CHAPTER XXPLUTO FOUND[46]

Now formulas, or series of equations, that express the perturbations caused by one planet in the orbit of another must contain all these elements, because all of them affect the result. But there are too many of them for a direct solution. Therefore Leverrier assumed a distance of the unknown planet from the Sun, and with it the mean motion which is proportional to that distance; worked out from the residuals of Uranus at various dates a series of equations in terms of the place of the unknown in its orbit; and then found what place therein at a given time would give results reducing the residuals to a minimum—that is, would come nearest to accounting for them. In fact, supposing that the unknown planet would be about the distance from the Sun indicated by Bode’s law, the limits within which he assumed trial distances were narrow, and, as it proved, wholly beyond the place where it was found. This method, which in its general outline Percival followed, consisted therefore of a process of trial and error for the distance (with the mean motion) and for the place of X in its orbit (ε). For the other three elements (e, ῶ and m) he used in the various solutions 24 to 37 equations drawn from the residuals of Uranus at different dates, and expressed in terms of ε. He did this in order to have several corroborative calculations, and to discover which of them accorded most closely with the perturbations observed.

We have seen that in 1908-09 Percival was inquiring about the exact residuals of Uranus, and he must have been at work on them soon afterwards, for on December 1, 1910, he writes to Mr. Lampland that Miss Williams, his head computer, and he have been puzzling away over that trans-Neptunian planet, have constructed the curve of perturbations, but findsome strange things, looking as if Leverrier’s later theory of Uranus were not exact. This work had been done by Leverrier’s methods “but with extensions in the number and character of the terms calculated in the perturbation in order to render it more complete.” Though uncertain of his results, he asks Mr. Lampland, in April 1911, to look for the planet. But he was by no means himself convinced that his data were accurate, and he computed all over again with the residuals given by Gaillot, which he considered more accurate than Leverrier’s in regard to the masses, and therefore the attractions, of the known planets concerned. Incidentally he remarks at this point in his Memoir,[45]in speaking of works on celestial mechanics, that “after excellent analytical solutions, values of the quantities involved are introduced on the basis apparently of the respect due to age. Nautical Almanacs abet the practice by never publishing, consciously, contemporary values of astronomic constants; thus avoiding committal to doubtful results by the simple expedient of not printing anything not known to be wrong.” His result for X, as he called the planet he was seeking, computed by Gaillot’s residuals, differed from that found in using Leverrier’s figures by some forty degrees to the East, and on July 8 he telegraphs Mr. Lampland to look there.

These telegrams to Mr. Lampland continue at short intervals for a long time with constant revisions and extensions in the calculations; and, as he notes, every new move takes weeks in the doing; but all without finding planet X. Perhaps it was this disappointment that led him to make the even more gigantic calculation printed in the Memoir, wherehe says: “In the present case, it seemed advisable to pursue the subject in a different way, longer and more laborious than these earlier methods, but also more certain and exact: that by a true least-square method throughout. When this was done, a result substantially differing from the preliminary one was the outcome. It both shifted the minimum and bettered the solution. In consequence, the whole work was donede novoin this more rigorous way, with results which proved its value.”

Then follow many pages of transformations which, as the guide books say of mountain climbing, no one should undertake unless he is sure of his feet and has a perfectly steady head. But anyone can see that, even in the same plane, the aggregate attractions of one planet on another, pulling eventually from all possible relative positions in their respective elliptical orbits with a force inversely as the square of the ever-changing distance, must form a highly complex problem. Nor, when for one of them the distance, velocity, mass, position and shape of orbit are wholly unknown, so that all these things must be represented by symbols, will anyone be surprised if the relations of the two bodies are expressed by lines of these, following one another by regiments over the pages. In fact the Memoir is printed for those who are thoroughly familiar with this kind of solitaire.

For the first trial and error Percival assumed the distance of X from the Sun to be 47.5 planetary units (the distance of the Earth from the Sun being the unit), as that seemed on analogy a probable, though by no means a certain, distance. With this as a basis, and with the actual observations of Uranus brought to the nearest accuracy by the method of least-squares of errors, he finds the eccentricity, the place ofthe perihelion and the mass of X in terms of its position in its orbit. Then he computes the results for about every ten degrees all the way round the orbit, and finds two positions, almost opposite, near 0° and near 180°, which reduce the residuals to a minimum—that is which most nearly account for the perturbations. Each of these thirty tried positions involved a vast amount of computation, but more still was to come.

