[I]See Reyn. Graaf, page 242.
[I]See Reyn. Graaf, page 242.
Let us now compare the experiments made by Harvey on hinds with those of De Graaf on doe rabbits; we shall find that although De Graaf supposes, with Harvey, that all animals proceed from eggs, yet there is a great difference in the mode which these two anatomists have observed in the first steps of formation, or rather expansion, of the fœtuses of viviparous animals.
After having exerted every effort to establish, by reasons drawn from comparative anatomy,that the testicles of viviparous females are real ovaries, De Graaf explains how the eggs are loosened from the ovaries and fall into the horns of the matrix; he then relates what he observed in a rabbit, which he dissected half an hour after copulation. The horns of the matrix, he says, were more red than before, but no other change in the rest of the parts: there was also no appearance of any male seed, neither in the vagina, matrix, nor horns of the matrix.
Having dissected another six hours after copulation he observed the follicules, or coats, which he supposes contained the eggs in the ovary, ware become red, but found no male seed either in the ovaria or elsewhere. He dissected another twenty-four hours after copulation, and remarked in one ovarium three, and in the other five follicules that were changed, the transparency being become dark and red. In one dissected twenty-seven hours after copulation he perceived the horns of the womb had become more red and strictly embraced the ovaries. In another, that he opened forty hours after copulation, he found in one of the ovaries seven, follicules, and in the other three that were changed. Fifty-two hoursafter copulation he examined another and found one follicle changed in one of the ovaries and four in another, and having opened these follicules he found a glandular liquor, in the middle of which there was a small cavity, where he did not perceive any liquor, which made him suppose that the transparent liquor, commonly contained in the follicules, and which, he says, is enclosed in its own membranes, might have been separated by a kind of rupture: he searched after this matter in the passages, and in the horns of the matrix themselves, but he found none; he only perceived that the internal membrane of the horns of the matrix was very much swelled. In another, dissected three days after copulation, he observed that the superior extremity of the passage, which communicates with the horns of the matrix, strictly embraced the ovaries; and having separated it he perceived three follicules, longer and harder than usual. After searching with the greatest attention the passages above-mentioned he found in the right passage one egg, and in the right horn of the matrix two more, not bigger than a grain of mustard-seed: those little eggs were each closed in double membranes, and the inner one was filled witha very limpid liquor. Having examined the other ovarium he found four follicules that were changed, three of which were white and had a little liquor within them; but the fourth was of a darker colour, and contained no liquor, which made him judge that from this the egg had been separated. Pursuing his enquiries he found an egg in the superior extremity of the other horn, and exactly like those he had discovered in the right one. He says that the eggs which are separated from the ovary are ten times smaller than those which are fastened to it; and he thinks that this difference is occasioned from the eggs containing, when they are in the ovaries, another matter, and that is the glandular liquor he remarked in the molecules.
Four days after copulation he opened another, and found in one of the ovaries four, and in the other three follicules, emptied of their eggs; and in the horns corresponding to these he found an equal number of eggs. These eggs were larger than the first that he found three days after copulation, and were about the size of a small bird-shot; he also remarked that the internal membrane in these eggs was separated from the external, and appeared likea second egg in the first. In another, dissected five days after copulation, he found five empty follicules in the ovaries, and as many eggs in the matrix, to which they adhered. These eggs were about the size of duck-shot, and the internal membrane was more apparent than in the one he had observed before. In one which he opened six days after copulation there were six empty follicules in one ovaria, and only five eggs in the corresponding horn, and they appeared in one mass; in the other ovaria were four empty follicules and but one egg; these eggs were as big as swan-shot. He opened another on the seventh day after copulation, and found seven empty follicules; he also perceived several internal tumours in the matrix, from whence he took eggs the size of a pistol-bullet. Its membrane was more distinct than before, but contained only a very clear liquor. In one, eight days after copulation, he found in the matrix tumours, or cells, which contained the eggs, but they were very adherent, for he could not loosen them. In another, nine days after copulation, the cells, which contained the eggs, were greatly increased, and he saw that the liquor inclosed by the internal membrane had now got a light cloud floating upon it.He opened another ten days after copulation and the cloud was thicker, and formed an oblong body, like a little worm. At last, on the twelfth day after copulation, the figure of the embryo was distinctly to be perceived, which two days before only presented the figure of an oblong body; it was even so apparent that the different members might be distinguished. In the region of the breast he perceived two red and two white specks, and in the abdomen a mucilaginous substance, somewhat reddish. Fourteen days after copulation the head of the embryo was become large and transparent, the eyes prominent, the mouth open, the rudiments of the ears appeared; the back-bone, of a whitish colour, was bent towards the breast, and small blood-vessels came from each side, whose ramifications ran along the back as far as the feet; the two red specks, being considerably increased, appeared to be no other than the ventricles of the heart; by the sides of these red specks were two white ones, which were the rudiments of the lungs. In the abdomen the outlines of the liver were seen of a reddish colour, and a little intricate mass, like a ravelled thread, which was the stomach and intestines. After this the process was no more than agrowth and expansion of every part till the thirty-first day, when the female rabbit brings forth her young.
From these experiments De Graaf concludes, that all viviparous females have eggs; that these eggs are contained in the testicles, called ovaries; that they cannot disengage themselves till they are impregnated, because, he says, the glandular substance, by means of which the eggs quit their follicules, is not produced till after an impregnation. He also insists, that those who suppose they have seen eggs in only two or three days increased in size, must have been mistaken, for these eggs remain a longer time in the ovary, although fecundated, and instead of immediately increasing, they rather diminish until they are descended from the ovaries into the matrix.
