birmingham, is, if only bacterially considered, a very real barrier against the dissemination of disease, for the denser the population, the greater will be the crowd of bacteria, and the greater the chance of pathogenic varieties being present amongst them. Again, we know that sunshine is one of the most potent germicides with which nature has provided us;[2]and it requires no effort of the imagination to realise how, in the gloomy back courts and crowded tenements of our great smoke-laden cities, bacteria succeed in obtaining a firm hold on their surroundings, and, in the shape of spores, attaining an undesirable and hoary old age, in which they are in some cases almost indestructible. Fräulein Dr. E. Concornotti has shown that this is no figment of fancy only, for she has recently made a special and very elaborate study of the distribution of pathogenic or disease bacteria in air, searching for them in the most varied surroundings, such as prisons, schools, casual wards, etc., with the result that, out of forty-six experiments in which the character of the bacteria found was tested by inoculation into animals, thirty-two yielded organisms which were pathogenic. Dr. Concornotti concludes her valuable memoir by stating that her investigations proved conclusively that the dirtier or more slumlike the surroundings, the greater was the frequency with which she found bacteria associated with disease in the air.
Messrs. Valenti and Terrari-Lelli have quite recently been able fully to endorse these statements in the results they have obtained in their systematic study of the bacterial contents of the air in the city of Modena. In their report they state that the narrower and more crowded the streets, the greater was the number of bacteria present in the air, and the more frequently did they meet with varieties associated with septic disease.
Numerous detailed investigations have also been made of the bacterial contents of the dust in hospitals. That cases of infection arising within hospital precincts are of no uncommon occurrence may be gathered from the observations made by Lutand and Hogg, who report no fewer than 2,294 such cases having arisen in the space of six years in certain Paris hospitals, whilst Solowjew records 1,880 cases as occurring in the space of four and a half months in the St. Petersburg city hospital. Solowjew made a special study of the bacterial contents of dust collected in hospitals, and states that 41·8 per cent. of the samples examined contained disease germs. The degree of infection possessed by dust in such surroundings must, of course, depend upon the degree of cleanliness which characterises the management of any particular institution; and such investigations as the above can only help to emphasise the immense importance of common cleanliness and the reasonableness of taking every precaution possible in the disinfection of utensils, etc.
Some years ago Messrs. Carnelley, Haldane, and Anderson carried out an elaborate series of investigations on the air of dwelling-houses in some of the poorest parts of Dundee. The samples were taken during the night, between 12.30 a.m. and 4.30 a.m., and in their report the authors state that the one-roomed tenements were mostly those of the very poor; "sometimes as many as six or even eight persons occupied the one bed," whilst in other cases there was no bed at all. As regards the number of bacteria present in the air in these one-roomed houses, an average of several examinations amounted to sixty per quart; in two-roomed houses it was reduced to forty-six, and in houses of four rooms and upwards only nine micro-organisms in the same volume of air were discovered.
On comparing the mortality statistics with the composition of the air of dwelling-houses of different dimensions, the authors arrive at the following conclusions: "That, as we pass from four-roomed to three-, two-, and one-roomed houses, not only does the air become more and more impure, as indicated by the increase in the carbonic acid and organic matter, and more especially of the micro-organisms, but there is a corresponding and similar increase in the death-rate, together with a marked lowering of the mean age at death."[3]
Mention may also here be made of the investigations made by these gentlemen on the air of Board schools, which showed that in those buildings where mechanical ventilation was used the carbonic acid gas was three-fifths, the organic matter one-seventh, and the micro-organisms less than one-ninth of what was found in schools ventilated by the ordinary methods. In commenting upon this series of investigations, the authors write: "When we come to consider that the children who attend average Board schools for six hours a day are during that time subjected to an atmosphere containing on an average nearly nineteen volumes of carbonic acid per 10,000, and a very large proportion of organic matter, and no less than 155 micro-organisms at least per quart, we need not be surprised at the unhealthy appearance of very many of the children. It must also be borne in mind that many of them are exposed for nine hours more to an atmosphere which is about five times as impure as that of an ordinary bedroom in a middle-class house. They are thus breathing for at least fifteen hours out of the twenty-four a highly impure atmosphere. The effects of this are often intensified, as is well known, by insufficient food and clothing, both of which must render them less capable of resisting the impure air. The fact that these schools become, after a time, habitually infected by bacteria renders it probable that they also become permanent foci of infection for various diseases, and particularly, perhaps, for tubercular disease in its various forms."
Further practical evidence of the manner in which the general death-rate for certain diseases is influenced by the conditions under which the poor are housed is afforded by statistics which have been collected at Glasgow. In the case of zymotic diseases, whereas the death-rate in tenements consisting of one or two rooms was 4·78 per 1,000, it fell to 2·46 in those of three or four rooms, and to 1·14 per 1,000 in those of five rooms and upwards. Again, in the case of acute diseases of the lungs, the death-rate was as high as 9·85 in the smallest tenements, and but 3·28 in the largest.