Finally, to be sure that he had covered the ground and left no loophole for X to escape, he tried, beside the 47.5 he had already used, a series of other possible distances from the Sun,—40.5, 42.5, 45, 51.25 units,—each of them requiring every computation to be done over again. But the result was satisfactory, for it showed that the residuals were most nearly accounted for by a distance not far from 45 units (or a little less if the planet was at the opposite side of its orbit), and that the residuals increased for a distance greater or less than this. But still he was not satisfied, and for greater security he took up terms of the second and third order—very difficult to deal with—but found that they made no substantial difference in the result.

So much for the longitude of X (that is its orbit and position in the plane of the ecliptic) but that was not all, for its orbit might not lie in that plane but might be inclined to it, and like all the other planets he supposed it more or less so—more he surmised. Although he made some calculations on the subject he did not feel that any result obtained would be reliable, and if the longitude were near enough he thought the planet could be found. He says:

“To determine the inclination of the orbit of the unknown from the residuals in latitude ofUranushas proved as inconclusiveas Leverrier found the like attempt in the case ofNeptune.

“The cause of failure lies, it would seem, in the fact that the elements of X enter into the observational equations for the latitude. Not only e and ῶ are thus initially affected but ε as well. Hence as these are doubtful from the longitude results, we can get from the latitude ones only doubtfulness to the second power.” Nevertheless he makes some calculations on the subject which, however, prove unsatisfactory.

Such in outline was his method of calculating the probable orbit and position in the sky of the trans-Neptunian planet; an herculean labor carried out with infinite pains, and attaining, not absolute definiteness, but results from the varying solutions sufficiently alike to warrant the belief in a close approximation. In dealing with what he calls the credentials for the acceptance of his results, he points out that one of his solutions for X in which he has much confidence, reduces the squares of the residuals to be accounted for by ninety per cent., and in the case of some of the others almost to nothing. Yet he had no illusions about the uncertainty of the result, for in the conclusions of the Memoir he says:

“But that the investigation opens our eyes to the pitfalls of the past does not on that account render us blind to those of the present. To begin with, the curves of the solutions show that a proper change in the errors of observation would quite alter the minimum point for either the different mean distances or the mean longitudes. A slight increase of the actual errors over the most probable ones, such as it by no means strains human capacity for error to suppose, would suffice entirely to change the most probable distance of thedisturber and its longitude at the epoch. Indeed the imposing ‘probable error’ of a set of observations imposes on no one familiar with observation, the actual errors committed, due to systematic causes, always far exceeding it.

“In the next place the solutions themselves tell us of alternatives between which they leave us in doubt to decide. If we go by residuals alone, we should choose those solutions which have their mean longitudes at the epoch in the neighborhood of 0°, since the residuals are there the smallest. But on the other hand this would place the unknown now and for many decades back in a part of the sky which has been most assiduously scanned, while the solutions with ε around 180° lead us to one nearly inaccessible to most observatories, and, therefore, preferable for planetary hiding. Between the elements of the two, there is not much to choose, all agreeing pretty well with one another.

“Owing to the inexactitude of our data, then, we cannot regard our results with the complacency of completeness we should like.”

The bulk of the computations for the trans-Neptunian planet were finished by the spring of 1914, and in April he sent to Flagstaff from Boston, where the work had been done, two of the assistant computers. The final Memoir he read to the American Academy of Arts and Sciences on January 13, 1915; and printed in the spring as a publication of the Observatory. Naturally he was deeply anxious to see the fruit from such colossal labor. In July, 1913, he had written to Mr. Lampland: “Generally speaking what fields have you taken? Is there nothing suspicious?” and in May, 1914, “Don’t hesitate to startle me with a telegram ‘FOUND.’” Again, in August, he writes to Dr. Slipher:“I feel sadly of course that nothing has been reported about X, but I suppose the bad weather and Mrs. Lampland’s condition may somewhat explain it”; and to Mr. Lampland in December: “I am giving my work before the Academy on January 13. It would be thoughtful of you to announce the actual discovery at the same time.” Through the banter one can see the craving to find the long-sought planet, and the grief at the baffling of his hopes. That X was not found was the sharpest disappointment of his life.