By comparing these observations with those of Harvey, we shall easily perceive that the principal circumstances have escaped the latter; and although there are many errors in the reasoning and experiments of De Graaf, nevertheless this anatomist, as well as Malpighius, has made better observations than Harvey. They agree in the principal points, and are both contrary to Harvey; the latter had neverseen the alterations which happen to the ovary; he did not see the small globules in the matrix which contain the apparatus of generation, and which De Graaf callseggs. He had not even a supposition that the fœtus existed in this egg; and though his experiments gave us nearly an exact account of what occurs during the growth of the fœtus, they give us no information either of the moment of fecundation or of the first development. Schrader, a Dutch physician, who held Harvey in great veneration, owns that we must not put too great a reliance in that anatomist in many things, and especially on what he says of the fecundative moment, for the chicken in fact is in the egg before incubation, and that Joseph de Aromatarius was the first who observed it.[J]Although Harvey pretended that every animal proceeds from an egg, he did not imagine that the testicles of females contained these eggs, and has only repeated what Aristotle has said on this subject. The first who speaks of having discovered eggs in female ovaries is Steno, who says, in dissecting a female sea-dog he saw eggs in the testicles, although that animal is viviparous; and he adds, that the testiclesof women are analogous to the ovaries of oviparous animals, whether the eggs fall in any manner into the matrix, or whether there only falls the matter they contain. Although Steno is the first who discovered these pretended eggs, De Graaf claims the merit to himself, and Swammerdam has disputed it with him, insisting that Van Horn had perceived these eggs before De Graaf. It is true this last writer stands charged with asserting many things experience has found to be false. He pretended that a judgment might be formed of the number of fœtuses contained in the matrix by the number of cicatrices, or empty follicules, in the ovary, which is not true, as we may see by the observations of Verrheyen,[K]and by those of M. Mery,[L]and by some of De Graaf's own observations, where he found fewer eggs in the matrix than cicatrices in the ovaries. Besides, we shall make it appear that what he says concerning the separation of the eggs, and the manner in which they descend into the matrix, is not exact; that no eggs exist in the female testicles; that what is seen in the matrix is not an egg; and that nothingcan be worse founded than the systems endeavoured to be established on the observations of this famous anatomist.
[J]See Observ. Justi Schraderi, Amst. 1674.
[J]See Observ. Justi Schraderi, Amst. 1674.
[K]Vol. I. chap. iii. Brussels edit. 1710.
[K]Vol. I. chap. iii. Brussels edit. 1710.
[L]Hist. of the Academ. 1704.
[L]Hist. of the Academ. 1704.
This pretended discovery of eggs in the testicles of females attracted the attention of most anatomists; they, however, only met with small bladders in the testicles of female viviparous animals, these they did not hesitate to look on as real eggs: they therefore gave the name ofovariesto the testicles, and called the vesicles eggs, They also said, with De Graaf, that there are eggs of different sizes in the ovarium; that the largest in the ovarium of women was not above the size of a small pea; that they were very small in the young, but increased with age and intercourse with men; that twenty might be counted in each ovarium; that these eggs are fecundated in the ovarium by the spirited part of the seminal liquor of the male; that afterwards they loosen and fall into the matrix, where the fœtus is formed, from the internal substance of the egg and the placenta of the external matter; that the glandular substance, which does not exist in the ovarium till after a fruitful copulation, serves to compress the egg, and make it quit the ovarium, &c. But Malpighius havingexamined things more minutely, detected many of their errors before they were even received; yet most physicians adopted the sentiments of De Graaf, without any attention to the observations of Malpighius; which, notwithstanding, are very important, and to which his scholar Valisnieri has given a great deal of weight.
Malpighius and Valisnieri, of all naturalists, speak with the greatest foundation on the subject of generation. We shall therefore give an account of their experiments and remarks, to which we cannot pay too much attention.
Malpighius having examined a great number of the testicles of cows and other female animals, affirms that he found vesicles of different sizes in the testicles of all of them, whether young or adults; these vesicles are inclosed by a thick membrane, in the inner parts of which there are blood-vessels, filled with a kind of lymph, or liquor, which hardens by the heat of the fire like the white of an egg.
In time a firm yellow body grows which adheres to the testicles. It is prominent and increases to the size of a cherry, occupyingthe greatest part of the ovarium. The body is composed of many little angular tubes, and its position is irregular; it is covered with a coat, or membrane, spread over with nerves and blood-vessels. The appearance and form of this yellow body are not always the same, but vary according to time. When not above the size of a millet seed, it is nearly globular, and if divided appears composed of a kind of variegated net-work. Very often an external covering is observed, composed of the same substance as the yellow body, around the vesicles of the ovarium.