Of great interest are the certified mortality statistics of phthisis in the British Army in the period 1830-46 and 1859-66 respectively; in the former it was 7·86 per 1,000, whilst in the latter period it had fallen to 3·1, this important difference being coincident with an increased cubic space per head in the barracks.
Such facts as these, if only fully realised, should surely serve to stimulate municipal and other local authorities to provide decent and wholesome accommodation for the poor. It has been recently estimated that in London the total number of persons living in tenements of one to four rooms is 2,333,152, and of these nearly half a million live the life of the one-room tenement of three to a room and upwards. In the stirring words of Mr. John Burns,M.P.: "At least a million of people who live thus on wages that barely sustain decent life, are but prisoners of poverty, whose lot in life is but a funeral procession from the cradle to the grave … for these, as soon as practicable, better homes should be provided at once in the interest of physique, of morals, of industrial efficiency, and municipal health."
Yet, despite all these facts and the overwhelming evidence which has been collected on the dire results which follow in the wake of overcrowding and insanitary dwellings, we find a prominent magistrate in one of our great industrial cities publicly expressing himself as follows at a municipal banquet: "The Town Council sometimes attempted too much. For instance, they had been far too anxious to get quit of the slums. Now slums, in his opinion, were one of the necessities of all large towns, and it was impossible in the present state of civilisation to dispense with slums unless they could take the people living in them, who were not fit to live anywhere else, and drown them wholesale, as would have been done in the time of the French Revolution."
We have seen how bacteria may be distributed by dust, how they may linger in crowded tenements and badly ventilated buildings, that insanitary surroundings provide, in fact, for the scientist a well-stocked bacterial covert, where he may with ease bag his thousands of germs of various descriptions. The fact already referred to, that the bacteria of consumption may be released in the sputum of phthisical persons, has perhaps already suggested the possibility of other bacteria being likewise discharged into the surrounding air, but it is no doubt difficult to realise that the utterance of even a few words may liberate a variety of bacteria, the mischievous or harmless character of which depends upon the condition of the speaker's health. But even the health of a speaker if satisfactory is not necessarily a safeguard against his dissemination of disease germs, for it is well known that the mouth secretions of healthy people may frequently contain thestaphylococcus pyogenes aureus, and also, though less frequently, thediplococcus lanceolatus, both virulent microbes; whilst that diphtheria bacilli may be present in the mouths of people who are not suffering from the disease has been demonstrated repeatedly. What a capacity, then, for spreading evil does the public orator possess! It makes one tremble to think of the aërial condition of the House of Commons when a big debate is on, for it has been found that the sharper the enunciation of the consonants, and the louder the voice, the larger is the number of organisms discharged and the farther they reach!
If this danger attends the speaking of healthy people, what must be the risk accompanying the listening to speeches from persons suffering from consumption, influenza, or any other disease which specially affects the air passages! What applies to speaking applies to a still greater degree to the act of coughing or sneezing.
To Schäffer we owe the discovery that leprosy bacilli may be disseminated in immense numbers by the coughing of leprosy patients, whilst it has been estimated that a tuberculous invalid may discharge a billion tubercle bacilli in the space of twenty-four hours, whilst the dried sputum of consumptive persons has actually engendered tuberculous symptoms in the lungs of animals which were made to inhale it. Plague bacilli have been found in masses in the mouths of plague patients, and were found, moreover, before any symptoms of the disease had declared themselves; and the sputum of infected persons is regarded by some authorities as one of the most important vehicles by which plague is spread. The culpability of air in the dissemination of tuberculosis amongst animals has been made the subject of some very exhaustive and valuable investigations by Kasselmann. In as many as 71 per cent of bovine tuberculosis cases the respiratory organs, Kasselmann found, were the seat of the disease. The undoubted contamination of the air which takes place in the surroundings of tuberculous animals is not, however, due to the bacilli being exhaled by such cattle in the mere process of respiration, for it has been repeatedly found by various investigators that the air expired by infected animals is free from the dreaded tubercle bacteria. As in man, so in animals—it is by the act of coughing that tuberculous secretions are discharged through the mouth and nasal passages, some of which in the form of spray may enable the bacilli to remain suspended in the air for periods of five hours or more, whilst other portions of such secretions fall on the ground or in the feeding troughs, and later on, as dust, may again relentlessly claim their toll of victims.
In other cases of tuberculosis the excrementitious matter becomes, of course, a fertile source of infection to the surroundings. The dire results which may follow the introduction of a single tuberculous animal into a healthy stall of cows may be realised from the fact that in one instance a whole herd of twenty-eight animals became in the course of one year infected in consequence of the admission of one diseased cow, the cow-house having previously had a perfectly clean bill of health in this respect.
On the Continent the risk of wholesale infection by such means is greater than in this country; for abroad the animals are to a much greater extent stall-fed, and kept shut up both winter and summer. A case is mentioned by the well-known veterinary authority, M. Nocard, of a whole stall of animals becoming infected through the cow-man who tended them being consumptive. He slept in a loft over the cows, and his tuberculous sputum in the form of dust was conveyed to the stalls beneath and so spread the infection.