If so much labor without tangible result gave little satisfaction, there was still less glory won by a vast calculation that did not prove itself correct. Curiously enough, he always enjoyed more recognition among astronomers in Europe than in America; for here, as a highly distinguished member of the craft recently remarked, he did not belong to the guild. He was fond of calling himself an amateur—by which he meant one who worked without remuneration—and of noting how many of the great contributors to science were in that category. The guild here was not readily hospitable to those who had not been trained in the regular treadmill; and it had been shocked by his audacity in proclaiming a discovery of intelligent handiwork on Mars. So for the most part he remained to the end of his life an amateur in this country; though what would have been said had he succeeded in producing, by rigorous calculation, an unknown planet far beyond the orbit of Neptune, it is interesting to conjecture, but difficult to know, for the younger generation of astronomers had not then come upon the stage nor the older ones outlived their prejudice.

The last eighteen months of his life were spent as usual partly at Flagstaff, where he was adding to the buildings,partly in Boston, and in lecturing. In May, 1916, he writes to Sig. Rigano of “Scientia” that he has not time to write an article for his Review, and adds: “Eventually I hope to publish a work on each planet—the whole connected together—but the end not yet.” Fortunately he did not know how near it was.

In May he lectured at Toronto; and in the autumn in the Northwest on Mars and other planets, at Washington State and Reed Colleges, and the universities of Idaho, Washington, Oregon and California. These set forth his latest views, often including much that had been discovered at Flagstaff and elsewhere since his earlier books were published; for his mind was far from closed to change of opinion on newly discovered evidence. It was something of a triumphal procession at these institutions; but it was too much.

More exhausted than he was himself aware, he returned to Flagstaff eager about a new investigation he had been planning on Jupiter’s satellites. It will be recalled that he had found the exact position of the gap in Saturn’s rings accounted for if the inner layers of the planet rotated faster and therefore were more oblate than the visible gaseous surface. Now the innermost satellite of Jupiter (the Vth) was farther off than the simple relation between distance and period should make it, a difference that might be explained if in Jupiter, as in Saturn, the molten inner core were more oblate than the outer gaseous envelope. To ascertain this the distance of the satellite V. must be determined exactly, and with Mr. E. C. Slipher he was busy in doing so night after night through that of November 11th. But he was overstrained, and the next day, November 12, 1916, not long after his return to Flagstaff, an attack of apoplexy broughtto a sudden close his intensely active life. Before he became unconscious he said that he always knew it would come thus, but not so soon.

He lies buried in a mausoleum built by his widow close to the dome where his work was done.

Percival had long intended that his Observatory should be permanent, and that his work, especially on the planets, should be forever carried on there with an adequate foundation. Save for an income to his wife during her lifetime, he therefore left his whole fortune in a trust modeled on the lines of the Lowell Institute in Boston, created eighty years earlier by his kinsman John Lowell, Jr. The will provides for a single trustee who appoints his own successor; the first being his cousin Guy Lowell, the next the present trustee, Percival’s nephew, Roger Lowell Putnam. Dr. V. M. Slipher and Mr. C. O. Lampland, who have been at the Observatory from an early time, are the astronomers in charge, carrying on the founder’s principles of constantly enlarging the field of study, and using for the purpose the best instrumental equipment to be procured.

Of course the search was continued for the planet X, but without success, and for a time almost without hope, not only because its body is too small to show a disk, but also by reason of the multitude of stars of like size in that crowded part of the heavens, the Milky Way, where it is extremelydifficult to detect one that has moved. It was as if out of many thousand pins thrown upon the floor one were slightly moved and someone were asked to find which it was. Mere visual observation was clearly futile, for no man could record the positions of all the points of light from one night to another. The only way to conduct a systematic search was through an enduring record, that is by taking photographs of the probable sections of the sky, and comparing two of the same section taken a few days apart to discover a point of light that had changed its place—no simple matter when more than one hundred thousand stars showed upon a single plate. This process Percival tried, but although his hopes were often raised by finding bodies that moved, they proved to be asteroids hitherto unknown,[47]and the X sought so long did not appear.[48]

Percival had felt the need of a new photographic telescope of considerable light power and a wider field, and an attempt was made to borrow such an instrument, for use while one was being manufactured, but in vain. Then came the war when optical glass for large lenses could not be obtained, and before it was over Percival had died. After his death Guy Lowell, the trustee, took up the project, but also died too soon to carry it out. At last in 1929 the lens needed was obtained, the instrument completed in the workshop of the Observatory, and the search renewed in March with much better prospects. Photographs of section after section of the region where X was expected to be were taken and examined by a Blink comparator. This is a device whereby two photographs of slightly different dates could be seen througha microscope at the same time as if superposed. But with all the improvement in apparatus months of labor revealed nothing.