When the yellow body is become nearly of the size of a pea, it is the shape of a pear, in which is a small cavity filled with liquor; as is also the case when grown to the size of a cherry. In some of these yellow substances, when increased to their full maturity, Malpighius says, a small egg, with its appendages, not bigger than a millet seed, may be seen near the centre; when they have cast out their eggs they are empty, resemble a cavernous passage, and the cavities which inclose them are about the size of peas. He thinks this yellow and glandular substance nature produces to preserve the egg, and assist it in leavingthe testicles, and perhaps to contribute towards the generation of the egg itself; consequently, he says, the vesicles, which are always observed in the ovary, and which are of different sizes, are not real eggs that may be fecundated, but only serve for the production of the yellow body where the egg is to be formed. On the whole, although these yellow substances are not found at all times in all testicles, we nevertheless always find the first traces of them, and Malpighius having seen the marks of them in young heifers, cows that were with calf, and in pregnant women, he reasonably concludes that this yellow and glandular substance is not, as De Graaf has supposed, the effect of fecundation, but what produces the infecund eggs, which leave the ovary without any communication with the male, as well as to those which leave it after communication. When the latter falls into the tubes of the matrix, all the rest is performed as De Graaf has described.
These observations of Malpighius shew that the testicles of females are not real ovaries, as most anatomists believe; that the vesicles they contain are not eggs; that these vesicles never fall into the matrix; and thatthe testicles, like those of the male, are kinds of reservoirs, containing a liquor which must be looked upon as an imperfect seed of the female, that is perfected in the yellow glandular body which fills the internal cavity, and is shed when the glandular substance has acquired its full maturity. But before we decide on this important point, we must relate the observations of Valisnieri; and we shall perceive that, though Malpighius and Valisnieri have made good observations, they have not carried them far enough, nor drawn those consequences from them which their observations might naturally have produced, because they were both prejudiced for the system of eggs, and of the fœtus pre-existing therein.
Valisnieri began his experiments in 1692, on the testicles of a sow, whose testicles are not composed like those of a cow, sheep, mare, bitch, female ass, she goat, nor most other viviparous females, for they resemble a small bunch of grapes, whose seeds are round and prominent outwardly. Between these seeds there are smaller, which have not arrived to maturity. These seeds do not appear to be surrounded with one common membrane; they are, he says, similar to those yellow substanceswhich Malpighius observed in cows; they are round, of a reddish colour, their surface sprinkled over with sanguinary vessels like the eggs of viviparous animals, and together form a mass larger than the ovary; we may, with a little address, and by dividing the membrane, separate these grains one by one, and draw them from the ovary, where they each leave an impression.
These glandular substances are not of the same colour in every sow, in some they are red, in others more clear; and they are of all sizes, from the most minute point to that of a grape. On opening them we find a triangular cavity filled with a limpid liquor, which coagulates by the fire, and becomes white like that contained in the vesicles. Valisnieri hoped to meet with the egg in one of those cavities, but although he sought for it with the utmost assiduity in the glandular substance of the ovaries of four different sows, and afterwards in those of other animals, yet he could never discover the egg which Malpighius asserts to have met with once or twice.
Below these glandular substances the vesicles of the ovary were seen, and which were in a greater or lesser number as the glandular substancesare thicker or smaller, for in proportion as the glandular substances increase, the vesicles diminish. Some of these vesicles were the size of a lentil, and others as small as a millet-seed. In crude testicles twenty, thirty, or thirty-five vesicles might be counted, but when boiled a greater number are seen; and they are so strongly connected by fibres and membraneous vessels, that it is impossible to separate them without a rupture.
Having examined the testicles of a sow which never had littered, he found there, as in the rest, glandular bodies, and their triangular cavities filled with lymph, but never met with the egg either in the one or the other. The vesicles of this sow which had never littered were greater in number than in those which had littered or conceived. In the testicles of another sow which had conceived, and whose young were much expanded, he found two large glandular substances, that were empty, and others smaller, in their common state. Having also dissected many others when with young, he found that the number of glandular substances was always greater than that of the fœtus, which confirms our observations on De Graaf's experiments, and proves they arenot exact; what he terms the follicules of the ovary being only the glandular substances, whose number always exceed that of the fœtus. In the ovaries of a sow but a few months old, the testicles were large, and sprinkled with vesicles pretty well tumefied: between these vesicles there were four rising glandular substances in one of the testicles, and more in the other.
After having finished his experiments on sows, Valisnieri repeated those of Malpighius on the testicles of cows, and found that all he had said was conformable to truth; only Valisnieri owns that he has never been able to find the egg which Malpighius thought he had seen once or twice in the internal cavity of glandular bodies. Valisnieri proceeded in his experiments upon a variety of other animals to discover this egg, but in vain; nevertheless his prejudice for that system induced him, contrary to his experience, to admit the existence of eggs, which neither he nor any other man ever did or ever will see. It is scarcely possible to make a greater number of experiments, or better than he has done. He observes, as something particular to a ewe, that there are never more glandular substances in the testicles thanfœtuses in the matrix. In young ewes, which have never been with the male, there is but one glandular substance in each testicle, which when worn away, another is found; and if a ewe has only one fœtus in her matrix, there is but one glandular substance in the testicles; if there are two fœtuses there will be two glandular substances. This substance occupies the greatest part of the testicles; after it disappears another is formed for the purpose of another generation.
In the testicles of a she-ass he perceived vesicles the size of small cherries, which evidently prove they are not eggs, since, being of that size, they could not enter into the horns of the matrix, which are too narrow in this animal for their reception.