It has been stated on high authority that domestic pets such as parrots may contract consumption from their masters, and that no less than thirty-six per cent. of these birds brought to the veterinary college in Berlin are found to be suffering from tuberculosis.
In that much-dreaded South African cattle disease, rinderpest, the infection, contrary to what is found in the case of tuberculous animals, is principally spread by themateries morbibeing liberated in the air expired by afflicted cattle, the contagious area surrounding an infected animal extending to as much as a hundred yards and more. Again, as regards pleuro-pneumonia in cattle, the contagion is given off in the air expired, and owing to the length of time which elapses before the lung becomes completely healed and healthy, even after a period of from six to nine months, the expired air may still prove a source of infection.
In an official report on the open-air treatment of consumption in Germany a case is mentioned in which the patient, a farmer by occupation, had contracted the disease from some tuberculous cattle which he had on his farm. The writer goes on to say, "This case is worthy of special attention, inasmuch as it indicates that in addition to the danger of contracting the disease from the use of milk or meat derived from tuberculous animals, the tending of such animals may serve to convey the infection to man possibly much more frequently than has hitherto been supposed."
In addition to the above instances of the responsible part played by air in the dissemination of consumption many others might be cited, but perhaps the most striking is that in which a scientific assistant of Tappeiner contracted the disease, and succumbed to it, in the course of some experiments which were being made to ascertain whether consumption could be communicated to animals by spraying them with an emulsion of the sputum of consumptive patients.
It is of historical interest to note that these experiments were being conducted by Tappeiner three years before Robert Koch made the now classical announcement to the scientific world that he had succeeded in identifying, isolating, and in cultivating outside the human body the specific cause of consumption in the shape of the now familiarbacillus tuberculosis. The opinion expressed by Koch at the Congress on Tuberculosis recently held in London, that human and bovine tuberculosis are distinct diseases, is still the subject of contention and experimental investigation. Even if the opinion of this great authority is correct, and in this connection it is interesting to note that already in 1896 this opinion was brought forward by Smith in theMedical Recordat a time when Koch was maintaining theidentityof human and bovine tuberculosis—granted that Koch is correct, it should not, as so many fear, cause any relaxation in the efforts which have been at last made to safeguard our dairy produce by reasonable hygienic precautions; for even if tuberculosis is not transmissible from the cow to man, we know that in the hygienic supervision of our dairy industry we place a great barrier between us and thebacillus tuberculosisand those numerous other disease germs which can and do gain access to milk from thepersonnelof a dairy and so spread infection. With the alarming prevalence of consumption is it not justifiable to regard as certain that a definite proportion of the people engaged in milking, for example, are consumptive? And knowing, as we now do, how such persons can give off the germs of the disease in the simple act of speaking, the contamination of our milk with human tubercle bacilli must be regarded almost as a certainty. Would it not be reasonable that a code of simple precautions to be taken, coupled with a few of the more cogent facts concerning consumption and its distribution, should be drawn up and circulated amongst all engaged in the dairy industry? The National Health Society has done much for the prevention of disease by disseminating, through leaflets and lectures, simple facts concerning health and its preservation; might it not make itself the vehicle for the transmission of some such code which, whilst instructing, should impress upon its readers the responsibility which rests upon each and every individual member of society, by his or her own personal efforts, to assist in the great task of combating disease?
A fact which urgently needs the widest recognition is the possible dissemination of disease germs by individuals not themselves suffering from the disease in question, but who have resided in the immediate surroundings of infected persons.
Dr. Koch was the first to call attention to this danger when he discovered, during the Hamburg cholera epidemic, thatperfectly healthypersons were infected with cholera vibrios, and were the unconscious means of spreading the disease. Still more recently it has been found that true typhoid germs may similarly be present in persons not suffering from typhoid fever but sharing the same living-rooms.
Huxley has said "science is nothing but trained and organised common sense," and it is in this spirit that we must endeavour to make use of the discoveries which have been made in the prevention of disease, in which the science of bacteriology has played so great and important a part.
It was nearly a century ago that a German physician incidentally wrote, "Our houses, hospitals, and infirmaries will, without doubt, some day be like hot-houses, so arranged that the light, even that of the moon and stars, is permitted to penetrate without let or hindrance." This was spoken long before the world of micro-organisms had been discovered, but curiously has found an echo in the writings of a distinguished bacteriological chemist in recent years. "Laissons donc entrer largement partout l'air et le soleil," writes M. Duclaux; "c'est là une maxime bien ancienne, mais si les mots sont vieux l'idée qu'ils revêtent est nouvelle." The interpretation of this ancient maxim is indeed very modern, and we must turn to the investigations made within the past few years to learn with what justification M. Duclaux thus expresses himself, for it is only comparatively recently that we have learnt the novel fact that sunshine, whilst essential to green plant life, is by no means indispensable to the most primitive forms of vegetable existence with which we are acquainted,i.e.bacteria. In fact, we have found out that if we wish to keep our microbial nursery in a healthy, flourishing condition, we must carefully banish all sources of light from our cultivations, and that a dark cupboard is one of the essential requisites of a bacteriological laboratory.