After nearly a year of photographing, and comparing plates, Mr. Clyde W. Tombaugh, a young man brought up on a farm but with a natural love of astronomy, was working in this search at Flagstaff, when he suddenly found, on two plates taken January 23 and 29, 1930, a body that had moved in a way to indicate, not an asteroid, but something vastly farther off. It was followed, and appeared night after night in the path expected for X at about the distance from the sun Percival had predicted. Before giving out any information it was watched for seven weeks, until there could be no doubt from its movements that it was a planet far beyond Neptune, and was following very closely the track which his calculations had foretold. Then, on his birthday, March 13, the news was given to the world.

Recalling Percival’s own statement: “Owing to the inexactitude of our data, then, we cannot regard our results with the complacency of completeness we should like,” one inquires eagerly how nearly the actual elements in the orbit of the newly found planet agree with those he calculated. To this an answer was given by Professor Henry Norris Russell of Princeton, the leading astronomer in this country, in an article in theScientific Americanfor December, 1930. He wrote as follows:

“The orbit, now that we know it, is found to be so similar to that which Lowell predicted from his calculations fifteen years ago that it is quite incredible that the agreement can be due to accident. Setting prediction and fact side by side we have the following table of characteristics:

“Lowell saw in advance that the perturbations of the latitudes of Uranus and Neptune (from which alone the position of the orbit plane of the unknown planet could be calculated) were too small to give a reliable result and contented himself with the prophecy that the inclination, like the eccentricity, would be considerable. For the other four independent elements of the orbit, which are those that Lowell actually undertook to determine by his calculations, the agreement is good in all cases, the greatest discrepancy being in the period, which is notoriously difficult to determine by computations of this sort. In view of Lowell’s explicit statement that since the perturbations were small the resulting elements of the orbit could at best be rather rough approximations, the actual accordance is all that could be demanded by a severe critic.

“Even so, the table does not tell the whole story. Figure 1[49]shows the actual and the predicted orbits, the real positions of the planet at intervals from 1781 to 1989, and the positions resulting from Lowell’s calculations. It appears at once that the predicted positions of the orbit and of the planet upon it were nearest right during the 19th century and the early partof the 20th, while at earlier and later dates the error rapidly increased. Now this (speaking broadly) is just the interval covered by the observations from which the influence of the planet’s attraction could be determined and, therefore, the interval in which calculation could find the position of the planet itself with the least uncertainty.

Predicted and Actual Orbits of PLUTO

Predicted and Actual Orbits of PLUTO

“In the writer’s judgment this test is conclusive.”[50]

Later observations, and computations of the orbit of Pluto, do not vary very much from those that Professor Russell had when he wrote. Two of the most typical—giving more elements—are as follows:

Except for the eccentricity, and the inclination which he declared it impossible to calculate, these results have proved as near as, with the uncertainty of his data, he could have expected; and in regard to the position of the planet in its orbit it will be recalled that he found two solutions on opposite sides, both of which would account almost wholly for the residuals of Uranus. The one that came nearest to doing so he had regarded as the least probable because it placed the planet in a part of the sky that had been much searched without finding it; but it was there that Pluto appeared—a striking proof of his rigorous analytic method.

But the question of its mass has raised serious doubts whether Pluto can have caused the perturbations of Uranus from which he predicted its presence, for if it has no significant mass the whole basis of the calculation falls to the ground, and there has been found a body travelling, by amarvellous coincidence, in such an orbit that, if large enough, it would produce the perturbations but does not do so.[51]Now as there is no visible satellite to gauge its attraction, and as it will be long before Pluto in its eccentric orbit approaches Neptune or Uranus closely enough to measure accurately by that means, the mass cannot yet be determined with certainty. What is needed are measures of position of the highest possible accuracy of Neptune and Uranus, long continued and homogeneous.

The reasons for the doubt about adequate mass are two.[52]One that with the largest telescopes it shows no visible disk, and must therefore be very small in size, and hence in mass unless its density is much greater, or its albedo far less, than those of any other known planet. The other substantially that the orbits of Uranus and Neptune can be, and are more naturally, explained by assuming appropriate elements therefor, without the intervention of Pluto’s disturbing force. This is precisely what Percival stated in discussing the correctness of the residuals—that it was always possible to account for the motions of a planet, whose normal orbit about the sun is not definitely ascertained, by throwing any observed divergencies either on errors in the supposed orbit, or upon perturbations by an unknown body.