The testicles of a female dog, wolf, or fox, have a kind of cowl, or covering, which is produced by the expansion of the membrane that surrounds the horns of the matrix. In a bitch, whose heat was just began, and had not been brought to a dog, Valisnieri found this cowl, which is not adherent to the testicle, internally bathed with a liquor like whey: he discovered also two glandular substances in the right testicle, which run almost its whole length. Theseglandular substances had each a small nipple, with a little orifice, from which of itself issued a clear liquor like whey, and when pressed, a greater quantity came out, which made him imagine, that this liquor was the same as that found within the cowl: he blew into this orifice, by the means of a small pipe, and immediately the glandular body was puffed up; and having introduced a bristle, he easily penetrated to the end of it: he opened this glandular substance the same way as the bristle was entered, and found within a cavity which communicated with the orifice, and which also contained a good deal of liquor. Valisnieri was also in hopes to discover the egg, but, notwithstanding all his endeavours and strict attention, he never could perceive it. He remarked, that the extremity of these nipples, from which this liquor flowed, was contracted by a sphincter, which served to shut up, or open the orifice of the nipple: he found also in the left testicle two glandular bodies with the like cavities, nipples, orifices, and liquor distilling from them. Still not being able to find the egg, neither in this liquor, nor in the cavity which contained it, he boiled two of these glandular substances, hoping that by this means he might discover the objecthe was in pursuit of, but it was all in vain.
Having opened another bitch, eight or nine days after she had been with the male, he found no difference in the testicles; there were three glandular substances like the preceding ones, and, like them, distilled a liquor from the nipples. Here he also persevered in his fruitless researches after the egg. By the help of a microscope, he perceived the glandular substances were a kind of vascular net-work, formed by an infinite number of small globular vesicles which served to filtre the liquor that issues through the end of the nipple.
After this he opened another bitch whose heat was off, and having introduced air between the testicle and its covering, he found it dilated like a bladder by means of inflation; having raised this cowl, he found three glandular substances on the testicle, but they had no apparent nipple, nor orifice, nor did any liquor distil from them.
In another bitch that had pupped two months, and had five puppies, he found five glandular substances, which were become very small, and began to obliterate, without leaving any cicatrices:there still remained a small cavity in the middle, but it was dry and empty.
Not content with these, and many more experiments, Valisnieri, who would not give up his researches after the pretended egg, called together the most expert anatomists of his country, among whom was M. Morgagni, and having opened a young bitch at the time of her first heat, and had been with a male three days before, they examined the vesicles of the testicles, the glandular substances with their nipples, orifice, and liquor which flowed from them, and in their internal cavities, but not an egg was to be found. After this he made experiments on female goats, foxes, cats, and a great number of mice, &c. He always found vesicles in the testicles of all those animals, and often the glandular substances, and the liquor they contained, but never any egg.
At length, desirous of examining the testicles of a woman, he had an opportunity of opening a farmer's wife, a young woman that was killed by a fall from a tree. She had been married several years, but although of a good habit of body, yet she had never borne a child. He sought if the cause of her sterility was notdiscoverable in the testicles; and he found the vesicles all replete with a blackish and corrupted matter.
In the testicles of a girl of eighteen, who had been brought up in a convent, and, according to all appearances, was a virgin, he found the right testicle somewhat larger than the left: its shape was oval, and its surface a little unequal. This inequality was produced by the protuberance of five or six vesicles of this testicle which advanced forwards; one of which was more prominent than any of the rest. Having opened this vesicle, a spirit of lymph issued out: around it there was a glandular substance in form of a crescent of a yellowish colour rather bordering on the red. He cut the remainder part of the testicle transversely, and found many vesicles filled with a limpid liquor, and remarked that the corresponding trunk to this testicle was very red and a little longer than the other, as he had frequently observed in female animals, when in their amorous season.
The left testicle was as round as the right, it was whiter, and its surface more smooth; for although there were some vesicles a little prominent, yet there were not any in form of a nipple; they were all alike, without any glandularsubstance, and the corresponding trunk was neither inflamed nor red.
In a little girl of five years old, he found the testicles with the vesicles, blood vessels, fibres and nerves complete.
In the testicles of a woman sixty years of age, he found some vesicles, and the vestiges of a glandular substance, which were as so many thick points of matter of a dark brownish colour.
From all these observations Valisnieri concludes, that the business of generation is carried on in the female testicles, which he looked upon as ovaries, although he never found any eggs in them, but on the contrary, evidently saw that the vesicles were not eggs. He also says, that it is not necessary for the seed of the male to enter into the matrix to impregnate the egg: he supposes that the egg comes from the nipple of the glandular substance, after impregnation in the ovarium; that from thence it falls into the trunk, and descends by degrees, till at last it fastens to the matrix. He adds, he is persuaded that the egg is concealed in the glandular substance, and that all the business of generation is performed in the cavity, although neither henor any other anatomist, have ever seen or been able to find it.
According to Valisnieri the spirit of the male seed ascends to the ovarium, forces its way into the egg, and gives motion to the fœtus that pre-exists therein. In the ovarium of the first woman were eggs, which not only inclosed in miniature every child she brought forth, but of the whole human race. That if we cannot conceive this infinite chain of individuals contained in one, it is the fault of our minds, the weakness of which is every day perceptible; but it is, upon that account, no less true, that every animal which has been, is, and will be, were created all at one time, and inclosed in the first females. The resemblance of children to parents only proceeds, continues he, from the imagination of the mother, the power of which is so great on the fœtus that it can produce on it spots, marks, disproportions, and extraordinary births, as well as perfect resemblances.
This system of the eggs, which is unreasonable, and without foundation, would, nevertheless, have obtained the unanimous suffrages of all physicians, if, when it was first endeavoured to be established, another system hadnot been formed on the discovery of spermatic animals.