That light had a deleterious effect upon micro-organisms was first discovered in this country by Messrs. Downes and Blunt, and their investigations led Professor Tyndall to carry out some experiments on the Alps, in which he showed that flasks containing nutritive solutions and infected with bacteria when exposed in the sunshine for twenty-four hours remained unaltered, whilst similar vessels kept in the shade became turbid, showing that in these the growth of bacteria had not been arrested. In these experiments mixtures of micro-organisms were employed, and the interest of the French investigations which followed lies in the use of particular microbes—notably the anthrax bacillus and its spores,[4]Roux demonstrating very conclusively that the bacillar form was far more sensitive to light than the spore form, while Momont, in a classical series of experiments, not only fully confirmed these observations, but showed also that the intensity of the action of light depends to a very large extent on the environment of the organism. Thus, if broth containing anthrax bacilli is placed in the sunshine, the latter are destroyed in from two to two and a half hours, whilst if blood containing these organisms is similarly exposed, their destruction is only effected after from twelve to fourteen hours of sunshine. This difference in resistance to insolation was also observed in the case ofdriedblood and broth respectively—eight hours' exposure killing the bacilli in the former, whilst five hours sufficed in the latter.
This is an instance of the apparent idiosyncrasies possessed by micro-organisms, which render their study at once so fascinating and so difficult, and it is through being thus constantly confronted with what, in our ignorance, we mentally designate as "whims," that we can hardly resist the impression of these tiny forms of life being endowed with individual powers of discernment and discrimination. Indeed, these powers of selection and judgment are in certain cases so delicately adjusted that in some of the modern chemical laboratories micro-organisms have become indispensable adjuncts, and by their means new substances have been prepared and fresh contributions made to the science of chemistry.
Momont is not able to give any satisfactory explanation of this different behaviour of the anthrax bacilli in these two media, but goes on to show that yet another factor plays an important part during insolation.
In the above experiments air was allowed to gain access to the vessels containing the broth, but if the precaution be taken of first removing the air and then exposing them to the sunshine, a very different result was obtained, for instead of the anthrax bacilli dying in from two to two and a half hours, they were found to be still alive after fifty hours' insolation. There appears, therefore, to be no doubt that sunshine in some way or other endows atmospheric oxygen with destructive power over the living protoplasm of the bacterial cells; indeed, there is considerable reason to believe that the bactericidal effect is due to the generation of peroxide of hydrogen, which is well known to possess powerfully antiseptic properties.
Numerous investigations have been also made to determine whether all the rays of the spectrum are equally responsible for the bactericidal action of light.
Geisler's work in St. Petersburg is especially instructive in this respect, for by decomposing with a prism the sun's light, as well as that emitted by a 1,000-candle-power electric lamp into their constituent rays, he was able to compare the different effects produced by the separate individual rays of both these sources of light.
The organism selected was the typhoid bacillus, and it was found that its growth was retarded in all parts of the two spectra excepting in the red, and that the intensity of the retardation was increased in passing from the red towards the ultraviolet end of the spectrum, where it was most pronounced of all.
But whereas from two to three hours of sunshine were sufficient to produce a most markedly deleterious effect upon the typhoid bacillus, a similar result was only obtained by six hours' exposure to the electric light.
Dr. Kirstein, of the University of Giessen, in the course of some experiments he made to ascertain how long different varieties of bacteria can exist when they obtain access to the air in the form of fine spray, and subsequently, as happens under ordinary circumstances, get dried up, noted also the effect upon their vitality of exposure in daylight and darkness respectively. For this purpose the apparatus in which the experiments were carried out was in some cases kept in a dark cellar, whilst in others it was left standing in the laboratory in ordinary daylight.
Delicate bacteria, such as the fowl-cholera bacillus, it was found, could not survive exposure to daylight in this dried-up condition for more than ten hours, but when they were put in the dark their lease of life was prolonged for more than twice that length of time; whilst as regards varieties of tougher constitution, such as diphtheria and tubercle bacilli, whose initial vitality was very considerably greater under these adverse circumstances, confinement in the cellar enabled them to exist more than four times as long as they were able to in the healthy atmosphere of the well-lighted laboratory.
Dr. Onorato, of the University of Genoa, has recently shown, also, that influenza bacilli are entirely destroyed after the sun has been shining on them continuously for three and a half hours.
Such facts indicate how essential to health is plenty of light in our dwelling-rooms, and how important it is that in the designing of houses the trapping of the maximum amount of sunshine should be very carefully considered. Architects might indeed with advantage be compelled to include in their qualifications a knowledge of the fundamental facts of sanitary science. The fashion of shutting the sunshine out by barriers of blinds and curtains drawn across the windows, a practice which seems to be almost entirely independent of the habitual gloom of the surroundings or general scarcity of sunshine, might possibly be modified were it but known that by thus excluding light we are conferring an inestimable benefit upon the members of the microbial community, which may at any moment comprise some of the subtlest and most dangerous antagonists with which we have to reckon in the struggle for existence.
From a hygienic point of view, also, the question of the potency of sunshine in regard to the bacteria present in water is both important and interesting, for it is to water at the present time that we look for the dissemination of some of the most dreaded zymotic diseases.