The conditions here are quite unlike those at the discovery of Neptune, for there the existence of the perturbationswas clear, because fairly large, and the orbit predicted was wrong because of an error in the distance assumed; and the question was whether the presence of Neptune in the direction predicted, though in a different orbit, was an accident, or inevitable. Here the predicted orbit is substantially the actual one, adequate to account for the perturbations of Uranus if such really exist, and the question is whether they do or not. If not the discovery of Pluto is a mere unexplained coincidence which has no connection with the prediction. Whether among recognized uncertainties it is more rational to suppose a very high density, and very low albedo, with corresponding perturbations of Uranus and Neptune, whose orbits are still imperfectly known, or to conclude that a planet, which would account for these things if dense enough, revolves in fact in the appropriate path, a mere ghost of itself—a phantom but not a force—one who is not an astronomer must leave to the professionals.

In the case of both Neptune and Pluto the calculation was certainly a marvellous mathematical feat, and in accord with the usual practice whereby the discoverer of a new celestial body is entitled to propose its name the observers at Flagstaff selected from many suggestions that of “Pluto” with the symbolligature, P over L; and henceforth astronomers will be reminded of Percival Lowell, by the planet he found but never saw.

Decorative wreath

Professor Henry Norris Russell’s later views on the size of Pluto (written to the Biographer and printed with the writer’s consent).

Later investigations have revealed a very curious situation. When once the elements of Pluto’s orbit are known, the calculation of the perturbations which it produces on another planet, such as Neptune, are greatly simplified. But the problem of finding Pluto’s mass from observations of Neptune is still none too easy, for the perturbations affect the calculated values of the elements of Neptune’s orbit, and are thus “entangled” with them in an intricate fashion.

Nicholson and Mayall, in 1930, attacked the problem, and found that the perturbations of Neptune by Pluto, throughout the interval from its discovery to the present, were almost exactly similar to the effects which would have been produced by certain small changes in the elements of Neptune’s orbit, so that, from these observations alone, it would have been quite impossible to detect Pluto’s influence. Outside this interval of time, the effects of the perturbations steadily diverge from those of the spurious changes in the orbit, but we cannot go into the future to observe them, and all we have in the past is two rather inaccurate observations made in 1795 by Lalande.[53]If the average of these two discordant observations is taken as it stands, Pluto’s mass comes out 0.9 times that of the Earth, and this determination is entitled to very little weight.

Uranus is farther from Pluto, and its perturbations are smaller; but it has been accurately observed over one and a half revolutions, as against half a revolution for Neptune, and this greatly favors the separation of the perturbations from changes in the assumed orbital elements. Professor E. W. Brown—the most distinguished living student of the subject—concludes from acareful investigation that the observations of Uranus show that Pluto’s mass cannot exceed one-half of the Earth’s and may be much less. In his latest work a great part of the complication is removed by a curiously simple device. Take the sum of the residuals of Uranus at any two dates separated by one-third of its period, and subtract from this the residual at the middle date. Brown proves—very simply—that the troublesome effect of uncertainties in the eccentricity and perihelion of the disturbed planet will be completely removed from the resulting series of numbers, leaving the perturbations much easier to detect. The curve which expresses their effects, though changed in shape, can easily be calculated. Applying this method to the longitude of Uranus, he finds, beside the casual errors of observation, certain deviations; but these change far more rapidly than perturbations due to Pluto could possibly do, and presumably arise from small errors in calculating the perturbations produced by Neptune. When these are accurately re-calculated, a minute effect of Pluto’s attraction may perhaps be revealed, but Brown concludes that “another century of accurate observations appears to be necessary for a determination which shall have a probable error less than a quarter of the Earth’s mass.”

The conclusion that Pluto’s mass is small is confirmed by its brightness. Its visual magnitude is 14.9—just equal to that which Neptune’s satellite Triton would have if brought to the same distance. (Since Pluto’s perihelion distance is less than that of Neptune, this experiment is one which Nature actually performs at times.) Now Nicholson’s observations show that the mass of Triton is between 0.06 and 0.09 times the Earth’s. It is highly probable that Pluto’s mass is about the same—in which case the perturbations which it produces, even on Neptune, will be barely perceptible, so long as observations have their present degree of accuracy.