This discovery, for which we are indebted to Leeuwenhoeck and Hartsoeker, has been confirmed by Andri, Valisnieri, Bourguet, and many other observers of Nature. I shall relate what has been said concerning the spermatic animals which are found in the seminal liquor of all males: they are in such vast numbers that the semen seems to be entirely composed of them; and Leeuwenhoeck pretends to have seen many millions of them in a drop smaller than the smallest grain of sand. Although we do not meet with any in female animals they abound in all males, both in the semen emitted naturally and that in the testicles, as well as in the seminal vesicles. If the semen of a man is exposed to a moderate heat it thickens, and the motions of all the animalcules immediately cease, but if allowed to cool it becomes thinner, and the animals preserve their motion till the liquor thickens as it dries away. The thinner the liquor becomes the more the animalcule increase, and if water is added it will appear like a substance of small animals. When the motion of these animalcule is nearly finished, whether from heat, orany other cause, they seem to assemble closer together, and have a whirling motion in the centre of a small drop which may have been taken out for observation, and appear all to perish at one and the same time, whereas in the larger portion of the liquor they are easily seen to perish successively.
The animalculæ, say they, have different figures in different animals; nevertheless they are all long, slender, without any appearance of limbs, and move with rapidity. The fluid which contains them, as we have already observed, is heavier than blood. The semen of a bull afforded Verrheyen, by a chemical process, first phlegm, afterwards a considerable quantity of fœtid oil, but little volatile salt, and much more earth than he could have thought.[M]This author appears surprised that in rectifying the distilled liquor he could not draw any spirit from it, and being persuaded it contained a great quantity, he attributed the evaporation to its great subtility: but may it not be more reasonably imagined that it contains very little or no spirits, as neither its consistency nor smell announce any ardent spirit, and which is only plentifully found in fermented liquors? besides,with respect to volatile spirits, the horns, bones, and other solid parts of animals, afford more than all the liquor of the animal body. What anatomists have called animal spirits,aura seminalis, may possibly not exist; and it is certainly not these spirits which agitate the particles seen moving in the seminal liquors; but we will here relate the principal observations that have been made on this subject.
[M]See Veerheyen, sup. anat. tom. ii. page 69.
[M]See Veerheyen, sup. anat. tom. ii. page 69.
Leeuwenhoeck observed, in the semen of a cock, animals which resemble the figure of an eel, but so exceedingly minute, that he pretends fifty thousand would not equal in size a grain of sand; and in that of a rat many millions would be required to make the thickness of a hair, &c. This observer imagined that the whole substance of the semen was only a mass of these animalcules. He perceived these animalculæ in the semen of men, quadrupeds, birds, fishes, insects, &c. In that of grasshoppers they were long and slender. They are attached, he says, by their extremities, and the inferior of which he calls the tail, had a quick motion, like that of the tail of a serpent, when the upper part is motionless. He further adds, that in the semen of young animals the animalculæ are motionless, but as the age for reproductioncomes on they move about with great vivacity.
In the semen of a male frog he observed animalculæ, at first they were imperfect and motionless, but some time afterwards he found them living: they were so very small, he says, that ten thousand would scarcely equal the size of a single egg of the female. It was only those in the seminal liquor of the frog which had life and motion.
In the semen of a man, and that of a dog, he pretends to have seen two kinds, which he looked upon as males and females. Having inclosed the seed of a dog in a vial, he says, that numbers of the animalculæ died the first day; the second and third there died still more, and very few remained alive the fourth. But having repeated this experiment on the semen of the same dog, he found, at the end of seven days, live animalculæ, some of which swam with as much swiftness as in fresh-extracted semen; and having opened a bitch which had been three times with the same dog, he could not perceive by the naked eye any seminal liquor of the male in either of the horns of the matrix; but by help of a microscope he discovered the spermatic animals of the dogin both horns of the matrix, and great numbers of them in that part of the matrix adjoining to the vagina, which, says he, evidently proves that the male semen enters the matrix, or at least that the spermatic animals of the dog had got there by their own motion, which is sufficient to carry them four or five inches in half an hour. In the matrix of a doe rabbit, which had just received the buck, he likewise observed an infinite number of spermatic animals; he says, that their bodies are round, with long tails, and that they often change their forms, especially when the humid matter in which they swim evaporates and dries.
Leeuwenhoeck's experiments have been frequently repeated and found conformable to truth. There have been some inclined to exceed him in these discoveries. Dr. Dalenpatius having observed the seminal liquor of a man, not only pretended to have discovered animals like tadpoles, whose bodies appeared nearly the size of a grain of wheat, and their tails four or five times longer than their bodies, and which moved with great agility, but, what is still more marvellous, he observed one of these animals quit its covering; upon which it was no longer an animalcule, but had becomea human body, the two legs of which, he affirms, were very discernible, as were the arms, breast, and head.[N]But by the figures which this author has given of this pretended embryo, it is evident his assertion is false. He might suppose he saw what he relates, but he was mistaken; for the embryo, such as he describes, was more formed on quitting this covering, and the state of a spermatic worm, than it would have been at the end of a month or five weeks in the matrix of its mother; therefore this observation of Dalenpatius, instead of having been confirmed by other observations, has been rejected by every naturalist, the most exact and accurate of which have only discovered, in the seminal liquor of man, round and oblong bodies, which seemed to have long tails, but without any kind of members.