Comparatively little has been done in this direction, but those results which have been obtained are exceedingly suggestive. Professor Buchner has published some preliminary experiments which he made with particular micro-organisms. In these investigations boiled tap-water was used to ensure the absence of all bacteria except those which were subsequently introduced, and, whilst some of the vessels were exposed to the sunshine, others were simultaneously preserved in the dark. It was found that typhoid, cholera, and various other bacilli were most deleteriously affected by insolation. Perhaps an example will best serve to illustrate the nature of the results obtained. Some boiled water contained in a flask was inoculated with an immense number of a bacillus, closely resembling the typhoid organism, normally present in the body and frequently found in water, thebacillus coli communis. So many were introduced that nearly one hundred thousand individuals were present in every twenty drops of the water. This flask then, containing water so densely sown with microbes, was placed in the sunshine for one hour, whilst another and similar flask was kept during the same time in the dark. On being subsequently examined it was ascertained that whereas a slight increase in the number of bacilli had taken place in the "dark" flask, in the insolated flaskabsolutely no living organisms whateverwere present.
Professor Percy Frankland has also investigated the action of sunshine on micro-organisms in water, and in one of his reports to the Water Research Committee of the Royal Society an account is given of the effect of insolation on the vitality of the spores of anthrax in Thames water. These experiments show again what an important influence the surroundings of the organism have on the bactericidal potency of the sun's rays, for the remarkable fact was established that when immersed in water anthrax spores are far less prejudicially affected by sunlight than when exposed in ordinary culture materials such as broth or gelatine. Thus it was only after one hundred and fifty-one hours' insolation in Thames water that these spores were entirely destroyed, whilst a few hours' exposure in the usual culture media is generally sufficient for their annihilation. In water not subjected to insolation anthrax spores were found to retain their vitality for several months.
In case the reader should be tempted to compare these results with those obtained by Buchner, it must be borne in mind that whereas those experiments were made withbacilli, these were directed to determine the behaviour ofsporesin water, which are some of the hardiest forms of living matter with which we are acquainted. This alone would sufficiently explain the results obtained, whilst each variety of microbe may be, and doubtless is, differently affected during insolation.
We know now that a remarkable improvement takes place in the bacterial condition of water during its prolonged storage in reservoirs, and although, no doubt, the processes of sedimentation which have been shown to take place during this period of repose are to a large extent responsible for the diminution in the number of bacteria present, yet it is also highly probable that insolation assists considerably in this improvement, at any rate, in the upper layers of the water. As the depth of the water increases the action of light is necessarily diminished. Indeed, exact experiments conducted in the Lake of Geneva to ascertain by means of photographic plates the depth to which the sun's rays penetrate showed that they did not reach beyond five hundred and fifty-three feet, at which depth the intensity of the light is equal to that which is ordinarily observed on a clear but moonless night, so that long before that their bactericidal potency would cease.
It is the more important that this limit to the powers of sunshine in water should be duly recognised, inasmuch as solar enthusiasts, when first the fact became known, rashly jumped at the convenient hypothesis, based on very slender experimental evidence, that the sun's rays were possessed of such omniscient power to slay microbes, that they might safely be relied upon to banish all noxious organisms from our streams, and that local authorities might therefore comfortably and without any qualms of conscience turn sewage into our rivers and so dispense with the cost and labour of its treatment and purification.
This was actually suggested in a proposal made for dealing with the sewage of the city of Cologne. Fortunately further investigations have removed these most erroneous and dangerous ideas; and whilst all due credit may be given to sunshine for what it really does accomplish in the destruction of bacteria in water, there is now no doubt as to its potency being confined to the superficial layers of water.
Perhaps Dr. Procacci's experiments will most clearly convey some idea of this limitation, for he made a special study of this particular phenomenon. Some drain water, containing, of course, an abundance of microbial life, was placed in cylindrical glass vessels, and only the perpendicular rays of the sun were allowed to play upon it. The column of water was about two feet high, and whilst a bacteriological examination at the commencement of the research showed that about two thousand microbes were present in every twenty drops of water taken from the surface, centre, and bottom of the vessel respectively, after three hours' sunshine only nine and ten were found in the surface and centre portions of the water, whilst at the bottom the numbers remained practically unchanged. Professor Buchner, of Munich, demonstrated the same impotence of the sun's rays to destroy bacteria much beneath the surface of water, in some ingenious experiments he made in the Starnberger See, near Munich. He lowered glass dishes containing jelly thickly sown with typhoid bacilli to different depths in the water during bright sunshine; those kept at a depth of about five feet subsequently showed no sign of life, whilst those immersed about ten feet developed abundant growths; in both cases the exposure was prolonged over four and a half hours.
In our own rivers Thames and Lea frequently about twenty times more microbes have been found in the winter than in the summer months, but it would be extremely rash to therefore infer that the comparative poverty of bacterial life was due to the greater potency of the sun's rays in the summer than in the winter. Doubtless it may contribute to this beneficial result; but we know as a matter of fact that, in the summer, these rivers receive a large proportion of spring water, which is comparatively poor in microbes, and that this factor also must not be ignored in discussing the improved bacterial quality of these waters at this season of the year.