The value of seven times the Earth’s mass, derived in Percival Lowell’s earlier calculations, must have been influenced by some error. His mathematical methods were completely sound—on Professor Brown’s excellent authority—and the orbit of Planet X which he computed resembled so closely that of the actual Pluto that no serious discordance could arise from the difference. But, in this case also, the result obtained for the mass of the perturbing planet depended essentially on the few early observationsof Uranus as a star, made before its discovery as a planet, and long before the introduction of modern methods of precise observation. Errors in these are solely responsible for the inaccuracy in the results of the analytical solution.

The question arises, if Percival Lowell’s results were vitiated in this way by errors made by others more than a century before his birth, why is there an actual planet moving in an orbit which is so uncannily like the one he predicted?

There seems no escape from the conclusion that this is a matter of chance. That so close a set of chance coincidences should occur is almost incredible; but the evidence assembled by Brown permits of no other conclusion. Other equally remarkable coincidences have occurred in scientific experience. A cipher cable-gram transmitting to the Lick Observatory the place of a comet discovered in Europe was garbled in transmission, and when decoded gave an erroneous position in the heavens. Close to this position that evening another undiscovered comet was found. More recently a slight discrepancy between determinations of the atomic weight of hydrogen by the mass-spectrograph and by chemical means led to a successful search for a heavy isotype of hydrogen. Later and more precise work with the mass-spectrograph showed that the discrepancy had at first been much over-estimated. Had this error not been made, heavy hydrogen might not yet have been discovered.

Like this later error, the inaccuracy in the ancient observations, which led to an over-estimate of the mass and brightness of Pluto, was a fortunate one for science.

In any event, the initial credit for the discovery of Pluto justly belongs to Percival Lowell. His analytical methods were sound; his profound enthusiasm stimulated the search, and, even after his death, was the inspiration of the campaign which resulted in its discovery at the Observatory which he had founded.

The Observatory at Flagstaff is Percival Lowell’s creation. The material support which he gave it, both during his lifetime and by endowment, represents but a small part of his connection with it. He chose the site, which in its combination of excellent observing conditions and the amenities of everyday life, is still unsurpassed. He selected the permanent members of the staff and provided for the successor to the Directorship after his death. Last, but not least, he inspired a tradition of intense interest in the problems of the universe, and independent and original thought in attacking them, which survives unimpaired.

On a numerical basis—whether in number of staff, size of instruments, or annual budget—the Lowell Observatory takes a fairly modest rank in comparison with some great American foundations. But throughout its history it has produced a long and brilliant series of important discoveries and observations notable especially for originality of conception and technical skill. Percival Lowell’s own work has been fully described; it remains to summarize briefly that of the men whom he chose as his colleagues, presenting it according to its subject, rather than in chronological order.

The photography of the planets has been pursued for thirty years, mainly by the assiduous work of E. C. Slipher, and the resulting collections are unrivalled. Only a small amount of this store has been published or described in print, but among its successes may be noted the first photographs of the canals of Mars, and the demonstration by this impersonal method of the seasonal changes in the dark areas, and of the occasional appearanceof clouds. It is a commonplace that any astronomer who wants photographs of the planets for any illustrative purpose instinctively applies to his friends in Flagstaff, and is not likely to be disappointed.

The discovery of Pluto, and incidentally of many hundreds of asteroids, has already been described.

An important series of measurements of the radiation from the planets was made at Flagstaff in 1921 and 1922 by Dr. W. W. Coblentz of the Bureau of Standards and Dr. C. O. Lampland. Using the 40-inch reflector, and the vacuum thermocouples which the former had developed, and employed in measurements of stellar radiation at the Lick Observatory, and working with and without a water-cell (which transmits most of the heat carried by the sunlight reflected from a planet, but stops practically all of that radiated from its own surface), they found that the true “planetary heat” from Jupiter was so small that its surface must be very cold, probably below -100° Centigrade, while that from Mars was considerable, indicating a relatively high temperature. Both conclusions have been fully confirmed by later work.