[N]See Nouvelles de la Republique des Lettres, Ann. 1699, page 552.
[N]See Nouvelles de la Republique des Lettres, Ann. 1699, page 552.
It might be said that Plato had spoken of these spermatic animals which become human forms; for he says, "Vulva quoque matrix que in fœminis eadem ratione animal avidem generandi, quando procul a fœtu per ætatis florem, aut ultra diutius detinetur, ægrefert moram ac plurimum indignatur, passimque per corpus oberrans, meatus spiritus intercludit, respirare non finit, extremis vexat angustiis, morbis denique omnibus premit, quosque atrorumque Cupido amorque quasi ex arboribus fœtum fructumve producunt, ipsum deinde decerpunt, & in matricem velut agrem inspargunt; hinc animalia primum talia, ut nec propter parvitatem videantur, necdum appareant formata, concipiunt: mox quæ conflaverant, explicant, ingentia, intus enutriunt, demum educunt in lucem, animaliumque generationem perficiunt." Hippocrates, in his treatiseDe Diæta, seems also to insinuate, that the seed of animals is replete with animalcules. Democritus speaks of certain worms which take the human figure, and Aristotle says, that the first men came out of the earth in the form of worms; but neither the authority of Plato, Hippocrates, Democritus, Aristotle, nor the observation of Dalenpatius, can make us receive the idea that these spermatic worms are small human bodies, concealed under a covering; for it is evidently contrary to experience and observation.
Valisnieri and Bourguet, whom we have quoted, discovered small worms in the seed ofa rabbit, one of whose extremities was thicker than the other; they were very lively and active, struck the liquor with their tails, and twisted and turned themselves like snakes. At last (says Valisnieri) I clearly perceived them to be real animals, "e gli riconobbi, e gli giudicai senza dubitamento alcuno per veri, verissimi arciverissimi vermi[O]." This author, who was prejudiced with the system of eggs, has, nevertheless, admitted of spermatic worms, and taken them for real animals.
[O]Opere dell. Cav. Valisnieri, vol. II. page 105.
[O]Opere dell. Cav. Valisnieri, vol. II. page 105.
M. Andry having made observations on these spermatic worms of a man, pretends that they are only found in the age proper for generation; that in the younger years, and in old age, they do not exist: that in those affected with venereal disorders there are very few, and those are languishing, and for the most part dead: that in impotent persons we do not see any alive; that these worms in the semen of men have larger heads than in that of other animals, which agrees, he says, with the figure of the fœtus and the child; and he adds, those people who too frequently enjoy female amours, have generally but few or none of these animalcules in their semen.
Leeuwenhoeck, Andry, and many others, strenuously opposed the egg system; they had discovered in the semen of all males living animalcules; they proved that these animalcules could not be regarded merely as dwelling in this liquor, since their bulk was greater than that of the liquor itself; and that nothing like them was found either in the blood, or in the other animal liquors. They asserted, that females furnished nothing similar, nothing alive; and it was therefore evident that the fecundity attributed to them belonged, on the contrary, to males alone: and that the discovery of these spermatic animals in the semen tended more to the explanation of generation than all that had been before supposed; since, in fact, what was most difficult to conceive in generation, was the production of the living part, all the rest being only accessary operations, and therefore no doubt could remain but these little animals were destined to become men, or perfect animals of their kind. When it was opposed to the partizans of this system, that it did not seem natural to suppose that so many millions of animalcules, every one of which might become a human being, should be employed for a purpose of which one alone was to reap theadvantage; when it was asked them, why this useless profusion of the shoots of human beings? they answered, that it was only consonant with the common munificence of nature: that out of many millions of seeds which plants and trees produce, but a very few succeed, and therefore we must not be surprised at the same circumstance in spermatic animals. When the infinite minuteness of the spermatic worm, compared to man, was objected to them, they answered, by the example of the seed of trees; and they added, with some foundation, metaphysical reasonings, by which they proved that great and small being only relations, the transition from small to great, or from great to small, was executed by nature with still more facility than we can conceive.
Besides, continue they, have we not very frequent examples of transformation in insects? do we not see small aquatic worms become winged animals, by only throwing off their coats, which were their apparent and external forms? and may not spermatic animals, by a similar transformation, become perfect animals? All therefore, they conclude, concurs to favour this system of generation, and confuting that founded on eggs; and if there are eggs in viviparousfemales, the same as in the oviparous, these eggs will only be the necessary matter for the growth of the spermatic worm, which enters into the egg by the pedicle that adheres to the ovarium, and where it meets with food ready prepared for it. All the worms which find not this passage through the pedicle into the egg will perish, and that one which alone has traced its way will arrive at its transformation. The difficulty of meeting with the passage in the pedicle of the egg, can only be compensated by the infinite number of spermatic worms. It is a million to one that any particular spermatic worm will meet with the pedicle of the egg, and therefore what at first appears a profusion is highly necessary. When one has entered, no other can introduce itself, because, say they, the first worm entirely shuts up the passage, or there is a valve at the entrance of the pedicle, which is free when the egg is not absolutely full; but when the worm has filled the egg, the valve can no longer open although impelled by another worm. This valve is very well imagined, because, if the first worm should chance to return, it opposes its egress, and obliges it to remain and undergo the transformation. The spermatic worm then becomes the fœtus, thesubstance of the egg its food, the membranes, its covering, and when the nutriment in the egg is nearly exhausted, the fœtus adheres to the internal skin of the matrix, and thus derives nourishment from the parent's blood, till by its weight, and augmentation of its strength, it breaks through its imprisonment, and comes perfect into the world.