Another point which must be taken into consideration in regard to the effective insolation of water is its chemical composition, for it has been shown[5]that the action of sunshine in destroying germs in water is very considerably increased when common salt is added to the water, and this opens up a wide field for experimental inquiry before we can accept sunshine as a reliable agent in the purification of water.
Again, we must remember that a great deal depends upon the condition of the microbe itself. If it is present in the spore or hardy form, then considerably longer will be required for its annihilation. This fact has been abundantly shown in the case of anthrax, which in the condition of spores will retain its vitality in water flooded with sunshine for considerably upwards of a hundred hours, the bacilli being far more easily destroyed. We must also bear in mind that the individual vitality of the microbe is an important factor in determining its chance of survival; if it is in a healthy, vigorous condition, it will resist the lethal action of sunshine for considerably longer than when its vitality has been already reduced by adverse surroundings.
It is, therefore, sufficiently obvious that the power of insolation to bacterially purify water is by no means easy of estimation, and that numerous and very varied factors have to be taken into account when we attempt to endow it with any measure of practical hygienic importance.
In connection with the vitality of anthrax germs in water, which has afforded material for so many laboratory investigations, it is of interest to consider what chance exists of anthrax being communicated by water. Until a few years ago, as far as I am aware, no instance had been recorded of anthrax having been actually communicated by water, until an outbreak of anthrax on a farm in the south of Russia was distinctly traced by a skilled bacteriologist to the use of water from a particular well, in the sediment of which the bacillus of anthrax was discovered.
Anthrax bacilli have also been detected in the water of the River Illinois in the vicinity of Chicago, one of the chief sources of pollution of which is the slaughtering of cattle and the discharge of their offal into the river.
The likelihood of such contamination taking place through the drainage of soil makes it of importance to ascertain what may become of the bacilli of anthrax derived from the bodies of animals which have died of this disease, and whose carcasses have been buried and not burnt.
The anthrax bacillus cannot produce the hardy spore form within the bodies of animals, but it does outside. Now it has been shown that the bacilli of anthrax taken from the blood of an animal dead of anthrax are destroyed rapidly in ordinary River Thames water, for example, but that if the temperature of the water to which they gain access is somewhat higher than usual, such bacilli are able to sporulate or produce spores in the water, and in that hardy form can retain their vitality and virulence for several months.
That anthrax bacilli can produce spores in water under certain conditions has not hitherto been dwelt upon in discussing the question of their vitality in water, and it is of obvious importance in connection with the action of sunshine on anthrax germs in water, knowing as we now do the very different manner in which the spores and bacilli respectively behave when under the influence of the sun's rays.
It was not, perhaps, unnatural that rash assumptions as to the efficacy of sunshine should have been readily accepted when such remarkable feats performed on microbes by sunshine were being continually put forward.
Thus it has been found that insolation, even when it does not destroy, may effect profound changes in the physiological character of certain micro-organisms.
Dr. Lohmann, of Rostock, discovered that some hours' exposure to bright sunshine entirely destroys yeast cells, whilst even feeble and intermittent sunshine is capable of paralysing them, and that they only recover their vitality when removed from this obnoxious influence. This recuperative power is not, however, shared equally by all varieties of yeast, some possessing it in a far greater degree than others. Dr. Lohmann also found that yeast cells, after being exposed to sunshine, assumed a shrunken and distorted appearance, showing that insolation had produced a striking physiological effect upon the structure of these cells.
Professor Hansen published some years ago a most interesting memoir on some of the characteristic features of the moulds which are to be found on manure heaps, in which he records how light exerts a very important influence on the manner in which the spore or fruit of these lowly vegetables is set free or distributed. All the various phases in the fructification process of some of these moulds were carefully watched by Dr. Hansen. He kept his caged specimens near a window with an eastern aspect, and he states that in the first instance the stalks inclined towards the light, but that afterwards they assumed an upright position. Darkness was nearly always chosen for the liberation of the spores, but in a few instances a small number were released during the daytime, and it was noticed that when this did occur they were invariably discharged on the side away from the source of light. In various other ways he confirmed this interesting observation, and found that the fruit of the mould was invariably discharged in the opposite direction to that in which the stalk had previously inclined under the influence of light. The force with which the spores were discharged varied very considerably, sometimes being cast to a distance of four inches or more from the stalk, and sometimes being found close to and even on the stalk.
The manner in which sunshine may also modify the pigment-producing powers of micro-organisms is remarkable.