Spectroscopic observation has been equally successful. In 1912 Lowell and Slipher (V. M.) successfully attacked the difficult problem of the rotation of Uranus. One side of a rotating planet is approaching us, the other receding. If its image is thrown on a spectroscope, so that its equatorial regions fall upon the slit, the lines of the spectrum will be shifted toward the violet on one edge, and the red on the other, and will cross it at a slant instead of at right angles. This method had long before been applied to Jupiter and to Saturn and its rings, but Uranus is so faint as to discourage previous observation. Nevertheless, with the 24-inch reflector, and a single-prism spectrograph, seven satisfactory plates were obtained, with an average exposure of 2½ hours, every one of which showed a definite rotation effect. The mean result indicated that Uranus rotates in 10¾ hours, with motion retrograde, as in the case of his satellites. This result was confirmed five years latter by Leon Campbell at Harvard, who observed regular variations in the planet’s brightness with substantially the same period.

It has been known since the early days of the spectroscope that the major planets exhibit in their spectra bands producedby absorption by the gases of their atmospheres, and that these bands are strongest in the outer planets. Photographs showing this were first made by V. M. Slipher at the Lowell Observatory in 1902. To get adequate spectrograms of Neptune required exposures of 14 and 21 hours—occupying the available parts of the clear nights of a week. The results well repaid the effort. The bands which appear faintly in Jupiter are very strong in Uranus, and enormous in Neptune’s spectrum, cutting out great portions of the red and yellow, and accounting for the well-known greenish color of the planet. Only one band in the red was present in Jupiter alone.

For a quarter of a century after this discovery those bands remained one of the most perplexing riddles of astrophysics. The conviction gradually grew that they must be due to some familiar gases, but the first hint of their origin was obtained by Wildt in 1932, who showed that one band in Jupiter was produced by ammonia gas, and another probably by methane. These conclusions were confirmed by Dunham in the following year, but the general solution of the problem was reserved for Slipher and Adel, who, in 1934, announced that the whole series of unidentified bands were due to methane. The reason why they had not been identified sooner is that it requires an enormous thickness of gas to produce them. A tube 45 meters long, containing methane at 40 atmospheres pressure, produces bands comparable to those in the spectra of Saturn. The far heavier bands in Neptune indicate an atmosphere equivalent to a layer 25 miles thick at standard atmospheric pressure. The fainter bands though not yet observed in the laboratory, have been conclusively identified by the theory of band-spectra. Ammonia shows only in Jupiter and faintly in Saturn; the gas is doubtless liquefied or solidified at the very low temperatures of the outer planets.

The earth’s own atmosphere has also been the subject of discovery at Flagstaff. The light of a clear moonless sky does not come entirely from the stars and planets; about one-third of it originates in the upper air, and shows a spectrum of bright lines and bands. The familiar auroral line is the most conspicuous of these, but V. M. Slipher, making long exposures with instruments of remarkably great light-gathering power, has recently detected a large number of other bands, in the deep red and even theinfra-red. Were our eyes strongly sensitive to these wave-lengths, the midnight skies would appear ruddy.

Just as the first rays of the rising sun strike the upper layers of the atmosphere many miles above the surface, new emission bands appear in the spectrum—to be drowned out soon afterwards by the twilight reflected from the lower and denser layers; and the reverse process is observable after sunset.

The origin of these remarkable and wholly unexpected radiations is not yet determined.

The spectrograph of the Observatory was also employed in observations of stars, and again led to unexpected discoveries. In 1908, while observing the spectroscopic binary Beta Scorpii, V. M. Slipher found that the K line of calcium was sharp on his plates, while all the others were broad and diffuse. Moreover, while the broad lines shifted in position as the bright star moved in its orbit, the narrow line remained stationery. Hartmann, in 1904, had observed a similar line in the spectra of Delta Orionis, and suggested that it was absorbed in a cloud of gas somewhere between the sun and the star. Slipher, extending his observations to other parts of the heavens, found that such stationery calcium lines were very generally present (in spectra of such types that they were not masked by heavier lines arising in the stars themselves), and made the bold suggestion that the absorbing medium was a “general veil” of gas occupying large volumes of interstellar space.

This hypothesis, which appeared hardly credible at that time, has been abundantly confirmed—both by the discovery of similar stationery lines of sodium, and by the theoretical researches of Eddington,—and no one now doubts that interstellar space is thinly populated by isolated metallic atoms presumably ejected from some star in the remote past, but now wandering in the outer darkness, with practically no chance of returning to the stars.

To secure satisfactory spectroscopic observations of nebulae is often very difficult. Though some of these objects are of considerable brightness, they appear as extended luminous surfaces in the heavens, and in the focal plane of the telescope. The slit of a spectroscope, which must necessarily be narrow to permit good resolution of the lines, admits but a beggarly fraction of the nebula’s light. To increase the size of the telescope helps verylittle, for, though more light is collected in the nebular image, this image is proportionately increased in area, and no more light enters the slit than before.