By this system it was not the first woman who inclosed all mankind, but the first man who contained all posterity in his body. The pre-existing germs are no longer embryos without light, inclosed in the eggs, and contained one in another, ad infinitum; but they are small animals, the little homunculæ organized and actually living, included in each other in endless succession, and to which nothing is wanting for them to become perfect animals, and human beings, but expansion, assisted by a transformation similar to that which winged insects undergo.
As our present physicians are divided on these two systems of spermatic worms and eggs, and as all those who have lately written on generation have adopted one or the other of these opinions, it seems necessary to examine them with care, and to shew that they are notonly sufficient to explain the phenomena of generation, but are also founded on suppositions void of all probability.
Both suppose an infinite progression; which, as we have said, is not so much a reasonable supposition as an illusion of the mind. A spermatic worm is more than a thousand million times smaller than a man; if, therefore, we suppose the body of a man as an unit, the size of the spermatic worm can only be expressed by the fraction 1/1000000000; and as man is with respect to the spermatic worm of the first generation, what this worm is to that of the second generation, the size of the last spermatic worm cannot be expressed but by a number composed of nineteen cyphers; and so likewise the size of the spermatic worm of the third generation will require 28 cyphers; that of the fourth generation 37; the fifth 46, and the sixth 55 cyphers. To form an idea of the minuteness represented by this fraction, let us take the dimensions of the sphere of the universe from Sol to Saturn, and supposing the sun a million times larger than the earth, and about a thousand solar diameters distant from Saturn, we shall perceive that only 45 cyphers are required to express the number of cubic linescontained in this sphere; and, by reducing each cubic line into a thousand millions of atoms, 54 cyphers are only required to express that number; consequently a human being will be greater, with relation to a spermatic worm of the sixth generation, than the sphere of the universe is with relation to the smallest atom which is possible to be perceived by the assistance of a microscope. What would it be if we were to carry it to ten generations? The minuteness would be so great as to leave us no mode of expressing it. The probability of this opinion, therefore, evidently disappears in proportion as the object diminishes. This calculation may be applied to eggs as well as spermatic worms, and the want of probability is general to both; it will, no doubt, be said, that matter being divisible,ad infinitum, there is no impossibility in this diminution of size; and although it is not probable, yet we must regard this division of matter as possible, since we can always, by thought, divide an atom into a number of parts. But I answer, that the same illusion is made use of on this infinite divisibility as on every other geometrical and arithmetical infinity; they are only abstractions of the mind, and have no existence in nature.If we look on infinite divisibility of matter as an absolute infinity, it is easy to demonstrate that in that sense it does not exist; for, if once we suppose the smallest atom possible, by that supposition this atom will necessarily be indivisible, since if it were divisible it would no longer be the smallest atom possible, which would be contrary to the supposition. It therefore seems to me, that every hypothesis where a progress,ad infinitum, is admitted, ought to be rejected not only as false, but as void of all probability; and as the system of eggs and spermatic worms supposes this progress, they should not be admitted in philosophy.
Another great difficulty against these two systems is, that in the egg system the first woman contained the male and female eggs: the male eggs contained only a generation of males; and that, on the contrary, the female eggs contained thousands of generations, both of males and females; insomuch that, at the same time, and in the same woman, there was always a certain number of eggs capable of developing themselves to infinity, and another number which would be unfolded but once. The same circumstance must occur in the other system, and therefore I ask if there isthe smallest appearance of probability in these suppositions?
A third difficulty arises against these two systems, which is, the resemblance that children bear, sometimes to the father and sometimes to the mother, and sometimes to both; and the evident marks of extraordinary difference in mules, &c. If from the spermatic worm of the father the fœtus is produced, how can the child resemble the mother; and if the fœtus is pre-existing in the egg of the mother, how can the child resemble its father? or if the spermatic worm of a horse, or the egg of a she-ass contains the fœtus, how can the mule participate in the nature and figure of both the horse and the ass?
These general difficulties, which are invincible, are not the only ones that can be made against these systems; there are particular ones which are no less potent. To begin with the system of spermatic worms, may it not be asked of those who admit of it, how they think this transformation is made? and object to them, that insects have not, nor cannot have any relation with what they suppose. For the worm which is to become a fly, or the caterpillar which is to become a butterfly, passes througha middle state, and when it ceases to be a chrysalis, it is completely formed and has acquired its full size, and is then in a condition of engendering; whereas in the pretended transformation of the spermatic worm into man, it cannot be said to be in a state of chrysalis, and even if we should suppose one during the first days of conception, why does not the production of this chrysalis, instead of an unformed embryo, suppose an adult and perfect being? We plainly see how analogy is here violated; and that far from confirming this idea of the transformation of the spermatic worm, it is instantly destroyed by examination.
Besides, the worm which is transformed into a fly proceeds from an egg; the egg is the produce of the copulation of the male and female, and includes the fœtus, which must afterwards enter into a chrysalis, before it arrives at its state of perfection, as a fly; in which form alone it has an engendering power; whereas the spermatic worm has no faculty of generation, nor proceeds from an egg. Even should we allow the semen to contain eggs, from whence issue spermatic worms, the same difficulty will still remain, for these supposed eggs have not the copulation of the twosexes for their principle of existence, as in insects; consequently the partizans of that opinion cannot pretend any similarity, nor derive any advantage from the transformation of insects; which rather destroys the basis of their explanation.