Many microbes are able to elaborate when grown on various culture media, such as gelatine or slices of potato, most brilliant and beautiful pigments ranging from intense blood-red to the most delicate shades of pink, and embracing every gradation of yellow, as well as browns, greens, and violets. Now it has been found that some of these pigment-producing bacteria, when exposed to sunshine on these nutritive materials, fail to exhibit their characteristic colour, although the duration of insolation may not have sufficed to destroy their actual vitality. One of these organisms originally obtained from water has been specially studied in this respect by M. Laurent. If slices of potato are streaked with a small number of this particular bacillus (bacille rouge de Kiel) a magnificent patch of blood-red colour makes its appearance in the course of a day or two, but if, on the other hand, similar slices of potato are exposed to three hours' sunshine, a colourless growth subsequently develops, except where here and there a few isolated spots of pale pink are visible. When the insolation is prolonged for five hours nothing whatever appears on the potato, the bacilli having been entirely destroyed. But this is not all. M. Laurent found that if he took some of the colourless growth and inoculated it on to potatoes he obtained again, but without insolation, a colourless vegetation—in fact, three hours' insolation had so modified the physiological character of the bacillus thata new race had been generated, a race deprived of its power of producing this red pigment. In what numerous directions the character of microbes may be and are being modified, even by simple exposure to sunshine, opens up a wide field for speculation and research, whilst the tractability of these minute and most primitive forms of life, if we only approach their education with sufficient insight and patience, may enable us to make them serve where they now are masters.
The remarkable discoveries on the modification of the disease-producing properties of certain bacteria by sunshine may perhaps encourage the idea that we are making some progress towards the attainment of this desirable millennium. That diminution of the virulence or disease-producing power of such deadly microbes as those of cholera, anthrax, and tuberculosis can be brought about through simple exposure to the sun's rays seems almost inconceivable, yet it has been discovered that by placing the cholera bacillus, for example, in the sunshine its virulent character undergoes such a profound modification that it is actually reduced to the condition of a vaccine, and may be employed to protect animals from infection with its still virulent brethren. Yet this is what has been undoubtedly shown by Dr. Palermo in very carefully conducted investigations. He was, moreover, able to indicate, within a very narrow margin, the precise amount of insolation necessary to bring about this result: for if the cholera cultures were only exposed for three hours, their toxic properties were not reduced to the condition of vaccine; but if the insolation was continued for three and a half hours up to four and a half hours, they became endowed with the requisite immunising properties, and animals treated first with the so-called sunshine-cholera-vaccine were able subsequently to withstand otherwise fatal doses of virulent cholera cultures. Dr. Palermo also found that, besides producing this subtle modification in the character of cholera bacilli, sunshine exerted a remarkable physiological change in these organisms, for when examined under the microscope they no longer exhibited their typical activity, having been deprived of all powers of movement, whilst those kept during the same length of time in the dark had not abated one jot of their customary mobility.
But sunshine not only controls in this wonderful manner the action of the living bacillus, but it also operates upon the products elaborated by disease organisms. Thus the microbe producing lock-jaw or tetanus may be grown in broth, and the latter may be subsequently passed through a porcelain or a Berkefeld filter, so that the resulting liquid is entirely deprived of all germ life. This tetanus-filtrate, as it is called, is endowed with very powerful toxic properties, and it will retain its lethal action even when kept for upwards of three hundred days, providing it is screened from all light; but place such filtrates in diffused light, and they lose their poisonous properties, requiring, however, upwards of ten weeks to become entirely harmless; if, on the other hand, they be exposed to sunshine, they are completely deprived of their toxic character in from fifteen to eighteen hours. Again, as little as five hours' sunshine is sufficient to greatly modify the toxic action of diphtheria cultures. It is of interest also to note that even the venom of the rattlesnake, that most potent of all poisons, cannot emerge unscathed from an exposure to sunshine maintained during a fortnight.
Interesting as all these isolated observations are, they indicate what an immense amount yet remains to be done before we can hope to have any connected conception of the mechanism, so to speak, of insolation. At present there is too large an allowance, which we are compelled to make, for the unknown to permit of our adequately manipulating this marvellous agency in relation to bacteriological problems. But who shall say what part has been, and is being still, played by sunshine in determining the individual character of microbes, operating as it has done from time immemorial upon countless generations of these minute germs of life?
The problem of insolation has been attacked from an entirely novel point of view by Dr. Masella, who has endeavoured to find out whether sunshine plays any part in the predisposition of animal life to infection.
Now sunshine has long been credited with possessing therapeutic powers, and, indeed, traditions of cures effected by the ancients by means of insolation have been treasured up and handed down to the present day. Even as late as the beginning of the present century we may read of a French physician seriously recording his claim to have cured a dropsical patient within two weeks by placing him daily for several hours in the sunshine, and many medical journals of recent years contain communications on the beneficial results derived from the use of sunshine in the treatment of various diseases. It seems curious, therefore, that whilst so much has been done to test the action of light on disease microbes inartificialsurroundings, such as are to be found in laboratory experiments, hardly any investigations have been made to try and define more precisely how sunshine may affect their pathogenic action within the animal system. Dr. Masella's researches, undertaken with the express object of, if possible, elucidating this question, are therefore of special interest and importance.