For the gaseous nebulae, whose spectra consist of separate bright lines, there is no serious difficulty; but the majority of nebulae have continuous spectra, and when the small amount of light that traverses the slit is spread out into a continuous band, it becomes so faint that prohibitively long exposures would be required to photograph it. It was at the Lowell Observatory that Dr. V. M. Slipher first devised a way of meeting this difficulty.

By employing in the camera of the spectrograph (which forms the image of the spectrum on the plate) a lens of short focus, this image became both shorter and narrower, thereby increasing the intensity of the light falling on a given point of the plate in a duplicate ratio. Moreover, since with this device the image of the slit upon the plate is much narrower than the slit itself, it became possible to open the slit more widely and admit much more of the light of the nebula, without spoiling the definition of the spectral lines.

This simple but ingenious artifice opened up a wholly new field of observation, and led to discoveries of great importance.

Within the cluster of the Pleiades, and surrounding it, are faint streaky wisps of nebulosity, which have long been known. One might have guessed that the spectrum, like that of some other filamentous nebulae, would be gaseous. But when Slipher photographed it in December 1912 (with an exposure of 21 hours, on three successive nights) he found a definite continuous spectrum, crossed by strong dark lines of hydrogen and fainter lines of helium—quite unlike the spectrum of any previously observed nebula, but “a true copy of that of the brighter stars in the Pleiades.” Careful auxiliary studies showed that the light which produced this spectrum came actually from the nebula. This suggested at once that this nebula is not self-luminous, but shines by the reflected light of the stars close to it. This conclusion has been fully verified by later observations, at Flagstaff and elsewhere. It is only under favorable conditions that one of these vast clouds (probably of thinly scattered dust) lies near enough to any star to be visibly illuminated. The restreveal themselves as dark markings against the background of the Milky Way.

Similar observations of the Great Nebula of Orion showed that the conspicuous “nebular” lines found in its brighter portions faded out in its outer portions, leaving the hydrogen lines bright, while, at the extreme edge, only a faint continuous spectrum appeared. This again has been fully explained by Bowen’s discovery of the mechanism of excitation of nebular radiation by the ultra-violet light from exceedingly hot stars, and affords a further confirmation of it.

But the most important contribution of the new technique was in the observation of the spiral nebulae. Their spectra are continuous and so faint that previous instruments brought out only tantalizing suggestions of dark lines. With the new spectrograph, beautiful spectra were obtained, showing numerous dark lines, of just the character that might have been expected from vast clouds of stars of all spectral types. This provided the first definite indication of one of the greatest of modern astronomical discoveries—that the white nebulae are external galaxies, of enormous dimensions, and at distances beyond the dreams of an earlier generation.

By employing higher dispersion, spectra were secured which permitted the measurement of radial velocity. The first plates, of the Andromeda Nebula, revealed the almost unprecedented speed of 300 kilometers per second toward the Sun. Later measures of many other nebulae showed that this motion was, for a nebula, unusually slow, but remarkable in its direction, for practically all the others were receding.

Similar measures upon globular star-clusters showed systematic differences in various parts of the heavens, which indicated that, compared with the vast system of these clusters, the Sun is moving at the rate of nearly 300 kilometers per second—a motion which is now attributed to its revolution, in a vast orbit, about the center of the Galaxy, as a part of the general rotation of the latter.

The velocities of the nebulae reveal substantially the same solar motion, but, over and above this, an enormous velocity of recession, increasing with the faintness and probable distance of the nebulae.

This, again, was a discovery of primary importance. It hasbeen confirmed at other observatories and observations with the largest existing telescope have revealed still greater velocities of recession in nebulae too faint to observe at Flagstaff. How this has led to the belief that the material universe is steadily expanding and that its ascertainable past history covers only some two thousand millions of years, can only be mentioned here.

This is a most remarkable record for thirty years’ work of a single observatory with a regular staff never exceeding four astronomers. But its distinction lies less in the amount of the work than in its originality and its fertile character in provoking extensive and successful researches at other observatories as well.

All this is quite in the spirit of its Founder, and, to his colleagues in the science, makes the Observatory itself seem his true monument. His body lies at rest upon the hill, but, in an unquenched spirit of eager investigation, his soul goes marching on.


Back to IndexNext