When the innumerable multitude of spermatic worms are opposed to those physicians who are prejudiced by this system, they answer, as before observed, by the examples of plants and trees. But this comparison is not entirely just, because all the spermatic worms excepting one perish by absolute necessity, which is not the case with the seeds of a tree or plant, for those which do not become vegetables, serve as food for other organized bodies, and for the expansion and reproduction of animals; whereas we do not see any use for the spermatic worms, or any end to which we can refer their prodigious superfluity. On the whole, I only make this remark in reply to what is, or may be said on this matter; for I own, that no arguments drawn from final causes will either establish or destroy a physical system.
Another objection made against this opinion is, there being, to all appearance, an equalnumber of separate worms in the seed of all kinds of animals, for, say they, it is natural to imagine, that in those kinds where fœtuses are most abundant, as in fishes, insects, &c. the number of spermatic worms should be more numerous than in those where generation is least abundant, as in man, quadrupeds, birds, &c. for if they are the immediate cause of production, why is there no proportion between their number and that of the fœtus? Besides, there is no proportionable difference in the size of most kinds of spermatic worms, those of large animals being as small as those of the least. Those of a rat, and those of a man, are nearly the same, and when there is any difference it is no ways relative to the size of the individual. The Calmar, which is a very small fish, has spermatic worms above one hundred thousand times larger than those of a man or a dog. Another proof these worms are not the immediate and only cause of generation.
The particular difficulties that may be raised against this egg system are no less considerable. If the fœtus exists in the egg before the communication of the male with the female, why do we not perceive the fœtus as well in those eggs produced before as after copulation? Wehave before recounted the observations of Malpighius, who says he always found the fœtus in those eggs produced by hens that had received the cock, and only a mass or mole in the cicatrice of those who had not; it is therefore very clear that the fœtus does not exist in the egg till after impregnation.
Another difficulty against this system is, that not only the fœtus is not seen in eggs before the junction of the sexes, but even the existence of eggs in viviparous animals is by no means proved. Those physicians who pretend that the spermatic worm is the fœtus enveloped in a covering, are at least assured of spermatic worms; but those who affirm that the fœtus is pre-existing in the egg, have no proof of the existence of the egg itself; on the contrary, there is a probability, almost equivalent to a certainty, that these eggs do not exist.
Although the partizans of the egg system do not agree what must be looked on as the true egg in the female testicle, nevertheless they all think that impregnation is made in the testicle called theovarium, without paying any attention that if it was so most fœtuses would be found in the abdomen instead of the matrix,for the superior extremity of the trunk being separated from the ovarium, the pretended eggs must often fall into the abdomen. Now, it is certain that this case is extremely rare, and, I believe, never happened, unless occasioned by some accident.
The general difficulties and objections against these two systems have been noticed by the author ofVenus Physique, whose treatise, although very short, has more philosophical ideas than there are in many folio volumes on generation. As this book is very public, and the accuracy with which it is written will not permit any extract, I shall only observe, this author is the first who has returned into the road of truth, from which we were farther strayed than ever, since the supposition of the egg system, and the discovery of spermatic animals. Nothing therefore remains farther to be said, and I shall conclude with relating a few particular experiments, some of which have appeared favourable, and others contrary, to these systems.
In the History of the Academy of Sciences of Paris, 1701, some objections are proposed by M. Mery against the egg system. This able anatomist supports, with reason, that thevesicles found in the female testicles are not eggs, but are so adherent to the internal substance of the testicle that they cannot be naturally separated therefrom; that if they could separate themselves from this substance it would be impossible for them to get out, because the common membrane, which surrounds all the testicle, is a web of too firm a texture to admit of a conception; that a vesicle, or round soft egg, could open a passage in it; and as the greatest number of physicians and anatomists were prejudiced in favour of the egg system, and, from the experiments of De Graaf, believed that the number of cicatrices in the testicles marked the number of fœtuses, M. Mery mentions the testicles of a woman, where there was such a quantity of these cicatrices, that, agreeable to this system, would have supposed a fecundity almost beyond imagination. These difficulties excited other partizans of the egg system to make new researches. M. Duverney examined and dissected the testicles of cows and sheep: he pretended that the vesicles were eggs, because there were some less adherent to the testicles than others, and insisted it was natural to believe, that when they came to perfect maturity they were separated altogether,especially as by inflating the internal cavity of the testicle the air passed between these vesicles and the adjoining parts. M. Mery only answers that this not a sufficient proof, since these vesicles have never been seen separate from the testicles. M. Duverney remarked the glandular bodies on the testicles, but he did not look on them as an essential and necessary part towards generation, but merely as accidental exuberances, like gall-nuts, on the oak. M. Littre, whose prejudice for the egg system was still greater, pretended, not only that the vesicles were eggs, but even asserted he had discovered in one of them a well-formed fœtus, of which he distinguished the head and trunk very perfectly, and even gave the dimensions. But besides this wonder being only seen by that gentleman, and no other naturalist, it is sufficient to read his Memoire[P]to perceive how doubtful was the fact. By his own words we find the matrix was schirrhous, that the testicle was corrupted, and that the vesicle, or egg, which contained this imaginary fœtus was smaller than the other vesicles, or eggs, which did not contain any thing, &c.