The first series of experiments was carried out to ascertain whether exposure to sunshine increases or reduces an animal's susceptibility to particular diseases, those selected for investigation being typhoid fever and cholera. For this purpose guinea-pigs were exposed to the full rays of the sun during a period of from nine to fifteen hours for two days, whilst other guinea-pigs, for the sake of comparison, were not permitted to have more light than that obtainable in a stable where only diffused light was admitted. Both these sets of animals were subsequently infected with virulent cultures of cholera and typhoid germs respectively, and were in neither case exposed to sunshine. The results which Dr. Masella obtained were remarkable, for he found that those animals which previous to infection had been placed in the sunshine died more rapidly than those which had been kept in the stable, and that the exposure to the sun's rays had so increased their susceptibility to these diseases that they succumbed to smaller doses, and doses, moreover, which did not prove fatal to the other guinea-pigs. Still more striking was the part played by insolation in the course of these diseases in animals exposed to sunshineafterinoculation, for instead of dying in from fifteen to twenty-four hours, they succumbed in from three to five hours.
Here, then, we find sunshine, in some mysterious manner not yet understood, far from benefiting the animal and assisting it in combating these diseases, actually contributing to the lethal action of these bacteria. It has been asserted on the authority of some medical men that in cases of small-pox recovery is rendered more easy and rapid when light is excluded from the patient's room; whether Dr. Masella's experiments will permit of any such interpretation being placed upon them remains to be seen; they are, at any rate, extremely suggestive.
That it is possible for temperature to have some determining influence upon the course of certain diseases has been shown by O. Voges, who, experimenting with a minute bacillus which he isolated from tumours characteristic of a cattle disease very prevalent in South America, found that although this bacillus was the undoubtedfons et origoof the disease, he could not produce fatal results in animals if he kept them in cold surroundings; only when the temperature was raised to from 35-45 degrees Centigrade did the infected animals succumb. The dependence of the activity and virulence of this micro-organism upon temperature is also borne out in actual experience, the disease being the more prevalent and the more fatal the hotter the climate of the country.
It may be mentioned in passing that this bacillus has the distinction of being the smallest yet discovered; the influenza bacillus hitherto held the palm in this respect, but it must yield its position to its more successful rival, for Voges states that when magnified about fifteen hundred times it is only just discernible in the microscopic field.
Even the smoke-laden atmosphere of our great cities, our leaden skies and dreary fogs and mists, may after all, then, if we can only learn to look at them from Dr. Masella's point of view, become a source of benefit and a subject for congratulation; yet our inherent love of light and sunshine would cause us willingly to hand over our murky climate had we but the chance of obtaining in exchange that of any of the sunny cities of the south. Moreover, in the case of tubercular disease experience is daily impressing upon us the wisdom, and indeed necessity, of absorbing as much sunshine as possible, and hence the pilgrimage which is now recommended to Davos and other resorts where invalids can get the maximum amount of bright sunshine. And not only is this the outcome of practical experience, but De Renzi has shown by actual experiment that sunshine acts beneficially in cases of tuberculosis in animals. Thus, guinea-pigs were infected with tuberculous material and exposed in glass boxes to the sun for five or six hours daily, others being similarly infected but protected from sunshine. The animals which had received the sunshine died in 24, 39, 52, and 89 days respectively, whilst those which had not been sunned succumbed in from 29, 25, 26, and 41 days; or, in other words, De Renzi found that insolation had very materially increased the infected animals' power of coping with tuberculosis.
The part which sunshine plays, or may be made to play, in disease is very obscure, but it would appear at least justifiable to assume that it is an agent which further investigation may show we cannot afford to disregard, contributing as it may to the production of a healthy tone in the system, and thereby materially assisting the body to defy the insidious attacks made upon it from without.
The so-called open-air treatment of consumption which has made such giant strides in the last few years is an example of how, by contributing to the general health of an individual, the powers for resisting a localised disease may be so increased that the latter can, in many cases, be thrown off altogether. In no country has more progress been made in the establishment of institutions for the cure of consumption on these lines than in Germany. At the end of the year 1899 there were forty-nine such institutions in Germany, with four thousand beds; in a little more than twelve months later there were no less than sixty such, with accommodation for altogether five thousand patients. It is of interest to note that amongst the earliest of these institutions to be founded was that erected and endowed by the famous Badischen Anilin and Soda Fabrik Company, for the exclusive benefit of those of their workpeople who were suffering from tuberculous disease.
We have learnt that sunshine is endowed with distinctly lethal action as regards particular bacteria, that it can modify the subtle properties of toxic solutions, and we are asked to believe that it may exercise an important influence on the animal system in determining the power of the latter to deal with the agents of disease; but, as we have seen, the mechanism of it all is shrouded in mystery, and we are at a loss to divine how it works. Might not some fresh light be thrown upon this problem if we could ascertain the effect of sunshine on some of these natural fluids of the body, which recent brilliant research has shown to be endowed with such wonderful protective or immunising properties? So far as I am aware, the action of sunshine on these anti-toxins or protective fluids has not yet been investigated. Can sunshine interfere with the therapeutic effect of diphtheria-serum, for example? If simple insolation can so profoundly modify the character of toxic fluids, it is not unreasonable to anticipate some action on these anti-toxins, and their study in this connection would appear to offer an important step in the direction of unravelling the mystery attending the action of light on life.